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1 Introduction 

 

1.1 Motivation 

 
One of the key problems in information systems and particularly in current geographic 
information systems (GIS) is the effective management of information, since on the one hand 
the amount of information has increased tremendously and on the other hand, the information 
becomes more complex. However, the information should be accessible in an efficient, 
flexible and automated way. In order to fulfill these requirements, the traditional data 
management systems unfortunately surrender.  
 
Ontology Based Data Access (OBDA) is considered as a suitable, flexible and powerful 
approach, being able to handle sophisticated data management tasks, by providing access to 
data, potentially stored in heterogeneous data sources, with the help of a semantic layer in the 
form of an ontology. In terms of GIS, used for instance in the areas of city planning, 
transportation networks, urban management, etc., ontologies are appropriate for the 
formalization of relevant concepts and relations among spatial regions in a conceptual data 
model, thus providing also the possibility to answer queries. In a nutshell, ontologies give the 
beneficial flexibility for users to describe their own models on GIS data and formulate easily 
queries over the data.  
 
However, query answering at the conceptual tier of a geographical or spatial model requires 
deduction techniques and features, which are difficult to realize due to the size of the 
persistent data stored in geographic databases. An advocated solution to the problem of query 
answering over geo-thematic ontologies is to use specific lightweight description logics and 
query languages in order to keep low complexity of reasoning and provide sufficient 
expressivity for modeling and querying important features of GIS data.  
 

1.2 Objectives 

 
The aim of this Master Thesis is to evaluate approaches for ontology based query answering 
over spatial databases. Another objective is to address current issues in ontology based data 
access and propose solutions for solving or minimizing these problems, by analyzing possible 
techniques and scientific approaches.  

Furthermore, the modeling and reasoning capabilities of DL-Lite(RCC8) with respect to 
expressivity and efficiency of reason, as well as the querying features of  GCQ+, are to be 
examined in detail. As a next step, the Adapted Perfect Rewriting Algorithm should be 
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analyzed and consequently implemented within a software system, being able to perform 
flexible and powerful ontology based querying answering over spatial databases.  
 

1.3 Achievements 
 

The main theoretical contribution of this Master Thesis is that a flexible, efficient, fast and 
reliable method for performing ontology based query answering over spatial databases can be 
realized by incorporating the following approaches and techniques: 

• The modified logic DL-Lite(RCC8), realized by a weak coupling of Lightweight DLs 
with the expressive Region Connection Calculus RCC8, can be used to effectively and 
easily model the conceptual level of the ontology.  
 

• The query language GCQ+ can be used in order to define complex queries, since it 
provides support for qualitative spatial query answering. 

 
• A top-down approach for query answering over DL-Lite(RCC8) ontologies with 

mappings of the form O=<T, M, D>, where T is a TBox (a set of axioms), M is a set 
of mappings and D is a spatial database, can be used by applying an optimized 
Adapted Perfect Rewriting Algorithm for conjunctive queries, followed by an 
Unfolding process, where with the help of the mappings M the output query of the 
reformulation step, being a union of conjunctive queries,  is consequently transformed 
into an SQL query, thus avoiding the materialization of the virtual ABox (a set of 
assertions) of the form A(M, D). In a nutshell, the initial query can be compiled into an 
SQL query that is consequently posed to the spatial database, making use of the query 
optimization techniques provided by current database management systems. 
 

Another practical achievement of this Master Thesis, verifying the latter described theoretical 
contribution, is the development of an ontology based Query Answering System in Java that 
provides: 
 

• a framework for representing standard DL-Lite TBox; 
 

• a framework for representing DL-Lite(RCC8) TBox, containing in addition concepts 
of the form ∃U1,U2.r , where  r ∊ RelRCC8 and U → loc | R	ᴏ loc; 

 

• a framework for representing conjunctive queries, containing query atoms of concepts, 
roles or GCQ+ atoms of the form  ∃U1,U2.r(x); 

 
• a framework for representing object-to-data mappings, containing mapping assertions 

of the form Mleft ~>Mright, such that the left part is and SQL query and the right part is 
a conjunction of atoms over the TBox; 
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• a Parser for reading user inputs 
 

• a Reasoner for  implementing the Original Perfect Rewriting Algorithm and the 
Adapted Perfect Rewriting Algorithm; 

 
• a Reasoner for implementing the Query Reformulation process and evaluating the 

output of the Query Reformulation process over a PostgreSQL database. 

 
Furthermore, a performance optimization of the Adapted Perfect Rewriting algorithm has 
been achieved.  The first rewriting rule (cf. Chapter 3.6) of the algorithm has been extended 
by finding the maximum pairs r1,r2 such that r1;r 2 ⊆ r3 and realizing a reformulation process 
only w.r.t. these pairs, thus avoiding redundancy and decreasing complexity (cf. Figure 5.10, 
line 14).  
 
Finally, experiments for testing the Perfect Rewriting Module of the application, using both 
pure DL-Lite and DL-Lite(RCC8) TBox-es, have been realized. Last but not least, the 
complete Query Answering Reasoner, including the Reformulation, Unfolding and Evaluation 
Modules has been evaluated over pure DL-Lite ontologies.   
 

1.4 Chapter Structure 
 

Chapter 2 introduces current issues in information systems. A detailed explanation of the 
Description Logics, referred as the formal foundations for ontologies, is consequently 
revealed. The Ontology Based Data Access Control is explained and its core issues are 
defined. Last but not least, the chapter finishes with a brief comparison and evaluation of 
current spatial databases and existing OBDA software applications. Chapter 3 presents a 
problem and requirement analysis. It discusses the trade-off between expressive power and 
computational complexity of reasoning, as well as different approaches how to link data to 
ontologies. Then the core ideas of DL-Lite and several DL-Lite extensions are presented. 
Consequently, the main part of this chapter concentrates on the DL-Lite Combined Geo-
thematic Logics, GCQ+ and the Adapted Perfect Rewriting Algorithm. Finally, the chapter 
ends with a list of all program and technical requirements, based on the previously analyzed 
concepts, technologies, solution proposals, and limitations.  Chapter 4 and 5 are the main 
chapters of this Master Thesis, where the practical achievements are explained by presenting 
the actual design and architecture of the developed GIS application with DL-Lite(RCC8) 
ontologies. Moreover, Chapter 5 reveals how the core components of the system are realized 
by describing the most important software components, techniques and issues. Furthermore, 
the processes query reformulation and query unfolding are explained, followed by overviews 
of the application outputs and concluding discussions of the achieved results.  Chapter 6 
continues with a brief discussion how the developed system has been tested and recommends 
several future research topics and program improvements. This Master Thesis ends with a 
conclusion chapter that summarizes the main goals and achieved results. 
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2 Fundamentals and Background 

 

This chapter starts with a short overview of the current issues in information systems. 
Consequently, the essence of knowledge representation is discussed and a number of 
knowledge representation techniques and approaches are presented. A detailed explanation of 
the Description Logics, referred as the formal foundations for ontologies, is consequently 
revealed in order to provide background information for the ideas, used in the following 
chapters. The Ontology Based Data Access Control is explained and its core issues are 
defined. Last but not least, the chapter finishes with a brief comparison that reveals and 
evaluates current spatial databases and existing OBDA software applications.  
 

2.1 Knowledge Representation Techniques 

 
Traditionally, the complex manipulation of data information has been one of the main topics 
of interest in the area of knowledge representation in Artificial Intelligence. The core aim of 
knowledge representation is to formally model knowledge by providing high-level description 
of the world and thus enabling the process of effectively drawing logical conclusions about 
the modeled world. The process of modeling is usually realized in complex knowledge 
representation and reasoning systems, which are based on various formal knowledge 
representation languages and notions.  These systems provide the possibility to implicitly find 
consequences, based on the explicitly represented knowledge.  

The knowledge representation approaches and techniques going back to the 1970’s can be 
classified into two main groups: non-logic-based representations and logic-based formalism.  
In the second approach, the language, used for knowledge representation, is commonly a 
variation of a first-order predicate calculus, while the non-logic-based approach often relies 
on the use of networks, graphical interfaces or various ad hoc data structures. Examples of the 
non-logic-based technique are Semantic Networks and Frames, which can be also specified as 
Network-Based Structures [1]. Representatives of the second approach are among others 
Description Logics (DL), the standard Web Ontology Language (OWL), Datalog and rule-
based languages, Predicate Logic, etc. [2]. The main advantage of the logic-based approach is 
that it is more powerful, more general-purpose and more expressive than the non-logic-based 
representation technique.  

The core building parts of the network-based representation structures are nodes and links, 
which correspondingly depict concepts and roles. A concept is a class or set of particular 
objects and a role represents the connection or relation among these objects. If the relation, 
i.e. role is more complex, then it can be also represented as a node, but with a different shape. 
Moreover, concepts can have further characteristics such as attributes or properties, which are 
attached to the corresponding nodes in the network. An example network is illustrated in 
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Figure 2.1, where knowledge about cats, pets, animals, mammals and carnivores can be 
depicted. This network is also referred as a terminology, depicting the described world that 
consists of concepts, roles and attributes. The roles are represented by the blue arrows. For 
instance, the link between the concept cat and carnivore means that a cat is a carnivore. This 
type of connection is also called an “IS-A” relationship [1].  It is important to point out that 
the “IS-A” relationship also implies hierarchy of the concepts, meaning that all attributes from 
the more general concept are inherited to the more specific one, i.e. the child concept.  As 
illustrated in Figure 2.1, a carnivore has teeth and a cat concept inherits the properties from 
the carnivore, which fact yields the conclusion that a cat also has teeth. In addition, a cat has 
a breed, e.g. American Longhair, Bengal, Birman, etc.  

 

 

 

 

 

 

  

 

Figure 2.1 An Example of Network-based Representation Structure 

 
The breastFeed node represents a role in the terminology, illustrated in Figure 2.1.  This role 
has value and number restrictions, represented correspondingly by the labels v/r, meaning a 
value restriction, and (1, NIL), which stands for the number of minimum and maximum 
breastfed children. The NIL symbol stands for infinity. This role description can be translated 
to natural language as “A mammal is an animal, who can breastfeed at least one child and all 
children are also animals“. 

It is important to point out that there could be also implicit relationships among the nodes of 
the network and this is one of the major tasks of the knowledge representations systems, 
namely to identify and take into account these implicit relations between the concepts during 
the reasoning process. For instance, as observed in Figure 2.1. the concept cat and carnivore 
are explicitly connected, same as mammal and carnivore, so it can be concluded that a cat is 
also a mammal even though there is no direct link between cat and mammal. As a 
consequence, the main problem of the network-based representation structures becomes 
obvious when the complexity and number of the concepts relationships increases, since it 
becomes more difficult to precisely characterize, recognize and compute all the relations 
among concepts from the terminology [1]. A solution to this problem is to define a formal 
language that provides both an accurate characterization and interpretation of the meaning of 
the network and its elements.  

teeth 

breed 

breastFeed 
(1,NIL) 

mammal 

cat 

carnivore 

pet 
 

 
animal 

v/r 
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A lot of the ideas and principles, implemented in the first semantic networks and frame-based 
systems, have been the key to the successful development of the KL-ONE knowledge 
representation systems, which consequently sets the fundamentals of the logic-based 
characterization formalism. The language of KL-ONE explicitly represents and provides a 
logical basis for interpreting conceptual and role information, as well as the notion of 
subsumption, conjuction, role hierarchies, etc. As a consequence, a precise and distinct 
semantics was provided for the KL-ONE system, which resulted in the first Description 
Logics definition [1].  
 

2.2 Description Logics 

 
The knowledge of the application domain or the “world” in the Description Logics is 
represented by first defining all relevant domain concepts, namely the domain terminology. 
After that the properties of characteristic domain individuals or objects are specified, based on 
the previously defined concepts, thus creating the description of the application domain. The 
main difference of Description Logics in comparison to some of its predecessors is the fact 
that it is equipped with a formal, logic-based semantics.  Another very important 
distinguishing characteristics of Description Logics is the central role of reasoning in this 
formalism, namely it is possible to infer implicit knowledge about the “world” from explicit 
facts included in the knowledge base [3].  
 

2.2.1 Application and Reasoning  

 
The application of Description Logics is very broad and it may be found in many intelligent 
systems for processing information, including natural language processing, database 
management, software engineering, digital libraries, web-based information systems and 
many others, because it supports useful and practical inference patterns to describe, classify 
and understand the human world. In fact, Description Logics facilitate the classification of 
concepts and individuals.  Moreover, it not only specifies sub-concept/ super-concept 
relationships among different concepts, thus allowing subsumption, but it also provides the 
information whether a single individual or an object is an instance of a certain concept. This 
feature can in addition give important knowledge about the attributes or characteristics of a 
specific object.  In fact, the subsumption is the main inference on concept expressions in 
Description Logics. In order to determine subsuption, it should be checked whether a specific 
concept B is more general than a concept A. The symbolic representation of subsumption in 
DL is typically written as A	⊑		B [1], namely B subsumes A or the concept B (the subsumer) is 
more general than the concept A (subsumee). Considering the example in Figure 2.1, it can be 
concluded that pet ⊑ animal and mammal ⊑ animal, meaning the concept animal subsumes or 
is more general than both the pet and the mammal concepts. 

Another typical example of inference on concept expression in Description Logics is the 
concept satisfiability. The main task of checking satisfiability is to test whether the empty 
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concept is not necessary denoted by any concept expression. Concept satisfiability can be also 
regarded as a special case of the subsumption, where the subsumer is the empty concept, thus 
inferring that a specific concept is not satisfiable, i.e. contradictory [1].  

In general, investigating the complexity of computing a specific inference problem in logics is 
a very important issue. This problem also occupies a fundamental part in the Description 
Logics field of research. Dating back to 1984, Brachman and Levesque used the simple 
structure of Description Logics in order to argue that there is a proportional relation between 
the expressive power of a knowledge representation language and the complexity of reasoning 
[4]. In other words, the more expressive the language is, the more difficult the reasoning is. 
This tradeoff between the expressivity of the Description Logics and the computational 
difficulty of its reasoning problems is one of the fundamental research topics in this area.    
 

2.2.2 Syntax and Semantics  

 
There are a lot of variations of the Description Logics, but the base description language is the 
AL-language (attributive language). The elementary descriptions are atomic roles and 
concepts. All other complex descriptions can be built with the help of these atomic 
constructors in an inductive way. It is commonly accepted that the abstract notation of atomic 
concepts is represented by the letters A and B, while the representation for atomic roles is R. 
The complex concept descriptions are denoted by the letters C and D. The main syntax rules 
of the AL, forming concept descriptions, are presented in Figure 2.2 

C, D → A | (atomic concept) 
 T | (universal concept) 
 ⊥ | (bottom concept) 
 ￢A | (atomic negation) 
 C ⊓ D | (intersection) 
 ∀R.C | (value restriction) 
 ∃R.T | (limited existential quantification) 

 
Figure 2.2 AL Syntax [3] 

 
It is important to point out that negation in AL is only applicable to atomic concepts. 
Furthermore, when using role description constructors only the top concept is allowed in the 
scope of existential quantification, as illustrated in Figure 2.2.  Referring to Figure 2.1, where 
the description of an animal has been illustrated in a graphical way, this approach can be 
consequently extended and presented in terms of Description Logics. For instance, supposing 
that an Animal and a Carnivore are atomic concepts, then by using the intersection operator 
the complex concepts of meat-eating animals and plant-eating or herbivore animals are 
formally given by Animal ⊓ Carnivore and Animal ⊓ 	￢ Carnivore. Besides, if supposing 
that breastFeed is an atomic role, then the concept of those animals, which are mammals, can 
be constructed as Animal ⊓ ∃breastFeed.T. All other non-mammals animals can be described 
as Animal ⊓ ∀ breastFeed⊥.  
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After presenting the base syntax of the AL, the formal semantics is consequently explained. In 
fact, the semantics of description logics is specified by defining the concepts as sets of 
individuals and respectively the roles as pairs of individuals, which are particularly connected 
to a specific domain. The most important fragments of the semantics are the interpretations 
and the interpretation function. In the interpretation function, a set in the form AI	⊆	△I		 is 
assigned to every atomic concept A and a binary relation RI	⊆	△I	x	△I	 is assigned to every 
atomic role R, where I stands for an interpretation function on a non-empty set △I	, i.e. the 
actual domain of interpretation [3]. The semantics of concepts and roles, which are not 
atomic, is realized with the help of recursive definitions, as illustrated in Figure 2.3. These 
definitions are similar to the ones, presented in Figure 2.2 .  

��	 = △�			 
⊥�	 = ∅ 

(￢�	)�	 = △I	/AI			complement, meaning negation 
(�	 ⊓ 	�)�	 = CI	 ∩ �I			union, meaning disjunction 
(∀�. �	)�	 = �	a	∊	 △�	 |	∀�. ( , �)∊	RI	 → �	∊		��	}		 
(∃�. �		)�	 = �	a	∊	 △�	 |	∃�. ( , �)∊	RI	}		 

 
Figure 2.2 AL Semantics [3] 

 
As previously mentioned, by extending the AL language, the expressive power of the 
Description Logics can be increased. For example, constructors as union of concepts, full 
existential quantification, number restrictions, negation of arbitrary concepts, etc. can be 
added in order to extend the AL, forming a new variation of the AL language. 
 

2.2.3 TBox and ABox  

 
Description Logics are very beneficial and practical in the design of knowledge-based 
systems since they provide a representation language in order to define a knowledge base and 
techniques to realize inference reasoning over this language.  A very distinct differentiation of 
intensional and extensional knowledge can be noticed in the DL knowledge base. In the 
context of Description Logics, intensional knowledge stays for the information that is general 
about the problem domain and extensional knowledge represents the knowledge or 
information, specifying a particular problem. The knowledge base in DL consists of two main 
components- a TBox and an ABox. The TBox represents the intensional knowledge and it 
builds up the terminology. The TBox contains the vocabulary of the application domain and it 
contains definitions of concepts, roles and their general properties. A concept denotes a set of 
individuals, while a role represents a relationship among these individuals. On the contrary, 
the ABox represents the extensional knowledge or assertions about the individuals of the 
domain of interest in terms of the initially defined vocabulary [1, pp. 12-15].  

There are two types of logical declarations or terminological axioms in the TBox – 
equivalences and inclusions. The logical equivalence provides both necessary and sufficient 
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conditions for classifying an individual. For instance, the concept definition of a Man in a 
TBox can be declared as the axiom, shown in Figure 2.3. 

Man  	≡				Person ⊓ Male 

Figure 2.3 A Terminology with Equivalence Axiom 
 

The form of definition of the concept Man of Figure 2.3 is much stronger than the one, 
illustrated in Figure 2.4, since the inclusion axiom of Figure 2.4 only imposes necessary 
condition, i.e. the concept is not defined completely. Inclusions generalize equivalences and 
therefore they are also called GCIs (General Inclusion Axioms).  In practice they are a very 
convenient way to introduce new concepts or roles into a definite TBox, which terms could 
not be defined completely. 

Male ⊏ Person 
 

Figure 2.4 A Terminology with Inclusion Axiom 
 

Both equality and inclusion axioms not only allow concept definitions, but also roles. A TBox 
with concepts and roles within a family is presented in Figure 2.5. 

Woman ≡ Person ⊓ Female 
Man ≡ Person ⊓ ¬Woman 

Mother ≡ Woman ⊓ ∃hasChild.Person 
Father ≡ Man ⊓ ∃hasChild.Person 
Parent ≡ Mother ⊔ Father 

 
Figure 2.5 A Family Terminology Example [3] 

 
The concept Woman from Figure 2.5 is defined to be a Female Person, a Man is a Person, 
who is not a Woman. In addition, a Mother is declared to be a Woman, who has children and a 
Father is specified to be a Man with children. Consequently, a Parent in the TBox of Figure 
2.5 is classified as either a Mother or a Father.  

Similar to the TBox, the ABox also deals with concept and roles, thus describing the current 
state of affairs, but what is the peculiar about the ABox is the fact, that in an ABox the 
individual plays a central role. In other words, individuals are introduced by assigning names 
to them and asserting their properties. It is a common practice that individuals are often 
labeled as a, b or c and by borrowing the notation of the TBox, assertions of the form C(a) 
and R(b,c) can be generated. An ABox is in fact a finite set of assertions. For instance, 
referring again to the animal example from Figure 2.1, if  TOM and JERRY are individual 
names, then Cat(TOM) means that TOM belongs to the interpretation of the concept Cat, i.e. 
TOM is a cat and Mammal(JERRY) means that JERRY is a mammal. In addition, when taking 
into account individual role assertions, it can be concluded that JERRY suckles from MARY 
for the example of breastFeed(MARY, JERRY).  
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There are two key inferences when considering a TBox and an ABox – satisfiability and 
consistency. Satisfiability of the TBox means that there is a model of the TBox, i.e. an 
interpretation of all axioms in the TBox, making all of them true. Taking into account an 
ABox, it is the case that an interpretation I  satisfies the ABox A if it satisfies every single 
assertion in A, thus I  being the model of the assertion of the ABox. Combining, both 
satisfiabiliy definitions about the TBox and ABox, it can be concluded that interpretation “I  
satisfies an assertion a or an ABox A with respect to a TBox T if in addition to being a model 
of a or of A, it is a model of T” [3].  

After checking the satisfiability, a typical task of a knowledge representation system is also to 
verify whether the representation of the particular knowledge is consistent. If that is not the 
case, then arbitrary or wrong conclusions can be drawn from a logical point of view. For 
instance, if the assertions Father(PETER) and Mother(PETER) are contained in a specific 
ABox, then it must be possible to detect that together with the TBox, presented in Figure 2.5, 
these statements are not consistent, since Father and Mother are interpreted as concepts, 
having disjoint extensions in the current example. However, if taking into account an empty 
TBox, the discussed assertions are consistent, because no restrictions of the interpretation of 
Father and Mother exist, so they may have a common element [3].  Both satisfiability tests of 
descriptions and consistency tests of sets of assertions are beneficial in order to determine 
whether a specific KB is in particular meaningful. 

Another known technique for checking whether domain models are correct or to improve the 
optimization of queries, formulated as concepts, is the subsumtion, i.e. verifying whether a 
specific concept is more general than another concept. Furthermore, relationships such as 
disjointness, equivalence, etc. also play a major role and are of significant interest in the 
research area of Description Logics and reasoning about knowledge. 

Last but not least, it is important to point out that the TBox and the ABox are the two typical 
main building components of the knowledge base of a knowledge representation system, 
based on a Description Logics. An example of the graphical representation of such a design 
[3, p. 50] is illustrated in Figure 2.6. In addition to the storage of assertions and terminologies, 
the system also implements numerous services and techniques as the previously described 
reasoning tasks for checking satisfiability, consistency, subsumption, etc.   
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Figure 2.6 Architecture of a DL Knowledge Representation System 

 
It is often the case that a TBox and an ABox are compared to relational databases and number 
of similarities among them can be found. For instance, in a simplified point of view it can be 
observed that a TBox is analogous to a database schema and an ABox can be treated as the 
actual data in the database. However, semantically these concepts differ in their essence. On 
the one hand, only one single interpretation is depicted by a database instance, while on the 
other hand, a lot of interpretations, i.e. models, are represented by an ABox.  For example, if 
the only assertion about BOBBY is hasParent(BOBBY, MIKE), then interpreting this in the 
database context yields the conclusion that BOBBY has only one parent and his name is 
MIKE. However, an ABox with such assertion only indicates that MIKE is a parent of BOBBY 
and nothing more. In fact, an ABox has many models. In some of these models, MIKE is the 
only parent, but in others BOBBY is not an orphan and he has a mother and a father.  
 
Analyzing the previously described simple example, it is obvious that the lack of information 
in a database indicates negative information, while the nonexistence of specific information in 
an ABox is only interpreted as a lack of knowledge.  In other words, the information in the 
database is generally referred as complete and the one in the ABox as incomplete. 
Consequently, the query answering and inferences in DLs are more complicated than query 
answering in databases, since an ABox could represent infinitely many models. Moreover, 
nontrivial reasoning techniques may be required, e.g. case analysis [3]. 
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2.3 Ontology Based Data Access 

 
Description Logics has been an essential area of knowledge representation for the last decades 
in order to build up the foundations for a structured representation of complex information, 
enriching this information with a formal semantics. Due to the logic-based formalism of the 
DL, an effective support for automated reasoning can be provided for solving various tasks 
and problems associated with data management.  
 
Ontologies are considered as a suitable, flexible, powerful and efficient formal tool or 
approach that can deal with sophisticated data management tasks [5]. In fact, ontologies 
provide a representation schema, describing a formal conceptualization of a specific domain 
of interest. Its specification incorporates several levels. The core distinct layers are the 
intensional level, where the conceptual structure of the domain is specified, namely the TBox, 
and the extensional level, where instances of the conceptual elements from the intensional 
level are defined, namely the ABox. In addition, an ontology may also have an extra tier, i.e. a 
meta-level, where a set of modeling categories are being specified [6].   
 
The proposal of using an ontology as a conceptual view over a repository is reasonable, but 
the key point is that the conceptual layer with the help of which the lower data layer is 
accessed, should not add a considerable overhead when processing the data [7].  The problem 
becomes more critical when dealing with large amount of data, i.e. in particular when 
considering geographical and spatial data. A graphical representation of a design of an 
information system, using ontologies as a technical tool for providing a conceptualization 
over a specific domain, is presented in Figure 2.7 
 

 
DATA LAYER 

 
Figure 2.7 Design of an Information System, using Ontologies 

source 1 
source 2 

source 3 

ONTOLOGY 

source n 
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The ontology in Figure 2.7 maps a specific domain of interest within an information system at 
a high level of abstraction. The relationship between the instances of concepts and roles in the 
ontology and the data at the sources are realized with the help of appropriate mappings. The 
advantage of this setting is the fact that it is not necessarily needed to be known how the data 
repository is organized and stored or where the data sources are located. In other words, the 
data sources are independent from the ontology and they are situated at different levels of 
abstraction. In addition, information systems, which are implemented with the help of 
ontologies can „communicate“ among each other by sharing information. This cooperation is 
performed at the level of the conceptualization, without the need of connecting the data 
sources, thus making the ontology also the core ingredient of cooperation among information 
systems. 
 
The design scenario, illustrated in Figure 2.7 is a typical representative of the so called 
Ontology-Based Data Access (OBDA). The pre-existing data sources build up the data layer 
of the information system, on the top of this layer there is a conceptual view of the data, that 
is consequently to be seen by the user. The conceptual view is formed by the ontology, which 
is the only access point for the client to interact with the system.  The purpose of the OBDA is 
to link a set of autonomously existent data to a specific ontology without being necessary to 
structure this data with the aim of saving the ontology instances [5]. As already mentioned the 
autonomous data and the ontology are at different abstraction levels and they may be 
specified in terms of not necessarily the same formalism. For instance, relational data models 
are usually used for the representation of data sources, while ontologies are expressed by 
logical languages, such as Description Logics and its successors.  Considering these different 
characteristics Antonella Poggi [5, pp. 134-135] and her colleagues summarize the five most 
important issues, when dealing with the interaction between the data layer and the conceptual 
view of the domain of interest, i.e. the ontology:  
 

I. The chosen ontology language for expressing complex semantic conditions at the 
intensional level should be expressive enough and at the same time its computational 
complexity of reasoning should be manageable as previously mentioned in Chapter 
2.2.1.   
 

II.  In modern applications, the amount of information, stored in the Data Layer, may be 
very large. Because of this reason an appropriate technology should be used that is 
able to handle large qualities of data in an efficient and consistent way. Such a 
technological solution, fulfilling the requirement of effective data manipulation, is for 
instance a relational Database Management System (DBMS). Here it is important to 
find the balance how much the expressive power of the ontology formalism can be 
used in order to still make use of the effectiveness, simplicity and convenience of the 
query answering over relational DBMS.  

 
III.  A mapping approach should be implemented, which realizes the formal linking or 

translation of the stored data and the ontology. In other words, a technique should be 
found out that reconstructs the meaning of the source data in terms of the conceptual 
layer. This extra mapping layer is needed, because the data at the Data Layer is stored 
independently of the ontology. 

 
IV.  The way data is expressed in a relational database differs from the way the 

corresponding information is provided in an ontology. A mismatch exists, since the 
main components managed by the data sources are stored values, i.e. data, and the 
elements managed by the ontology are abstract objects, which are instances of 
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concepts and roles in the ontology. This issue is widely known in the literature as the 
impedance mismatch problem and the mapping approach, described in the previous 
point, should cope with this problem. 

 
V. The last issue when building OBDA systems is the necessity of implementing a query 

answering method. The aim of this method is to facilitate the process of reasoning at 
the conceptual level and at the same time to provide mechanisms for efficient data 
access at the source by incorporating the mapping approach. In other words, the 
OBDA system should be able to translate any client request into an appropriate query 
that is consequently posed to the source. 
 

2.4 Spatial Databases and Existing OBDA Software Tools  

 
In OBDA the extensional knowledge in the database is extended by intensional knowledge in 
the form of an ontology. In a nutshell, the ontology builds up the conceptual view of an 
information system over a repository, as illustrated in Figure 2.7. Typically a geographical 
information system with ontologies, considering GEO-thematic, topological or spatial 
orientation scenarios, should encapsulate backend capabilities in order to store the large 
amount of GIS data.  The most popular ways of building storage environments in general are 
file systems and databases. A file system is part of every operating system and its 
responsibilities are to manage and store computer files and data on storage devices. 
Depending on the way how records are saved or retrieved within a file, the files are specified 
into three main types, namely sequential, index sequential and direct access based. 
Nevertheless, a more reasonable and more practical possibility for storing GIS data is to use a 
database rather than a file system. The main benefit of this suggestion is the fact that for 
systems, processing a large amount of GIS data, a database is more appropriate due to its 
quick data access, compact data storage and standardized querying technologies. There are 
numerous spatial extensions and databases on the market today. The most popular of them 
are: 

• PostgreSQL, which is an open source object-relational database system. It uses the 
spatial extension PostGIS to provide support for geographic objects and 
corresponding spatial and geometric functions [8]. 
 

• Oracle Spatial provides an SQL schema and features for facilitating the storage, 
update and retrieval of spatial data in an Oracle database [9].  

 
• Microsoft SQL Server supports the geography and geometry data types for managing 

spatial data since version 2008 [10]. 
 

• IBM DB2 Spatial Extender together with the Geodetic Data Management Feature 
offer support for spatial types, providing spatial and geodetic capabilities in order to 
query, maintain and create spatial data [11].  
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The open source PostgreSQL database management system together with the spatial extension 
PostGIS turn out to be the most appropriate option for storing persistent GIS information, 
taking into account license issues, performance, stability and possibility to handle geographic 
data in a standardized way. Moreover, the plugin PostGIS Shapefile and DBF Loader allows 
importing of GIS data, encapsulated in shapefiles, directly into the database. For instance, 
TIGER/Line® Shapefiles and TIGER/Line® Files can be loaded automatically in the 
database. These files are distributed to the public free of charge and they represent spatial 
extracts from the Census Bureau’s MAF/TIGER® (Master Address File/Topologically 
Integrated Geographic Encoding and Referencing) database [12]. They contain geographic 
information such as roads, rivers, railroads, hospitals, etc. as well as other geographic data and 
regions. The TIGER/Line® Shapefiles are very beneficial from usability and practical point 
of view when building and later testing a geographical information system with ontologies, 
since they provide up-to-date and real-world GIS data.  

Currently there is no commercial system with ontologies that simultaneously combines 
reasoning over a spatial and a thematic domain, using a Perfect Rewriting approach. 
However, related work, scientific projects and system prototypes have been broadly 
investigated and developed in the last years. For instance,  FaCT [13], DLP [14], RACER [15], 
QuOnto [16] are systems, dealing with expressive Description Logics and OBDA, but they do 
not incorporate facilities for space representation and reasoning. The innovative OnGIS [17] 
system is based on OWL ontologies and it provides limited ontology driven geospatial search 
and integration.  The advantage of this system is that it can spatially relate search results. 
However, its expressivity is currently very limited, since it provides only two spatial 
restrictions, i.e. “inside“ and “distance“ restrictions. In addition, non-spatial data is not 
supported and significant performance issues and computationally expensive spatial 
operations generate further problems, which altogether do not classify the OnGIS prototype 
and the former described applications as reliable ontology-based GIS systems, which 
guarantee a complete, correct, and efficient query answering mechanism. That is the reason 
why, the development of such a system is beneficial in the fields of Description Logics and 
other practical areas of science and life, such as city planning, urban management, 
construction of eco systems in forestry, etc. The next chapter investigates formal techniques, 
approaches, issues, and technologies relevant for the implementation of a stable ontology-
based GIS system for query answering. 
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3 Analysis 

 

This chapter presents a problem and requirement analysis. It starts with a detailed description 
of the issues of OBDA, discussing the trade-off between expressive power and computational 
complexity of reasoning, as well as different approaches and resulting difficulties how to link 
data to ontologies. Then the core ideas of DL-Lite and several DL-Lite extensions are 
presented. Consequently, the main part of this chapter discusses the DL-Lite Combined Geo-
thematic Logics and GCQ+. Moreover, two approaches for ontology based query answering 
over spatial databases are evaluated and the Adapted Perfect Rewriting Algorithm is 
explained in details. Finally, the chapter ends with a list of all program and technical 
requirements, based on the previously analyzed concepts, technologies, solution proposals, 
and limitations.   
 

3.1 Expressive Power versus Efficiency of Reasoning 
 

Before going into details of investigating the first issue when dealing with OBDA, i.e. 
expressive power versus efficiency of reasoning in the scenarios, where large quantities of 
data is to be accessed, it is crucial to first present a number of basic notions and terms related 
to computation complexity. When analyzing or measuring the computational complexity of 
reasoning in an OBDA system or a query language, the critical term of interest is the data 
complexity or the complexity with which a query is evaluated as a function of the size of the 
data or the database [18], discarding the size of the TBox and the query. In general, a 
computational problem can be specified by a corresponding complexity classes.  

A complexity class is defined by its models of computation, the bounded resources and the 
corresponding bounds. Examples of models of computation are deterministic and 
nondeterministic Turing machines, Boolean circuits, etc., and examples of resource constrains 
are logarithmic time, polynomial space, etc.  [19]. The relationship among some of the most 
popular complexity classes is presented in Figure 3.1 [7], where it can be seen that AC is 
contained in LogSpace and LogSpace is contained in NLogSpace, etc. A representative 
example of a problem with a complexity AC0 is the evaluation of first-order queries (e.g. SQL 
queries) over a relational database [20], which justifies the statement that a relational DBMS 
handles large amount of data in an efficient way. 
   



3. Analysis  

17 

 
Figure 3.1 Complexity Classes Relationship 

 
Considering the first issue of OBDA with respect to large quantities of data, several attempts 
can be found in the literature, which try to overcome the problem of choosing such a language 
that is simultaneously expressive enough and ensures that reasoning is still computationally 
tractable, referring to data complexity. In this context tractability means “solvable by a 
polynomial time algorithm” [7]. In other words, it can be accepted that reasoning in the 
intensional part of the ontology, i.e. the TBox, is exponential, but reasoning in the data must 
be at least in NC or in AC. According to [5] the OWL-DL and OWL-Lite, which are 
sublanguages of the Web Ontology Language and endorsed by the World Wide Web 
Consortium (W3C), are coNP-hard, thus classifying these languages as inappropriate 
solutions to the first OBDA issue (cf. Chapter 2.3). However, several proposals such as Horn-
SHIQ [21], EL++ and DLP provide polynomial reasoning, thus making them attractive 
expressive Description Logics.  A number of variations and sublanguages of the DL-Lite 
family are also investigated and currently seen as possible solutions, since the DL-Lite Logics 
(in particular DL-LiteA [5]) guarantee complex query answering in AC0 with respect to data 
complexity. Besides, the more important advantage of the DL-Lite (in particular DL-LiteA,id 

[7]) is that after an initial reformulation procedure (cf. Chapter 3.5.1), not dependent on the 
amount of the data, a SQL query can be generated out of the original query, thus delegating 
the query processing to the RDBMS, i.e. having a data complexity in AC0. This feature of the 
DL-Lite also addresses the second issue of OBDA. More details about this method are 
presented in Chapter  3.5 
 

3.2 Linking Data to Ontologies 

 
In the traditional environment of the Description Logics, it is adopted that the data is 
completely maintained in the ABox of the ontology [22] and the ABox is capable of being 
used with the TBox without any modifications. This means that there is compatibility between 
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the extensional and insentional levels of the ontology.  In fact, the TBox uses the lexicon of 
roles, concepts and attributes and the ABox contains contingent facts, i.e. concept assertions 
or role assertions. Depending on specific requirements, the physical storage of the ABox can 
be either maintained in the main memory of the DL reasoner, or in a secondary storage, which 
process is again delegated by the reasoner itself.  
 
Nevertheless, in real world settings and in particular in geographic scenarios, where either the 
ABox is very large, there is no direct control of the data, since it belongs to some other 
organizations, or the data is stored in different data sources, then a relational database is 
needed. This requirement however poses the issue of the third and fourth OBDA problems, 
introduced in Chapter 2.3. On the one hand, the source data in the database is stored in terms 
of values of strings, integers, dates, etc. On the other hand, the instances of concepts and roles 
in the ABox are abstract objects, i.e. the objects are not materialized and the ABox is thus 
considered as virtual. A possible solution to this scenario is to specify mappings between the 
data source and the ontology, as graphically illustrated in Figure 3.4. Such a mechanism is 
proposed in [5] and [22], enabling linking of existing data sources to an ontology expressed in 
an extension of the  DL-Lite Logic.  The fundamental idea of this approach is that every 
mapping assertion consists of two mutually associated parts - a query, the aim of which is to 
retrieve specific values from the database, and a set of atoms, specified in the vocabulary of 
the ontology (cf. Figure 3.4). With the help of Skolem functions, the transformation of data 
values into abstract objects is possible. Skolem functions output uniquely defined values for 
their arguments and are also used in XML schema mappings under the settings of XML data 
exchange scenarios [23]. Moreover, the objects are denoted by an ad hoc identifier, namely a 
term, obeying the unique name assumption (UNA) on terms, i.e. distinct individual terms 
denote distinct objects. The example in Figure 3.2, where a graphical representation of the 
relationship between a student and a lecture within a university is shown, can be used to 
illustrate this approach.  
 
 
 
 
 
 
 
 

 
Figure 3.2 Graphical Representation of the Relation  

between a Student and a Lecture 

 
From Figure 3.2 and the multiplicity 1..* , it can be concluded that a Lecture is attended at 
least by one Student, and students can attend several lectures. Furthermore, analyzing Figure 
3.3, it is of a peculiar interest to point out that the actual data is stored in a database, 
containing the tables University, StudentGrade and Student, where a student is identified by 
his matriculation number and a lecture is identified by its name. As a result, the abstract 

Student 

studentCode: int 
GPA: float 

Lecture 

lectName: String attends ► 

1..* 1..* 
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object student should be created out of his MatrNum, namely std(MatrNum) and the lecture 
should be created by its name, i.e. lect(LecName).  

University [ MatrNum: Varchar; LecName: Varchar ] 
Students and lectures they attend 
 
StudentGrades [ Code: Varchar; GPA: Numeric ] 
Student’s code and corresponding Grade Point Average (GPA) 
 
Students[ Code: Varchar; MatrNum: Varchar ] 
Student’s code with a student matriculation number 

Figure 3.3 Table Signatures of a Sample Database  
 

In order to create the object identifiers and also address the impedance mismatch problem, a 
set of function symbols {std, lect} is introduced. Every function symbol has an associated 
arity, which aim is to specify the number of the accepted arguments. Besides that, it is 
assumed that the data, stored in the relational database, is denoted by value constants and the 
objects, managed by the ontology, are denoted as object terms. These terms consist of 
function symbols and value constants.  For instance, if a student is identified by a 
matriculation number and 31897 is a matriculation number, stored in the database, then the 
object term std(31897) denotes a student. 
 
The proposed mappings assertions between the database and the TBox have the following 
formulation:  an SQL query ~> a set of atoms / a CQ over the TBox. A conjunctive query 
(CQ) in DL-LiteA is a statement of the form q(x) → conj(x,y), where q(x) is the head and 
conj(x,y) is the body of the query, representing a conjunction of atoms. The variables 
occurring in the head of the query are called distinguished variables, i.e. the tuple x, while y is 
a tuple of distinct existentially quantified variables, which do not occur in x [5] , namely non-
distinguished variables. If a variable occurs more than once in the body of a query, then it is a 
shared variable. Besides, if a shared variable, a constant or a distinguished variable is an 
argument in a query atom, then it is called bound. Correspondingly an unbound argument 
corresponds to a non-distinguished non-shared variable, marked symbolically as “_”. It is 
important to point out that the set of atoms over the TBox in every mapping assertion should 
involve only distinguished variables, which respectively may include variable terms with 
function symbols. A sample mapping of the example presented in Figure 3.2 and 3.3 is 
illustrated in Figure 3.4. 

M1: SELECT MatrNum, LecName 
from University 
 
 

M left  

~> Student( std(MatrNum)), 
ATTENDS( std(MatrNum), lect(LecName) ), 
lectureName( lect(LecName), LecName) 
 

Mright 
    
     SQL query over the database        Conjunction of atoms over the TBox 

Figure 3.4 Sample Mapping Assertion 
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The data-to-ontology mapping in Figure 3.4 maps every tuple (m, l) in table University to a 
student std(m), who attends lecture lect(l) with name l.  
 
In order to summarize the method, proposed by [5] and [22], it can be concluded that mapping 
assertions are of crucial importance for the construction of an OBDA system. Moreover, such 
a system (i.e. an ontology with mappings) can be symbolically defined as a triple O = < T, D, 
M >, built up of a TBox T, relational database D and a number of mapping assertions M , used 
to bridge the “gap” between the TBox and the database. In addition, the mappings M can be 
subdivided into two classes – typing mapping assertions and object-to-data mapping 
assertions. The typing assertions are useful in order to match the appropriate types of the data 
values from the database and the types, specified in the ontology. Referring again to the 
University example from Figure 3.2 and 3.3, it could be also specified in the TBox that the 
attribute lectureName is of type string, i.e. lectureName ⊑ xsd:string. The corresponding 
typing mapping is shown in Figure 3.5.  

Mtype: SELECT LecName from University ~> xsd:string 
 

Figure 3.5 Sample Typing Mapping Assertion  
 

Considering the definition of an ontology, namely O = < T, D, M >,  the split version of the 
ontology is O = < T, D, split(M) >, where split(M) is a new group of mapping assertions. The 
split(M) consists of all typing assertions  and mapping assertions. The peculiarity is that a new 
mapping assertion is added for every atom of the right part of the mapping itself, namely 
Mright in Figure 3.4. When this rule is applied to the mapping assertions from Figure 3.4, a 
group of split mapping assertions is generated, illustrated in Figure 3.6.  The ontology with 
mappings and its corresponding split versions are logically equivalent [7], meaning that an 
ontology with mappings can be reduced to its split equivalent. In addition, the computation of 
the reduction has PTime complexity with respect to the size of the mappings for DL-LiteA 
ontologies [5] and LogSpace complexity for DL-LiteA,id [7]. In both cases, the reduction is 
independent of the size of the data. 

M11: SELECT MatrNum, LecName 
from University 
 

~> Student( std(MatrNum)) 
 

M12: SELECT MatrNum, LecName 
from University 
 

~> ATTENDS( std(MatrNum), lect(LecName) )  
 

M13: SELECT MatrNum, LecName 
from University 

~> lectureName( lect(LecName), LecName) 

 
Figure 3.6 Split Version of a Mapping Assertion  

 

There are also other known approaches when dealing with the issue of linking data to 
ontologies. For instance, a Relational to Ontology language (R2O) is proposed in [24], which 
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main characteristics are its extensible and declarative nature. With the help of this language 
various mappings between ontologies in RDF (Resource Description Framework) and 
relational database schemas can be created.  The usage of R2O is concentrated in the context 
of the Semantic Web. This language is expressive enough to cope with complex mappings, 
but however it does not address directly the impedance mismatch problem [5]. Another 
approach, presented in [25], but still having several of the disadvantage of the R2O is the 
CARIN logical formalism, exploited in an information integration system, called PICSEL. In 
its essence, the CARIN approach resembles the detailed presented technique at the beginning 
of this chapter, namely the method for linking of existing data sources to an ontology 
expressed in DL-LiteA.  
 

3.3 DL-Lite 

 
The DL-Lite family is part of the Description Logics family and the alphabet of DL-Lite also 
consists of symbols for atomic concepts and roles, value-domains, atomic attributes and 
constants. The peculiarity of the DL-Lite is the fact that it is not only logics, tailored to 
capture basic ontology languages and popular modeling formalism, but moreover query 
answering in DL-Lite is managed in an efficient way. This is achieved by keeping the 
complexity of reasoning low, taking advantage of the query optimization techniques in 
relational databases and relying on several rewriting algorithms and procedures. Other 
benefits of the DL-Lite are its possibility to also capture basic conceptual data models and 
object-oriented formalism, such as simple class diagrams [7], designed in the Unified 
Modeling Language (UML).    
 

3.3.1 DL-Litecore  

 
There are currently numerous extensions and proposal variations of the DL-Lite family. 
Nevertheless, the basic one is specified as DL-Litecore [26]. The fundamental features of the 
DL-Litecore are that it allows for expressing: 
 

• ISA assertions on concepts (Al	⊑	A2). For instance, subsumption can be realized, the 
concept Pupil is subsumed by the concept Person, i.e. Pupil	⊑	Person; 
 

• Disjointness of concepts (A1	⊑ ¬A2), namely the concept Pupil is not a School, i.e.  
Pupil		⊑ 	¬School; 

 
• Role-typing (∃R‾ ⊑ A2, ∃R ⊑ A1), specifying that one of the components in a role is 

an instance of a specific concept. For instance, ∃TEACHES_TO ‾ 	⊑ Pupil, meaning 
that the second component of the role TEACHES_TO is an instance of the concept 
Pupil or respectively the first component of the relation TEACHES_TO is an instance 
of a Teacher, i.e. ∃TEACHES_TO  ⊑ Teacher; 

 
• Mandatory participation (A1	⊑ ∃�, �2 ⊑ ∃�	‾	) and non-participation constants 

(A1	⊑ ¬∃�, �2 ⊑ ¬∃�	‾	), stating correspondingly that all instances of a concept 
either participate or do not participate in a role as a first or respectively second 
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component. For example, from the assertions Teacher ⊑ ∃TEACHES_TO and Pupil  ⊑ 
∃TEACHES_TO ‾, it can be concluded that all teachers teach all students. 
 

3.3.2 DL-Lite Extensions 

 
Apart from the DL-Litecore logic, there are several DL-Lite sub-families. The first 
representative is the DL-LiteA. Its main peculiarity in comparison to other logics is the fact, 
that it concentrates on the distinct differentiation between values and objects [5]. It identifies 
concepts as abstraction for objects, thus distinguishing them from value domains, specifying 
concrete data values. Furthermore, there is also a strict separation of attributes and roles, since 
roles stand for relations among objects, while concept attributes represent relation between 
objects and values. The TBox in DL-LiteA may contain intensional assertions of two types, 
namely inclusion assertions (concept, role, value-domain and attribute inclusion assertions) 
and functionality assertions (role and attribute functionality assertions). Functional assertions 
express global functionality of a role or attribute, e.g. if the role TEACHES_TO ‾ is defined as 
functional, i.e. (funct TEACHES_TO ‾), this means that a Pupil may be taught at most by one 
Teacher. Besides, an inclusion assertion can be further split into two sub-groups, namely 
positive inclusions (PI) and negative inclusion (NI). A positive inclusion assertion is the 
assertion, that does not contain the complement/negation symbol “ ¬ “ on its right-hand side. 
 
Another example for an extension of the DL-Lite family is the DL-LiteA,id that also provides 
identification constrains in addition to all features of DL-LiteA [7]. This identification 
constrains are based on paths [27]. The syntax, used to build up a path, is illustrated in Figure 
3.7 

 
* -> R | D? | *1 ᴏ *2 

 
Figure 3.7. Syntax of a Path 

 
R in Figure 3.7 stands for an atomic role, the inverse of an atomic role, an attribute or the 
inverse of an attribute. D denotes a concept or a value-domain and D?, called a test relation, 
specifies the identity relation on instances of D, thus imposing that a path is closely connected 
to a certain concept. For instance, the test relation HAS-PARENT	ᴏ Man? is interpreted as the 
path that connects somebody to her or his father. Last but not least, *1	ᴏ	*2 denotes the 
composition of path *1 and path	*2. The composition of paths is similar to the definition of 
composition of functions in mathematics, because it is also a method of creating a new path 
(respectively relation)  *1	ᴏ	*2 from two given paths. The general definition of composition is 
presented both symbolically and graphically in Figure 3.8, where it can be seen that in order 
to reach , from -, two steps should be performed, namely from - to ., related to *2, and from 
z to y, related to *1.  
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*1 ᴏ *2 = { (x,y) | ∃z.	*2(x,z) ∧ *1(z,y) }  

 

 

 

 

 

Figure 3.8 Composition of *1 ᴏ *2 

 

After explaining the notion of paths, denoting complex properties for concept instances, the 
term identification constrain (also called an identification assertion) can be investigated into 
details. Every identification assertion has the form, illustrated in Figure 3.9  

 (id B	*1, . . ., *n ) 
 

Figure 3.9. Identification Assertion [27] 

 
The basic concept B from Figure 3.9 is part of the syntax of an identification assertion and the 
π1, . . ., πn are component paths for n 2 1. For instance, the identification constrain (id Student 
HAS-MatrNum) states that a student is identified by his matriculation number and there exist 
no other student, who has the same matriculation number.  
 
The TBox in DL-LiteA,id may contain intensional assertions of three types, namely inclusion 
assertions,  functionality assertions and identification assertions. Both the ABox in DL-LiteA,id 
and DL-LiteA are built up by membership assertions [7], which aim is to specify instances of 
concepts, roles and attributes. These assertions are described symbolically in Figure 3.10, 
where A represent the set of atomic concepts, R represents the set of atomic roles and U 
represents the set of atomic attributes. In addition, o, o1 and o2 are constant symbols for 
objects, while v is a constant symbol for a value.  

 
A(o)      P(o1,o2)      U(o,v) 

 
Figure 3.10. Membership Assertions in an DL-LiteA / DL-LiteA,id ABox 

 

Examples of not as expressive extensions as DL-LiteA,id are DL-Litef, adding the potential to 
express functionality restrictions on roles and DL-Liter, adding disjointness and ISA 
assertions on roles [26]. These extra features make the DL-Litef and DL-Liter very appropriate 
to capture the main basic notions in the field of ontology languages, conceptual modeling 
formalisms and object-oriented models. In addition, the DL-Litef and DL-Liter are PTime in 
the size of the TBox, LogSpace in the size of the ABox and NP-complete in combined 
complexity, i.e.  the total complexity dependent on the size of the TBox, ABox and the query.  
 
The common feature of the previously discussed logics, being part of the DL-Lite family, is 
the fact that a TBox, encapsulating general properties of concepts and roles, and an ABox, 
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specifying instances of these concepts and roles, are the two separate building blocks of the 
knowledge base. Moreover, several extensions to the DL-Lite family can efficiently handle 
query answering over large amounts of instances, since the complexity of reasoning is 
considerably low. This is described in details in [26], where its is shown that the basic 
reasoning tasks such as computing subsumtion among concepts and roles and checking 
satisfiability of the entire knowledge base are polynomial in the size of the TBox and query 
answering is AC0 in data complexity. Unfortunately, when trying to increase the expressive 
power of the language beyond that of the DL-LiteA, DL-Litef or DL-LiteR, then the data 
complexity of query answering increases rapidly to NLogSpace, PTime and coNP [28] . 
 
As already discussed, the data in Ontology-Based Data Access is very large and it dominates 
the size of the intensional level of the ontology, i.e. the TBox. The situation becomes even 
more problematic when the data has geographical originin and a Geographical Information 
System over spatio-thematic ontologies should be build, since the geographical data consumes 
large space resources. In this scenario, the size of the TBox is negligible with respect to the 
size of the data, namely the ABox, so one of the most important measuring parameter to be 
taken into account is the data complexity. Although it can be accepted that reasoning is 
exponential on the intensional level, it is of crucial importance that reasoning in the data must 
be at least polynomial and even in a lower complexity class, i.e. the reasoning must be 
tractable.  For instance, a quadratic dependence on the size of a large database can be also 
fatal. 
 
A very important and beneficial property of several of the DL-Lite family extensions is the 
fact that they allow for first order logic (FOL) rewritability of both satisfiability checking and 
query answering. In a nutshell, these inference reasoning problems can be reduced to 
evaluating a FOL query over an ABox A, considered as a relational database (cf. Chapter 3.5). 
This database instance is known in the literature as DB(A) and it is interpreted as a minimal 
model of the ABox A. In the cases, when the data complexity is beyond AC0, then the 
problem can be proved to be not FOL-rewritable [7, p. 319]. As a result, the positive aspects 
of current relational DBMS could not be used, since more powerful query answering engines 
are needed in the case when FOL-rewritability is not provided.  

In order to decide on an appropriate DL language, being able to guarantee a computational 
feasibility with respect to query answering and at the same time to provide a sufficient 
expressiveness to capture spatio-thematic ontologies, the data complexity of the previously 
discussed logics of the DL-Lite family should be compared. This comparison is illustrated in 
Figure 3.11, from where it can be concluded that the most appropriate candidates, when 
taking into account the data complexity of query answering, are DL-LiteA,id, DL-LiteA , DL-
Litecore, DL-Litef, DL-Liter, since all of them lie within the area surrounded by a yellow 
circuit, symbolizing the tractability border. Nonetheless, the DL-Lite extension DL-LiteA,id is 
the most expressive from the listed logics extensions. That is the reason why the DL-LiteA,id 
formalism can be referred as reasonable candidates for capturing ontologies in an efficient 
way. However on the other hand, the DL-LiteA,id logics is unfortunately not expressive 
enough to sufficiently model GIS data. Therefore, a further modified logic DL-Lite(RCC8) 
[29] of the DL-Lite family is proposed in order to overcome this particular issue.   
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Figure 3.11 Data Complexity of Query Answering  
for some Ontology-Based Languages  

 

3.4 DL-Lite Combined Geo-thematic Logics and GCQ+ 
 

Geo-thematic Logics should be capable of providing sufficient expressivity in order to 
describe spatial and regional configuration of objects. Moreover, these Logics should 
incorporate an expressive querying language allowing for First Order Query rewritability of 
query answering over spatial ontologies. A reasonable solution to these issues is advocated by 
the proposal of “a weak coupling of DL-Lite with the expressive Region Connection Calculus 
RCC8” [30, pp. 1,5-6] under the condition that the ABox is spatially complete.  Nonetheless, 
before going into details aiming to explain the proposed DL-Lite(RCC8) formalism and 
GCQ+ query language, a short introduction of the Region Connection Calculus is needed in 
order to understand the main features and concepts of the DL-Lite(RCC8).   
 

3.4.1 Region Connection Calculus 
 

The Region Connection Calculus is family of spatial logics, developed to be used in order to 
represent spatial knowledge and reason about space, being one of the most widely used 
formalisms for qualitative spatial reasoning. The RCC is based on regions and the primitive 
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connectedness relation [31]. A primitive relation in the form C(x,y) is the basic building block 
of the RCC theory. This relation is defined on regions and it is interpreted as the region x is 
connected with the region y. Moreover, from an axiomatic point of view it is qualified as 
reflexive and symmetric. Additional eight basic relations are specified, using the 
representation of the primitive relation. These binary relations define base relations between 
regions and are the foundation of the RCC8 constrained language. The notation and the base 
RCC8 relations and their topological interpretation are presented in Figure 3.12 [32]. 
 

Figure 3.12 RCC8 Base Relations  

 
BRCC8 denotes the eight base relations, graphically illustrated in Figure 3.12. For instance, the 
DC(x, y) relation means that region x and y are disconnected and they do not share a common 
point, while the meaning of EC(x,y) is that regions x and y only share borders. Besides, the 
RCC8 base relations have the JEPD property, namely they are jointly exhaustive and pairwise 
disjoints [32]. In other words, between any two regions x,y exactly one of the base relations 
holds, e.g. either only DC(x,y) or only EC(x,y) holds, but not both.  
 

From a geographical point of view, in order to illustrate that Germany and Poland have a 
common border (see Figure 3.14), then this fact can be formalized by EC(Germany, Poland). 
Another interesting base relation is the tangential proper part, meaning that the region x is 
contained in the region y and they share a part of the border from inside. In fact, it is possible 
to represent different geographical and spatial configurations of regions by using a set of 
disjunctions of base relations. This disjunctions have the form r1(x,y) ∨ ... ∨  rn(x,y) or { r1, ... , 
rn }{x,y} [33], where x and y are constants and r1 to rn with n 2 1 represent RCC8 base 
relations from Figure 3.12. In a nutshell, it is possible to express indefinite knowledge on the 
spatial relations of regions with the help of disjunctions of base relations. These disjunction 
statements are encapsulated in a network that consequently can be evaluated by various 
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constraint satisfaction algorithms. Referring again to the example of Germany and Poland, the 
following network is defined in Figure 3.13: 

 
{ EC(Germany, Poland), DC(Germany, Bulgaria), 
DC(Poland, Bulgaria), NTPP(Germany, Europe), 

NTPP(Poland, Europe) , NTPP(Bulgaria, Europe)  } 
 

Figure 3.13 BRCC8 Network  
 

 
 

Figure 3.14 Map of Europe [34] 

 
The network in Figures 3.13 captures the geographical location of the countries, labeled in red 
in Figure 3.14, by representing the spatial constellation of three regions in terms of RCC8, 
stating that Germany and Poland are neighbors and Bulgaria does not share any border with 
any of the other two, but all of them are part of Europe. In general, it is also important to 
check whether this network is satisfiable. Satisfiability of networks can be tested with the help 
of path consistency algorithms, based on compositional tables. The composition table of 
BRCC8 is presented in Figure 3.16 [32]. The first row and first column of this table store the 
eight base relations and the other cells store respectively the composition of every pair of base 
relations. The *-operator specifies the universal relation, namely the disjunction of all base 
relations.  

In fact, the table in Figure 3.16 encapsulates weak composition entries, namely minimal 
disjunctions of base relations [29]. A week composition is denoted with the symbol “ ; ” and it 
is an approximation of the composition, namely r1 ; r2 is implied by r1 o r2. Consulting the 
composition table, the weak composition for the pair (EC, TPP) can be provided, i.e. {EC, 
PO, TPP, NTTP}. Its description in AxRCC8 (cf. Figure 3.17)  is presented in Figure 3.15. 

∀x ∀y ∀z.(EC(x,y) ∧ TPP(y,z) ) → (EC(x,z) ∨ PO(x,z) ∨ TPP(x,z) ∨ NTTP(x,z)) 

Figure 3.15. Weak Composition in AxRCC8 Description 
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 Figure 3.16 Composition Table of BRCC8 

 

AxRCC8 is an axiom system schema providing axioms [29], [30], which directly state that the 
BRCC8 base relations are jointly exhaustive and pairwise disjoints. It is a weakened version of 
the original axioms of Randell, Cohn and Cui. In addition, this theory, shown in Figure 3.17 
also provides axioms for weak composition and reflixivity of the equal base relation, i.e. EQ.  

Figure 3.17 AxRCC8 [30] 
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In fact, there are lower resolution logics than RCC8, namely RCC2, RCC3, RCC5 and 
according to [30], the AxRCC8 is also applicable for the latter calculi. However, when 
considering RCC2, the ∀xEQ(x,x) from Figure 3.17 is replaced by  ∀xO(x,x), i.e. reflexivity of 
overlap. Since, the expressive power of RCC2, RCC3, RCC5 is lower than that in comparison 
to RCC8, the less expressive calculi are not recommended as powerful candidates to be 
combined strongly with DL-Lite for the creation of new spatial logics. That is the reason why 
the next chapter concentrates on the explanation of the DL-Lite(RCC8) formalism. 
 

3.4.2 Lightweight DLs with RCC8 
 

A solution proposal, dealing with the issue of reasoning over geo-thematic ontologies that 
involves accessing numerous databases, storing large volumes of spatial and topological data, 
is to combine Lightweight Description Logics with RCC8. The main issues when tailoring 
Lightweight Description Logics (e.g. DL-Lite) with Spatial Calculi (e.g. RCC) are to retain 
FOL rewritability with respect to both satisfiability and query answering, and to provide 
sufficient expressivity of the logics and the query language in order to facilitate an efficient 
and correct modeling and searching of GIS data. Several different perspectives are presented 
and investigated in [33, pp. 14-15] and [35, p. 8] in order to cope with the mentioned 
problems. In a nutshell, either a number of presupposed conditions on the ABox can be 
assumed or the combined logic can be weakened. The latter is achieved by either weakening 
the expressive power of the spatial calculus or the thematic part, or weakening the interaction 
of the combined components.  

As a result, it is concluded that a reasonable compromise is to assume that the spatial data is 
consistent and complete, and the combination of DL-Lite and RCC is realized in a controlled 
way. In other words, a concrete solution, as mentioned at the beginning of this chapter, is to 
provide a weak coupling between DL-Lite and RCC8, predefining a spatial completeness 
condition for the ABox and using a restricted query language.  A stronger coupling is also 
possible but only for the low-resolution region connection calculus RCC2, since otherwise 
FOL rewritability is not guaranteed any more [30, pp. 1, 6-10].   

The combined logic DL-Lite(RCC8) allowing for FOL rewritability is illustrated in Figure 18, 
where the syntax and semantics of the logical constructors are presented and consequently 
explained.  This approach both weakens the thematic part and restricts the interaction with the 
spatial component. 

R → P | P‾ 
U → loc | R	ᴏ loc 
B → A | ∃R | ∃loc 
C → B | ¬B | ∃U1,U2.r for r ∊ RelRCC8 and not (U1=U2=loc and EQ ∉ r) 

TBox  B ⊑ C, (funct loc), R1 ⊑ R2 
ABox  A(a), R(a, b), loc(a, a*), r(a*, b*) 

Tω = AxRCC8 

Figure 3.18 Combined Logic DL-Lite(RCC8) [29, p. 4] 
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A role R in DL-Lite(RCC8) is denoted in terms of a role symbol P or its inverses P‾. A path is 
defined either as a loc or as a composition of R and loc. The path legth is allowed to be at 
most 2. The left part B of an terminological axiom in the DL-Lite(RCC8) TBox can be 
represented by a concept symbol A, a limited existential quantification of a role symbol or 
attribute loc.  The DL-Lite extension DL-Lite(RCC8) builds-up a weak coupling of the 
thematic and spatial domain, where apart from B and its negation ¬B, concepts of the form 
∃U1,U2.r are allowed to appear on the right-hand side C of the axioms in the TBox. However, 
only the concrete attribute loc (i.e. has location) may be functional. In addition, r stays for a 
set of all possible disjunctions of base relations from BRCC8, i.e. r is a general RCC8 relation. 
Thus the set RelRCC8 is the set of all (28-1) RCC8 relations, including the universal relation 
and excluding the empty relation. It is also assured that no empty concepts can appear by 
adding an extra restriction (U1=U2=loc and EQ ∉ r), because if for instance the right-hand 
side of an axiom is ∃loc,loc.r, then it denotes an empty concept in case that EQ is not part of 
the set r. Another alternative is to handle empty concept during the rewriting process. 
Furthermore, the ABox can contain assertions of the form A(a), R(a, b), loc(a, a*), r(a*, b*), 
where a and b are variables or constants and a*,b* are also variables or constants, but 
intended to denote elements of AxRCC8.  

As already mentioned, satisfiability in general is an important issue in logics. However, 
testing the satisfiability of arbitrary RCC8 constraint networks is not FOL rewritable [35, p. 
7], making the process of checking a computationally intensive task. Consequently, it can be 
also concluded that coupling DL-Lite and RCC8 can also result in uncontrolled combinations, 
which are not FOL rewritable. For instance, by taking the query ntpp(a*,b*), it is searched in 
the database whether region a* is a non-tangential proper part of region b*. Nevertheless, the 
composition for the pair (ntpp,ntpp) from the composition table 3.16 yields that ntpp is a 
transitive relation. This relation could not be compiled into a finite FOL query, because all 
paths from a* to b* should be considered, i.e. (ntpp(a*,z1*) ∧ ntpp(z1*,z2*) ∧ ntpp(z2*,z3*) ∧ 
… ∧	ntpp(zn*,b*)) . Moreover, in real-world scenarios, it can be the case that spatial databases 
are incomplete. For instance, there could be a database entry that maps a parking in an airport 
terminal as a point, rather than as a polygon. As a result several of the base relations from 
BRCC8 may hold between the parking and the terminal, e.g. PO(parking terminal), 
EC(parking, terminal), TPP(parking, terminal), stating that it is not possible to decide 
whether the parking and the terminal partially overlap or they just touch each other either 
from outside or inside, etc. A solution not to face directly the issue of satisfiability and 
incompleteness is to assume that these issues are taken into account into an initial pre-
processing step [35]. Hence, the notion of FOL rewritability for the combined logics using 
RCC8 as the spatial part is weakened by introducing a spatial completeness condition, i.e. a 
spatially complete ABox.  

On the one hand, allowing FOL rewritability with respect to satisfiability testing is important 
in the context of combining lightweight DLs with RCC8. On the other hand FOL 
rewritability, considering query answering is also a fundamental factor. In a nutshell, the 
expressivity of the query language should be also taken into account. That is the reason why a 
querying language, called GCQ+, is introduced in the next Chapter 3.4, since answering GCQ+ 
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queries within DL-Lite(RCC8)-ontologies with spatially complete ABox-es is FOL rewritable 
[29, p. 5]. 
 

3.4.3 Query Language GCQ+ 
 

GCQ+ is a query language that is based on grounded conjunctive queries and it is appropriate 
for querying DL-Lite ontologies, since it both copes with the implausible consequences of the 
semantics of conjunctive queries and addresses the issue of computational unfeasibility of 
answering conjunctive queries with base relations in BRCC8 even if the ABox is interpreted 
to be complete [33, pp. 6,7,17]. Moreover, the GCQ+ is explicitly build for DL-Lite(RCC8) 
ontologies and provides support for qualitative spatial query answering and possibilities for 
quantitative extensions. A GCQ+ query atom has one of the forms, presented in Figure 3.19 
[29, p. 5]. 

GCQ+ atom → C(x) 
 → (∃R1 … Rn.C)(x)  
 → loc(x, y*), y*∊ RelRCC8 
 → r(x*, y*), r* ∊ RelRCC8 and x*,y* ∊ AxRCC8 

Figure 3.19. GCQ+ query atom  

 
A GCQ+ query atom may be a DL-Lite(RCC8) concept C(x), where x is a variable or a 
constant, excluding the negation symbol. In addition, role symbols R or their inverses R‾ , 
together with an existential quantifier ∃ and a concept C without the negation symbol can also 
build up a GCQ+ query atom (∃R1 … Rn.C)(x). The last two representations include elements 
of AxRCC8, being part of the atoms loc(x,y*) and r(x*,y*) , defining the location y* of x and the 
spatial orientation of regions x* and y*.  A GCQ+ query consists of conjunction of GCQ+ 

query atoms. Furthermore, such a query can be compiled first into a UCQ with the help of a 
Perfect Rewriting Algorithm, explicitly tailored for dealing with geo-thematic scenarios, and 
as a result it can be transformed by an unfolding process into an SQL query, that can be fired 
to a spatial DBMS, assuming that the virtual ABox is spatially complete. These reformulation 
steps and corresponding techniques are presented consequently in following chapters. 
 

3.5 Ontology Based Query Answering over Spatial Databases 
 

Up to now the main issues and challenges referred to the OBDA technique, representation of 
spatial knowledge and reasoning about space have been addressed and discussed into details 
and numerous solutions and proposals have been provided. In a nutshell, the fundamental 
problems, tacked to so far, are:  

• the trade-off between expressive power and computational complexity of ontology 
languages and numerous extensions 
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• large amount of data, stored at the source; data complexity 

• linking data to ontologies 
• the impedance mismatch problem 

 
Answering more complex queries over ontologies is another fundamental requirement and 
challenging problem in Ontology Based Data Access. The complexity of the queries 
automatically implies that the query language should be more expressive than only specifying 
concepts and roles in DLs, namely it should be also able to express conjunctive queries and 
unions of conjunctive queries (UCQ).  
 

3.5.1 Perfect Rewriting Algorithm 
 

The DL-LiteA formalism is going to be used in order to initially illustrate the Perfect 
Rewriting Algorithm, i.e. PerfectRef(Q,T), athough it is not expressive enough for dealing 
with spatial ontologies. This approach is reasonable, since the consequently presented version 
of the reformulation algorithms for DL-Lite(RCC8), i.e. AdaptedPerfectRefQ,T), is based and 
explicitly uses the original Perfect Rewriting Algorithm.  

The Perfect Rewriting algorithm lies in the center of the Ontology Based Query Answering 
process. This algorithm inherits its name from the fact that the input query q over the ontology 
is reformulated with the help of the Positive Inclusions (PIs) from the TBox T. It can be 
proved that the negative inclusion axioms do not have to be considered for the rewriting. 
However, they have effects on the satisfiability test and can be neglected only, as fas as 
rewriting is discussed. The query q can be either a CQ or UCQ. After the rewriting 
processing, the TBox is not of interest anymore and the reformulated query q' is evaluated 

over the ABox DB(A), as if the ABox is a relational database.  This process is graphically 

illustrated in Figure 3.20.  

 

 

 

 

 

 

Figure 3.20. Ontology Based Query Answering [36, p. 93] 

The answer to the initial query q over the ontology O=<T, A> is the output of the illustrated 

process, namely the certain answer set cert(q, < T, A>), being a tuple of constants of A,    

which belong to qI (answers to q over I)    for every model I of the ontology O.  Consequently, 
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analyzing Figure 3.20  and the latter definition of certain answer, it implies that qI= qDB(
A

) = 

cert(q, < T, A>). Besides, the reformulated query q', being an output of the block Perfect 

Rewriting, is in fact a UCQ and its size is independent of the size of the extensional level of 
the ontology, but it is exponential in the size of the TBox in the worst case. Nevertheless, the 
good news is that the query answering algorithm has a data complexity AC0, since evaluating 
q' has a data complexity not worse than the traditional query evaluation in relational 
databases.  The Perfect Rewriting Algorithm for computing the perfect reformulation of a 
conjunctive query with respect to a TBox in DL-LiteA Logics is presented in Figure 3.21. 

 input   : a CQ q,  DL-LiteA TBox T 
 output : a UCQ pr 
  

1 pr := q; 
2 repeat 
3        pr' := pr; 
4        foreach CQ q' ∊ pr' do 
5               foreach atom g in q' do 
6                      foreach PI α in T  do 
7                              if α is applicable to g  then 
8                                     pr := pr U {q'[g/gr(g, α)]};                1st part 
9                              end 

10                      end 
11               end 
12               foreach pair of atoms g1, g2 in q' do 
13                      if g1 and g2 unify then  
14                             pr := pr U {anon(reduce(q', g1, g2))};         2

nd part 
15                      end 
16               end 
17        end 
18 until pr'=pr;  
19 return pr; 

Figure 3.21 PerfectRef Algorithm [7, p. 308] 

 

Analyzing Figure 3.21, it is important to point out that the output of the algorithm is a set of 
CQs, generated on the basis of the input CQ. In fact, the input q is always the first element of 
the output UCQ {pr},  because of the assignment operation in line 1. After that a do…while 
loop starts, i.e. symbolically shown as repeat…until, which terminates when no more 
reformulations are possible any more. This condition is illustrated in line 18, where the set of 
reformulated CQs from the current and previous iterations is compared. The algorithm 
PercetRef always terminates [7, p. 309], since the length of the input conjunctive query and 
the maximum number of atoms in the body of the CQ that is generated, are equal. Moreover, 
the total number of distinct generated atoms is polynomial of the size of the input query. Line 

7 checks whether a Positive Inclusion axiom α from the terminology T is applicable to an 

atom g from the conjunctive query q'. This is the case, when: 

• the atom g is a an atom of the form C(x) and C is contained in the right-hand side of α;  
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• the atom g is an atom of the form. R(x,y), and right hand-side of α is either R or R¯; 

• the atom g is an atom pf the form R(x,y), and x (respectively y) is a non-distinguished 
non-shared variable and the right hand side of α is ∃R  ̄(respectively ∃R ). 

The result of applying the PI α to g is then represented as gr(g, α) in line 8. This result 
substitutes the current atom g and thus a new query is consequently added to the set of 
conjunctive queries pr. A detailed table, summarizing all cases when a given PI a is 
applicable to a query atom g and presenting the corresponding result gr(g, α), is shown in 
Figure 3.22.  

atom g PI α gr(g, α) 
C(x) C1 ⊑  C C1(x) 
C(x) ∃8 ⊑  C R(x, _) 
C(x) ∃8¯ ⊑  C R(_, x) 

R(x, y) R1 ⊑ R or R1¯ ⊑ R̄  R1(x, y) 
R(x, y) R1 ⊑ R̄  or R1¯ ⊑ R R1(y, x) 
R(x, _) C	⊑  ∃R C(x) 
R(x, _) ∃R1	⊑  ∃R R1(x, _) 
R(x, _) ∃R1¯	 ⊑  ∃R R1(_, x) 
R(_, x) C	⊑  ∃R̄  C(x) 
R(_, x) ∃R1	⊑  ∃R̄  R1(x, _) 
R(_, x) ∃R1¯	 ⊑  ∃R̄  R1(_, x) 

Figure 3.22. Applying PI to an atom [7, p. 307] 

 

With the first part of the algorithm, the knowledge from T relevant for answering the initial 

query q is compiled into a new reformulated query pr (lines 5-11). The second step (lines 12-
16) describes a process, in which if any two atoms from the reformulated query q' of step can 
be unified, the functions reduce(q', g1, g2) and anon(q'') are consequently executed. The 
function reduce(q', g1, g2) performs the actual unification of the atom g1 and g2 and returns a 
new query q'', that is the input for the function anon(q''). The latter function realizes variables 
anonymisation by substituting all unbound variables in q'' with “_”, i.e. the symbol 
representing a non-distinguished non-shared variable. An important side effect of the function 
reduce(q', g1, g2) is that it may make bound variables in q' unbound in q'' due to the most 
general unifier between g1 and g2 and thus consequently in the next iteration of the first part of 
the Perfect Rewriting algorithm PIs, which were not applicable to q' atoms may become 
applicable to q'' atoms. 

The PerfectRef algorithm from Figure 3.21 is illustrated by practical examples, adopted from 

[7, pp. 308-310]. Figure 3.23 shows a DL-Lite TBox T, where the atomic concepts Teacher 

and Pupil and atomic roles TEACHES-TO and HAS-TUTOR are defined. In addition, 

according to the latter TBox T no Pupil is also a Teacher and Teachers teach the Pupils, who 

have a tutor, being a Teacher. The functional role HAS-TUTOR represents a restriction that 

everyone has at most one tutor. A conjunctive query q(x) over T asks for Teachers, who teach 

to Pupils, having a tutor. 
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Teacher ⊑ ¬Pupil  	∃HAS-TUTOR̄ ⊑ Teache
r 

Teacher ⊑ ∃TEACHES-TO  	∃TEACHES-TŌ ⊑ Pupil 
Pupil ⊑ ∃HAS-TUTOR  (funct HAS-TUTOR)  
     

CQ:  q(x)	← TEACHES-TO(x, y), HAS-TUTOR(y, _) 

Figure 3.23. School TBox TTTT    and a CQ  over TTTT 

 

By applying the algorithms of Figure 3.21 to the ontology T    and the query q(x), during the 

initial execution of the first part of the algorithm the positive inclusion Pupil 	⊑ ∃HAS-
TUTOR is applicable to the atom HAS-TUTOR(y, _). As a result, the new query q(x)	← 
TEACHES-TO(x, y), Pupil(y) is added to the set of CQs pr. At the end of the next execution 
the query q(x)←TEACHES-TO(x, y), TEACHES-TO(_, y) is generated, which atoms unify and 
thus producing in the second part of the algorithm (line 12-16 from Figure 3.21) the new 
query q(x)←TEACHES-TO(x, _). Comparing the last two queries, it can be observed that the 
bound variable y from the former query is unbound in the latter query, substituted by the 
symbol “_”. The further executions of the Perfect Rewriting algorithm yield the queries 
q(x)←Teacher(x) and q(x)←HAS-TUTOR(_, x). Finally, the initial query and the new 
generated queries are returned by the algorithm, thus reformulating the original query q(x) 

with respect to the TBox T.  

The initial purpose of query answering is to compute the answer of the original query q over 

the ontology O = <T, A > (cf. Figure 3.20). After creating a new reformulated UCQ out of 

the Perfect Rewriting algorithm, the next step is to evaluate the set of CQs pr over the ABox 

A, i.e. to exploit the relational database DB(A).  In order to achieve this, every CQ from pr 

should be transformed to an SQL query expressed over DB(A). In a nutshell, query 

evaluation and thus also query answering over satisfiable DL-Lite ontologies can be realized 
in an effective way by using the technology of RDBMS as defined in Figure 3.24 [37, p. 41].  

 

cert(q, < T, A >) = Eval( Unfold( PerfectRef(q, T) ), DB(A) ) 

Figure 3.24. Computing Certain Answers to a Query  
over DL-LiteA Ontology 

 

Figure 3.24 illustrates the computation of certain answers to a CQ q over an ontology O=< T, 

A >  by first evaluating the PerfectRef algorithm from Figure 3.21, immediately followed by 

executing an Unfold function, which aim is to unfold the output UCQ query of the PerfRef 
and encode it in SQL. Finally, the Eval function evaluates the latter generated SQL query over 
a database DB.   
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If the TBox in Figure 3.23 is expanded by the role inclusion HAS-TUTOR̄  
⊑ TEACHES-TO and the ABox in Figure 3.25 is also taken in order to build up an ontology, 
then reformulating the query q(x) ← Pupil(x) over the TBox generates the                           
UCQ={ q(x) ← Pupil(x), q(x) ← TEACHES-TO(_, x), q(x) ← HAS-TUTOR(x, _) }. 
Consequently, the evaluation of the query q over the ontology yields the certain answer    

qDB(A)  =  cert(q, <T, A>) = {Alex, Julia}. It is important to realize that without using the 

Perfect Rewriting algorithm the answer to the query q(x) ← Pupil(x) would have been the 
empty set, since there is no instance of Pupil in the sample ABox in Figure 3.25. Moreover, 
without expanding the TBox, as previously described, the answer to the query would have 
been only {Julia}. 
 

HAS-TUTOR(Alex, Mr. Schmidt) TEACHES-TO(Mr. Schmidt, Julia) 

Figure 3.25 School ABox A and a CQ over A 

 

3.5.2 A Bottom-up Approach 

 
According to [7], the easiest way to reason over ontologies with mappings is to make use of 
the mappings, thus generating the actual ABox out of the data source. Consequently, by using 
a query answering algorithm, described in Chapter 3.5.1, reasoning over the materialized 
ABox and original TBox can be performed. This technique is known in the literature as a 
naïve or bottom-up approach. The main drawback of this method is the fact that the actual 
ABox is produced from the data at the source and in this way the information is duplicated. 
Moreover if the data is very big, as in spatial databases, then this disadvantage becomes more 
problematic. In order to avoid this negative effect of duplicating the data, another approach is 
proposed in [7], [5], where the ABox is not explicitly built and it is kept virtual. This 
approach is known as the top-down approach.  
 
In order to explain the two approaches in details, the terms virtual and materialized ABox 
should be clarified. As described in Chapter 3.2 an ontology with mappings consists of a 
TBox T, relational database D and mapping assertions M, namely O = < T, D, M >. 
Moreover, the ontology with mappings and its split version are equivalent. On the other hand, 
a virtual ABox in DL-LiteA or DL-LiteA,id consists of a set of membership assertions, which 
are computed on the basis of the mapping assertions and the data from the database. A formal 
description of a membership assertion and a virtual ABox [7] are presented respectively in 
Figures 3.26 and 3.27. 
 

A(m,D) = {mright[x/v] | v ∊ ans(mleft,D)} 
 

Figure 3.26. Definition of a Membership Assertion 
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A membership assertion A(m,D), generated by a (split) mapping assertion m (cf. Figure 3.6) 
from  database D, is in fact an atom of the right part of a corresponding mapping assertion 
mright, where the variable/s x is/are substituted by the answer of evaluating the left part of the 
mapping assertion mleft, i.e. the SQL query, from the database D. For instance, if the table 
University from Figure 3.3 contains the entries {(31897, Web Engineering), (23456, 
Mathematics)} and the split mapping assertions M11 and M12 from Figure 3.6 are taken into 
account, then the membership assertions are defined as follows: 
 

A(m11,D)={ Student( std(31897)) , Student( std(31897))} 

A(m12,D)={ ATTENDS( std(31897), lect(Web Engineering) ) , 
         ATTENDS( std(31897), lect(Mathematics) ) } 

 
Figure 3.27. Example of Membership Assertions 

 
 
Consequently, if all membership assertions are obtained, as defined in Figure 3.27, the entire 
virtual ABox can be generated.  
 

A(M,D)={ U A(m,D) | m	∊	M} 

 
Figure 3.28. Definition of a Virtual ABox 

 
 

In other words, by computing the A(M,D), the virtual ABox is materialized. This is in fact the 
first step of the bottom-up approach for query answering over ontologies with mappings. The 
second step is to perform the query answering algorithm to the ontology O = <  T, A(M,D) > , 
that is presented in Chapter 3.5.1, where A(M,D) is a materialized ABox. In a nutshell, using 
rewriting and the materialization means that the construction of A(M,D), then the creation of 
the the herbrand model DB(A(M,D)) and finally the evaluation of the rewritten query q' on 
DB(A(M,D)) should be performed.  

 
As already mentioned at the beginning of chapter the bottom-up approach has several 
disadvantages: 
 

• Materialization and storage of the entire virtual ABox, i.e. computing the A(M,D), are 
required. Moreover, the virtual ABox is generally polynomial in the size of the 
relational database, meaning a generation of huge overhead is produced by duplication 
of information. 
 

The first disadvantage has also an immediate negative effect on the data complexity of the 
resulting algorithm, since it is not anymore AC0 or LogSpace in the size of the database, but it 
is PTime in the size of the database, since materialization is a problem in PTIME complexity 



3. Analysis  

38 

• From usability and practical point of view, a fundamental drawback is the fact that 
complex data refreshment procedures and mechanism should be invented in order to 
keep both the ontology and the database synchronized, since the data sources are 
independent from the ontology (cf. Figure 3.2). 
 

3.5.3 A Top-down Approach 
 

In order to overcome the issues and drawback, which the bottom-up approach has, a different 
top-down technique is proposed for query answering over ontologies with mappings [7, pp. 
338-341]. The main distinguishing feature of the top-down approach in comparison to the first 
approach is that the materializing of the virtual ABox is avoided by using an additional 
unfolding algorithm. It makes immediate advantage of the mapping specifications and 
consequently generating a SQL query, that is issued over a RDBMS and its result set coincide 
with the results of the initial query over the ontology. Thus the data complexity of the entire 
algorithm is in AC0 and no additional data refreshment procedures have to be implemented to 
keep the data in the database and the ABox synchronized. However, the mappings should be 
always updated in case structural changes in the database are carried out. The top-down 
approach consists of four important steps, graphically illustrated in Figure 3.29. 

 

Figure 3.29. A Top-down Approach for Query Answering over  
Ontologies with Mappings 
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Assuming that O=<T,M,D>   is a DL-LiteA ontology with mappings, where T is the TBox, 

M represents the mapping assertion (i.e. split mappings) and D is the database. The first step 

of the approach is graphically illustrated in Figure 3.29 by a blue block. This block executes 
the Perfect Rewriting Algorithm as described in Figure 3.21. The output of the Reformulation 
step is a UCQ q1 with the property that the “certain answers to q with respect to O coincide 
with the set of tuples computed by evaluating q1 over DB(A(M,D)), i.e. the database 
representing A(M,D)” [7, p. 338]. The next step of the top-down approach performs a filtering 
process in order to get rid of every ill-typed conjunctive query, which contains join variables 
appearing in incompatible positions within the same query, thus producing a typing 
contradiction. The filtering step is beneficial for the next two steps in order to avoid 
producing wrong results in the query unfolding and query evaluation process over the source 
database D. The filtered query q2 is the input for the Unfolding block, where with the help of 

the mappings M, q2 is transformed into an SQL query q3, thus avoiding the materialization of 

the A(M, D) and evaluating the q2 over DB(A(M, D)). In fact, this is the main difference in 

comparison to the bottom-up approach. The Unfolding step is useful, since the result of 
executing the SQL query q3 over the database D, i.e. the output of the SQL query Evaluation 

step, and the result of evaluating the q2 over DB(A(M, D)) coincide [7, p. 339] . Considering 

this fact and the previously described property of the output q1 of the Perfect Rewriting step, it 
can be concluded that the certain answers to q with respect to OM coincide with the output of 

step number four. In other words, cert(q,<O>) = Ans(q3, D).  

 

3.6 Adapted Perfect Rewriting Algorithm  

 
The Adapted Perfect Rewriting Algorithm, schematically illustrated in Figure 3.30, extends 
the original Perfect Rewriting Algorithm from Chapter 3.21 by also handling GCQ+ atoms of 
the form ∃U1, U2 .r for r ∊ RelRCC8 and it is based on the algorithm, proposed by [35, p. 11]. 
All modifications of the original Perfect Rewriting algorithm are marked within green 
rectangles in Figure 3.30. The input of the Adapted Algorithm is a hybrid query, the conjucts 
of which are either classical predicate logical atoms or GCQ+ atoms. The aim is to transform 
this initial hybrid query into a UCQ and then by using the techniques, described in Chapter 
3.5.3, to unfold the UCQ query to an SQL query that can be executed in a relational database, 
containing geo-thematic data. The other forms of GCQ+ query atoms are treated as FOL-query 
atoms and they are processed by the original part of the Perfect Rewriting Algorithm (cf. 
Figure 3.30, lines 1-11, 33-40).  
 
There are four relevant implications or four different cases for variations of GCQ+ atoms, 
which are to be taken into account by the Adapted Perfect Rewriting Algorithm in Figure 3.30 
[29, p. 5]: 
 

1. If a  GCQ+ atom of the form ∃R1 ᴏ loc, R2 ᴏ loc.r3 (x) occurs during the rewriting 
process, then it can be substituted by the conjunct of two new atoms of the form ∃R1 ᴏ 
loc, loc.r1 (x) and ∃loc, R2 ᴏ loc.r2 (x) in a new CQ for all r1,r2, contained in RelRCC8 
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such that r1;r 2 ⊆ r3, namely where all possible compositions of the sets (r1 ᴏ r2) from a 
full composition table are refinements (i.e. subsets) of r3 (lines 13-16). A full 
composition table contains the compositions of all possible disjunctions of relations in 
RelRCC8, while the week composition table from Figure 3.16 embeds only the weak 
compositions of the 8 base relations in BRCC8. The set of relations r1 is the left 
argument (resp. a row element from the full composition table) and r2 is the right 
argument (resp. a column element from the full composition table). 
 

2. If a GCQ+ atom ∃U1, U2.r1 (x) appears in the query and the TBox contains a 
terminological axiom of the form B	⊑	∃U1, U2.r2 (x) and r1 ⊆ r2, then a new 
conjunctive query can be created with a query atom B(x), substituting ∃U1, U2.r1 (x) 
(lines 20-22) 
 

3. The third case is similar to case 2, but it takes into account the inverses of the relations 
in RelRCC8. In fact, if a GCQ+ atom ∃U1, U2.r1 (x) appears in the query and the TBox 
contains a terminological axiom of the form B	⊑	∃U2 U1.r2 (x) and r2‾ ⊆ r1, then a new 
conjunctive query can be created with a query atom B(x), substituting ∃U1,U2.r1(x) 
(lines 23-25). 
 

4. If a GCQ+ atom of the form ∃R1 ᴏ loc, U1.r (x) occurs as a conjunct in the query and 
the TBox contains a terminological axiom of the form R1	⊑	R2, then a new CQ can be 
created with a query atom ∃R2 ᴏ loc, U1.r (x), substituting ∃R1 ᴏ loc, U1.r3 (x) (lines 
27-31).  
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 input   : a hybrid query Q, DL-Lite(RCC8) TBox T 
 output : a UCQ pr 
  
1 pr := Q; 
2 repeat 
3    pr' := pr; 
4    foreach query q' ∊ pr' do 
5           foreach atom g in q' do 
6                   if g is a FOL-atom  then 
7                          foreach PI α in T  do 
8                                  if α is applicable to g  then 
9                                         pr := pr U {q'[g/gr(g, α)]}; 

10                                  end 
11                          end 
12                   else 
13                           if g=∃R1 ᴏ loc, R2 ᴏ loc.r3(x) then 
14                                  foreach r1; r2	⊆ r3  do 
15                                         X := q'[g/(∃R1 ᴏ loc, loc .r1(x) ∧  

																																																																	∃loc, R2 ᴏ	loc .r2(x))];                                    case 1 
16                                         pr := pr  U {X}  
17                                  end 
18                           end 
19                           if g=∃U1, U2 .r1(x) then  
20                                  foreach B	⊑	∃U1, U2 .r2(x) ∊ T  and r2	⊆	r1  do 
21                                         pr := pr  U {q'[g/B(x)]}                                                    case 2 
22                                  end 
23                                  foreach B	⊑	∃U2, U1 .r2(x) ∊ T  for r2

-1
	⊆ r1 do 

24                                        pr := pr  U {q'[g/B(x)]}                                                    case 3 
25                                  end 
26                           end 
27                           if g = ∃R1 ᴏ	loc, U1.r(x) (resp. ∃U1, R1	ᴏ	loc.r(x)) then                
28                                  foreach R2	⊑ R1 ∊  T  or R2

-1
⊑ R1

-1 ∊  T  do 
29                                        pr := pr U { q'[g/(g[R1/R2])]}                                          case 4 
30                                  end 
31                           end 
32                  end 
33           end 
34           foreach pair of FOL-atoms g1, g2 in q' do 
35                  if g1 and g2 unify then 
36                         pr := pr U {anon(reduce(q', g1, g2))}; 
37                  end 
38           end 
39    end 
40 until pr'=pr;  
41 return drop(pr);  
 

Figure 3.30. Adapted PerfectRef Algorithm 
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Finally, at the end of the Adapted Perfect Rewriting Algorithm the function drop(pr) (line 
3.30) removes all GCQ+ queries, which contain atoms of the form ∃U1, U2.r (x). As a result, 
the output of the algorithm is a classical UCQ, which can be consequently evaluated as a SQL 

query on the database DB(A(M,D)). The Figure 3.31 is adapted in order to illustrate the 

entire reformulation process of ontology based query answering over spatial databases, 
making use of a DL-Lite(RCC8) ontology, GCQ+ query, data-to-ontology mappings and a 
PostgreSQL database, referred as a virtual and spatially complete ABox.  

 

Figure 3.31. Ontology Based Query Answering over 
Spatial Databases 
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3.7 Limitation Analysis and Final Requirements 

 
In the latter sections, various techniques, general approaches and possible design solutions 
and algorithms for query answering over ontologies have been presented and theoretically 
analyzed without considering any external factors or limitations, which could consequently 
occur during the actual implementation of the desired software system. That is the reason 
why, this section reveals a list of all specifications, assumptions and obstacles that should be 
taken into account in the design and realization of the developed software application, 
implementing a Perfect Rewriting Algorithm for ontology based query answering over spatial 
databases.  
 
Because of time constrains and the fact that the aim of this Master Thesis is not to develop a 
complete system for reasoning over spatial ontologies, the reasoning task such as ontology 
consistency checks, subsumtion between concepts, roles and attributes, and satisfiability tests 
are not taken into account. Moreover, it is decided not to provide the final system as a 
complete installation software package, but rather as a Java project that can be consequently 
imported in a universal tool for software development and executed in a debug mode. That is 
the reason why, only a simple graphical user interface will be designed in order to facilitate 
the user interaction, but also providing potential extensibility options. It is also assumed that 
the user inputs to the application are syntactically and semantically correct and the 
corresponding text files for specifying Tbox-es, mappings and search queries are well-formed 
and well-behaved.  
 
The final requirements of this Master Thesis are presented in detail by dividing them into two 
main groups – theoretical requirements, specifying the theoretical approaches and algorithms 
to be implemented and program requirements, describing the system features and tasks to be 
realized by the developed software. 
 
The final theoretical requirements are as follows: 

• implement the Original Perfect Rewriting Algorithm for query answering over pure 
DL-Lite ontologies; 

• extend the implementation of the Original Perfect Rewriting Algorithm to the Adapted 
Perfect Rewriting Algorithm over spatial ontologies, using the modified logic DL-
Lite(RCC8) and the query Language GCQ+; 

• incorporate the Adapted Perfect Rewriting Algorithm into a top-down approach for 
ontologies based Query Answering over spatial databases, thus avoiding the 
materialization of the virtual ABox by using an additional Unfolding step. 

 
The main program requirement is to develop an ontology based Query Answering system that 
should provide: 

• a framework for representing DL-Lite TBox, containing standard concepts, roles, role 
inverses, and inclusion assertions (i.e. PIs and NIs); 
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• a framework for representing DL-Lite(RCC8) TBox, containing standard concepts, 
roles, role inverses, inclusion assertions (i.e. PIs and NIs) and concepts of the form 
∃U1,U2.r , where  r ∊ RelRCC8 and U → loc | R	ᴏ loc; 

• a framework for representing conjunctive queries, containing query atoms of concepts, 
roles or GCQ+ atoms of the form  ∃U1,U2.r(x); 

• a framework for representing object-to-data mappings, containing mapping assertions 
of the form Mleft ~>Mright, such that the left part is and SQL query and the right part is 
a conjunction of atoms over the TBox; 

• a Graphical User Interface for simple user interactions; 
• a Parser for reading and interpreting the user inputs, i.e. a TBox, a conjunctive query 

and a set of mappings; 
• a Reasoner for  implementing the Original Perfect Rewriting Algorithm and the 

Adapted Perfect Rewriting Algorithm; 
• a Reasoner for implementing the Query Reformulation process; 
• a Resoner for evaluating the output of the Query Reformulation process over a 

PostgreSQL database. 
 

The following two chapters of this Master Thesis present a detailed description of how the 
theoretical ideas are practically applied and how the listed requirements are realized and 
transferred into the design and implementation of a system for Query Answering over spatial 
ontologies.  
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4 Design  

 

Following the overview of tools, technologies, query answering approaches, limitations, 
problem and system requirements analysis, this chapter reveals the actual design and 
architecture of the developed GIS application with  DL-Lite(RCC8) ontologies. 

 

4.1 Architecture Design 
 

The system design of the geographical information system for ontology based query 
answering over spatial databases, abbreviated as OnQuAnSpatial, is graphically illustrated in 
Figure 4.1. The OnQuAnSpatial is a standalone Java application for the representation and 
reasoning over DL-Lite(RCC8) ontologies. The architecture of the program is divided into 
three main tiers, presented in Figure 4.1 as round-corner rectangular blocks, named as 
Frontend, Controller and Backend.  

The Frontend specifies the top most level of the OnQuAnSpatial application, namely the the 
input text files and the graphical user interface. The main task of this tier is to realize a 
platform of interaction between the user and the software program and consequently display 
system outputs, hints and results of the ontology querying.  The user defines a desired 
terminology in a text file, specifying the TBox with the DL-Lite(RCC8) syntax. Furthermore, 
it is possible to formulate a GCQ+ query and mapping assertions in additional text files. 
Thanks to this layer, the user can interact with the application, which as a result passes the 
user requests down to the chain to the next layer, namely the Controller.  

The second tier defines the business or domain logic of the application, where instances of 
concepts and roles in the ontology are retrieved from the data source tier, i.e. the Backend, 
processed and transferred to the Frontend, thus realizing a bidirectional flow of information 
among the different layers. Every text file is forwarded to the Parser component block, where 
numerous syntactical procedures validate the program inputs. If this process is successful, 
then the corresponding files are parsed accordingly and Java objects are created from the 
information they contain. This transformation step from a textual TBox, Query and Mappings 
to Java objects is facilitated by the blocks DL-Lite(RCC8) Interface, GCQ+  Interface and 
Mapping Interface.  As a result, the intensional part of the ontology and the GCQ+ query are 
forwarded to the Adapted Perfect Rewriting block and the ontology-to-data-source mappings, 
realizing the formal linking of the stored persistent data and the ontology, are transferred to 
the Unfolding block. The latter two process blocks together with the Evaluation block from 
Figure 4.1 build up the most important component of the OnQuAnSpatial system, namely the 
Query Answering Reasoner that is explained in detail in Chapters 5.3 and 5.4. In addition, the 
component module Composition Table, storing the base relations from BRCC8 and the table of 
weak compositions (cf. Chapter 3.4.1, Figure 3.17), also takes part in the query reformulation 
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process. The connection between the Composition Table and Adapted Perfect Rewriting 
Algorithm blocks is represented by a dotted arrow, because the former is used only in case if 
the query q contains spatial atoms.  

 

Figure 4.1. Architecture Design of the OnQuAnSpatial System with DL-Lite(RCC8) 
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The last tier of the OnQuAnSpatial system architecture from Figure 4.1 is the Backend. It is 
responsible for storing the extensional level of the ontologies and querying persistent data 
values within the DBMS PostgreSQL. The JDBC API enables the interaction of the 
application and the external data source, i.e. the database.  

The main asset of the described architecture is that the input user data, application and 
database data are separated, thus providing possibilities for software scalability, 
modularization and reuse of components. Moreover, since the relationship between the 
instances of concepts and roles in the ontology and the data at the sources are realized with 
the help of mappings, it is not necessary to know how the data repository is organized or 
where the data is stored. In fact, the third layer, i.e. the background layer, can be theoretically 
modified or replaced by other databases without modification of the other two layers as long 
as the mappings are correspondingly modified. The drawbacks of this model refer to 
maintenance and complexity issues. Nevertheless, the 3-Tier architecture design, applied for 
the implementation of the OnQuAnSpatial system, proves to be very appropriate. 

Last but not least, by comparing the typical design model of an information system, using 
ontologies from Figure 2.7 and the high-level architecture design of a DL knowledge 
representation system from Figure 2.6, it can be clearly concluded that the proposed 
architecture of the OnQuAnSpatial application incorporates both approaches. For instance, the 
knowledge base from Figure 2.6 matches the main components of the OnQuAnSpatial 
architecture, where the Description Logic block is corresponds to the DL-Lite(RCC8) 
component from Figure 4.1 and the TBox corresponds to the purple blocks from Figure 4.1, 
excluding the Mapping Interface module.   
 

4.2 Software Prototype Design 
 

Figure 4.2 reveals the package organization of the application and the corresponding classes 
and interfaces. The software packages rocesses, dllitercc, mapping, queries, utilities build the 
Controller as illustrated in Figure 4.1. The package gui and repository build the Frontend and 
the Backend layers of the application. Several stereotypes are applied to some of the packages 
in order to clarify the program design. For instance, the stereotype “DL-Lite(RCC8) 
Ontology” of the package dllitercc signals that this package consists of Java classes and 
interfaces, which represent an ontology in DL-Lite(RCC8). The main dependences among the 
packages are also shown as dotted import arrows, labeled with instructive names. The central 
point of the application is the package processes, where the actual reasoning procedures with 
respect to query answering are executed. The class Starter contains the main method of the 
program, which initializes the creation of Graphical User Interface menu frame, from where 
the user can consequently select text files, storing the information about the TBox, search 
query and mappings. After that, several processes can be triggered, depending on the user 
input.  
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Figure 4.2. Software Package Diagram of the OnQuAnSpatial System 
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5 Realization 

 

This chapter reveals how the main components of the OnQuAnSpatial system are realized by 
describing the most important software components, techniques and issues. Furthermore, the 
processes query reformulation and query unfolding are explained in more detail, followed by 
overviews of the application outputs and concluding discussions of the achieved results, based 
on the final system requirements outlined in Chapter 3.7.   
 

5.1 Graphical User Interface 
 

The OnQuAnSpatial software program is developed in Eclipse Java EE IDE for Web 
Developers, Version:Indigo Service Release 2, Build id:20120216-1857. The Java Runtime 
Environment (JRE) is JRE System Library [Java SE-1.7]. The used external library jar file is 
postgresql-9.1-902.jdbc4.jar in order to realize the connection between the database and the 
software application. The Graphical User Interface (GUI) is constructed with the help of the 
primary Java GUI widget toolkit Swing and the Abstract Window Toolkit (AWT) and it is 
illustrated in Figure 5.1.  

 

Figure 5.1. OnQuAnSpatial  Prototype GUI  
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The user has the possibility to change several views, by navigating through the menu of the 
program, e.g. Reasoning, Info. In addition, it is possible to select different text files, 
containing the TBox, search query or the data-to-ontology mappings with the help of 
JFileChooser elements. This feature improves the software usability and flexibility, since the 
file locations should not be hardcoded in the program. When pressing the button “Start”, the 
query answering process begins. If no mapping file is selected, then only the Query 
Reformulation Part (cf Figure 4.1) will be executed without triggering the Unfolding and 
Evaluation processes. The Info Screen element from the GUI is meant to show program hints, 
error messages and results of querying DL-Lite(RCC8) ontologies. 

The Unified Modeling Language (UML) diagram representing the GUI is illustrated in Figure 
5.2. The associations between class MainFrameGUI and PanelQueryAnswering and 
respectively PanelInfo may be interpreted in fact as an aggregation, representing a “has a” 
relationship, i.e. the MainFrameGUI is a JFrame and it has two JPanels. The advantage of 
this GUI model design is that it can be easily extended by adding further JPanel classes, 
depending on the requirements of the software. Every class extending the JPanel from Figure 
5.2 corresponds to an item from a drop-down menu (cf. Figure 5.1). The parameter lists from 
the method und constructor signatures are not displayed in order to achieve better readability 
of the UML class diagrams. 

 

Figure 5.2. Class Diagrams of Package gui 
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5.2 TBox Implementation 
 

The terminology of the ontology is parsed to Java objects from a text file. The 
OnQuAnSpatial application can handle both pure DL-LiteA or DL-Lite(RCC8) ontologies. An 
adapted example [7, p. 333] of a DL-LiteA TBox text file is shown in Figure 5.3, where 
information about employees and projects they work for is modeled. Managers and temporary 
employees are represented as employees (lines 11 and 12), who are persons. Both persons and 
projects have names and temporary employee has a date, indicating the expiration date of his 
contract (line 18). Moreover, everybody, having an attribute date, participates in the role 
WORKS-FOR (line 19) and every employee works for at least one project (lines 14 and 15). In 
conclusion, managers have permanent job positions (line 20). It is possible to include 
comments in the TBox text file by using the ;;; symbol. All lines, beginning with the latter 
symbol are not considered by the Parser algorithm and only the logical operators and key 
words are interpreted. First of all the user should define the types of the terms he is using, 
namely concepts or roles. Functional assertions, expressing global functionality of a role or 
attributes are not understood by the application. In addition, attributes are defined as roles 
(e.g. persName, until on line 7 and 9). Inclusion assertions are recognized by the application 
by using the key-word implies. 

 
1 ;;;TBox for projects 
2 concept Manager 
3 concept Employee 
4 concept Person 
5 concept TempEmp 
6 concept Project 
7 role persName 
8 role projName 
9 role until 
10 role WORKS_FOR 
11 Manager implies Employee 
12 TempEmp implies Employee 
13 Employee implies Person 
14 Employee implies (some WORKS_FOR) 
15 (some (inverse WORKS_FOR)) implies Project 
16 Person implies persName 
17 Project implies projName 
18 TempEmp implies until 
19 until implies (some WORKS_FOR) 
20 Manager implies (not until) 

 
Figure 5.3. Text File with a DL-LiteA TBox of a Project 

 
The Parser of the OnQuAnSpatial application is case sensitive, meaning that it will interpret a 
concept Manager and manager as two different terms. In order to achieve better readability, it 
is recommended to first start defining all concepts by terms, starting with capital letters, 
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consequently listing all attributes (lines 7 to 9) and roles (line 10) as illustrated in Figure 5.3. 
When specifying the inclusion assertions, it is important to surround every concept or role 
term by parentheses always when a new logical operator is used, e.g. the existential 
quantification or inverse symbols (line 15), otherwise the parsing produces wrong results.  All 
key words or logical operators are stored in the interface ParserConfig from the package 
processes (cf. Figure 4.2) and DescriptionLogicConfig from the package dllitercc. This 
approach guarantees consistent key-words and constants usage within all classes, 
implementing the latter interfaces.   

Figure 5.4 illustrates a sample terminology [29, p. 5] within DL-Lite(RCC8) ontology that 
models parks (lines 2-4, 7-8), covering lakes (line 9) or playgrounds (line 10). The last two 
axioms from the TBox specify on the right hand side concepts of the form ∃U1, U2 .r, where 
U can be either loc or R	ᴏ loc and r is a general relation from RelRCC8. In case, a subset of 
relations (i.e. a disjunction of base relations) should be specified, then the base relations 
should be separated by comma in the form  (some HAS_LAKE *loc,loc.{tpp, nttp}), stating 
that the lake can either touches the boundaries of the park from within or it can be an “island“ 
in the park.  

1 ;;;TBox for parks 
2 concept Park 
3 concept ParkWithLake 
4 concept ParkForPlaying 
5 role HAS_LAKE 
6 role HAS_PLAYGR 
7 ParkWithLake implies Park 
8 ParkForPlaying implies Park 
9 ParkWithLake implies (some HAS_LAKE *loc,loc.{tpp}) 
10 ParkForPlaying implies (some HAS_PLAYGR *loc,loc.{tpp})  

 
Figure 5.4. Text File with a DL-Lite(RCC8) TBox of a Park 

 
The OnQuAnSpatial system is able to read the two different text files and parse them 
accordingly into Java objects. As a result, instances of the classes Concept, Roles and 
Inclusion are created, which are building parts of a Java object of type TBox. These 
associations and the corresponding multiplicities are illustrated in Figure 5.5. The class 
Concept consists of two private attributes, namely a name and a term.   A Role class differs 
than a Concept class by the fact that the former has two attributes. This differentiation on the 
number of terms is important for the Query Rewriting process, when concept and roles 
substitutes are searched in the TBox (cf. Figure 5.3) and when the anon() method is executed 
(cf. Figure 5.8), realizing  variables anonymisation by substituting all unbound variables (i.e. 
terms) in the search query with “_” and thus consequently setting the non-distinguished non-
shared variables. The class Inclusion, representing an axiom from the TBox, has a left and 
right part as attributes, as well as a type, being a “positive” or “negative” inclusion. This 
attributes are automatically set during the parsing process and besides that the 
OnQuAnSpatial system distinguishes the inclusions, containing concepts of the form 
∃∃∃∃U1,U2.r on the right-hand side of the axiom. These types of spatial representation objects are 
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instances of the class FeaturePath, having the properties constrain, paths, rccRelations and 
term. The paths property represents a list of Path objects, i.e. DL-Lite(RCC8) concepts of the 
form loc or R	ᴏ loc. rccRelations is also a list of objects, but of type Role. This list contains 
Role elements, which name attributes have any of the string values, saved in the baseRCC 
array from the interface CompositionTable. 
 

 

Figure 5.5. UML Class Diagrams of Package dllitercc 

 

After initializations of the TBox object, the program flow continues with parsing the query 
text file. The advantage of using text files as an input for creating Java objects is that the 
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usability of this approach, because it is easy for the user to physically create these file. 
Moreover, they obey an intuitive DL syntax that is not significantly different from the syntax, 
presented in Figure 3.18. However, the main drawback is that a powerful checker and a 
validator should be implemented in order to identify all wrong user inputs. An alternative 
solution for parsing the user inputs is to make use of XML files, which can be verified against 
a predefined XML schema and automatically “unmarshled”, i.e. translated, to Java objects. 
This can be achieved with the help of the Java Architecture for XML Binding API (JAXB). 
The described technique will on the one hand reduce the error rate of wrong user inputs and 
the complexity of the Parser, but on the other hand, it will also increase the difficulty for the 
user to specify these files, because additional XML knowledge should be provided.   
 

5.3 Query Reformulation 
 

The Query Reformulation process is part of the QA Reasoner, namely the blue block in 
Figure 4.1. Before starting the Perfect Rewriting Algorithm, the search query is retrieved from 
a query text file.  
 

5.3.1 Input queries 
 

Figure 5.6 illustrates two different types of search queries – a FOL conjunctive query without 
spatial atoms and a GCQ+ query.  

q(x,n) <- WORKS_FOR(x,_) & persName(x,n) 
 

queryProject.txt 
 

q(x) <- Park(x) & some HAS_LAKE*loc,HAS_PLAYGR*loc.{ 
dc,ec,po,tpp,tppi,ntppi,eq}(x) 

 
queryPark.txt 

 
Figure 5.6. Sample Query Files 

 
The first query over the Project ontology from Figure 5.3 asks for all participants from the 
role WORK_FOR, who work for any project and their corresponding names. The second 
variable of the role WORK_FOR is unbound, that is the reason why it should be initially 
substituted by “_”. The GCQ+ query from the file queryPark.txt should search for all parks 
with lakes and playgrounds, such that the playground is not contained in the lake as an island, 
i.e. the playground is not in non-tangential proper part relation to the lake. The input files are 
translated to Java objects by the Parser and the GCQ+ interface blocks from Figure 4.1. The 
corresponding classes for executing these tasks are listed in Figure 5.7.  
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Figure 5.7. UML Class Diagrams of Package queries 

 
The generalization relationship between the super class Query and the subclasses 
GcqPlusQuery and UnfoldedQuery is illustrated by arrows with hollow triangular endings. In 
other words, any instances of the subclasses are also instances of the superclass, i.e. a 
GsqPlusQuery is a Query and UnfoldedQuery is also a Query. This is a typical example of 
inheritance, since both child classes, which represent the query body or query tail, inherit all 
non-private class members from the parent class Query, representing the query head. 
Nevertheless, the private field head can be accessed indirectly by the inherited public methods 
setHead(…) and getHead(). The attribute head is important, since it has a fundamental 
influence in the anon( ) method (cf. Figure 3.30, line 36) when defining which variables are 
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distinguished and thus also enabling indirectly the identification of all unbound variables. 
Moreover, it is also crucial when checking the variable consistency of the unfolded queries 
during the Query Unfolding step.  Some of the constructors in Figure 5.7 are shown with the 
same signatures, but their parameter lists are not displayed, i.e. these are overloaded 
constructors. Furthermore, a GsqPLusQuery consists of a number of GsqPlusQueryAtom-s. In 
order to distinguish between a normal and a spatial query atom, it was decided that an 
instance of the class GsqPlusQueryAtom can either have a Concept, a Role or a FeaturePath 
istance. The UnfoldedQuery class is used in order to represent a query, generated during the 
Unfolding process, described in Chapter 5.4.  

 

5.3.2 Implementation of Adapted Perfect Rewriting Algorithm  
 

The implementation of the Adapted Perfect Rewriting Algorithms is based on the pseudo 
code, described in Chapter 3.6. Nevertheless, slight modifications and improvements are 
realized in order to optimize the reformulation process. The Adapted Perfect Rewriting 
Algorithm is implemented in the abstract class QueryRepormulation from the package 
processes. The corresponding UML class diagram is shown in Figure 5.8 and the entire 
source code is provided in the Appendix C. 

 

 

Figure 5.8. UML Class Diagram of QueryReformulation 

 
The class QueryReformulation consists only of private methods, except for the method 
perfectRef(…) and originalPerfectRef(), which are public, since it is called from within the 
Controller class in order to trigger the rewriting process. All other methods are called 
internally within the method perfectRef(…) or originalPerfectRef(…). The signatures of these 
methods are listed in Figure 5.18, by also showing the types of the variables from the 
parameter list and the return variables. The operation originalPerfectRef(…) implements the 
original Perfect Rewriting Algorithm (cf. Figure 3.21), while perfectRef(…)  implements 
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respectively the adapted version. The latter method has two input objects, namely a query of 
type GcqPLusQuery, as explained in Chapter 5.31, and an object myTBox of type TBox, as 
explained in Chapter 5.2. The method starts with variable initialization and a test procedure, 
going through all atoms of the input query in order to check whether an atom of the form ∃R1 
ᴏ loc, R2 ᴏ loc.r3 (x) occurs. If that is the case, then a full composition table is created and 
saved in a two dimensional array of strings. The generation of the composition table is a 
complicated process and it is described separately in the next chapter. After that a while-loop 
is started. It uses the method isSameQueryList(queriesP, queriesPprime) in order to compare 
whether both query lists are the same. If that is the case, then the while loop and respectively 
the reformulation algorithm terminate and the result is printed to the screen. The parameter 
queriesP contains the list of current queries and the queriesPrime contain the list, to which a 
new rewritten query is added. At the beginning of the while-loop the queries of the queriesP 
are copied to the queriesPprime by calling the method copyQueryList(…). After that for every 
non-spatial atom of the corresponding input query and for every PI from the object myTBox, it 
is checked in descending order whether a substitution is possible to a specific atom by calling 
the method findInclusions(…), which takes into account the possible cases from Figure 3.22, 
when and how to apply a PI to a query atom. Consequently, the output of the 
findInclusions(…) is additionally filtered in order to avoid adding the same query twice.  

The next part of the adapted algorithm processes every spatial query atom of the form ∃U1, 
U2.r1 (x), as described in Figure 3.30 (lines 12-32). For the case, that the atom of type 
GcQPlusQueryAtom has the form ∃R1 ᴏ loc, R2 ᴏ loc.r3 (x), then it is substituted by the 
conjunct of two new atoms of the form ∃R1 ᴏ loc, loc.r1 (x) and ∃loc, R2 ᴏ loc.r2 (x) in a new 
GcQPlusQuery object for all possible sets r1 and sets r2 from the full composition table, being 
refinements (subsets) of the set r3, i.e. r1;r 2 ⊆ r3. However, several performance tests have 
been carried out, concluding that this operation is computationally very expensive. This is in 
fact not surprising, since the full composition table has 255 rows and 255 columns, i.e. 28-1 
RCC8 relations altogether, excluding the empty relation and including the universal relation. 
This results in 65025 possible combinations of pairs (r1,r2) or 65025 cells in the full 
composition table, excluding the vertical and horizontal headers. In terms of the software 
implementation of the algorithm, the proposed pseudo code in Figure 3.30, line (13-17) will 
generate up to maximum of 130050 new query atoms and respectively 65025 new queries for 
every input query atom in the form ∃R1 ᴏ loc, R2 ᴏ loc.r3 (x), which is not acceptable from 
computational point of view. The former described performance tests check for every single 
set of disjunctions of base relations in RCC8 (i.e. r3=255 possibilities), how many possible 
pairs satisfy the condition r1;r 2 ⊆ r3. All results are listed in Appendix C. However, Figure 5.9 
presents the minimum, maximum and average number of pairs. 
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 possible pairs (r1,r2), 
such that r1;r 2 ⊆ r3 

r3 

MIN 16384 {(EQ)} 
MAX 65025 {(EQ),(NTPPI),(TPPI),(NTPP), 

(TPP),(PO),(EC),(DC)} 
MEAN VALUE ~56918 - 

 
Figure 5.9. Number of Possible (r1, r2) Pairs  

 
The second column from the table in Figure 5.9 (possible pairs), also coincides with the 
number of added GcQPlusQuery objects to the initial spatial query in case the algorithm is not 
optimized. Furthermore, it is not surprising that in the case when r3 represents the disjunctions 
{ (EQ), (NTPPI), (TPPI), (NTPP), (TPP), (PO), (EC), (DC) }, namely when r3 is the universal 
relation, then the maximum number of compositions occurs. The reason of this phenomenon 
is the fact that in this case r3 expresses the maximum indefinite knowledge on the spatial 
relations of regions.  

The Adapted Perfect Rewriting algorithm, referring to the first case (c.f. Figure 3.30, lines 13-
18),   should be optimized with the extension that it does not search for all r1;r 2 ⊆ r3, but it 
seeks for all the maximal pairs r1,r2 such that r1;r 2 ⊆ r3 and does the reformulation process 
only w.r.t. these pairs. For instance, if on the one hand there is a pair r1,r2 such that r1;r2 ⊆ r3 
and on the other hand, a second pair exists r4,r5 such that r4;r 5 ⊆ r3 and moreover r4 ⊆ r1 and 
r5 ⊆ r2, then the pair r4,r5 is redundant, since the pair r1,r2 is the super set or the maximal pair 
withinn two pairs. The optimization of the Perfect Rewriting Algorithm is presented in Figure 
5.10, by explicitly illustrating the improved modifications in a red rectangular block. 
 
The proposed optimization improvement is implemented by calling the public method 
getRowsColumnsFromStrongCompTable(…) from the abstract class CompositionTableUtil, 
which belongs to the package utilities. After that the method perfectRef continues its 
execution by handling case 2 and 3 from the Adapted Perfect Algorithm. This is achieved by a 
double execution of the the method findSpatialSubstitutes(…), that returns a list of Concept 
objects. Case 4 is addressed in the private method findSpatialSubstitutes(…), returning a list 
of FeaturePath objects. Finally, the methods reduce(…), anon(…) and drop(...) are called in 
order to finalize the algorithm. The output of the method perfectRef from the class 
QueryReformulation is revealed in Chapter 5.3.4. 
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 input   : a hybrid CQ query Q, DL-Lite(RCC8) TBox T 
 output : a UCQ pr 
  
1 pr := Q; 
2 repeat 
3    pr' := pr; 
4    foreach query q' ∊ pr' do 
5           foreach atom g in q' do 
6                   if g is a FOL-atom  then 
7                          foreach PI α in T  do 
8                                  if α is applicable to g  then 
9                                         pr := pr U {q'[g/gr(g, α)]}; 

10                                  end 
11                          end 
12                   else 
13                           if g=∃R1 ᴏ loc, R2 ᴏ loc.r3(x) then 
14                                  foreach r1; r2	⊆ r3    and r1; r2 is MAX    do 
15                                         X := q'[g/(∃R1 ᴏ loc, loc .r1(x) ∧  

																																																																	∃loc, R2 ᴏ	loc .r2(x))];                                    case 1 
16                                         pr := pr  U {X}  
17                                  end 
18                           end 
19                           if g=∃U1, U2 .r1(x) then  
20                                  foreach B	⊑	∃U1, U2 .r2(x) ∊ T  and r2	⊆	r1  do 
21                                         pr := pr  U {q'[g/B(x)]}                                                    case 2 
22                                  end 
23                                  foreach B	⊑	∃U2, U1 .r2(x) ∊ T  for r2

-1
	⊆ r1 do 

24                                        pr := pr  U {q'[g/B(x)]}                                                    case 3 
25                                  end 
26                           end 
27                           if g = ∃R1 ᴏ	loc, U1.r(x) (resp. ∃U1, R1	ᴏ	loc.r(x)) then                
28                                  foreach R2	⊑ R1 ∊  T  or R2

-1
⊑ R1

-1 ∊  T  do 
29                                        pr := pr U { q'[g/(g[R1/R2])]}                                          case 4 
30                                  end 
31                           end 
32                  end 
33           end 
34           foreach pair of FOL-atoms g1, g2 in q' do 
35                  if g1 and g2 unify then 
36                         pr := pr U {anon(reduce(q', g1, g2))}; 
37                  end 
38           end 
39    end 
40 until pr'=pr;  
41 return drop(pr);  

 

Figure 5.10. Optimization of the Adapted PerfectRef Algorithm 
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5.3.3 Full Composition Table 

 
The full composition table is also called strong composition table in the context of this Master 
Thesis in order to differentiate it from the table of weak composition in Figure 5. The creation 
of the former table is realized dynamically only if this is required by consequently calling the 
public methods createRowColumnHeaderStrongCompTable( ) and 
createStrongCompositionTable( ) from the  abstract class CompositionTableUtil, presented in 
Figure 5.11.  
 

 

Figure 5.11. UML Class Diagram of CompositionTableUtil 

 
The operation createRowColumnHeaderStrongCompTable( ) returns a list of Strings, storing 
the vertical and the horizontal headers of the strong composition table. Both headers are 
identical, so that is the reason why the generation of only one of them is sufficient, which is 
assigned to the variable rowColumnHeaderStrongCompTable. An element of the list 
rowColumnHeaderStrongCompTable stores all possible disjunction combinations of the base 
relations in BRCC8, namely {(EQ),(NTPPI),(TPPI),(NTPP),(TPP),(PO),(EC),(DC)}. In order to 
create the total 255 possible combinations, the method 
createRowColumnHeaderStrongCompTable( ) uses a mathematical algorithm, inspired by the 
approach when building a simple truth table. Once the headers are generated, then any two 
vertical and horizontal cells are combined in order to get the corresponding compositions. For 
instance, if ( rvert_2 o rhoriz_3 ) should be calculated, i.e. ({EC} o { EC, DC}), then the method 
createStrongCompositionTable ( ) computes the intermediate result ({EC ; EC} or { EC ; 
DC}), which is directly reformulated in ({DC, EC, PO, TPP, TPPI, EQ} or {DC, EC, PO, 
TPPI, NTPPI}),  by consulting the  weak composition table from the interface 
CompositionTable (cf. Figure 5.12). As already mentioned, the strong composition table is 
needed when considering case 1 from the Adapted Perfect Algorithm in Figure 5.10. 

The advantage of the described implementation for generating a full composition table is that 
the table should not be persistently stored and it is initialized only once if it is required. 
Moreover, in case that it is desired to use a composition table for RCC5, RCC3 or RCC2, then 
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only the corresponding base relations (line 13), their inverses (line 14) and their weak 
composition table (line 21) should be manually updated in the interface CompositionTable 
and the new full composition table can be generated automatically without any further 
modifications. A code snipped, illustrating the constants from the interface CompositionTable 
is presented in Figure 5.12.  

 

 

 Figure 5.12. Interface CompositionTable 

 

5.3.4 Results and Output of Query Reformulation 
 

The output of the Adapted Perfect Rewriting algorithm with the proposed optimization is 
illustrated in Figure 5.13. The inputs of the Query Reformulation process are the TBox from 
Figure 5.3 and the project conjuctive query from Figure 5.6. The result is a union of 
conjunctive queries, where every CQ is constructed by two query atoms. The relevant 
information for the input TBox and input query of the reformulation process are marked 
respectively within a blue and green rectangular, while the output information (i.e. the output 
UCQ) is marked within a red rectangular. Important test parameters are printed to the screen 
in order to be able to compare the computational effectiveness of the Adapted Perfect 
Rewriting algorithm, evaluated under various scenarios. In addition, it is analyzed how the 
performance of the algorithm changes by measuring important parameters, such as number of 
concepts, roles, axioms, PIs and FeaturePaths in the TBox. Furthermore, parameters regarding 
the size and the nature of the initial search query are also listed and finally the resulting UCQ 
is displayed, by analyzing its size and origin of the added CQs.   



5. Realization 

62 

 

 
Figure 5.13. Output of The Adapted Perfect Rewriting Algorithm Over a pure DL-Lite 

Ontology  

 
By comparing the TBox in Figure 5.3 and the TBox test results in Figure 5.13 (blue 
rectangle), it can be concluded that they match. The same conclusion can be drawn for the 
query test parameters. The input query q(x,n) <- WORKS_FOR(x,_) & persName(x,n) is 
initially added to the UCQ output result during the first iteration of the algorithm. During the 
same iteration by applying to the atom WORKS_FOR(x,_)  the PI  Employee implies (some 
WORKS_FOR) and until implies (some WORKS_FOR), the new queries q(x,n) <- Employee 
(x) & persName(x,n) and  q(x,n) <- until(x,_) & persName(x,n) are respectively added. At the 
second execution of the while-loop of the algorithm, the query q(x,n) <- TempEmp (x) & 
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persName(x,n)  is added according to the application of the PI TempEmp implies until to the 
atom until(x,_). Finally, the new query q(x,n) <- Manager (x) & persName(x,n) is added by 
applying the PI Manager implies Employee to the atom Employee (x), thus producing in total 
5 conjunctive queries within 5 ms. The same test, using the same TBox and input query, is 
repeated for the Perfect Rewriting Algorithm, namely the version without considering the 
spatial modifications, and the measured execution time is 4 ms, which is a negligible 
difference. However this performance difference is reasonable and expected, since the 
Adapted Perfect Rewriting algorithm performs an additional check (cf. Figure 5.10, line 6) 
and further execution of the drop() function, which are missing in the original version of the 
algorithm. This practical test proves that both implementations of the original and adapted 
versions of the Perfect Rewriting Algorithm have nearly the same performance, when 
answering queries over pure DL-Lite ontologies.  
 
Another interesting test scenario for the Adapted Perfect Rewriting algorithm is the case when 
a DL-Lite(RCC8) ontology is considered. The park TBox in Figure 5.4 and the park query in 
Figure 5.6 are used as inputs for the query reformulation process. The screen output, 
displaying the output results of the algorithm is presented in Figure 5.14 and Figure 5.15. 
 

 

Figure 5.14. Output of The Adapted Perfect Rewriting Algorithm Over  
a DL-Lite(RCC8) Ontology Part 1 
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The test parameters of the TBox, input query and queries added during the reformulation 
process are marked respectively in blue, green and red. During the execution of the Adapted 
Perfect Rewriting Algorithm 21 CQs are consequently added. Not all of these queries are 
shown in Figure 5.14, but they are listed in the Appendix C (cf. file 
Experiment_3_Results.txt).  Analyzing Figure 5.15, it can be seen that the The Adapted 
Perfect Rewriting Algorithm is iterated 4 times in this scenario, by adding 9 new queries (in 
fact, 18 new query atoms) according to the first rewriting rule in the extended reformulation 
algorithm, 11 new queries according to the second and third rule and the initial query. After 
executing the dropping function, only one single query is left, as indicated in Figure 5.15. It is 
not surprising that the initial input query has two atoms and some of the rewritten queries 
have three atoms, since the first rewriting rule substitutes one query atom by two new atoms. 
The entire algorithm for this experiment takes around 48 seconds. The main cause for this 
execution time is the initial query atom some HAS_LAKE*loc,HAS_PLAYGR*loc.{dc, ec, po, 
tpp, tppi, ntppi, eq}(x). However, 48 seconds is still an acceptable result.  

 

 

Figure 5.15. Output of The Adapted Perfect Rewriting Algorithm Over  
a DL-Lite(RCC8) Ontology Part 2 

 

5.4 Unfolding 

 
The Query Unfolding process is part of the QA Reasoner, namely the orange block in Figure 
4.1. Before starting the actual unfolding process, the corresponding object-to-data mappings 
are retrieved from a mapping text file by a parsing algorithm that generates the split versions 
of the mappings (cf. Chapter 3.2, Figures 3.4 and 3.6) and translates them into Java objects. 
The classes, representing the mapping assertions are stored in the package mappings and they 
are illustrated in Figure 5.16.  The output of the parsing procedure is an object of type 
MappingBox, consisting of a list of objects of type ObjectToDataMapping.  
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Figure 5.16. UML Class Diagrams of Package mappings 

 
The class ObjectToDataMapping encapsulates a query atom of type GcqPlusQueryAtom, a 
sqlQuery string and a logic programming clause code.  Theoretically, as described in [7, p. 
339], this clause denotes the result of the evaluation over the database of the SQL query, that 
is encapsulated in the left hand-side of the mapping (i.e. the attribute sqlQuery). The code 
attribute contains a String that has the form AUXA_B, where the indexes A and B are numbers. 
The index A is used in order to identify that two split mappings of type 
ObjectToDataMapping  stem from the same root mapping assertion, i.e. they have identical 
SQL string and GcqPlusQueryAtom objects. The index B is an increment counter, showing 
the position of the corresponding ObjectToDataMapping element in the attribute list 
myDataToObjectMappings from the class MappingBox.  For instance, if an object X and 
object Y both of type ObjectToDataMapping have respectively code AUX1_2 and AUX1_5 , 
this fact infers that X and Y refer to the same mapping assertion and X is the 2nd  and Y is the 
5th element from the list myDataToObjectMappings. The actual unfolding of the UCQ, being 
the result of the Query Reformulation step, is done in the method unfold( ), where by 
executing the operations getSubstitutes( ) and findAllCombinations( ), each of the atoms of the 
UCQ are unified in all possible ways with the corresponding code attributes from the list 
myDataToObjectMappings, by producing a new list of UnfoldedQuery objects, returned by 
the method unfold(). 
 
The variable terms of the atoms from the right hand-side of the mapping assertions and the 
variables from the input UCQ, resulting from the Query Reformulation process are not 
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syntactically identical, even though that they have the same meaning. In addition, the former 
are not only variables, but they can be also variable terms, containing function symbols. That 
is the reason why an automatic variable matching algorithm is also implemented, since it can 
happen that during the unification step some of the code combinations result in queries, which 
are not any more dependent on the initial head variables of the corresponding query or contain 
only unbound variables. These malformed queries should be filtered. The variable matching is 
realized with the help of the classes VariableMapping (cf. Figure 5.16). 
 
The final step of the Unfolding process is realized by the method createSQLquery(...) from 
the abstract class SqlQueryGeneration by substituting each AUXA_B predicate from the 
UnfoldedQuery list with its SQL equivalent, thus creation a new final SQL query that is a 
union of select-project-join queries.  
 
In order to illustrate and test the implementation of the unfolding, the resulting UCQ from the 
query reformulation in Figure 5.13 is used. A sample file of mapping assertions [7, p. 334], 
presented in Figure 5.17, maps the objects from the TBox in Figure 5.3 to the data in the 
database in Figure 5.18.  
 

SELECT "D1"."SSN", "D1"."PROJ", "D1"."D" FROM "D1" -> 
TempEmp(pers["D1"."SSN"]) & 
WORKS_FOR(pers["D1"."SSN"],proj["D1"."PROJ"]) & 
projName(proj["D1"."PROJ"],"D1"."PROJ") & 
until(pers["D1"."SSN"],"D1"."D") 
;;; 
SELECT "D2"."SSN", "D2"."NAME" FROM "D2" -> 
Employee(pers["D2"."SSN"]) & persName(pers["D2"."SSN"],"D2"."NAME") 
;;; 
SELECT "D4"."SSN", "D3"."NAME" FROM "D3","D4" WHERE 
"D3"."CODE"="D4"."CODE" -> Manager(pers["D4"."SSN"]) & 
persName(pers["D4"."SSN"],"D3"."NAME") 
;;; 
SELECT "D3"."CODE", "D3"."NAME" FROM "D3" WHERE "D3"."CODE" 
NOT IN (SELECT "D4"."CODE" FROM "D4") -> 
Manager(mgr["D3"."CODE"]) & 
persName(mgr["D3"."CODE"],"D3"."NAME") 
 

 
Figure 5.17. Sample Mapping Assertions File mappingsProject.txt 

In order to realize a correct parsing, then the object-to-data mappings should be specified 
accordingly, by taking into account that the SQL SELECT key-word should be always 
capitalized and every assertion should be written on a single line, since the Parser reads the 
text file line by line and any additional white-space characters can result in unsuccessful 
parsing.  
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D1 [ID: bigint; SSN: character varying(10); PROJ: character 
varying(50); D:date] 
 
D2 [ID: bigint; SSN: character varying(10); NAME: character 
varying(50)] 
 
D3 [ID: bigint; CODE: character varying(10); NAME: character 
varying(50)] 
 
D4 [ID: bigint; CODE: character varying(10); SSN: character 
varying(10)] 
 

Figure 5.18 Table Signatures of a Sample Project Database  
 

The tables in Figure 3.3 store information about projects and employees, where ID is always 
the primary key for the corresponding table. Table D1 stores temporary employees, their 
project names and end dates, while table D2 matches a social security number of an employee 
to his name. The table D3 store managers, while D4 relates managers’ codes with their SSNs.  

The output of the Unfolding step is illustrated is Figure 5.19, where it can be seen that the 
UCQ from Figure 5.13 and the input search query q(x,n)<-WORKS_FOR(x,_) & 
persName(x,n) have produced 6 distinct UnfoldedQuery objects, revealed within a blue 
rectangle and the unfolding procedure took 35 ns. As a result the green rectangular block 
shows that the UnfoldedQuery objects are translated to a final SQL query, consisting of 6 
unions of select-project-join queries. Finally, this SQL statement is directly issued over the 
database and its results set is the result of the Unfolding step and thus also the outcome of the 
entire Ontology Based Query Answering Process is displayed within the red rectangle. The 
tuples (mgr[code_2], “Moeller”), (pers[55555], “OEZCEP”) and (pers[12345], “GUDOV”) 
are the requested certain answers.  
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Figure 5.19. Unfolding Sample Output 
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6 Evaluation 

 

6.1 Final Results and Experiments Discussion 

 
The results, presented in Chapter 5.3.4, as well as the outcomes of further experiments are 
listed in Figure 6.1. The input files for the experiments are provided in Appendix C 

Test parameter Exp. 1/ 
Result 

Exp. 2/ 
Result 

Exp. 3/ 
Result 

Exp. 4/ 
Result 

Exp. 5/ 
Result 

Tbox 
concepts 5 5 3 5 5 
roles 4 4 2 4 4 
axioms 10 10 4 8 8 
PIs 9 9 4 8 8 
FeaturePaths 0 0 2 4 4 
Input Query 
atoms 2 2 2 2 3 
concept atoms 0 0 1 1 2 
role atoms 2 2 0 0 0 
FeaturePath atoms 0 0 1 1 1 
Perfect Rewr. Algorithm 
version adapted original adapted adapted adapted 
iterations 3 3 4 4 4 
added queries case 1 0 x 9 9 9 
added queries case 2/3 0 x 11 11 11 
added queries case 4 0 x 0 0 0 
queries before drop( ) 5 x 21 21 21 
queries after drop( ) 5 x 1 1 1 
execution time in ms 5 4 47817 47985 48711 

 

Figure 6.1. Consolidated Experiment Results for Perfect Query Rewriting over Ontologies 

 

Analyzing the experiments in Figure 6.1, it is obvious that the original Perfect Rewriting 
algorithm performs better in pure DL-Lite ontologies, comparing Experiment 1 with the last 
three experiments. However, this is not surprising, since when pure DL-Lite ontologies are 
considered, the Adapted Perfect Rewriting Algorithm should behave as the original one. An 
interesting outcome is the execution time of the adapted algorithm in experiment 3 and 4, 
where the size of the TBox is increased and the timeexp4 > timeexp3. This increase in time is 
negligible, but expected, since by adding new concept, roles, etc. then the algorithm executes 
more comparisons operations in the search methods. The increase of the atoms in the input 
query of experiment 5 has also a negative effect on the execution time. However, it should be 
clear that experiments 3, 4 and 5 only test the dependency of increasing the number of  
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concepts and roles for the TBox and the query. That is the reason it is recommended that the 
spatial part of the algorithm is tested in further experiments, by increasing the number of 
FeatureParth atoms both in the Tbox and the query, i.e. adding atoms of the form ∃U1,U2.r . 
Further recommended experiments are to evaluate the entire query answering process when 
the number of mappings is increased. Finally, database experiments can be also performed by 
increasing the length of the output select-project-join SQL query and the size of the database. 

 

6.2 Future Research and Recommendations 

 
The system Parser from Figure 4.1 can be improved by making use of XML files instead of 
text files for the TBoxes, input queries and object-to-data mappings, since an XML file can be 
automatically validated against a predefined XML schema and translated to Java objects with 
the help of JAXB bindings. This modification will both reduce the error rate of wrong user 
inputs and the complexity of the Parser. Furthermore, it is better to realize the query 
Reformulation and Unfolding processes as threads, i.e. classes QueryReformulation and 
QueryUnfolding (cf. Figure 4.2) in order to provide parallel computing possibilities. In the 
developed prototype of the system, it can happen that the query answering process takes a 
longer time and the GUI freezes for this period of time. This is not a desirable feature and it 
can this issue can be eliminated by putting the main computation process into a thread. From a 
usability point of view, it is also recommended to enrich the Graphical User Interface, so the 
user can have more possibilities to interact with the system without directly modifying the 
source code. A user friendly program should also encapsulate JProgressBar elements (i.e. 
progress bars or download boxes) in order to illustrate how many percent of the query 
answering process have been accomplished. 
 
The developed system prototype does not understands GCQ+ query atoms of the form       
r(x*, y*), r* ∊ RelRCC8 and x*,y* ∊ AxRCC8. Currently if these atoms are used then the program 
identifies them as standard role without taking into account their spatial properties. However, 
a slight modification should be done and respectively tested. The first proposal is not to 
change the Rewriting and Unfolding parts of the Reasoner but try to use SQL spatial 
correspondence functions, which can handle relations of the type DC(x*,y*), TPP(x*,y*), etc. 
and embed these mappings in the mapping text files. The OpenGIS functions for geometry 
relationship  [38] are possible alternatives, e.g. ST_Equals(geometry, geometry), 
ST_Touches(geometry, geometry), etc. However, a more reasonable approach is to include 
the latter mappings, e.g. in a Java interface, since these mappings are universal and the user 
does not need to specify them explicitly. Thus the Undolding process should be modified in 
order to correctly insert openGIS functions into the SQL query. 
 
Another reasonable improvement is to migrate the developed system to an online platform 
that can be accessed by many users without needing to distribute the source code and thus 
also benefiting from the advantages of a web application versus desktop standalone program, 
e.g. less operational cost for software installation and maintenance, better system accessibility 
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and availability, immediate effect of software patches, etc. In addition, it will be beneficial if 
additional features and reasoning tasks are added to the developed system, e.g. consistency 
checks and satisfiability tests. 
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7 Conclusion 

 

The core theoretical conclusions of this Master Thesis is that the query language GCQ+, 
capable of querying spatial ontologies with respect to a DL-Lite(RCC8) TBox, can be used to 
answer complex queries in an effective way over geographical databases. This is realized by 
the integration of a realistic top-down approach that makes use of object-to-data mappings 
and an optimized adapted version of a Perfect Rewriting Algorithm, considering geographic 
application domains.  

In a nutshell, at the first step the input query, containing GCQ+ atoms, is reformulated with 
the help of the Positive Inclusions (PIs) from the DL-Lite(RCC8) TBox. After the Perfect 
Rewriting processing, the second step performs an Unfolding algorithm that avoids the 
explicit materialization of the virtual ABox and consequently generates an SQL query that can 
be issued directly over the spatial database. This is achieved by using the object-to-data 
mapping specifications. Thus, although the described reasoning algorithms are dependent on 
the size of the TBox and the queries, this is not a crucial disadvantage, since normally w.r.t. 
geographical scenarios, the size of the TBox and queries is relatively small in comparison to 
the size of the persistent geo-data, stored in a database. The main asset of this approach is that 
the result set of the output SQL query of the Unfolding step coincides with the results of the 
initial query over the ontology. Thus the data complexity of the entire algorithm is in AC0, 
making use of the query optimization techniques provided by current database management 
systems. 

Last but not least, a software application, called OnQuAnSpatial has been developed that 
realizes the latter mentioned theoretical conclusion and provides the basic features of 
ontology based query answering over spatial databases. Although, the developed system is not 
a fully functional and bug-free commercial product, it usage is highly recommend. The 
OnQuAnSpatial prototype can be successfully applied for educational purposes, e.g. in 
workshops and practical exercises for students, attending lectures in Artificial Intelligence or 
Computer Logics. Moreover, this application can be integrated into research projects, dealing 
with ontology based query answering over spatial or traditional databases. In addition, the 
OnQuAnSpatial system can be used in order to practically test the effectiveness and 
computational complexity of the Adapted Perfect Rewriting Algorithm over spatial 
ontologies, by defining worst-case scenarios and changing various test parameter dependences 
such as size and type of the TBox, size of the input query and size of the database. 
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B. Abbreviations 
 
A 
AWT - Abstract Window Toolkit 
 
B 
 
C 
 
D 
DBMS – Database Management System  
DL – Description Logics 
 
E 
 
F 
FOL – First Order Logic 
 
G 
GCIs - General Inclusion Axioms 
GPA - Grade Point Average 
 
H 
 
I 
 
J 
JAXB - Java Architecture for XML Binding  

K 
KB- Knowledge Base 
 
L 
 
M 
MAF - Master Address File 
 
N 
 
O 
OBDA – Ontology Based Data Access 
OnQuAnSpatial - Ontology Based Query Answering over Spatial Databases  
OWL - Web Ontology Language 
 
P 
 
Q 
 
R 
R2O  - Relational to Ontology language  
RCC - Region Connection Calculus 
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R 
RDMS - Relational Database Management System 
 
S 
SQL - Structured Query Language 
 
T 
TIGER - Topologically Integrated Geographic Encoding and Referencing 
 
U 
UCQ – Union of Conjunctive Queries 
UML- Unified Modeling Language 
UNA – Unique Name Assumption 
 
V 
v/r – value restriction 
 
W 
W3C - World Wide Web Consortium 
 
X  
XML - Extensible Markup Language 
 
Y 
 
Z 
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C. CD Content 

 

The CD attached to this Master Thesis contains: 

1. A PDF document of this Master Thesis 
2. The complete java source code of the developed OnQuAnSpatial system 
3. Required Java libraries to run the application 
4. Experiments and test results 

 


