

Master Thesis

Implementation of a Perfect Rewriting
Algorithm for Ontology Based Query

Answering over Spatial Databases

Of

Aleksandar Gudov

October 2012

First Examiner Prof. Dr. rer. nat. habil. Ralf Moeller

Institute for Software Systems
Hamburg University of Technology

Second Examiner Prof. Dr. rer. nat. Volker Turau

Institute of Telematics
Hamburg University of Technology

Declaration of Authorship

I declare that this thesis and the work presented in it are my own and have been generated by
me as the result of my own original research. Each significant contribution to it and quotation
from the work of other people has been attributed and referenced. This thesis has not been
previously submitted in whole or in part for the award of any degree.

Date: 15.10.2012 Signature:

Contents

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Objectives .. 1

1.3 Achievements .. 2

1.4 Chapter Structure ... 3

2 Fundamentals and Background ... 4

2.1 Knowledge Representation Techniques .. 4

2.2 Description Logics .. 6

2.2.1 Application and Reasoning .. 6

2.2.2 Syntax and Semantics .. 7

2.2.3 TBox and ABox ... 8

2.3 Ontology Based Data Access .. 12

2.4 Spatial Databases and Existing OBDA Software Tools .. 14

3 Analysis ... 16

3.1 Expressive Power versus Efficiency of Reasoning ... 16

3.2 Linking Data to Ontologies ... 17

3.3 DL-Lite .. 21

3.3.1 DL-Litecore.. 21

3.3.2 DL-Lite Extensions ... 22

3.4 DL-Lite Combined Geo-thematic Logics and GCQ+
 .. 25

3.4.1 Region Connection Calculus ... 25

3.4.2 Lightweight DLs with RCC8 ... 29

3.4.3 Query Language GCQ+ ... 31

3.5 Ontology Based Query Answering over Spatial Databases .. 31

3.5.1 Perfect Rewriting Algorithm ... 32

3.5.2 A Bottom-up Approach ... 36

3.5.3 A Top-down Approach .. 38

3.6 Adapted Perfect Rewriting Algorithm ... 39

3.7 Limitation Analysis and Final Requirements .. 43

4 Design .. 45

4.1 Architecture Design ... 45

4.2 Software Prototype Design .. 47

5 Realization ... 49

5.1 Graphical User Interface.. 49

5.2 TBox Implementation .. 51

5.3 Query Reformulation ... 54

5.3.1 Input queries .. 54

5.3.2 Implementation of Adapted Perfect Rewriting Algorithm .. 56

5.3.3 Full Composition Table ... 60

5.3.4 Results and Output of Query Reformulation ... 61

5.4 Unfolding... 64

6 Evaluation .. 69

6.1 Final Results and Experiments Discussion .. 69

6.2 Future Research and Recommendations ... 70

7 Conclusion ... 72

Appendix ... 73

A. References .. 73

B. Abbreviations .. 77

C. CD Content ... 79

1. Introduction

1

1 Introduction

1.1 Motivation

One of the key problems in information systems and particularly in current geographic
information systems (GIS) is the effective management of information, since on the one hand
the amount of information has increased tremendously and on the other hand, the information
becomes more complex. However, the information should be accessible in an efficient,
flexible and automated way. In order to fulfill these requirements, the traditional data
management systems unfortunately surrender.

Ontology Based Data Access (OBDA) is considered as a suitable, flexible and powerful
approach, being able to handle sophisticated data management tasks, by providing access to
data, potentially stored in heterogeneous data sources, with the help of a semantic layer in the
form of an ontology. In terms of GIS, used for instance in the areas of city planning,
transportation networks, urban management, etc., ontologies are appropriate for the
formalization of relevant concepts and relations among spatial regions in a conceptual data
model, thus providing also the possibility to answer queries. In a nutshell, ontologies give the
beneficial flexibility for users to describe their own models on GIS data and formulate easily
queries over the data.

However, query answering at the conceptual tier of a geographical or spatial model requires
deduction techniques and features, which are difficult to realize due to the size of the
persistent data stored in geographic databases. An advocated solution to the problem of query
answering over geo-thematic ontologies is to use specific lightweight description logics and
query languages in order to keep low complexity of reasoning and provide sufficient
expressivity for modeling and querying important features of GIS data.

1.2 Objectives

The aim of this Master Thesis is to evaluate approaches for ontology based query answering
over spatial databases. Another objective is to address current issues in ontology based data
access and propose solutions for solving or minimizing these problems, by analyzing possible
techniques and scientific approaches.

Furthermore, the modeling and reasoning capabilities of DL-Lite(RCC8) with respect to
expressivity and efficiency of reason, as well as the querying features of GCQ+, are to be
examined in detail. As a next step, the Adapted Perfect Rewriting Algorithm should be

1. Introduction

2

analyzed and consequently implemented within a software system, being able to perform
flexible and powerful ontology based querying answering over spatial databases.

1.3 Achievements

The main theoretical contribution of this Master Thesis is that a flexible, efficient, fast and
reliable method for performing ontology based query answering over spatial databases can be
realized by incorporating the following approaches and techniques:

• The modified logic DL-Lite(RCC8), realized by a weak coupling of Lightweight DLs
with the expressive Region Connection Calculus RCC8, can be used to effectively and
easily model the conceptual level of the ontology.

• The query language GCQ+ can be used in order to define complex queries, since it
provides support for qualitative spatial query answering.

• A top-down approach for query answering over DL-Lite(RCC8) ontologies with

mappings of the form O=<T, M, D>, where T is a TBox (a set of axioms), M is a set
of mappings and D is a spatial database, can be used by applying an optimized
Adapted Perfect Rewriting Algorithm for conjunctive queries, followed by an
Unfolding process, where with the help of the mappings M the output query of the
reformulation step, being a union of conjunctive queries, is consequently transformed
into an SQL query, thus avoiding the materialization of the virtual ABox (a set of
assertions) of the form A(M, D). In a nutshell, the initial query can be compiled into an
SQL query that is consequently posed to the spatial database, making use of the query
optimization techniques provided by current database management systems.

Another practical achievement of this Master Thesis, verifying the latter described theoretical
contribution, is the development of an ontology based Query Answering System in Java that
provides:

• a framework for representing standard DL-Lite TBox;

• a framework for representing DL-Lite(RCC8) TBox, containing in addition concepts
of the form ∃U1,U2.r , where r ∊ RelRCC8 and U → loc | R	ᴏ loc;

• a framework for representing conjunctive queries, containing query atoms of concepts,
roles or GCQ+ atoms of the form ∃U1,U2.r(x);

• a framework for representing object-to-data mappings, containing mapping assertions

of the form Mleft ~>Mright, such that the left part is and SQL query and the right part is
a conjunction of atoms over the TBox;

1. Introduction

3

• a Parser for reading user inputs

• a Reasoner for implementing the Original Perfect Rewriting Algorithm and the
Adapted Perfect Rewriting Algorithm;

• a Reasoner for implementing the Query Reformulation process and evaluating the

output of the Query Reformulation process over a PostgreSQL database.

Furthermore, a performance optimization of the Adapted Perfect Rewriting algorithm has
been achieved. The first rewriting rule (cf. Chapter 3.6) of the algorithm has been extended
by finding the maximum pairs r1,r2 such that r1;r 2 ⊆ r3 and realizing a reformulation process
only w.r.t. these pairs, thus avoiding redundancy and decreasing complexity (cf. Figure 5.10,
line 14).

Finally, experiments for testing the Perfect Rewriting Module of the application, using both
pure DL-Lite and DL-Lite(RCC8) TBox-es, have been realized. Last but not least, the
complete Query Answering Reasoner, including the Reformulation, Unfolding and Evaluation
Modules has been evaluated over pure DL-Lite ontologies.

1.4 Chapter Structure

Chapter 2 introduces current issues in information systems. A detailed explanation of the
Description Logics, referred as the formal foundations for ontologies, is consequently
revealed. The Ontology Based Data Access Control is explained and its core issues are
defined. Last but not least, the chapter finishes with a brief comparison and evaluation of
current spatial databases and existing OBDA software applications. Chapter 3 presents a
problem and requirement analysis. It discusses the trade-off between expressive power and
computational complexity of reasoning, as well as different approaches how to link data to
ontologies. Then the core ideas of DL-Lite and several DL-Lite extensions are presented.
Consequently, the main part of this chapter concentrates on the DL-Lite Combined Geo-
thematic Logics, GCQ+ and the Adapted Perfect Rewriting Algorithm. Finally, the chapter
ends with a list of all program and technical requirements, based on the previously analyzed
concepts, technologies, solution proposals, and limitations. Chapter 4 and 5 are the main
chapters of this Master Thesis, where the practical achievements are explained by presenting
the actual design and architecture of the developed GIS application with DL-Lite(RCC8)
ontologies. Moreover, Chapter 5 reveals how the core components of the system are realized
by describing the most important software components, techniques and issues. Furthermore,
the processes query reformulation and query unfolding are explained, followed by overviews
of the application outputs and concluding discussions of the achieved results. Chapter 6
continues with a brief discussion how the developed system has been tested and recommends
several future research topics and program improvements. This Master Thesis ends with a
conclusion chapter that summarizes the main goals and achieved results.

2. Fundamentals and Background

4

2 Fundamentals and Background

This chapter starts with a short overview of the current issues in information systems.
Consequently, the essence of knowledge representation is discussed and a number of
knowledge representation techniques and approaches are presented. A detailed explanation of
the Description Logics, referred as the formal foundations for ontologies, is consequently
revealed in order to provide background information for the ideas, used in the following
chapters. The Ontology Based Data Access Control is explained and its core issues are
defined. Last but not least, the chapter finishes with a brief comparison that reveals and
evaluates current spatial databases and existing OBDA software applications.

2.1 Knowledge Representation Techniques

Traditionally, the complex manipulation of data information has been one of the main topics
of interest in the area of knowledge representation in Artificial Intelligence. The core aim of
knowledge representation is to formally model knowledge by providing high-level description
of the world and thus enabling the process of effectively drawing logical conclusions about
the modeled world. The process of modeling is usually realized in complex knowledge
representation and reasoning systems, which are based on various formal knowledge
representation languages and notions. These systems provide the possibility to implicitly find
consequences, based on the explicitly represented knowledge.

The knowledge representation approaches and techniques going back to the 1970’s can be
classified into two main groups: non-logic-based representations and logic-based formalism.
In the second approach, the language, used for knowledge representation, is commonly a
variation of a first-order predicate calculus, while the non-logic-based approach often relies
on the use of networks, graphical interfaces or various ad hoc data structures. Examples of the
non-logic-based technique are Semantic Networks and Frames, which can be also specified as
Network-Based Structures [1]. Representatives of the second approach are among others
Description Logics (DL), the standard Web Ontology Language (OWL), Datalog and rule-
based languages, Predicate Logic, etc. [2]. The main advantage of the logic-based approach is
that it is more powerful, more general-purpose and more expressive than the non-logic-based
representation technique.

The core building parts of the network-based representation structures are nodes and links,
which correspondingly depict concepts and roles. A concept is a class or set of particular
objects and a role represents the connection or relation among these objects. If the relation,
i.e. role is more complex, then it can be also represented as a node, but with a different shape.
Moreover, concepts can have further characteristics such as attributes or properties, which are
attached to the corresponding nodes in the network. An example network is illustrated in

2. Fundamentals and Background

5

Figure 2.1, where knowledge about cats, pets, animals, mammals and carnivores can be
depicted. This network is also referred as a terminology, depicting the described world that
consists of concepts, roles and attributes. The roles are represented by the blue arrows. For
instance, the link between the concept cat and carnivore means that a cat is a carnivore. This
type of connection is also called an “IS-A” relationship [1]. It is important to point out that
the “IS-A” relationship also implies hierarchy of the concepts, meaning that all attributes from
the more general concept are inherited to the more specific one, i.e. the child concept. As
illustrated in Figure 2.1, a carnivore has teeth and a cat concept inherits the properties from
the carnivore, which fact yields the conclusion that a cat also has teeth. In addition, a cat has
a breed, e.g. American Longhair, Bengal, Birman, etc.

Figure 2.1 An Example of Network-based Representation Structure

The breastFeed node represents a role in the terminology, illustrated in Figure 2.1. This role
has value and number restrictions, represented correspondingly by the labels v/r, meaning a
value restriction, and (1, NIL), which stands for the number of minimum and maximum
breastfed children. The NIL symbol stands for infinity. This role description can be translated
to natural language as “A mammal is an animal, who can breastfeed at least one child and all
children are also animals“.

It is important to point out that there could be also implicit relationships among the nodes of
the network and this is one of the major tasks of the knowledge representations systems,
namely to identify and take into account these implicit relations between the concepts during
the reasoning process. For instance, as observed in Figure 2.1. the concept cat and carnivore
are explicitly connected, same as mammal and carnivore, so it can be concluded that a cat is
also a mammal even though there is no direct link between cat and mammal. As a
consequence, the main problem of the network-based representation structures becomes
obvious when the complexity and number of the concepts relationships increases, since it
becomes more difficult to precisely characterize, recognize and compute all the relations
among concepts from the terminology [1]. A solution to this problem is to define a formal
language that provides both an accurate characterization and interpretation of the meaning of
the network and its elements.

teeth

breed

breastFeed
(1,NIL)

mammal

cat

carnivore

pet

animal

v/r

2. Fundamentals and Background

6

A lot of the ideas and principles, implemented in the first semantic networks and frame-based
systems, have been the key to the successful development of the KL-ONE knowledge
representation systems, which consequently sets the fundamentals of the logic-based
characterization formalism. The language of KL-ONE explicitly represents and provides a
logical basis for interpreting conceptual and role information, as well as the notion of
subsumption, conjuction, role hierarchies, etc. As a consequence, a precise and distinct
semantics was provided for the KL-ONE system, which resulted in the first Description
Logics definition [1].

2.2 Description Logics

The knowledge of the application domain or the “world” in the Description Logics is
represented by first defining all relevant domain concepts, namely the domain terminology.
After that the properties of characteristic domain individuals or objects are specified, based on
the previously defined concepts, thus creating the description of the application domain. The
main difference of Description Logics in comparison to some of its predecessors is the fact
that it is equipped with a formal, logic-based semantics. Another very important
distinguishing characteristics of Description Logics is the central role of reasoning in this
formalism, namely it is possible to infer implicit knowledge about the “world” from explicit
facts included in the knowledge base [3].

2.2.1 Application and Reasoning

The application of Description Logics is very broad and it may be found in many intelligent
systems for processing information, including natural language processing, database
management, software engineering, digital libraries, web-based information systems and
many others, because it supports useful and practical inference patterns to describe, classify
and understand the human world. In fact, Description Logics facilitate the classification of
concepts and individuals. Moreover, it not only specifies sub-concept/ super-concept
relationships among different concepts, thus allowing subsumption, but it also provides the
information whether a single individual or an object is an instance of a certain concept. This
feature can in addition give important knowledge about the attributes or characteristics of a
specific object. In fact, the subsumption is the main inference on concept expressions in
Description Logics. In order to determine subsuption, it should be checked whether a specific
concept B is more general than a concept A. The symbolic representation of subsumption in
DL is typically written as A	⊑		B [1], namely B subsumes A or the concept B (the subsumer) is
more general than the concept A (subsumee). Considering the example in Figure 2.1, it can be
concluded that pet ⊑ animal and mammal ⊑ animal, meaning the concept animal subsumes or
is more general than both the pet and the mammal concepts.

Another typical example of inference on concept expression in Description Logics is the
concept satisfiability. The main task of checking satisfiability is to test whether the empty

2. Fundamentals and Background

7

concept is not necessary denoted by any concept expression. Concept satisfiability can be also
regarded as a special case of the subsumption, where the subsumer is the empty concept, thus
inferring that a specific concept is not satisfiable, i.e. contradictory [1].

In general, investigating the complexity of computing a specific inference problem in logics is
a very important issue. This problem also occupies a fundamental part in the Description
Logics field of research. Dating back to 1984, Brachman and Levesque used the simple
structure of Description Logics in order to argue that there is a proportional relation between
the expressive power of a knowledge representation language and the complexity of reasoning
[4]. In other words, the more expressive the language is, the more difficult the reasoning is.
This tradeoff between the expressivity of the Description Logics and the computational
difficulty of its reasoning problems is one of the fundamental research topics in this area.

2.2.2 Syntax and Semantics

There are a lot of variations of the Description Logics, but the base description language is the
AL-language (attributive language). The elementary descriptions are atomic roles and
concepts. All other complex descriptions can be built with the help of these atomic
constructors in an inductive way. It is commonly accepted that the abstract notation of atomic
concepts is represented by the letters A and B, while the representation for atomic roles is R.
The complex concept descriptions are denoted by the letters C and D. The main syntax rules
of the AL, forming concept descriptions, are presented in Figure 2.2

C, D → A | (atomic concept)
 T | (universal concept)
 ⊥ | (bottom concept)
 ￢A | (atomic negation)
 C ⊓ D | (intersection)
 ∀R.C | (value restriction)
 ∃R.T | (limited existential quantification)

Figure 2.2 AL Syntax [3]

It is important to point out that negation in AL is only applicable to atomic concepts.
Furthermore, when using role description constructors only the top concept is allowed in the
scope of existential quantification, as illustrated in Figure 2.2. Referring to Figure 2.1, where
the description of an animal has been illustrated in a graphical way, this approach can be
consequently extended and presented in terms of Description Logics. For instance, supposing
that an Animal and a Carnivore are atomic concepts, then by using the intersection operator
the complex concepts of meat-eating animals and plant-eating or herbivore animals are
formally given by Animal ⊓ Carnivore and Animal ⊓ 	￢ Carnivore. Besides, if supposing
that breastFeed is an atomic role, then the concept of those animals, which are mammals, can
be constructed as Animal ⊓ ∃breastFeed.T. All other non-mammals animals can be described
as Animal ⊓ ∀ breastFeed⊥.

2. Fundamentals and Background

8

After presenting the base syntax of the AL, the formal semantics is consequently explained. In
fact, the semantics of description logics is specified by defining the concepts as sets of
individuals and respectively the roles as pairs of individuals, which are particularly connected
to a specific domain. The most important fragments of the semantics are the interpretations
and the interpretation function. In the interpretation function, a set in the form AI	⊆	△I		 is
assigned to every atomic concept A and a binary relation RI	⊆	△I	x	△I	 is assigned to every
atomic role R, where I stands for an interpretation function on a non-empty set △I	, i.e. the
actual domain of interpretation [3]. The semantics of concepts and roles, which are not
atomic, is realized with the help of recursive definitions, as illustrated in Figure 2.3. These
definitions are similar to the ones, presented in Figure 2.2 .

��	 = △�			
⊥�	 = ∅

(￢�)�	 = △I	/AI			complement, meaning negation
(�	 ⊓ 	�)�	 = CI	 ∩ �I			union, meaning disjunction
(∀�. �)�	 = �	a	∊	 △�	 |	∀�. (, �)∊	RI	 → �	∊		��	}		
(∃�. �)�	 = �	a	∊	 △�	 |	∃�. (, �)∊	RI	}		

Figure 2.2 AL Semantics [3]

As previously mentioned, by extending the AL language, the expressive power of the
Description Logics can be increased. For example, constructors as union of concepts, full
existential quantification, number restrictions, negation of arbitrary concepts, etc. can be
added in order to extend the AL, forming a new variation of the AL language.

2.2.3 TBox and ABox

Description Logics are very beneficial and practical in the design of knowledge-based
systems since they provide a representation language in order to define a knowledge base and
techniques to realize inference reasoning over this language. A very distinct differentiation of
intensional and extensional knowledge can be noticed in the DL knowledge base. In the
context of Description Logics, intensional knowledge stays for the information that is general
about the problem domain and extensional knowledge represents the knowledge or
information, specifying a particular problem. The knowledge base in DL consists of two main
components- a TBox and an ABox. The TBox represents the intensional knowledge and it
builds up the terminology. The TBox contains the vocabulary of the application domain and it
contains definitions of concepts, roles and their general properties. A concept denotes a set of
individuals, while a role represents a relationship among these individuals. On the contrary,
the ABox represents the extensional knowledge or assertions about the individuals of the
domain of interest in terms of the initially defined vocabulary [1, pp. 12-15].

There are two types of logical declarations or terminological axioms in the TBox –
equivalences and inclusions. The logical equivalence provides both necessary and sufficient

2. Fundamentals and Background

9

conditions for classifying an individual. For instance, the concept definition of a Man in a
TBox can be declared as the axiom, shown in Figure 2.3.

Man 	≡				Person ⊓ Male

Figure 2.3 A Terminology with Equivalence Axiom

The form of definition of the concept Man of Figure 2.3 is much stronger than the one,
illustrated in Figure 2.4, since the inclusion axiom of Figure 2.4 only imposes necessary
condition, i.e. the concept is not defined completely. Inclusions generalize equivalences and
therefore they are also called GCIs (General Inclusion Axioms). In practice they are a very
convenient way to introduce new concepts or roles into a definite TBox, which terms could
not be defined completely.

Male ⊏ Person

Figure 2.4 A Terminology with Inclusion Axiom

Both equality and inclusion axioms not only allow concept definitions, but also roles. A TBox
with concepts and roles within a family is presented in Figure 2.5.

Woman ≡ Person ⊓ Female
Man ≡ Person ⊓ ¬Woman

Mother ≡ Woman ⊓ ∃hasChild.Person
Father ≡ Man ⊓ ∃hasChild.Person
Parent ≡ Mother ⊔ Father

Figure 2.5 A Family Terminology Example [3]

The concept Woman from Figure 2.5 is defined to be a Female Person, a Man is a Person,
who is not a Woman. In addition, a Mother is declared to be a Woman, who has children and a
Father is specified to be a Man with children. Consequently, a Parent in the TBox of Figure
2.5 is classified as either a Mother or a Father.

Similar to the TBox, the ABox also deals with concept and roles, thus describing the current
state of affairs, but what is the peculiar about the ABox is the fact, that in an ABox the
individual plays a central role. In other words, individuals are introduced by assigning names
to them and asserting their properties. It is a common practice that individuals are often
labeled as a, b or c and by borrowing the notation of the TBox, assertions of the form C(a)
and R(b,c) can be generated. An ABox is in fact a finite set of assertions. For instance,
referring again to the animal example from Figure 2.1, if TOM and JERRY are individual
names, then Cat(TOM) means that TOM belongs to the interpretation of the concept Cat, i.e.
TOM is a cat and Mammal(JERRY) means that JERRY is a mammal. In addition, when taking
into account individual role assertions, it can be concluded that JERRY suckles from MARY
for the example of breastFeed(MARY, JERRY).

2. Fundamentals and Background

10

There are two key inferences when considering a TBox and an ABox – satisfiability and
consistency. Satisfiability of the TBox means that there is a model of the TBox, i.e. an
interpretation of all axioms in the TBox, making all of them true. Taking into account an
ABox, it is the case that an interpretation I satisfies the ABox A if it satisfies every single
assertion in A, thus I being the model of the assertion of the ABox. Combining, both
satisfiabiliy definitions about the TBox and ABox, it can be concluded that interpretation “I
satisfies an assertion a or an ABox A with respect to a TBox T if in addition to being a model
of a or of A, it is a model of T” [3].

After checking the satisfiability, a typical task of a knowledge representation system is also to
verify whether the representation of the particular knowledge is consistent. If that is not the
case, then arbitrary or wrong conclusions can be drawn from a logical point of view. For
instance, if the assertions Father(PETER) and Mother(PETER) are contained in a specific
ABox, then it must be possible to detect that together with the TBox, presented in Figure 2.5,
these statements are not consistent, since Father and Mother are interpreted as concepts,
having disjoint extensions in the current example. However, if taking into account an empty
TBox, the discussed assertions are consistent, because no restrictions of the interpretation of
Father and Mother exist, so they may have a common element [3]. Both satisfiability tests of
descriptions and consistency tests of sets of assertions are beneficial in order to determine
whether a specific KB is in particular meaningful.

Another known technique for checking whether domain models are correct or to improve the
optimization of queries, formulated as concepts, is the subsumtion, i.e. verifying whether a
specific concept is more general than another concept. Furthermore, relationships such as
disjointness, equivalence, etc. also play a major role and are of significant interest in the
research area of Description Logics and reasoning about knowledge.

Last but not least, it is important to point out that the TBox and the ABox are the two typical
main building components of the knowledge base of a knowledge representation system,
based on a Description Logics. An example of the graphical representation of such a design
[3, p. 50] is illustrated in Figure 2.6. In addition to the storage of assertions and terminologies,
the system also implements numerous services and techniques as the previously described
reasoning tasks for checking satisfiability, consistency, subsumption, etc.

2. Fundamentals and Background

11

Figure 2.6 Architecture of a DL Knowledge Representation System

It is often the case that a TBox and an ABox are compared to relational databases and number
of similarities among them can be found. For instance, in a simplified point of view it can be
observed that a TBox is analogous to a database schema and an ABox can be treated as the
actual data in the database. However, semantically these concepts differ in their essence. On
the one hand, only one single interpretation is depicted by a database instance, while on the
other hand, a lot of interpretations, i.e. models, are represented by an ABox. For example, if
the only assertion about BOBBY is hasParent(BOBBY, MIKE), then interpreting this in the
database context yields the conclusion that BOBBY has only one parent and his name is
MIKE. However, an ABox with such assertion only indicates that MIKE is a parent of BOBBY
and nothing more. In fact, an ABox has many models. In some of these models, MIKE is the
only parent, but in others BOBBY is not an orphan and he has a mother and a father.

Analyzing the previously described simple example, it is obvious that the lack of information
in a database indicates negative information, while the nonexistence of specific information in
an ABox is only interpreted as a lack of knowledge. In other words, the information in the
database is generally referred as complete and the one in the ABox as incomplete.
Consequently, the query answering and inferences in DLs are more complicated than query
answering in databases, since an ABox could represent infinitely many models. Moreover,
nontrivial reasoning techniques may be required, e.g. case analysis [3].

Application
Programs

TBox

ABox

R

E
A

S
O

N
IN

G
 D

E
S

C
R

IP
T

IO
N

LO

G
IC

Knowledge Base (KB)

2. Fundamentals and Background

12

2.3 Ontology Based Data Access

Description Logics has been an essential area of knowledge representation for the last decades
in order to build up the foundations for a structured representation of complex information,
enriching this information with a formal semantics. Due to the logic-based formalism of the
DL, an effective support for automated reasoning can be provided for solving various tasks
and problems associated with data management.

Ontologies are considered as a suitable, flexible, powerful and efficient formal tool or
approach that can deal with sophisticated data management tasks [5]. In fact, ontologies
provide a representation schema, describing a formal conceptualization of a specific domain
of interest. Its specification incorporates several levels. The core distinct layers are the
intensional level, where the conceptual structure of the domain is specified, namely the TBox,
and the extensional level, where instances of the conceptual elements from the intensional
level are defined, namely the ABox. In addition, an ontology may also have an extra tier, i.e. a
meta-level, where a set of modeling categories are being specified [6].

The proposal of using an ontology as a conceptual view over a repository is reasonable, but
the key point is that the conceptual layer with the help of which the lower data layer is
accessed, should not add a considerable overhead when processing the data [7]. The problem
becomes more critical when dealing with large amount of data, i.e. in particular when
considering geographical and spatial data. A graphical representation of a design of an
information system, using ontologies as a technical tool for providing a conceptualization
over a specific domain, is presented in Figure 2.7

DATA LAYER

Figure 2.7 Design of an Information System, using Ontologies

source 1
source 2

source 3

ONTOLOGY

source n

mapping 1 mapping 2 mapping 3 mapping 4

2. Fundamentals and Background

13

The ontology in Figure 2.7 maps a specific domain of interest within an information system at
a high level of abstraction. The relationship between the instances of concepts and roles in the
ontology and the data at the sources are realized with the help of appropriate mappings. The
advantage of this setting is the fact that it is not necessarily needed to be known how the data
repository is organized and stored or where the data sources are located. In other words, the
data sources are independent from the ontology and they are situated at different levels of
abstraction. In addition, information systems, which are implemented with the help of
ontologies can „communicate“ among each other by sharing information. This cooperation is
performed at the level of the conceptualization, without the need of connecting the data
sources, thus making the ontology also the core ingredient of cooperation among information
systems.

The design scenario, illustrated in Figure 2.7 is a typical representative of the so called
Ontology-Based Data Access (OBDA). The pre-existing data sources build up the data layer
of the information system, on the top of this layer there is a conceptual view of the data, that
is consequently to be seen by the user. The conceptual view is formed by the ontology, which
is the only access point for the client to interact with the system. The purpose of the OBDA is
to link a set of autonomously existent data to a specific ontology without being necessary to
structure this data with the aim of saving the ontology instances [5]. As already mentioned the
autonomous data and the ontology are at different abstraction levels and they may be
specified in terms of not necessarily the same formalism. For instance, relational data models
are usually used for the representation of data sources, while ontologies are expressed by
logical languages, such as Description Logics and its successors. Considering these different
characteristics Antonella Poggi [5, pp. 134-135] and her colleagues summarize the five most
important issues, when dealing with the interaction between the data layer and the conceptual
view of the domain of interest, i.e. the ontology:

I. The chosen ontology language for expressing complex semantic conditions at the
intensional level should be expressive enough and at the same time its computational
complexity of reasoning should be manageable as previously mentioned in Chapter
2.2.1.

II. In modern applications, the amount of information, stored in the Data Layer, may be
very large. Because of this reason an appropriate technology should be used that is
able to handle large qualities of data in an efficient and consistent way. Such a
technological solution, fulfilling the requirement of effective data manipulation, is for
instance a relational Database Management System (DBMS). Here it is important to
find the balance how much the expressive power of the ontology formalism can be
used in order to still make use of the effectiveness, simplicity and convenience of the
query answering over relational DBMS.

III. A mapping approach should be implemented, which realizes the formal linking or

translation of the stored data and the ontology. In other words, a technique should be
found out that reconstructs the meaning of the source data in terms of the conceptual
layer. This extra mapping layer is needed, because the data at the Data Layer is stored
independently of the ontology.

IV. The way data is expressed in a relational database differs from the way the

corresponding information is provided in an ontology. A mismatch exists, since the
main components managed by the data sources are stored values, i.e. data, and the
elements managed by the ontology are abstract objects, which are instances of

2. Fundamentals and Background

14

concepts and roles in the ontology. This issue is widely known in the literature as the
impedance mismatch problem and the mapping approach, described in the previous
point, should cope with this problem.

V. The last issue when building OBDA systems is the necessity of implementing a query

answering method. The aim of this method is to facilitate the process of reasoning at
the conceptual level and at the same time to provide mechanisms for efficient data
access at the source by incorporating the mapping approach. In other words, the
OBDA system should be able to translate any client request into an appropriate query
that is consequently posed to the source.

2.4 Spatial Databases and Existing OBDA Software Tools

In OBDA the extensional knowledge in the database is extended by intensional knowledge in
the form of an ontology. In a nutshell, the ontology builds up the conceptual view of an
information system over a repository, as illustrated in Figure 2.7. Typically a geographical
information system with ontologies, considering GEO-thematic, topological or spatial
orientation scenarios, should encapsulate backend capabilities in order to store the large
amount of GIS data. The most popular ways of building storage environments in general are
file systems and databases. A file system is part of every operating system and its
responsibilities are to manage and store computer files and data on storage devices.
Depending on the way how records are saved or retrieved within a file, the files are specified
into three main types, namely sequential, index sequential and direct access based.
Nevertheless, a more reasonable and more practical possibility for storing GIS data is to use a
database rather than a file system. The main benefit of this suggestion is the fact that for
systems, processing a large amount of GIS data, a database is more appropriate due to its
quick data access, compact data storage and standardized querying technologies. There are
numerous spatial extensions and databases on the market today. The most popular of them
are:

• PostgreSQL, which is an open source object-relational database system. It uses the
spatial extension PostGIS to provide support for geographic objects and
corresponding spatial and geometric functions [8].

• Oracle Spatial provides an SQL schema and features for facilitating the storage,
update and retrieval of spatial data in an Oracle database [9].

• Microsoft SQL Server supports the geography and geometry data types for managing

spatial data since version 2008 [10].

• IBM DB2 Spatial Extender together with the Geodetic Data Management Feature
offer support for spatial types, providing spatial and geodetic capabilities in order to
query, maintain and create spatial data [11].

2. Fundamentals and Background

15

The open source PostgreSQL database management system together with the spatial extension
PostGIS turn out to be the most appropriate option for storing persistent GIS information,
taking into account license issues, performance, stability and possibility to handle geographic
data in a standardized way. Moreover, the plugin PostGIS Shapefile and DBF Loader allows
importing of GIS data, encapsulated in shapefiles, directly into the database. For instance,
TIGER/Line® Shapefiles and TIGER/Line® Files can be loaded automatically in the
database. These files are distributed to the public free of charge and they represent spatial
extracts from the Census Bureau’s MAF/TIGER® (Master Address File/Topologically
Integrated Geographic Encoding and Referencing) database [12]. They contain geographic
information such as roads, rivers, railroads, hospitals, etc. as well as other geographic data and
regions. The TIGER/Line® Shapefiles are very beneficial from usability and practical point
of view when building and later testing a geographical information system with ontologies,
since they provide up-to-date and real-world GIS data.

Currently there is no commercial system with ontologies that simultaneously combines
reasoning over a spatial and a thematic domain, using a Perfect Rewriting approach.
However, related work, scientific projects and system prototypes have been broadly
investigated and developed in the last years. For instance, FaCT [13], DLP [14], RACER [15],
QuOnto [16] are systems, dealing with expressive Description Logics and OBDA, but they do
not incorporate facilities for space representation and reasoning. The innovative OnGIS [17]
system is based on OWL ontologies and it provides limited ontology driven geospatial search
and integration. The advantage of this system is that it can spatially relate search results.
However, its expressivity is currently very limited, since it provides only two spatial
restrictions, i.e. “inside“ and “distance“ restrictions. In addition, non-spatial data is not
supported and significant performance issues and computationally expensive spatial
operations generate further problems, which altogether do not classify the OnGIS prototype
and the former described applications as reliable ontology-based GIS systems, which
guarantee a complete, correct, and efficient query answering mechanism. That is the reason
why, the development of such a system is beneficial in the fields of Description Logics and
other practical areas of science and life, such as city planning, urban management,
construction of eco systems in forestry, etc. The next chapter investigates formal techniques,
approaches, issues, and technologies relevant for the implementation of a stable ontology-
based GIS system for query answering.

3. Analysis

16

3 Analysis

This chapter presents a problem and requirement analysis. It starts with a detailed description
of the issues of OBDA, discussing the trade-off between expressive power and computational
complexity of reasoning, as well as different approaches and resulting difficulties how to link
data to ontologies. Then the core ideas of DL-Lite and several DL-Lite extensions are
presented. Consequently, the main part of this chapter discusses the DL-Lite Combined Geo-
thematic Logics and GCQ+. Moreover, two approaches for ontology based query answering
over spatial databases are evaluated and the Adapted Perfect Rewriting Algorithm is
explained in details. Finally, the chapter ends with a list of all program and technical
requirements, based on the previously analyzed concepts, technologies, solution proposals,
and limitations.

3.1 Expressive Power versus Efficiency of Reasoning

Before going into details of investigating the first issue when dealing with OBDA, i.e.
expressive power versus efficiency of reasoning in the scenarios, where large quantities of
data is to be accessed, it is crucial to first present a number of basic notions and terms related
to computation complexity. When analyzing or measuring the computational complexity of
reasoning in an OBDA system or a query language, the critical term of interest is the data
complexity or the complexity with which a query is evaluated as a function of the size of the
data or the database [18], discarding the size of the TBox and the query. In general, a
computational problem can be specified by a corresponding complexity classes.

A complexity class is defined by its models of computation, the bounded resources and the
corresponding bounds. Examples of models of computation are deterministic and
nondeterministic Turing machines, Boolean circuits, etc., and examples of resource constrains
are logarithmic time, polynomial space, etc. [19]. The relationship among some of the most
popular complexity classes is presented in Figure 3.1 [7], where it can be seen that AC is
contained in LogSpace and LogSpace is contained in NLogSpace, etc. A representative
example of a problem with a complexity AC0 is the evaluation of first-order queries (e.g. SQL
queries) over a relational database [20], which justifies the statement that a relational DBMS
handles large amount of data in an efficient way.

3. Analysis

17

Figure 3.1 Complexity Classes Relationship

Considering the first issue of OBDA with respect to large quantities of data, several attempts
can be found in the literature, which try to overcome the problem of choosing such a language
that is simultaneously expressive enough and ensures that reasoning is still computationally
tractable, referring to data complexity. In this context tractability means “solvable by a
polynomial time algorithm” [7]. In other words, it can be accepted that reasoning in the
intensional part of the ontology, i.e. the TBox, is exponential, but reasoning in the data must
be at least in NC or in AC. According to [5] the OWL-DL and OWL-Lite, which are
sublanguages of the Web Ontology Language and endorsed by the World Wide Web
Consortium (W3C), are coNP-hard, thus classifying these languages as inappropriate
solutions to the first OBDA issue (cf. Chapter 2.3). However, several proposals such as Horn-
SHIQ [21], EL++ and DLP provide polynomial reasoning, thus making them attractive
expressive Description Logics. A number of variations and sublanguages of the DL-Lite
family are also investigated and currently seen as possible solutions, since the DL-Lite Logics
(in particular DL-LiteA [5]) guarantee complex query answering in AC0 with respect to data
complexity. Besides, the more important advantage of the DL-Lite (in particular DL-LiteA,id

[7]) is that after an initial reformulation procedure (cf. Chapter 3.5.1), not dependent on the
amount of the data, a SQL query can be generated out of the original query, thus delegating
the query processing to the RDBMS, i.e. having a data complexity in AC0. This feature of the
DL-Lite also addresses the second issue of OBDA. More details about this method are
presented in Chapter 3.5

3.2 Linking Data to Ontologies

In the traditional environment of the Description Logics, it is adopted that the data is
completely maintained in the ABox of the ontology [22] and the ABox is capable of being
used with the TBox without any modifications. This means that there is compatibility between

AC

LogSpace

NLogSpace

PTime

NP

ExpTime

3. Analysis

18

the extensional and insentional levels of the ontology. In fact, the TBox uses the lexicon of
roles, concepts and attributes and the ABox contains contingent facts, i.e. concept assertions
or role assertions. Depending on specific requirements, the physical storage of the ABox can
be either maintained in the main memory of the DL reasoner, or in a secondary storage, which
process is again delegated by the reasoner itself.

Nevertheless, in real world settings and in particular in geographic scenarios, where either the
ABox is very large, there is no direct control of the data, since it belongs to some other
organizations, or the data is stored in different data sources, then a relational database is
needed. This requirement however poses the issue of the third and fourth OBDA problems,
introduced in Chapter 2.3. On the one hand, the source data in the database is stored in terms
of values of strings, integers, dates, etc. On the other hand, the instances of concepts and roles
in the ABox are abstract objects, i.e. the objects are not materialized and the ABox is thus
considered as virtual. A possible solution to this scenario is to specify mappings between the
data source and the ontology, as graphically illustrated in Figure 3.4. Such a mechanism is
proposed in [5] and [22], enabling linking of existing data sources to an ontology expressed in
an extension of the DL-Lite Logic. The fundamental idea of this approach is that every
mapping assertion consists of two mutually associated parts - a query, the aim of which is to
retrieve specific values from the database, and a set of atoms, specified in the vocabulary of
the ontology (cf. Figure 3.4). With the help of Skolem functions, the transformation of data
values into abstract objects is possible. Skolem functions output uniquely defined values for
their arguments and are also used in XML schema mappings under the settings of XML data
exchange scenarios [23]. Moreover, the objects are denoted by an ad hoc identifier, namely a
term, obeying the unique name assumption (UNA) on terms, i.e. distinct individual terms
denote distinct objects. The example in Figure 3.2, where a graphical representation of the
relationship between a student and a lecture within a university is shown, can be used to
illustrate this approach.

Figure 3.2 Graphical Representation of the Relation

between a Student and a Lecture

From Figure 3.2 and the multiplicity 1..* , it can be concluded that a Lecture is attended at
least by one Student, and students can attend several lectures. Furthermore, analyzing Figure
3.3, it is of a peculiar interest to point out that the actual data is stored in a database,
containing the tables University, StudentGrade and Student, where a student is identified by
his matriculation number and a lecture is identified by its name. As a result, the abstract

Student

studentCode: int
GPA: float

Lecture

lectName: String attends ►

1..* 1..*

3. Analysis

19

object student should be created out of his MatrNum, namely std(MatrNum) and the lecture
should be created by its name, i.e. lect(LecName).

University [MatrNum: Varchar; LecName: Varchar]
Students and lectures they attend

StudentGrades [Code: Varchar; GPA: Numeric]
Student’s code and corresponding Grade Point Average (GPA)

Students[Code: Varchar; MatrNum: Varchar]
Student’s code with a student matriculation number

Figure 3.3 Table Signatures of a Sample Database

In order to create the object identifiers and also address the impedance mismatch problem, a
set of function symbols {std, lect} is introduced. Every function symbol has an associated
arity, which aim is to specify the number of the accepted arguments. Besides that, it is
assumed that the data, stored in the relational database, is denoted by value constants and the
objects, managed by the ontology, are denoted as object terms. These terms consist of
function symbols and value constants. For instance, if a student is identified by a
matriculation number and 31897 is a matriculation number, stored in the database, then the
object term std(31897) denotes a student.

The proposed mappings assertions between the database and the TBox have the following
formulation: an SQL query ~> a set of atoms / a CQ over the TBox. A conjunctive query
(CQ) in DL-LiteA is a statement of the form q(x) → conj(x,y), where q(x) is the head and
conj(x,y) is the body of the query, representing a conjunction of atoms. The variables
occurring in the head of the query are called distinguished variables, i.e. the tuple x, while y is
a tuple of distinct existentially quantified variables, which do not occur in x [5] , namely non-
distinguished variables. If a variable occurs more than once in the body of a query, then it is a
shared variable. Besides, if a shared variable, a constant or a distinguished variable is an
argument in a query atom, then it is called bound. Correspondingly an unbound argument
corresponds to a non-distinguished non-shared variable, marked symbolically as “_”. It is
important to point out that the set of atoms over the TBox in every mapping assertion should
involve only distinguished variables, which respectively may include variable terms with
function symbols. A sample mapping of the example presented in Figure 3.2 and 3.3 is
illustrated in Figure 3.4.

M1: SELECT MatrNum, LecName
from University

M left

~> Student(std(MatrNum)),
ATTENDS(std(MatrNum), lect(LecName)),
lectureName(lect(LecName), LecName)

Mright

 SQL query over the database Conjunction of atoms over the TBox

Figure 3.4 Sample Mapping Assertion

3. Analysis

20

The data-to-ontology mapping in Figure 3.4 maps every tuple (m, l) in table University to a
student std(m), who attends lecture lect(l) with name l.

In order to summarize the method, proposed by [5] and [22], it can be concluded that mapping
assertions are of crucial importance for the construction of an OBDA system. Moreover, such
a system (i.e. an ontology with mappings) can be symbolically defined as a triple O = < T, D,
M >, built up of a TBox T, relational database D and a number of mapping assertions M , used
to bridge the “gap” between the TBox and the database. In addition, the mappings M can be
subdivided into two classes – typing mapping assertions and object-to-data mapping
assertions. The typing assertions are useful in order to match the appropriate types of the data
values from the database and the types, specified in the ontology. Referring again to the
University example from Figure 3.2 and 3.3, it could be also specified in the TBox that the
attribute lectureName is of type string, i.e. lectureName ⊑ xsd:string. The corresponding
typing mapping is shown in Figure 3.5.

Mtype: SELECT LecName from University ~> xsd:string

Figure 3.5 Sample Typing Mapping Assertion

Considering the definition of an ontology, namely O = < T, D, M >, the split version of the
ontology is O = < T, D, split(M) >, where split(M) is a new group of mapping assertions. The
split(M) consists of all typing assertions and mapping assertions. The peculiarity is that a new
mapping assertion is added for every atom of the right part of the mapping itself, namely
Mright in Figure 3.4. When this rule is applied to the mapping assertions from Figure 3.4, a
group of split mapping assertions is generated, illustrated in Figure 3.6. The ontology with
mappings and its corresponding split versions are logically equivalent [7], meaning that an
ontology with mappings can be reduced to its split equivalent. In addition, the computation of
the reduction has PTime complexity with respect to the size of the mappings for DL-LiteA
ontologies [5] and LogSpace complexity for DL-LiteA,id [7]. In both cases, the reduction is
independent of the size of the data.

M11: SELECT MatrNum, LecName
from University

~> Student(std(MatrNum))

M12: SELECT MatrNum, LecName
from University

~> ATTENDS(std(MatrNum), lect(LecName))

M13: SELECT MatrNum, LecName
from University

~> lectureName(lect(LecName), LecName)

Figure 3.6 Split Version of a Mapping Assertion

There are also other known approaches when dealing with the issue of linking data to
ontologies. For instance, a Relational to Ontology language (R2O) is proposed in [24], which

3. Analysis

21

main characteristics are its extensible and declarative nature. With the help of this language
various mappings between ontologies in RDF (Resource Description Framework) and
relational database schemas can be created. The usage of R2O is concentrated in the context
of the Semantic Web. This language is expressive enough to cope with complex mappings,
but however it does not address directly the impedance mismatch problem [5]. Another
approach, presented in [25], but still having several of the disadvantage of the R2O is the
CARIN logical formalism, exploited in an information integration system, called PICSEL. In
its essence, the CARIN approach resembles the detailed presented technique at the beginning
of this chapter, namely the method for linking of existing data sources to an ontology
expressed in DL-LiteA.

3.3 DL-Lite

The DL-Lite family is part of the Description Logics family and the alphabet of DL-Lite also
consists of symbols for atomic concepts and roles, value-domains, atomic attributes and
constants. The peculiarity of the DL-Lite is the fact that it is not only logics, tailored to
capture basic ontology languages and popular modeling formalism, but moreover query
answering in DL-Lite is managed in an efficient way. This is achieved by keeping the
complexity of reasoning low, taking advantage of the query optimization techniques in
relational databases and relying on several rewriting algorithms and procedures. Other
benefits of the DL-Lite are its possibility to also capture basic conceptual data models and
object-oriented formalism, such as simple class diagrams [7], designed in the Unified
Modeling Language (UML).

3.3.1 DL-Litecore

There are currently numerous extensions and proposal variations of the DL-Lite family.
Nevertheless, the basic one is specified as DL-Litecore [26]. The fundamental features of the
DL-Litecore are that it allows for expressing:

• ISA assertions on concepts (Al	⊑	A2). For instance, subsumption can be realized, the
concept Pupil is subsumed by the concept Person, i.e. Pupil	⊑	Person;

• Disjointness of concepts (A1	⊑ ¬A2), namely the concept Pupil is not a School, i.e.
Pupil		⊑ 	¬School;

• Role-typing (∃R‾ ⊑ A2, ∃R ⊑ A1), specifying that one of the components in a role is

an instance of a specific concept. For instance, ∃TEACHES_TO ‾ 	⊑ Pupil, meaning
that the second component of the role TEACHES_TO is an instance of the concept
Pupil or respectively the first component of the relation TEACHES_TO is an instance
of a Teacher, i.e. ∃TEACHES_TO ⊑ Teacher;

• Mandatory participation (A1	⊑ ∃�, �2 ⊑ ∃�	‾) and non-participation constants

(A1	⊑ ¬∃�, �2 ⊑ ¬∃�	‾), stating correspondingly that all instances of a concept
either participate or do not participate in a role as a first or respectively second

3. Analysis

22

component. For example, from the assertions Teacher ⊑ ∃TEACHES_TO and Pupil ⊑
∃TEACHES_TO ‾, it can be concluded that all teachers teach all students.

3.3.2 DL-Lite Extensions

Apart from the DL-Litecore logic, there are several DL-Lite sub-families. The first
representative is the DL-LiteA. Its main peculiarity in comparison to other logics is the fact,
that it concentrates on the distinct differentiation between values and objects [5]. It identifies
concepts as abstraction for objects, thus distinguishing them from value domains, specifying
concrete data values. Furthermore, there is also a strict separation of attributes and roles, since
roles stand for relations among objects, while concept attributes represent relation between
objects and values. The TBox in DL-LiteA may contain intensional assertions of two types,
namely inclusion assertions (concept, role, value-domain and attribute inclusion assertions)
and functionality assertions (role and attribute functionality assertions). Functional assertions
express global functionality of a role or attribute, e.g. if the role TEACHES_TO ‾ is defined as
functional, i.e. (funct TEACHES_TO ‾), this means that a Pupil may be taught at most by one
Teacher. Besides, an inclusion assertion can be further split into two sub-groups, namely
positive inclusions (PI) and negative inclusion (NI). A positive inclusion assertion is the
assertion, that does not contain the complement/negation symbol “ ¬ “ on its right-hand side.

Another example for an extension of the DL-Lite family is the DL-LiteA,id that also provides
identification constrains in addition to all features of DL-LiteA [7]. This identification
constrains are based on paths [27]. The syntax, used to build up a path, is illustrated in Figure
3.7

* -> R | D? | *1 ᴏ *2

Figure 3.7. Syntax of a Path

R in Figure 3.7 stands for an atomic role, the inverse of an atomic role, an attribute or the
inverse of an attribute. D denotes a concept or a value-domain and D?, called a test relation,
specifies the identity relation on instances of D, thus imposing that a path is closely connected
to a certain concept. For instance, the test relation HAS-PARENT	ᴏ Man? is interpreted as the
path that connects somebody to her or his father. Last but not least, *1	ᴏ	*2 denotes the
composition of path *1 and path	*2. The composition of paths is similar to the definition of
composition of functions in mathematics, because it is also a method of creating a new path
(respectively relation) *1	ᴏ	*2 from two given paths. The general definition of composition is
presented both symbolically and graphically in Figure 3.8, where it can be seen that in order
to reach , from -, two steps should be performed, namely from - to ., related to *2, and from
z to y, related to *1.

3. Analysis

23

*1 ᴏ *2 = { (x,y) | ∃z.	*2(x,z) ∧ *1(z,y) }

Figure 3.8 Composition of *1 ᴏ *2

After explaining the notion of paths, denoting complex properties for concept instances, the
term identification constrain (also called an identification assertion) can be investigated into
details. Every identification assertion has the form, illustrated in Figure 3.9

 (id B	*1, . . ., *n)

Figure 3.9. Identification Assertion [27]

The basic concept B from Figure 3.9 is part of the syntax of an identification assertion and the
π1, . . ., πn are component paths for n 2 1. For instance, the identification constrain (id Student
HAS-MatrNum) states that a student is identified by his matriculation number and there exist
no other student, who has the same matriculation number.

The TBox in DL-LiteA,id may contain intensional assertions of three types, namely inclusion
assertions, functionality assertions and identification assertions. Both the ABox in DL-LiteA,id
and DL-LiteA are built up by membership assertions [7], which aim is to specify instances of
concepts, roles and attributes. These assertions are described symbolically in Figure 3.10,
where A represent the set of atomic concepts, R represents the set of atomic roles and U
represents the set of atomic attributes. In addition, o, o1 and o2 are constant symbols for
objects, while v is a constant symbol for a value.

A(o) P(o1,o2) U(o,v)

Figure 3.10. Membership Assertions in an DL-LiteA / DL-LiteA,id ABox

Examples of not as expressive extensions as DL-LiteA,id are DL-Litef, adding the potential to
express functionality restrictions on roles and DL-Liter, adding disjointness and ISA
assertions on roles [26]. These extra features make the DL-Litef and DL-Liter very appropriate
to capture the main basic notions in the field of ontology languages, conceptual modeling
formalisms and object-oriented models. In addition, the DL-Litef and DL-Liter are PTime in
the size of the TBox, LogSpace in the size of the ABox and NP-complete in combined
complexity, i.e. the total complexity dependent on the size of the TBox, ABox and the query.

The common feature of the previously discussed logics, being part of the DL-Lite family, is
the fact that a TBox, encapsulating general properties of concepts and roles, and an ABox,

Z

*1 ᴏ *2

X Y

π2 *1

3. Analysis

24

specifying instances of these concepts and roles, are the two separate building blocks of the
knowledge base. Moreover, several extensions to the DL-Lite family can efficiently handle
query answering over large amounts of instances, since the complexity of reasoning is
considerably low. This is described in details in [26], where its is shown that the basic
reasoning tasks such as computing subsumtion among concepts and roles and checking
satisfiability of the entire knowledge base are polynomial in the size of the TBox and query
answering is AC0 in data complexity. Unfortunately, when trying to increase the expressive
power of the language beyond that of the DL-LiteA, DL-Litef or DL-LiteR, then the data
complexity of query answering increases rapidly to NLogSpace, PTime and coNP [28] .

As already discussed, the data in Ontology-Based Data Access is very large and it dominates
the size of the intensional level of the ontology, i.e. the TBox. The situation becomes even
more problematic when the data has geographical originin and a Geographical Information
System over spatio-thematic ontologies should be build, since the geographical data consumes
large space resources. In this scenario, the size of the TBox is negligible with respect to the
size of the data, namely the ABox, so one of the most important measuring parameter to be
taken into account is the data complexity. Although it can be accepted that reasoning is
exponential on the intensional level, it is of crucial importance that reasoning in the data must
be at least polynomial and even in a lower complexity class, i.e. the reasoning must be
tractable. For instance, a quadratic dependence on the size of a large database can be also
fatal.

A very important and beneficial property of several of the DL-Lite family extensions is the
fact that they allow for first order logic (FOL) rewritability of both satisfiability checking and
query answering. In a nutshell, these inference reasoning problems can be reduced to
evaluating a FOL query over an ABox A, considered as a relational database (cf. Chapter 3.5).
This database instance is known in the literature as DB(A) and it is interpreted as a minimal
model of the ABox A. In the cases, when the data complexity is beyond AC0, then the
problem can be proved to be not FOL-rewritable [7, p. 319]. As a result, the positive aspects
of current relational DBMS could not be used, since more powerful query answering engines
are needed in the case when FOL-rewritability is not provided.

In order to decide on an appropriate DL language, being able to guarantee a computational
feasibility with respect to query answering and at the same time to provide a sufficient
expressiveness to capture spatio-thematic ontologies, the data complexity of the previously
discussed logics of the DL-Lite family should be compared. This comparison is illustrated in
Figure 3.11, from where it can be concluded that the most appropriate candidates, when
taking into account the data complexity of query answering, are DL-LiteA,id, DL-LiteA , DL-
Litecore, DL-Litef, DL-Liter, since all of them lie within the area surrounded by a yellow
circuit, symbolizing the tractability border. Nonetheless, the DL-Lite extension DL-LiteA,id is
the most expressive from the listed logics extensions. That is the reason why the DL-LiteA,id
formalism can be referred as reasonable candidates for capturing ontologies in an efficient
way. However on the other hand, the DL-LiteA,id logics is unfortunately not expressive
enough to sufficiently model GIS data. Therefore, a further modified logic DL-Lite(RCC8)
[29] of the DL-Lite family is proposed in order to overcome this particular issue.

3. Analysis

25

Figure 3.11 Data Complexity of Query Answering
for some Ontology-Based Languages

3.4 DL-Lite Combined Geo-thematic Logics and GCQ+

Geo-thematic Logics should be capable of providing sufficient expressivity in order to
describe spatial and regional configuration of objects. Moreover, these Logics should
incorporate an expressive querying language allowing for First Order Query rewritability of
query answering over spatial ontologies. A reasonable solution to these issues is advocated by
the proposal of “a weak coupling of DL-Lite with the expressive Region Connection Calculus
RCC8” [30, pp. 1,5-6] under the condition that the ABox is spatially complete. Nonetheless,
before going into details aiming to explain the proposed DL-Lite(RCC8) formalism and
GCQ+ query language, a short introduction of the Region Connection Calculus is needed in
order to understand the main features and concepts of the DL-Lite(RCC8).

3.4.1 Region Connection Calculus

The Region Connection Calculus is family of spatial logics, developed to be used in order to
represent spatial knowledge and reason about space, being one of the most widely used
formalisms for qualitative spatial reasoning. The RCC is based on regions and the primitive

AC

LogSpace

NLogSpace

PTime

NP

ExpTime

DL-LiteA,id, DL-Litecore , DL-LiteA, DL-Litef,

DL-Liter

Horn-SHIQ, EL++, DLP

OWL-DL and OWL-Lite

3. Analysis

26

connectedness relation [31]. A primitive relation in the form C(x,y) is the basic building block
of the RCC theory. This relation is defined on regions and it is interpreted as the region x is
connected with the region y. Moreover, from an axiomatic point of view it is qualified as
reflexive and symmetric. Additional eight basic relations are specified, using the
representation of the primitive relation. These binary relations define base relations between
regions and are the foundation of the RCC8 constrained language. The notation and the base
RCC8 relations and their topological interpretation are presented in Figure 3.12 [32].

Figure 3.12 RCC8 Base Relations

BRCC8 denotes the eight base relations, graphically illustrated in Figure 3.12. For instance, the
DC(x, y) relation means that region x and y are disconnected and they do not share a common
point, while the meaning of EC(x,y) is that regions x and y only share borders. Besides, the
RCC8 base relations have the JEPD property, namely they are jointly exhaustive and pairwise
disjoints [32]. In other words, between any two regions x,y exactly one of the base relations
holds, e.g. either only DC(x,y) or only EC(x,y) holds, but not both.

From a geographical point of view, in order to illustrate that Germany and Poland have a
common border (see Figure 3.14), then this fact can be formalized by EC(Germany, Poland).
Another interesting base relation is the tangential proper part, meaning that the region x is
contained in the region y and they share a part of the border from inside. In fact, it is possible
to represent different geographical and spatial configurations of regions by using a set of
disjunctions of base relations. This disjunctions have the form r1(x,y) ∨ ... ∨ rn(x,y) or { r1, ... ,
rn }{x,y} [33], where x and y are constants and r1 to rn with n 2 1 represent RCC8 base
relations from Figure 3.12. In a nutshell, it is possible to express indefinite knowledge on the
spatial relations of regions with the help of disjunctions of base relations. These disjunction
statements are encapsulated in a network that consequently can be evaluated by various

X

Y

DC(x,y)
disjointness

X

Y

EC(x,y)
externally
connected

 Y X

TPP(x,y)
tangential proper

part

TPPi(x,y)
tangential proper

part inverse

 X Y

Y

X

PO(x,y)
partial overlap

EQ(x,y)
equal

 Y
X

NTPP (x,y)
non-tangential

proper part

NTPPi (x,y)
non-tangential

proper part inverse

 X Y X Y

3. Analysis

27

constraint satisfaction algorithms. Referring again to the example of Germany and Poland, the
following network is defined in Figure 3.13:

{ EC(Germany, Poland), DC(Germany, Bulgaria),
DC(Poland, Bulgaria), NTPP(Germany, Europe),

NTPP(Poland, Europe) , NTPP(Bulgaria, Europe) }

Figure 3.13 BRCC8 Network

Figure 3.14 Map of Europe [34]

The network in Figures 3.13 captures the geographical location of the countries, labeled in red
in Figure 3.14, by representing the spatial constellation of three regions in terms of RCC8,
stating that Germany and Poland are neighbors and Bulgaria does not share any border with
any of the other two, but all of them are part of Europe. In general, it is also important to
check whether this network is satisfiable. Satisfiability of networks can be tested with the help
of path consistency algorithms, based on compositional tables. The composition table of
BRCC8 is presented in Figure 3.16 [32]. The first row and first column of this table store the
eight base relations and the other cells store respectively the composition of every pair of base
relations. The *-operator specifies the universal relation, namely the disjunction of all base
relations.

In fact, the table in Figure 3.16 encapsulates weak composition entries, namely minimal
disjunctions of base relations [29]. A week composition is denoted with the symbol “ ; ” and it
is an approximation of the composition, namely r1 ; r2 is implied by r1 o r2. Consulting the
composition table, the weak composition for the pair (EC, TPP) can be provided, i.e. {EC,
PO, TPP, NTTP}. Its description in AxRCC8 (cf. Figure 3.17) is presented in Figure 3.15.

∀x ∀y ∀z.(EC(x,y) ∧ TPP(y,z)) → (EC(x,z) ∨ PO(x,z) ∨ TPP(x,z) ∨ NTTP(x,z))

Figure 3.15. Weak Composition in AxRCC8 Description

3. Analysis

28

◦ DC EC PO TPP NTPP TPPi NTPPi EQ

DC *
DC EC
PO TPP
NTPP

DC EC
PO TPP
NTPP

DC EC
PO TPP
NTPP

DC EC
PO TP
NTPP

DC DC DC

EC

DC EC
PO

TPPi
NTPPi

DC EC
PO TPP
TPPi EQ

DC EC
PO TPP
NTPP

EC PO
TPP

NTPP

PO TPP
NTPP

DC EC DC EC

PO

DC EC
PO

TPPi
NTPPi

DC EC
PO TPPi
NTPPi

*
PO TPP
NTPP

PO TPP
NTPP

DC EC
PO TPPi
NTPPi

DC EC
PO TPPi
NTTPi

PO

TPP DC DC EC
DC EC
PO TPP
NTPP

TPP
NTPP

NTPP
DC EC
PO TPP
TPPi EQ

DC EC
PO TPPi
NTPPi

TPP

NTPP DC DC
DC EC
PO TPP
NTPP

NTPP NTPP
DC EC
PO TPP
NTPP

* NTPP

TPPi

DC EC
PO

TPPi
NTPPi

EC PO
TPPi

NTPPi

PO TPPi
NTPPi

PO EQ
TPP
TPPi

PO TPP
NTPP

TPPi
NTPPi

NTPPi TPPi

NTPPi

DC EC
PO

TPPi
NTPPi

PO TPPi
NTPPI

PO TPPi
NTPPi

PO TPPi
NTPPi

PO TPPi
TPP

NTPP
NTPPi

EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

 Figure 3.16 Composition Table of BRCC8

AxRCC8 is an axiom system schema providing axioms [29], [30], which directly state that the
BRCC8 base relations are jointly exhaustive and pairwise disjoints. It is a weakened version of
the original axioms of Randell, Cohn and Cui. In addition, this theory, shown in Figure 3.17
also provides axioms for weak composition and reflixivity of the equal base relation, i.e. EQ.

Figure 3.17 AxRCC8 [30]

3. Analysis

29

In fact, there are lower resolution logics than RCC8, namely RCC2, RCC3, RCC5 and
according to [30], the AxRCC8 is also applicable for the latter calculi. However, when
considering RCC2, the ∀xEQ(x,x) from Figure 3.17 is replaced by ∀xO(x,x), i.e. reflexivity of
overlap. Since, the expressive power of RCC2, RCC3, RCC5 is lower than that in comparison
to RCC8, the less expressive calculi are not recommended as powerful candidates to be
combined strongly with DL-Lite for the creation of new spatial logics. That is the reason why
the next chapter concentrates on the explanation of the DL-Lite(RCC8) formalism.

3.4.2 Lightweight DLs with RCC8

A solution proposal, dealing with the issue of reasoning over geo-thematic ontologies that
involves accessing numerous databases, storing large volumes of spatial and topological data,
is to combine Lightweight Description Logics with RCC8. The main issues when tailoring
Lightweight Description Logics (e.g. DL-Lite) with Spatial Calculi (e.g. RCC) are to retain
FOL rewritability with respect to both satisfiability and query answering, and to provide
sufficient expressivity of the logics and the query language in order to facilitate an efficient
and correct modeling and searching of GIS data. Several different perspectives are presented
and investigated in [33, pp. 14-15] and [35, p. 8] in order to cope with the mentioned
problems. In a nutshell, either a number of presupposed conditions on the ABox can be
assumed or the combined logic can be weakened. The latter is achieved by either weakening
the expressive power of the spatial calculus or the thematic part, or weakening the interaction
of the combined components.

As a result, it is concluded that a reasonable compromise is to assume that the spatial data is
consistent and complete, and the combination of DL-Lite and RCC is realized in a controlled
way. In other words, a concrete solution, as mentioned at the beginning of this chapter, is to
provide a weak coupling between DL-Lite and RCC8, predefining a spatial completeness
condition for the ABox and using a restricted query language. A stronger coupling is also
possible but only for the low-resolution region connection calculus RCC2, since otherwise
FOL rewritability is not guaranteed any more [30, pp. 1, 6-10].

The combined logic DL-Lite(RCC8) allowing for FOL rewritability is illustrated in Figure 18,
where the syntax and semantics of the logical constructors are presented and consequently
explained. This approach both weakens the thematic part and restricts the interaction with the
spatial component.

R → P | P‾
U → loc | R	ᴏ loc
B → A | ∃R | ∃loc
C → B | ¬B | ∃U1,U2.r for r ∊ RelRCC8 and not (U1=U2=loc and EQ ∉ r)

TBox B ⊑ C, (funct loc), R1 ⊑ R2
ABox A(a), R(a, b), loc(a, a*), r(a*, b*)

Tω = AxRCC8

Figure 3.18 Combined Logic DL-Lite(RCC8) [29, p. 4]

3. Analysis

30

A role R in DL-Lite(RCC8) is denoted in terms of a role symbol P or its inverses P‾. A path is
defined either as a loc or as a composition of R and loc. The path legth is allowed to be at
most 2. The left part B of an terminological axiom in the DL-Lite(RCC8) TBox can be
represented by a concept symbol A, a limited existential quantification of a role symbol or
attribute loc. The DL-Lite extension DL-Lite(RCC8) builds-up a weak coupling of the
thematic and spatial domain, where apart from B and its negation ¬B, concepts of the form
∃U1,U2.r are allowed to appear on the right-hand side C of the axioms in the TBox. However,
only the concrete attribute loc (i.e. has location) may be functional. In addition, r stays for a
set of all possible disjunctions of base relations from BRCC8, i.e. r is a general RCC8 relation.
Thus the set RelRCC8 is the set of all (28-1) RCC8 relations, including the universal relation
and excluding the empty relation. It is also assured that no empty concepts can appear by
adding an extra restriction (U1=U2=loc and EQ ∉ r), because if for instance the right-hand
side of an axiom is ∃loc,loc.r, then it denotes an empty concept in case that EQ is not part of
the set r. Another alternative is to handle empty concept during the rewriting process.
Furthermore, the ABox can contain assertions of the form A(a), R(a, b), loc(a, a*), r(a*, b*),
where a and b are variables or constants and a*,b* are also variables or constants, but
intended to denote elements of AxRCC8.

As already mentioned, satisfiability in general is an important issue in logics. However,
testing the satisfiability of arbitrary RCC8 constraint networks is not FOL rewritable [35, p.
7], making the process of checking a computationally intensive task. Consequently, it can be
also concluded that coupling DL-Lite and RCC8 can also result in uncontrolled combinations,
which are not FOL rewritable. For instance, by taking the query ntpp(a*,b*), it is searched in
the database whether region a* is a non-tangential proper part of region b*. Nevertheless, the
composition for the pair (ntpp,ntpp) from the composition table 3.16 yields that ntpp is a
transitive relation. This relation could not be compiled into a finite FOL query, because all
paths from a* to b* should be considered, i.e. (ntpp(a*,z1*) ∧ ntpp(z1*,z2*) ∧ ntpp(z2*,z3*) ∧
… ∧	ntpp(zn*,b*)) . Moreover, in real-world scenarios, it can be the case that spatial databases
are incomplete. For instance, there could be a database entry that maps a parking in an airport
terminal as a point, rather than as a polygon. As a result several of the base relations from
BRCC8 may hold between the parking and the terminal, e.g. PO(parking terminal),
EC(parking, terminal), TPP(parking, terminal), stating that it is not possible to decide
whether the parking and the terminal partially overlap or they just touch each other either
from outside or inside, etc. A solution not to face directly the issue of satisfiability and
incompleteness is to assume that these issues are taken into account into an initial pre-
processing step [35]. Hence, the notion of FOL rewritability for the combined logics using
RCC8 as the spatial part is weakened by introducing a spatial completeness condition, i.e. a
spatially complete ABox.

On the one hand, allowing FOL rewritability with respect to satisfiability testing is important
in the context of combining lightweight DLs with RCC8. On the other hand FOL
rewritability, considering query answering is also a fundamental factor. In a nutshell, the
expressivity of the query language should be also taken into account. That is the reason why a
querying language, called GCQ+, is introduced in the next Chapter 3.4, since answering GCQ+

3. Analysis

31

queries within DL-Lite(RCC8)-ontologies with spatially complete ABox-es is FOL rewritable
[29, p. 5].

3.4.3 Query Language GCQ+

GCQ+ is a query language that is based on grounded conjunctive queries and it is appropriate
for querying DL-Lite ontologies, since it both copes with the implausible consequences of the
semantics of conjunctive queries and addresses the issue of computational unfeasibility of
answering conjunctive queries with base relations in BRCC8 even if the ABox is interpreted
to be complete [33, pp. 6,7,17]. Moreover, the GCQ+ is explicitly build for DL-Lite(RCC8)
ontologies and provides support for qualitative spatial query answering and possibilities for
quantitative extensions. A GCQ+ query atom has one of the forms, presented in Figure 3.19
[29, p. 5].

GCQ+ atom → C(x)
 → (∃R1 … Rn.C)(x)
 → loc(x, y*), y*∊ RelRCC8
 → r(x*, y*), r* ∊ RelRCC8 and x*,y* ∊ AxRCC8

Figure 3.19. GCQ+ query atom

A GCQ+ query atom may be a DL-Lite(RCC8) concept C(x), where x is a variable or a
constant, excluding the negation symbol. In addition, role symbols R or their inverses R‾ ,
together with an existential quantifier ∃ and a concept C without the negation symbol can also
build up a GCQ+ query atom (∃R1 … Rn.C)(x). The last two representations include elements
of AxRCC8, being part of the atoms loc(x,y*) and r(x*,y*) , defining the location y* of x and the
spatial orientation of regions x* and y*. A GCQ+ query consists of conjunction of GCQ+

query atoms. Furthermore, such a query can be compiled first into a UCQ with the help of a
Perfect Rewriting Algorithm, explicitly tailored for dealing with geo-thematic scenarios, and
as a result it can be transformed by an unfolding process into an SQL query, that can be fired
to a spatial DBMS, assuming that the virtual ABox is spatially complete. These reformulation
steps and corresponding techniques are presented consequently in following chapters.

3.5 Ontology Based Query Answering over Spatial Databases

Up to now the main issues and challenges referred to the OBDA technique, representation of
spatial knowledge and reasoning about space have been addressed and discussed into details
and numerous solutions and proposals have been provided. In a nutshell, the fundamental
problems, tacked to so far, are:

• the trade-off between expressive power and computational complexity of ontology
languages and numerous extensions

3. Analysis

32

• large amount of data, stored at the source; data complexity

• linking data to ontologies
• the impedance mismatch problem

Answering more complex queries over ontologies is another fundamental requirement and
challenging problem in Ontology Based Data Access. The complexity of the queries
automatically implies that the query language should be more expressive than only specifying
concepts and roles in DLs, namely it should be also able to express conjunctive queries and
unions of conjunctive queries (UCQ).

3.5.1 Perfect Rewriting Algorithm

The DL-LiteA formalism is going to be used in order to initially illustrate the Perfect
Rewriting Algorithm, i.e. PerfectRef(Q,T), athough it is not expressive enough for dealing
with spatial ontologies. This approach is reasonable, since the consequently presented version
of the reformulation algorithms for DL-Lite(RCC8), i.e. AdaptedPerfectRefQ,T), is based and
explicitly uses the original Perfect Rewriting Algorithm.

The Perfect Rewriting algorithm lies in the center of the Ontology Based Query Answering
process. This algorithm inherits its name from the fact that the input query q over the ontology
is reformulated with the help of the Positive Inclusions (PIs) from the TBox T. It can be
proved that the negative inclusion axioms do not have to be considered for the rewriting.
However, they have effects on the satisfiability test and can be neglected only, as fas as
rewriting is discussed. The query q can be either a CQ or UCQ. After the rewriting
processing, the TBox is not of interest anymore and the reformulated query q' is evaluated

over the ABox DB(A), as if the ABox is a relational database. This process is graphically

illustrated in Figure 3.20.

Figure 3.20. Ontology Based Query Answering [36, p. 93]

The answer to the initial query q over the ontology O=<T, A> is the output of the illustrated

process, namely the certain answer set cert(q, < T, A>), being a tuple of constants of A,

which belong to qI (answers to q over I) for every model I of the ontology O. Consequently,

cert(q, < TTTT, A>)A>)A>)A>)

Perfect
Rewriting

Query
Evaluation

q

TTTT

AAAA

q'

 DB(AAAA)

3. Analysis

33

analyzing Figure 3.20 and the latter definition of certain answer, it implies that qI= qDB(
A

) =

cert(q, < T, A>). Besides, the reformulated query q', being an output of the block Perfect

Rewriting, is in fact a UCQ and its size is independent of the size of the extensional level of
the ontology, but it is exponential in the size of the TBox in the worst case. Nevertheless, the
good news is that the query answering algorithm has a data complexity AC0, since evaluating
q' has a data complexity not worse than the traditional query evaluation in relational
databases. The Perfect Rewriting Algorithm for computing the perfect reformulation of a
conjunctive query with respect to a TBox in DL-LiteA Logics is presented in Figure 3.21.

 input : a CQ q, DL-LiteA TBox T
 output : a UCQ pr

1 pr := q;
2 repeat
3 pr' := pr;
4 foreach CQ q' ∊ pr' do
5 foreach atom g in q' do
6 foreach PI α in T do
7 if α is applicable to g then
8 pr := pr U {q'[g/gr(g, α)]}; 1st part
9 end

10 end
11 end
12 foreach pair of atoms g1, g2 in q' do
13 if g1 and g2 unify then
14 pr := pr U {anon(reduce(q', g1, g2))}; 2

nd part
15 end
16 end
17 end
18 until pr'=pr;
19 return pr;

Figure 3.21 PerfectRef Algorithm [7, p. 308]

Analyzing Figure 3.21, it is important to point out that the output of the algorithm is a set of
CQs, generated on the basis of the input CQ. In fact, the input q is always the first element of
the output UCQ {pr}, because of the assignment operation in line 1. After that a do…while
loop starts, i.e. symbolically shown as repeat…until, which terminates when no more
reformulations are possible any more. This condition is illustrated in line 18, where the set of
reformulated CQs from the current and previous iterations is compared. The algorithm
PercetRef always terminates [7, p. 309], since the length of the input conjunctive query and
the maximum number of atoms in the body of the CQ that is generated, are equal. Moreover,
the total number of distinct generated atoms is polynomial of the size of the input query. Line

7 checks whether a Positive Inclusion axiom α from the terminology T is applicable to an

atom g from the conjunctive query q'. This is the case, when:

• the atom g is a an atom of the form C(x) and C is contained in the right-hand side of α;

3. Analysis

34

• the atom g is an atom of the form. R(x,y), and right hand-side of α is either R or R¯;

• the atom g is an atom pf the form R(x,y), and x (respectively y) is a non-distinguished
non-shared variable and the right hand side of α is ∃R ̄(respectively ∃R).

The result of applying the PI α to g is then represented as gr(g, α) in line 8. This result
substitutes the current atom g and thus a new query is consequently added to the set of
conjunctive queries pr. A detailed table, summarizing all cases when a given PI a is
applicable to a query atom g and presenting the corresponding result gr(g, α), is shown in
Figure 3.22.

atom g PI α gr(g, α)
C(x) C1 ⊑ C C1(x)
C(x) ∃8 ⊑ C R(x, _)
C(x) ∃8¯ ⊑ C R(_, x)

R(x, y) R1 ⊑ R or R1¯ ⊑ R̄ R1(x, y)
R(x, y) R1 ⊑ R̄ or R1¯ ⊑ R R1(y, x)
R(x, _) C	⊑ ∃R C(x)
R(x, _) ∃R1	⊑ ∃R R1(x, _)
R(x, _) ∃R1¯	 ⊑ ∃R R1(_, x)
R(_, x) C	⊑ ∃R̄ C(x)
R(_, x) ∃R1	⊑ ∃R̄ R1(x, _)
R(_, x) ∃R1¯	 ⊑ ∃R̄ R1(_, x)

Figure 3.22. Applying PI to an atom [7, p. 307]

With the first part of the algorithm, the knowledge from T relevant for answering the initial

query q is compiled into a new reformulated query pr (lines 5-11). The second step (lines 12-
16) describes a process, in which if any two atoms from the reformulated query q' of step can
be unified, the functions reduce(q', g1, g2) and anon(q'') are consequently executed. The
function reduce(q', g1, g2) performs the actual unification of the atom g1 and g2 and returns a
new query q'', that is the input for the function anon(q''). The latter function realizes variables
anonymisation by substituting all unbound variables in q'' with “_”, i.e. the symbol
representing a non-distinguished non-shared variable. An important side effect of the function
reduce(q', g1, g2) is that it may make bound variables in q' unbound in q'' due to the most
general unifier between g1 and g2 and thus consequently in the next iteration of the first part of
the Perfect Rewriting algorithm PIs, which were not applicable to q' atoms may become
applicable to q'' atoms.

The PerfectRef algorithm from Figure 3.21 is illustrated by practical examples, adopted from

[7, pp. 308-310]. Figure 3.23 shows a DL-Lite TBox T, where the atomic concepts Teacher

and Pupil and atomic roles TEACHES-TO and HAS-TUTOR are defined. In addition,

according to the latter TBox T no Pupil is also a Teacher and Teachers teach the Pupils, who

have a tutor, being a Teacher. The functional role HAS-TUTOR represents a restriction that

everyone has at most one tutor. A conjunctive query q(x) over T asks for Teachers, who teach

to Pupils, having a tutor.

3. Analysis

35

Teacher ⊑ ¬Pupil 	∃HAS-TUTOR̄ ⊑ Teache
r

Teacher ⊑ ∃TEACHES-TO 	∃TEACHES-TŌ ⊑ Pupil
Pupil ⊑ ∃HAS-TUTOR (funct HAS-TUTOR)

CQ: q(x)	← TEACHES-TO(x, y), HAS-TUTOR(y, _)

Figure 3.23. School TBox TTTT and a CQ over TTTT

By applying the algorithms of Figure 3.21 to the ontology T and the query q(x), during the

initial execution of the first part of the algorithm the positive inclusion Pupil 	⊑ ∃HAS-
TUTOR is applicable to the atom HAS-TUTOR(y, _). As a result, the new query q(x)	←
TEACHES-TO(x, y), Pupil(y) is added to the set of CQs pr. At the end of the next execution
the query q(x)←TEACHES-TO(x, y), TEACHES-TO(_, y) is generated, which atoms unify and
thus producing in the second part of the algorithm (line 12-16 from Figure 3.21) the new
query q(x)←TEACHES-TO(x, _). Comparing the last two queries, it can be observed that the
bound variable y from the former query is unbound in the latter query, substituted by the
symbol “_”. The further executions of the Perfect Rewriting algorithm yield the queries
q(x)←Teacher(x) and q(x)←HAS-TUTOR(_, x). Finally, the initial query and the new
generated queries are returned by the algorithm, thus reformulating the original query q(x)

with respect to the TBox T.

The initial purpose of query answering is to compute the answer of the original query q over

the ontology O = <T, A > (cf. Figure 3.20). After creating a new reformulated UCQ out of

the Perfect Rewriting algorithm, the next step is to evaluate the set of CQs pr over the ABox

A, i.e. to exploit the relational database DB(A). In order to achieve this, every CQ from pr

should be transformed to an SQL query expressed over DB(A). In a nutshell, query

evaluation and thus also query answering over satisfiable DL-Lite ontologies can be realized
in an effective way by using the technology of RDBMS as defined in Figure 3.24 [37, p. 41].

cert(q, < T, A >) = Eval(Unfold(PerfectRef(q, T)), DB(A))

Figure 3.24. Computing Certain Answers to a Query
over DL-LiteA Ontology

Figure 3.24 illustrates the computation of certain answers to a CQ q over an ontology O=< T,

A > by first evaluating the PerfectRef algorithm from Figure 3.21, immediately followed by

executing an Unfold function, which aim is to unfold the output UCQ query of the PerfRef
and encode it in SQL. Finally, the Eval function evaluates the latter generated SQL query over
a database DB.

3. Analysis

36

If the TBox in Figure 3.23 is expanded by the role inclusion HAS-TUTOR̄
⊑ TEACHES-TO and the ABox in Figure 3.25 is also taken in order to build up an ontology,
then reformulating the query q(x) ← Pupil(x) over the TBox generates the
UCQ={ q(x) ← Pupil(x), q(x) ← TEACHES-TO(_, x), q(x) ← HAS-TUTOR(x, _) }.
Consequently, the evaluation of the query q over the ontology yields the certain answer

qDB(A) = cert(q, <T, A>) = {Alex, Julia}. It is important to realize that without using the

Perfect Rewriting algorithm the answer to the query q(x) ← Pupil(x) would have been the
empty set, since there is no instance of Pupil in the sample ABox in Figure 3.25. Moreover,
without expanding the TBox, as previously described, the answer to the query would have
been only {Julia}.

HAS-TUTOR(Alex, Mr. Schmidt) TEACHES-TO(Mr. Schmidt, Julia)

Figure 3.25 School ABox A and a CQ over A

3.5.2 A Bottom-up Approach

According to [7], the easiest way to reason over ontologies with mappings is to make use of
the mappings, thus generating the actual ABox out of the data source. Consequently, by using
a query answering algorithm, described in Chapter 3.5.1, reasoning over the materialized
ABox and original TBox can be performed. This technique is known in the literature as a
naïve or bottom-up approach. The main drawback of this method is the fact that the actual
ABox is produced from the data at the source and in this way the information is duplicated.
Moreover if the data is very big, as in spatial databases, then this disadvantage becomes more
problematic. In order to avoid this negative effect of duplicating the data, another approach is
proposed in [7], [5], where the ABox is not explicitly built and it is kept virtual. This
approach is known as the top-down approach.

In order to explain the two approaches in details, the terms virtual and materialized ABox
should be clarified. As described in Chapter 3.2 an ontology with mappings consists of a
TBox T, relational database D and mapping assertions M, namely O = < T, D, M >.
Moreover, the ontology with mappings and its split version are equivalent. On the other hand,
a virtual ABox in DL-LiteA or DL-LiteA,id consists of a set of membership assertions, which
are computed on the basis of the mapping assertions and the data from the database. A formal
description of a membership assertion and a virtual ABox [7] are presented respectively in
Figures 3.26 and 3.27.

A(m,D) = {mright[x/v] | v ∊ ans(mleft,D)}

Figure 3.26. Definition of a Membership Assertion

3. Analysis

37

A membership assertion A(m,D), generated by a (split) mapping assertion m (cf. Figure 3.6)
from database D, is in fact an atom of the right part of a corresponding mapping assertion
mright, where the variable/s x is/are substituted by the answer of evaluating the left part of the
mapping assertion mleft, i.e. the SQL query, from the database D. For instance, if the table
University from Figure 3.3 contains the entries {(31897, Web Engineering), (23456,
Mathematics)} and the split mapping assertions M11 and M12 from Figure 3.6 are taken into
account, then the membership assertions are defined as follows:

A(m11,D)={ Student(std(31897)) , Student(std(31897))}

A(m12,D)={ ATTENDS(std(31897), lect(Web Engineering)) ,
 ATTENDS(std(31897), lect(Mathematics)) }

Figure 3.27. Example of Membership Assertions

Consequently, if all membership assertions are obtained, as defined in Figure 3.27, the entire
virtual ABox can be generated.

A(M,D)={ U A(m,D) | m	∊	M}

Figure 3.28. Definition of a Virtual ABox

In other words, by computing the A(M,D), the virtual ABox is materialized. This is in fact the
first step of the bottom-up approach for query answering over ontologies with mappings. The
second step is to perform the query answering algorithm to the ontology O = < T, A(M,D) > ,
that is presented in Chapter 3.5.1, where A(M,D) is a materialized ABox. In a nutshell, using
rewriting and the materialization means that the construction of A(M,D), then the creation of
the the herbrand model DB(A(M,D)) and finally the evaluation of the rewritten query q' on
DB(A(M,D)) should be performed.

As already mentioned at the beginning of chapter the bottom-up approach has several
disadvantages:

• Materialization and storage of the entire virtual ABox, i.e. computing the A(M,D), are
required. Moreover, the virtual ABox is generally polynomial in the size of the
relational database, meaning a generation of huge overhead is produced by duplication
of information.

The first disadvantage has also an immediate negative effect on the data complexity of the
resulting algorithm, since it is not anymore AC0 or LogSpace in the size of the database, but it
is PTime in the size of the database, since materialization is a problem in PTIME complexity

3. Analysis

38

• From usability and practical point of view, a fundamental drawback is the fact that
complex data refreshment procedures and mechanism should be invented in order to
keep both the ontology and the database synchronized, since the data sources are
independent from the ontology (cf. Figure 3.2).

3.5.3 A Top-down Approach

In order to overcome the issues and drawback, which the bottom-up approach has, a different
top-down technique is proposed for query answering over ontologies with mappings [7, pp.
338-341]. The main distinguishing feature of the top-down approach in comparison to the first
approach is that the materializing of the virtual ABox is avoided by using an additional
unfolding algorithm. It makes immediate advantage of the mapping specifications and
consequently generating a SQL query, that is issued over a RDBMS and its result set coincide
with the results of the initial query over the ontology. Thus the data complexity of the entire
algorithm is in AC0 and no additional data refreshment procedures have to be implemented to
keep the data in the database and the ABox synchronized. However, the mappings should be
always updated in case structural changes in the database are carried out. The top-down
approach consists of four important steps, graphically illustrated in Figure 3.29.

Figure 3.29. A Top-down Approach for Query Answering over
Ontologies with Mappings

1. Perfect
Rewriting

2. Filtering

q

TTTT

UCQ q1

3. Unfolding

4. Evaluation

DBMS D

UCQ q2

SQL q3

Ans(q3, D) = cert(q, <OOOO>)>)>)>)

MMMM

3. Analysis

39

Assuming that O=<T,M,D> is a DL-LiteA ontology with mappings, where T is the TBox,

M represents the mapping assertion (i.e. split mappings) and D is the database. The first step

of the approach is graphically illustrated in Figure 3.29 by a blue block. This block executes
the Perfect Rewriting Algorithm as described in Figure 3.21. The output of the Reformulation
step is a UCQ q1 with the property that the “certain answers to q with respect to O coincide
with the set of tuples computed by evaluating q1 over DB(A(M,D)), i.e. the database
representing A(M,D)” [7, p. 338]. The next step of the top-down approach performs a filtering
process in order to get rid of every ill-typed conjunctive query, which contains join variables
appearing in incompatible positions within the same query, thus producing a typing
contradiction. The filtering step is beneficial for the next two steps in order to avoid
producing wrong results in the query unfolding and query evaluation process over the source
database D. The filtered query q2 is the input for the Unfolding block, where with the help of

the mappings M, q2 is transformed into an SQL query q3, thus avoiding the materialization of

the A(M, D) and evaluating the q2 over DB(A(M, D)). In fact, this is the main difference in

comparison to the bottom-up approach. The Unfolding step is useful, since the result of
executing the SQL query q3 over the database D, i.e. the output of the SQL query Evaluation

step, and the result of evaluating the q2 over DB(A(M, D)) coincide [7, p. 339] . Considering

this fact and the previously described property of the output q1 of the Perfect Rewriting step, it
can be concluded that the certain answers to q with respect to OM coincide with the output of

step number four. In other words, cert(q,<O>) = Ans(q3, D).

3.6 Adapted Perfect Rewriting Algorithm

The Adapted Perfect Rewriting Algorithm, schematically illustrated in Figure 3.30, extends
the original Perfect Rewriting Algorithm from Chapter 3.21 by also handling GCQ+ atoms of
the form ∃U1, U2 .r for r ∊ RelRCC8 and it is based on the algorithm, proposed by [35, p. 11].
All modifications of the original Perfect Rewriting algorithm are marked within green
rectangles in Figure 3.30. The input of the Adapted Algorithm is a hybrid query, the conjucts
of which are either classical predicate logical atoms or GCQ+ atoms. The aim is to transform
this initial hybrid query into a UCQ and then by using the techniques, described in Chapter
3.5.3, to unfold the UCQ query to an SQL query that can be executed in a relational database,
containing geo-thematic data. The other forms of GCQ+ query atoms are treated as FOL-query
atoms and they are processed by the original part of the Perfect Rewriting Algorithm (cf.
Figure 3.30, lines 1-11, 33-40).

There are four relevant implications or four different cases for variations of GCQ+ atoms,
which are to be taken into account by the Adapted Perfect Rewriting Algorithm in Figure 3.30
[29, p. 5]:

1. If a GCQ+ atom of the form ∃R1 ᴏ loc, R2 ᴏ loc.r3 (x) occurs during the rewriting
process, then it can be substituted by the conjunct of two new atoms of the form ∃R1 ᴏ
loc, loc.r1 (x) and ∃loc, R2 ᴏ loc.r2 (x) in a new CQ for all r1,r2, contained in RelRCC8

3. Analysis

40

such that r1;r 2 ⊆ r3, namely where all possible compositions of the sets (r1 ᴏ r2) from a
full composition table are refinements (i.e. subsets) of r3 (lines 13-16). A full
composition table contains the compositions of all possible disjunctions of relations in
RelRCC8, while the week composition table from Figure 3.16 embeds only the weak
compositions of the 8 base relations in BRCC8. The set of relations r1 is the left
argument (resp. a row element from the full composition table) and r2 is the right
argument (resp. a column element from the full composition table).

2. If a GCQ+ atom ∃U1, U2.r1 (x) appears in the query and the TBox contains a
terminological axiom of the form B	⊑	∃U1, U2.r2 (x) and r1 ⊆ r2, then a new
conjunctive query can be created with a query atom B(x), substituting ∃U1, U2.r1 (x)
(lines 20-22)

3. The third case is similar to case 2, but it takes into account the inverses of the relations
in RelRCC8. In fact, if a GCQ+ atom ∃U1, U2.r1 (x) appears in the query and the TBox
contains a terminological axiom of the form B	⊑	∃U2 U1.r2 (x) and r2‾ ⊆ r1, then a new
conjunctive query can be created with a query atom B(x), substituting ∃U1,U2.r1(x)
(lines 23-25).

4. If a GCQ+ atom of the form ∃R1 ᴏ loc, U1.r (x) occurs as a conjunct in the query and
the TBox contains a terminological axiom of the form R1	⊑	R2, then a new CQ can be
created with a query atom ∃R2 ᴏ loc, U1.r (x), substituting ∃R1 ᴏ loc, U1.r3 (x) (lines
27-31).

3. Analysis

41

 input : a hybrid query Q, DL-Lite(RCC8) TBox T
 output : a UCQ pr

1 pr := Q;
2 repeat
3 pr' := pr;
4 foreach query q' ∊ pr' do
5 foreach atom g in q' do
6 if g is a FOL-atom then
7 foreach PI α in T do
8 if α is applicable to g then
9 pr := pr U {q'[g/gr(g, α)]};

10 end
11 end
12 else
13 if g=∃R1 ᴏ loc, R2 ᴏ loc.r3(x) then
14 foreach r1; r2	⊆ r3 do
15 X := q'[g/(∃R1 ᴏ loc, loc .r1(x) ∧

																																																																	∃loc, R2 ᴏ	loc .r2(x))]; case 1
16 pr := pr U {X}
17 end
18 end
19 if g=∃U1, U2 .r1(x) then
20 foreach B	⊑	∃U1, U2 .r2(x) ∊ T and r2	⊆	r1 do
21 pr := pr U {q'[g/B(x)]} case 2
22 end
23 foreach B	⊑	∃U2, U1 .r2(x) ∊ T for r2

-1
	⊆ r1 do

24 pr := pr U {q'[g/B(x)]} case 3
25 end
26 end
27 if g = ∃R1 ᴏ	loc, U1.r(x) (resp. ∃U1, R1	ᴏ	loc.r(x)) then
28 foreach R2	⊑ R1 ∊ T or R2

-1
⊑ R1

-1 ∊ T do
29 pr := pr U { q'[g/(g[R1/R2])]} case 4
30 end
31 end
32 end
33 end
34 foreach pair of FOL-atoms g1, g2 in q' do
35 if g1 and g2 unify then
36 pr := pr U {anon(reduce(q', g1, g2))};
37 end
38 end
39 end
40 until pr'=pr;
41 return drop(pr);

Figure 3.30. Adapted PerfectRef Algorithm

3. Analysis

42

Finally, at the end of the Adapted Perfect Rewriting Algorithm the function drop(pr) (line
3.30) removes all GCQ+ queries, which contain atoms of the form ∃U1, U2.r (x). As a result,
the output of the algorithm is a classical UCQ, which can be consequently evaluated as a SQL

query on the database DB(A(M,D)). The Figure 3.31 is adapted in order to illustrate the

entire reformulation process of ontology based query answering over spatial databases,
making use of a DL-Lite(RCC8) ontology, GCQ+ query, data-to-ontology mappings and a
PostgreSQL database, referred as a virtual and spatially complete ABox.

Figure 3.31. Ontology Based Query Answering over
Spatial Databases

MMMM

1. Adapted Perfect
Rewriting

2. Filtering
UCQ q1

3. Unfolding

4. Evaluation

PostgreSQL

UCQ q2

SQL q3

Ans(q3, D) = cert(q, <OOOO>)>)>)>)

GCQ+ q

DL-Lite(RCC8) TTTT

DB(A(M,D)) (virtual and spat. complete ABox)

3. Analysis

43

3.7 Limitation Analysis and Final Requirements

In the latter sections, various techniques, general approaches and possible design solutions
and algorithms for query answering over ontologies have been presented and theoretically
analyzed without considering any external factors or limitations, which could consequently
occur during the actual implementation of the desired software system. That is the reason
why, this section reveals a list of all specifications, assumptions and obstacles that should be
taken into account in the design and realization of the developed software application,
implementing a Perfect Rewriting Algorithm for ontology based query answering over spatial
databases.

Because of time constrains and the fact that the aim of this Master Thesis is not to develop a
complete system for reasoning over spatial ontologies, the reasoning task such as ontology
consistency checks, subsumtion between concepts, roles and attributes, and satisfiability tests
are not taken into account. Moreover, it is decided not to provide the final system as a
complete installation software package, but rather as a Java project that can be consequently
imported in a universal tool for software development and executed in a debug mode. That is
the reason why, only a simple graphical user interface will be designed in order to facilitate
the user interaction, but also providing potential extensibility options. It is also assumed that
the user inputs to the application are syntactically and semantically correct and the
corresponding text files for specifying Tbox-es, mappings and search queries are well-formed
and well-behaved.

The final requirements of this Master Thesis are presented in detail by dividing them into two
main groups – theoretical requirements, specifying the theoretical approaches and algorithms
to be implemented and program requirements, describing the system features and tasks to be
realized by the developed software.

The final theoretical requirements are as follows:

• implement the Original Perfect Rewriting Algorithm for query answering over pure
DL-Lite ontologies;

• extend the implementation of the Original Perfect Rewriting Algorithm to the Adapted
Perfect Rewriting Algorithm over spatial ontologies, using the modified logic DL-
Lite(RCC8) and the query Language GCQ+;

• incorporate the Adapted Perfect Rewriting Algorithm into a top-down approach for
ontologies based Query Answering over spatial databases, thus avoiding the
materialization of the virtual ABox by using an additional Unfolding step.

The main program requirement is to develop an ontology based Query Answering system that
should provide:

• a framework for representing DL-Lite TBox, containing standard concepts, roles, role
inverses, and inclusion assertions (i.e. PIs and NIs);

3. Analysis

44

• a framework for representing DL-Lite(RCC8) TBox, containing standard concepts,
roles, role inverses, inclusion assertions (i.e. PIs and NIs) and concepts of the form
∃U1,U2.r , where r ∊ RelRCC8 and U → loc | R	ᴏ loc;

• a framework for representing conjunctive queries, containing query atoms of concepts,
roles or GCQ+ atoms of the form ∃U1,U2.r(x);

• a framework for representing object-to-data mappings, containing mapping assertions
of the form Mleft ~>Mright, such that the left part is and SQL query and the right part is
a conjunction of atoms over the TBox;

• a Graphical User Interface for simple user interactions;
• a Parser for reading and interpreting the user inputs, i.e. a TBox, a conjunctive query

and a set of mappings;
• a Reasoner for implementing the Original Perfect Rewriting Algorithm and the

Adapted Perfect Rewriting Algorithm;
• a Reasoner for implementing the Query Reformulation process;
• a Resoner for evaluating the output of the Query Reformulation process over a

PostgreSQL database.

The following two chapters of this Master Thesis present a detailed description of how the
theoretical ideas are practically applied and how the listed requirements are realized and
transferred into the design and implementation of a system for Query Answering over spatial
ontologies.

4. Design

45

4 Design

Following the overview of tools, technologies, query answering approaches, limitations,
problem and system requirements analysis, this chapter reveals the actual design and
architecture of the developed GIS application with DL-Lite(RCC8) ontologies.

4.1 Architecture Design

The system design of the geographical information system for ontology based query
answering over spatial databases, abbreviated as OnQuAnSpatial, is graphically illustrated in
Figure 4.1. The OnQuAnSpatial is a standalone Java application for the representation and
reasoning over DL-Lite(RCC8) ontologies. The architecture of the program is divided into
three main tiers, presented in Figure 4.1 as round-corner rectangular blocks, named as
Frontend, Controller and Backend.

The Frontend specifies the top most level of the OnQuAnSpatial application, namely the the
input text files and the graphical user interface. The main task of this tier is to realize a
platform of interaction between the user and the software program and consequently display
system outputs, hints and results of the ontology querying. The user defines a desired
terminology in a text file, specifying the TBox with the DL-Lite(RCC8) syntax. Furthermore,
it is possible to formulate a GCQ+ query and mapping assertions in additional text files.
Thanks to this layer, the user can interact with the application, which as a result passes the
user requests down to the chain to the next layer, namely the Controller.

The second tier defines the business or domain logic of the application, where instances of
concepts and roles in the ontology are retrieved from the data source tier, i.e. the Backend,
processed and transferred to the Frontend, thus realizing a bidirectional flow of information
among the different layers. Every text file is forwarded to the Parser component block, where
numerous syntactical procedures validate the program inputs. If this process is successful,
then the corresponding files are parsed accordingly and Java objects are created from the
information they contain. This transformation step from a textual TBox, Query and Mappings
to Java objects is facilitated by the blocks DL-Lite(RCC8) Interface, GCQ+ Interface and
Mapping Interface. As a result, the intensional part of the ontology and the GCQ+ query are
forwarded to the Adapted Perfect Rewriting block and the ontology-to-data-source mappings,
realizing the formal linking of the stored persistent data and the ontology, are transferred to
the Unfolding block. The latter two process blocks together with the Evaluation block from
Figure 4.1 build up the most important component of the OnQuAnSpatial system, namely the
Query Answering Reasoner that is explained in detail in Chapters 5.3 and 5.4. In addition, the
component module Composition Table, storing the base relations from BRCC8 and the table of
weak compositions (cf. Chapter 3.4.1, Figure 3.17), also takes part in the query reformulation

4. Design

46

process. The connection between the Composition Table and Adapted Perfect Rewriting
Algorithm blocks is represented by a dotted arrow, because the former is used only in case if
the query q contains spatial atoms.

Figure 4.1. Architecture Design of the OnQuAnSpatial System with DL-Lite(RCC8)

GUI

PostgreSQL

Parser

DL-Lite
(RCC8)

Interface

GCQ+
Interface

Mapping
Interface

MMMM

Composition
Table

Adapted Perfect
Rewriting

UCQ q1

Unfolding

Evaluation
SQL q2

GCQ+ q DL-Lite
(RCC8) TTTT

JDBC API

FRONTEND

CONTROLLER

BACKEND

cert(q,<OM>)OM>)OM>)OM>)

QA Reasoner

4. Design

47

The last tier of the OnQuAnSpatial system architecture from Figure 4.1 is the Backend. It is
responsible for storing the extensional level of the ontologies and querying persistent data
values within the DBMS PostgreSQL. The JDBC API enables the interaction of the
application and the external data source, i.e. the database.

The main asset of the described architecture is that the input user data, application and
database data are separated, thus providing possibilities for software scalability,
modularization and reuse of components. Moreover, since the relationship between the
instances of concepts and roles in the ontology and the data at the sources are realized with
the help of mappings, it is not necessary to know how the data repository is organized or
where the data is stored. In fact, the third layer, i.e. the background layer, can be theoretically
modified or replaced by other databases without modification of the other two layers as long
as the mappings are correspondingly modified. The drawbacks of this model refer to
maintenance and complexity issues. Nevertheless, the 3-Tier architecture design, applied for
the implementation of the OnQuAnSpatial system, proves to be very appropriate.

Last but not least, by comparing the typical design model of an information system, using
ontologies from Figure 2.7 and the high-level architecture design of a DL knowledge
representation system from Figure 2.6, it can be clearly concluded that the proposed
architecture of the OnQuAnSpatial application incorporates both approaches. For instance, the
knowledge base from Figure 2.6 matches the main components of the OnQuAnSpatial
architecture, where the Description Logic block is corresponds to the DL-Lite(RCC8)
component from Figure 4.1 and the TBox corresponds to the purple blocks from Figure 4.1,
excluding the Mapping Interface module.

4.2 Software Prototype Design

Figure 4.2 reveals the package organization of the application and the corresponding classes
and interfaces. The software packages rocesses, dllitercc, mapping, queries, utilities build the
Controller as illustrated in Figure 4.1. The package gui and repository build the Frontend and
the Backend layers of the application. Several stereotypes are applied to some of the packages
in order to clarify the program design. For instance, the stereotype “DL-Lite(RCC8)
Ontology” of the package dllitercc signals that this package consists of Java classes and
interfaces, which represent an ontology in DL-Lite(RCC8). The main dependences among the
packages are also shown as dotted import arrows, labeled with instructive names. The central
point of the application is the package processes, where the actual reasoning procedures with
respect to query answering are executed. The class Starter contains the main method of the
program, which initializes the creation of Graphical User Interface menu frame, from where
the user can consequently select text files, storing the information about the TBox, search
query and mappings. After that, several processes can be triggered, depending on the user
input.

4. Design

48

Figure 4.2. Software Package Diagram of the OnQuAnSpatial System

5. Realization

49

5 Realization

This chapter reveals how the main components of the OnQuAnSpatial system are realized by
describing the most important software components, techniques and issues. Furthermore, the
processes query reformulation and query unfolding are explained in more detail, followed by
overviews of the application outputs and concluding discussions of the achieved results, based
on the final system requirements outlined in Chapter 3.7.

5.1 Graphical User Interface

The OnQuAnSpatial software program is developed in Eclipse Java EE IDE for Web
Developers, Version:Indigo Service Release 2, Build id:20120216-1857. The Java Runtime
Environment (JRE) is JRE System Library [Java SE-1.7]. The used external library jar file is
postgresql-9.1-902.jdbc4.jar in order to realize the connection between the database and the
software application. The Graphical User Interface (GUI) is constructed with the help of the
primary Java GUI widget toolkit Swing and the Abstract Window Toolkit (AWT) and it is
illustrated in Figure 5.1.

Figure 5.1. OnQuAnSpatial Prototype GUI

5. Realization

50

The user has the possibility to change several views, by navigating through the menu of the
program, e.g. Reasoning, Info. In addition, it is possible to select different text files,
containing the TBox, search query or the data-to-ontology mappings with the help of
JFileChooser elements. This feature improves the software usability and flexibility, since the
file locations should not be hardcoded in the program. When pressing the button “Start”, the
query answering process begins. If no mapping file is selected, then only the Query
Reformulation Part (cf Figure 4.1) will be executed without triggering the Unfolding and
Evaluation processes. The Info Screen element from the GUI is meant to show program hints,
error messages and results of querying DL-Lite(RCC8) ontologies.

The Unified Modeling Language (UML) diagram representing the GUI is illustrated in Figure
5.2. The associations between class MainFrameGUI and PanelQueryAnswering and
respectively PanelInfo may be interpreted in fact as an aggregation, representing a “has a”
relationship, i.e. the MainFrameGUI is a JFrame and it has two JPanels. The advantage of
this GUI model design is that it can be easily extended by adding further JPanel classes,
depending on the requirements of the software. Every class extending the JPanel from Figure
5.2 corresponds to an item from a drop-down menu (cf. Figure 5.1). The parameter lists from
the method und constructor signatures are not displayed in order to achieve better readability
of the UML class diagrams.

Figure 5.2. Class Diagrams of Package gui

5. Realization

51

5.2 TBox Implementation

The terminology of the ontology is parsed to Java objects from a text file. The
OnQuAnSpatial application can handle both pure DL-LiteA or DL-Lite(RCC8) ontologies. An
adapted example [7, p. 333] of a DL-LiteA TBox text file is shown in Figure 5.3, where
information about employees and projects they work for is modeled. Managers and temporary
employees are represented as employees (lines 11 and 12), who are persons. Both persons and
projects have names and temporary employee has a date, indicating the expiration date of his
contract (line 18). Moreover, everybody, having an attribute date, participates in the role
WORKS-FOR (line 19) and every employee works for at least one project (lines 14 and 15). In
conclusion, managers have permanent job positions (line 20). It is possible to include
comments in the TBox text file by using the ;;; symbol. All lines, beginning with the latter
symbol are not considered by the Parser algorithm and only the logical operators and key
words are interpreted. First of all the user should define the types of the terms he is using,
namely concepts or roles. Functional assertions, expressing global functionality of a role or
attributes are not understood by the application. In addition, attributes are defined as roles
(e.g. persName, until on line 7 and 9). Inclusion assertions are recognized by the application
by using the key-word implies.

1 ;;;TBox for projects
2 concept Manager
3 concept Employee
4 concept Person
5 concept TempEmp
6 concept Project
7 role persName
8 role projName
9 role until
10 role WORKS_FOR
11 Manager implies Employee
12 TempEmp implies Employee
13 Employee implies Person
14 Employee implies (some WORKS_FOR)
15 (some (inverse WORKS_FOR)) implies Project
16 Person implies persName
17 Project implies projName
18 TempEmp implies until
19 until implies (some WORKS_FOR)
20 Manager implies (not until)

Figure 5.3. Text File with a DL-LiteA TBox of a Project

The Parser of the OnQuAnSpatial application is case sensitive, meaning that it will interpret a
concept Manager and manager as two different terms. In order to achieve better readability, it
is recommended to first start defining all concepts by terms, starting with capital letters,

5. Realization

52

consequently listing all attributes (lines 7 to 9) and roles (line 10) as illustrated in Figure 5.3.
When specifying the inclusion assertions, it is important to surround every concept or role
term by parentheses always when a new logical operator is used, e.g. the existential
quantification or inverse symbols (line 15), otherwise the parsing produces wrong results. All
key words or logical operators are stored in the interface ParserConfig from the package
processes (cf. Figure 4.2) and DescriptionLogicConfig from the package dllitercc. This
approach guarantees consistent key-words and constants usage within all classes,
implementing the latter interfaces.

Figure 5.4 illustrates a sample terminology [29, p. 5] within DL-Lite(RCC8) ontology that
models parks (lines 2-4, 7-8), covering lakes (line 9) or playgrounds (line 10). The last two
axioms from the TBox specify on the right hand side concepts of the form ∃U1, U2 .r, where
U can be either loc or R	ᴏ loc and r is a general relation from RelRCC8. In case, a subset of
relations (i.e. a disjunction of base relations) should be specified, then the base relations
should be separated by comma in the form (some HAS_LAKE *loc,loc.{tpp, nttp}), stating
that the lake can either touches the boundaries of the park from within or it can be an “island“
in the park.

1 ;;;TBox for parks
2 concept Park
3 concept ParkWithLake
4 concept ParkForPlaying
5 role HAS_LAKE
6 role HAS_PLAYGR
7 ParkWithLake implies Park
8 ParkForPlaying implies Park
9 ParkWithLake implies (some HAS_LAKE *loc,loc.{tpp})
10 ParkForPlaying implies (some HAS_PLAYGR *loc,loc.{tpp})

Figure 5.4. Text File with a DL-Lite(RCC8) TBox of a Park

The OnQuAnSpatial system is able to read the two different text files and parse them
accordingly into Java objects. As a result, instances of the classes Concept, Roles and
Inclusion are created, which are building parts of a Java object of type TBox. These
associations and the corresponding multiplicities are illustrated in Figure 5.5. The class
Concept consists of two private attributes, namely a name and a term. A Role class differs
than a Concept class by the fact that the former has two attributes. This differentiation on the
number of terms is important for the Query Rewriting process, when concept and roles
substitutes are searched in the TBox (cf. Figure 5.3) and when the anon() method is executed
(cf. Figure 5.8), realizing variables anonymisation by substituting all unbound variables (i.e.
terms) in the search query with “_” and thus consequently setting the non-distinguished non-
shared variables. The class Inclusion, representing an axiom from the TBox, has a left and
right part as attributes, as well as a type, being a “positive” or “negative” inclusion. This
attributes are automatically set during the parsing process and besides that the
OnQuAnSpatial system distinguishes the inclusions, containing concepts of the form
∃∃∃∃U1,U2.r on the right-hand side of the axiom. These types of spatial representation objects are

5. Realization

53

instances of the class FeaturePath, having the properties constrain, paths, rccRelations and
term. The paths property represents a list of Path objects, i.e. DL-Lite(RCC8) concepts of the
form loc or R	ᴏ loc. rccRelations is also a list of objects, but of type Role. This list contains
Role elements, which name attributes have any of the string values, saved in the baseRCC
array from the interface CompositionTable.

Figure 5.5. UML Class Diagrams of Package dllitercc

After initializations of the TBox object, the program flow continues with parsing the query
text file. The advantage of using text files as an input for creating Java objects is that the

5. Realization

54

usability of this approach, because it is easy for the user to physically create these file.
Moreover, they obey an intuitive DL syntax that is not significantly different from the syntax,
presented in Figure 3.18. However, the main drawback is that a powerful checker and a
validator should be implemented in order to identify all wrong user inputs. An alternative
solution for parsing the user inputs is to make use of XML files, which can be verified against
a predefined XML schema and automatically “unmarshled”, i.e. translated, to Java objects.
This can be achieved with the help of the Java Architecture for XML Binding API (JAXB).
The described technique will on the one hand reduce the error rate of wrong user inputs and
the complexity of the Parser, but on the other hand, it will also increase the difficulty for the
user to specify these files, because additional XML knowledge should be provided.

5.3 Query Reformulation

The Query Reformulation process is part of the QA Reasoner, namely the blue block in
Figure 4.1. Before starting the Perfect Rewriting Algorithm, the search query is retrieved from
a query text file.

5.3.1 Input queries

Figure 5.6 illustrates two different types of search queries – a FOL conjunctive query without
spatial atoms and a GCQ+ query.

q(x,n) <- WORKS_FOR(x,_) & persName(x,n)

queryProject.txt

q(x) <- Park(x) & some HAS_LAKE*loc,HAS_PLAYGR*loc.{
dc,ec,po,tpp,tppi,ntppi,eq}(x)

queryPark.txt

Figure 5.6. Sample Query Files

The first query over the Project ontology from Figure 5.3 asks for all participants from the
role WORK_FOR, who work for any project and their corresponding names. The second
variable of the role WORK_FOR is unbound, that is the reason why it should be initially
substituted by “_”. The GCQ+ query from the file queryPark.txt should search for all parks
with lakes and playgrounds, such that the playground is not contained in the lake as an island,
i.e. the playground is not in non-tangential proper part relation to the lake. The input files are
translated to Java objects by the Parser and the GCQ+ interface blocks from Figure 4.1. The
corresponding classes for executing these tasks are listed in Figure 5.7.

5. Realization

55

Figure 5.7. UML Class Diagrams of Package queries

The generalization relationship between the super class Query and the subclasses
GcqPlusQuery and UnfoldedQuery is illustrated by arrows with hollow triangular endings. In
other words, any instances of the subclasses are also instances of the superclass, i.e. a
GsqPlusQuery is a Query and UnfoldedQuery is also a Query. This is a typical example of
inheritance, since both child classes, which represent the query body or query tail, inherit all
non-private class members from the parent class Query, representing the query head.
Nevertheless, the private field head can be accessed indirectly by the inherited public methods
setHead(…) and getHead(). The attribute head is important, since it has a fundamental
influence in the anon() method (cf. Figure 3.30, line 36) when defining which variables are

5. Realization

56

distinguished and thus also enabling indirectly the identification of all unbound variables.
Moreover, it is also crucial when checking the variable consistency of the unfolded queries
during the Query Unfolding step. Some of the constructors in Figure 5.7 are shown with the
same signatures, but their parameter lists are not displayed, i.e. these are overloaded
constructors. Furthermore, a GsqPLusQuery consists of a number of GsqPlusQueryAtom-s. In
order to distinguish between a normal and a spatial query atom, it was decided that an
instance of the class GsqPlusQueryAtom can either have a Concept, a Role or a FeaturePath
istance. The UnfoldedQuery class is used in order to represent a query, generated during the
Unfolding process, described in Chapter 5.4.

5.3.2 Implementation of Adapted Perfect Rewriting Algorithm

The implementation of the Adapted Perfect Rewriting Algorithms is based on the pseudo
code, described in Chapter 3.6. Nevertheless, slight modifications and improvements are
realized in order to optimize the reformulation process. The Adapted Perfect Rewriting
Algorithm is implemented in the abstract class QueryRepormulation from the package
processes. The corresponding UML class diagram is shown in Figure 5.8 and the entire
source code is provided in the Appendix C.

Figure 5.8. UML Class Diagram of QueryReformulation

The class QueryReformulation consists only of private methods, except for the method
perfectRef(…) and originalPerfectRef(), which are public, since it is called from within the
Controller class in order to trigger the rewriting process. All other methods are called
internally within the method perfectRef(…) or originalPerfectRef(…). The signatures of these
methods are listed in Figure 5.18, by also showing the types of the variables from the
parameter list and the return variables. The operation originalPerfectRef(…) implements the
original Perfect Rewriting Algorithm (cf. Figure 3.21), while perfectRef(…) implements

5. Realization

57

respectively the adapted version. The latter method has two input objects, namely a query of
type GcqPLusQuery, as explained in Chapter 5.31, and an object myTBox of type TBox, as
explained in Chapter 5.2. The method starts with variable initialization and a test procedure,
going through all atoms of the input query in order to check whether an atom of the form ∃R1
ᴏ loc, R2 ᴏ loc.r3 (x) occurs. If that is the case, then a full composition table is created and
saved in a two dimensional array of strings. The generation of the composition table is a
complicated process and it is described separately in the next chapter. After that a while-loop
is started. It uses the method isSameQueryList(queriesP, queriesPprime) in order to compare
whether both query lists are the same. If that is the case, then the while loop and respectively
the reformulation algorithm terminate and the result is printed to the screen. The parameter
queriesP contains the list of current queries and the queriesPrime contain the list, to which a
new rewritten query is added. At the beginning of the while-loop the queries of the queriesP
are copied to the queriesPprime by calling the method copyQueryList(…). After that for every
non-spatial atom of the corresponding input query and for every PI from the object myTBox, it
is checked in descending order whether a substitution is possible to a specific atom by calling
the method findInclusions(…), which takes into account the possible cases from Figure 3.22,
when and how to apply a PI to a query atom. Consequently, the output of the
findInclusions(…) is additionally filtered in order to avoid adding the same query twice.

The next part of the adapted algorithm processes every spatial query atom of the form ∃U1,
U2.r1 (x), as described in Figure 3.30 (lines 12-32). For the case, that the atom of type
GcQPlusQueryAtom has the form ∃R1 ᴏ loc, R2 ᴏ loc.r3 (x), then it is substituted by the
conjunct of two new atoms of the form ∃R1 ᴏ loc, loc.r1 (x) and ∃loc, R2 ᴏ loc.r2 (x) in a new
GcQPlusQuery object for all possible sets r1 and sets r2 from the full composition table, being
refinements (subsets) of the set r3, i.e. r1;r 2 ⊆ r3. However, several performance tests have
been carried out, concluding that this operation is computationally very expensive. This is in
fact not surprising, since the full composition table has 255 rows and 255 columns, i.e. 28-1
RCC8 relations altogether, excluding the empty relation and including the universal relation.
This results in 65025 possible combinations of pairs (r1,r2) or 65025 cells in the full
composition table, excluding the vertical and horizontal headers. In terms of the software
implementation of the algorithm, the proposed pseudo code in Figure 3.30, line (13-17) will
generate up to maximum of 130050 new query atoms and respectively 65025 new queries for
every input query atom in the form ∃R1 ᴏ loc, R2 ᴏ loc.r3 (x), which is not acceptable from
computational point of view. The former described performance tests check for every single
set of disjunctions of base relations in RCC8 (i.e. r3=255 possibilities), how many possible
pairs satisfy the condition r1;r 2 ⊆ r3. All results are listed in Appendix C. However, Figure 5.9
presents the minimum, maximum and average number of pairs.

5. Realization

58

 possible pairs (r1,r2),
such that r1;r 2 ⊆ r3

r3

MIN 16384 {(EQ)}
MAX 65025 {(EQ),(NTPPI),(TPPI),(NTPP),

(TPP),(PO),(EC),(DC)}
MEAN VALUE ~56918 -

Figure 5.9. Number of Possible (r1, r2) Pairs

The second column from the table in Figure 5.9 (possible pairs), also coincides with the
number of added GcQPlusQuery objects to the initial spatial query in case the algorithm is not
optimized. Furthermore, it is not surprising that in the case when r3 represents the disjunctions
{ (EQ), (NTPPI), (TPPI), (NTPP), (TPP), (PO), (EC), (DC) }, namely when r3 is the universal
relation, then the maximum number of compositions occurs. The reason of this phenomenon
is the fact that in this case r3 expresses the maximum indefinite knowledge on the spatial
relations of regions.

The Adapted Perfect Rewriting algorithm, referring to the first case (c.f. Figure 3.30, lines 13-
18), should be optimized with the extension that it does not search for all r1;r 2 ⊆ r3, but it
seeks for all the maximal pairs r1,r2 such that r1;r 2 ⊆ r3 and does the reformulation process
only w.r.t. these pairs. For instance, if on the one hand there is a pair r1,r2 such that r1;r2 ⊆ r3
and on the other hand, a second pair exists r4,r5 such that r4;r 5 ⊆ r3 and moreover r4 ⊆ r1 and
r5 ⊆ r2, then the pair r4,r5 is redundant, since the pair r1,r2 is the super set or the maximal pair
withinn two pairs. The optimization of the Perfect Rewriting Algorithm is presented in Figure
5.10, by explicitly illustrating the improved modifications in a red rectangular block.

The proposed optimization improvement is implemented by calling the public method
getRowsColumnsFromStrongCompTable(…) from the abstract class CompositionTableUtil,
which belongs to the package utilities. After that the method perfectRef continues its
execution by handling case 2 and 3 from the Adapted Perfect Algorithm. This is achieved by a
double execution of the the method findSpatialSubstitutes(…), that returns a list of Concept
objects. Case 4 is addressed in the private method findSpatialSubstitutes(…), returning a list
of FeaturePath objects. Finally, the methods reduce(…), anon(…) and drop(...) are called in
order to finalize the algorithm. The output of the method perfectRef from the class
QueryReformulation is revealed in Chapter 5.3.4.

5. Realization

59

 input : a hybrid CQ query Q, DL-Lite(RCC8) TBox T
 output : a UCQ pr

1 pr := Q;
2 repeat
3 pr' := pr;
4 foreach query q' ∊ pr' do
5 foreach atom g in q' do
6 if g is a FOL-atom then
7 foreach PI α in T do
8 if α is applicable to g then
9 pr := pr U {q'[g/gr(g, α)]};

10 end
11 end
12 else
13 if g=∃R1 ᴏ loc, R2 ᴏ loc.r3(x) then
14 foreach r1; r2	⊆ r3 and r1; r2 is MAX do
15 X := q'[g/(∃R1 ᴏ loc, loc .r1(x) ∧

																																																																	∃loc, R2 ᴏ	loc .r2(x))]; case 1
16 pr := pr U {X}
17 end
18 end
19 if g=∃U1, U2 .r1(x) then
20 foreach B	⊑	∃U1, U2 .r2(x) ∊ T and r2	⊆	r1 do
21 pr := pr U {q'[g/B(x)]} case 2
22 end
23 foreach B	⊑	∃U2, U1 .r2(x) ∊ T for r2

-1
	⊆ r1 do

24 pr := pr U {q'[g/B(x)]} case 3
25 end
26 end
27 if g = ∃R1 ᴏ	loc, U1.r(x) (resp. ∃U1, R1	ᴏ	loc.r(x)) then
28 foreach R2	⊑ R1 ∊ T or R2

-1
⊑ R1

-1 ∊ T do
29 pr := pr U { q'[g/(g[R1/R2])]} case 4
30 end
31 end
32 end
33 end
34 foreach pair of FOL-atoms g1, g2 in q' do
35 if g1 and g2 unify then
36 pr := pr U {anon(reduce(q', g1, g2))};
37 end
38 end
39 end
40 until pr'=pr;
41 return drop(pr);

Figure 5.10. Optimization of the Adapted PerfectRef Algorithm

5. Realization

60

5.3.3 Full Composition Table

The full composition table is also called strong composition table in the context of this Master
Thesis in order to differentiate it from the table of weak composition in Figure 5. The creation
of the former table is realized dynamically only if this is required by consequently calling the
public methods createRowColumnHeaderStrongCompTable() and
createStrongCompositionTable() from the abstract class CompositionTableUtil, presented in
Figure 5.11.

Figure 5.11. UML Class Diagram of CompositionTableUtil

The operation createRowColumnHeaderStrongCompTable() returns a list of Strings, storing
the vertical and the horizontal headers of the strong composition table. Both headers are
identical, so that is the reason why the generation of only one of them is sufficient, which is
assigned to the variable rowColumnHeaderStrongCompTable. An element of the list
rowColumnHeaderStrongCompTable stores all possible disjunction combinations of the base
relations in BRCC8, namely {(EQ),(NTPPI),(TPPI),(NTPP),(TPP),(PO),(EC),(DC)}. In order to
create the total 255 possible combinations, the method
createRowColumnHeaderStrongCompTable() uses a mathematical algorithm, inspired by the
approach when building a simple truth table. Once the headers are generated, then any two
vertical and horizontal cells are combined in order to get the corresponding compositions. For
instance, if (rvert_2 o rhoriz_3) should be calculated, i.e. ({EC} o { EC, DC}), then the method
createStrongCompositionTable () computes the intermediate result ({EC ; EC} or { EC ;
DC}), which is directly reformulated in ({DC, EC, PO, TPP, TPPI, EQ} or {DC, EC, PO,
TPPI, NTPPI}), by consulting the weak composition table from the interface
CompositionTable (cf. Figure 5.12). As already mentioned, the strong composition table is
needed when considering case 1 from the Adapted Perfect Algorithm in Figure 5.10.

The advantage of the described implementation for generating a full composition table is that
the table should not be persistently stored and it is initialized only once if it is required.
Moreover, in case that it is desired to use a composition table for RCC5, RCC3 or RCC2, then

5. Realization

61

only the corresponding base relations (line 13), their inverses (line 14) and their weak
composition table (line 21) should be manually updated in the interface CompositionTable
and the new full composition table can be generated automatically without any further
modifications. A code snipped, illustrating the constants from the interface CompositionTable
is presented in Figure 5.12.

 Figure 5.12. Interface CompositionTable

5.3.4 Results and Output of Query Reformulation

The output of the Adapted Perfect Rewriting algorithm with the proposed optimization is
illustrated in Figure 5.13. The inputs of the Query Reformulation process are the TBox from
Figure 5.3 and the project conjuctive query from Figure 5.6. The result is a union of
conjunctive queries, where every CQ is constructed by two query atoms. The relevant
information for the input TBox and input query of the reformulation process are marked
respectively within a blue and green rectangular, while the output information (i.e. the output
UCQ) is marked within a red rectangular. Important test parameters are printed to the screen
in order to be able to compare the computational effectiveness of the Adapted Perfect
Rewriting algorithm, evaluated under various scenarios. In addition, it is analyzed how the
performance of the algorithm changes by measuring important parameters, such as number of
concepts, roles, axioms, PIs and FeaturePaths in the TBox. Furthermore, parameters regarding
the size and the nature of the initial search query are also listed and finally the resulting UCQ
is displayed, by analyzing its size and origin of the added CQs.

5. Realization

62

Figure 5.13. Output of The Adapted Perfect Rewriting Algorithm Over a pure DL-Lite

Ontology

By comparing the TBox in Figure 5.3 and the TBox test results in Figure 5.13 (blue
rectangle), it can be concluded that they match. The same conclusion can be drawn for the
query test parameters. The input query q(x,n) <- WORKS_FOR(x,_) & persName(x,n) is
initially added to the UCQ output result during the first iteration of the algorithm. During the
same iteration by applying to the atom WORKS_FOR(x,_) the PI Employee implies (some
WORKS_FOR) and until implies (some WORKS_FOR), the new queries q(x,n) <- Employee
(x) & persName(x,n) and q(x,n) <- until(x,_) & persName(x,n) are respectively added. At the
second execution of the while-loop of the algorithm, the query q(x,n) <- TempEmp (x) &

5. Realization

63

persName(x,n) is added according to the application of the PI TempEmp implies until to the
atom until(x,_). Finally, the new query q(x,n) <- Manager (x) & persName(x,n) is added by
applying the PI Manager implies Employee to the atom Employee (x), thus producing in total
5 conjunctive queries within 5 ms. The same test, using the same TBox and input query, is
repeated for the Perfect Rewriting Algorithm, namely the version without considering the
spatial modifications, and the measured execution time is 4 ms, which is a negligible
difference. However this performance difference is reasonable and expected, since the
Adapted Perfect Rewriting algorithm performs an additional check (cf. Figure 5.10, line 6)
and further execution of the drop() function, which are missing in the original version of the
algorithm. This practical test proves that both implementations of the original and adapted
versions of the Perfect Rewriting Algorithm have nearly the same performance, when
answering queries over pure DL-Lite ontologies.

Another interesting test scenario for the Adapted Perfect Rewriting algorithm is the case when
a DL-Lite(RCC8) ontology is considered. The park TBox in Figure 5.4 and the park query in
Figure 5.6 are used as inputs for the query reformulation process. The screen output,
displaying the output results of the algorithm is presented in Figure 5.14 and Figure 5.15.

Figure 5.14. Output of The Adapted Perfect Rewriting Algorithm Over
a DL-Lite(RCC8) Ontology Part 1

5. Realization

64

The test parameters of the TBox, input query and queries added during the reformulation
process are marked respectively in blue, green and red. During the execution of the Adapted
Perfect Rewriting Algorithm 21 CQs are consequently added. Not all of these queries are
shown in Figure 5.14, but they are listed in the Appendix C (cf. file
Experiment_3_Results.txt). Analyzing Figure 5.15, it can be seen that the The Adapted
Perfect Rewriting Algorithm is iterated 4 times in this scenario, by adding 9 new queries (in
fact, 18 new query atoms) according to the first rewriting rule in the extended reformulation
algorithm, 11 new queries according to the second and third rule and the initial query. After
executing the dropping function, only one single query is left, as indicated in Figure 5.15. It is
not surprising that the initial input query has two atoms and some of the rewritten queries
have three atoms, since the first rewriting rule substitutes one query atom by two new atoms.
The entire algorithm for this experiment takes around 48 seconds. The main cause for this
execution time is the initial query atom some HAS_LAKE*loc,HAS_PLAYGR*loc.{dc, ec, po,
tpp, tppi, ntppi, eq}(x). However, 48 seconds is still an acceptable result.

Figure 5.15. Output of The Adapted Perfect Rewriting Algorithm Over
a DL-Lite(RCC8) Ontology Part 2

5.4 Unfolding

The Query Unfolding process is part of the QA Reasoner, namely the orange block in Figure
4.1. Before starting the actual unfolding process, the corresponding object-to-data mappings
are retrieved from a mapping text file by a parsing algorithm that generates the split versions
of the mappings (cf. Chapter 3.2, Figures 3.4 and 3.6) and translates them into Java objects.
The classes, representing the mapping assertions are stored in the package mappings and they
are illustrated in Figure 5.16. The output of the parsing procedure is an object of type
MappingBox, consisting of a list of objects of type ObjectToDataMapping.

5. Realization

65

Figure 5.16. UML Class Diagrams of Package mappings

The class ObjectToDataMapping encapsulates a query atom of type GcqPlusQueryAtom, a
sqlQuery string and a logic programming clause code. Theoretically, as described in [7, p.
339], this clause denotes the result of the evaluation over the database of the SQL query, that
is encapsulated in the left hand-side of the mapping (i.e. the attribute sqlQuery). The code
attribute contains a String that has the form AUXA_B, where the indexes A and B are numbers.
The index A is used in order to identify that two split mappings of type
ObjectToDataMapping stem from the same root mapping assertion, i.e. they have identical
SQL string and GcqPlusQueryAtom objects. The index B is an increment counter, showing
the position of the corresponding ObjectToDataMapping element in the attribute list
myDataToObjectMappings from the class MappingBox. For instance, if an object X and
object Y both of type ObjectToDataMapping have respectively code AUX1_2 and AUX1_5 ,
this fact infers that X and Y refer to the same mapping assertion and X is the 2nd and Y is the
5th element from the list myDataToObjectMappings. The actual unfolding of the UCQ, being
the result of the Query Reformulation step, is done in the method unfold(), where by
executing the operations getSubstitutes() and findAllCombinations(), each of the atoms of the
UCQ are unified in all possible ways with the corresponding code attributes from the list
myDataToObjectMappings, by producing a new list of UnfoldedQuery objects, returned by
the method unfold().

The variable terms of the atoms from the right hand-side of the mapping assertions and the
variables from the input UCQ, resulting from the Query Reformulation process are not

5. Realization

66

syntactically identical, even though that they have the same meaning. In addition, the former
are not only variables, but they can be also variable terms, containing function symbols. That
is the reason why an automatic variable matching algorithm is also implemented, since it can
happen that during the unification step some of the code combinations result in queries, which
are not any more dependent on the initial head variables of the corresponding query or contain
only unbound variables. These malformed queries should be filtered. The variable matching is
realized with the help of the classes VariableMapping (cf. Figure 5.16).

The final step of the Unfolding process is realized by the method createSQLquery(...) from
the abstract class SqlQueryGeneration by substituting each AUXA_B predicate from the
UnfoldedQuery list with its SQL equivalent, thus creation a new final SQL query that is a
union of select-project-join queries.

In order to illustrate and test the implementation of the unfolding, the resulting UCQ from the
query reformulation in Figure 5.13 is used. A sample file of mapping assertions [7, p. 334],
presented in Figure 5.17, maps the objects from the TBox in Figure 5.3 to the data in the
database in Figure 5.18.

SELECT "D1"."SSN", "D1"."PROJ", "D1"."D" FROM "D1" ->
TempEmp(pers["D1"."SSN"]) &
WORKS_FOR(pers["D1"."SSN"],proj["D1"."PROJ"]) &
projName(proj["D1"."PROJ"],"D1"."PROJ") &
until(pers["D1"."SSN"],"D1"."D")
;;;
SELECT "D2"."SSN", "D2"."NAME" FROM "D2" ->
Employee(pers["D2"."SSN"]) & persName(pers["D2"."SSN"],"D2"."NAME")
;;;
SELECT "D4"."SSN", "D3"."NAME" FROM "D3","D4" WHERE
"D3"."CODE"="D4"."CODE" -> Manager(pers["D4"."SSN"]) &
persName(pers["D4"."SSN"],"D3"."NAME")
;;;
SELECT "D3"."CODE", "D3"."NAME" FROM "D3" WHERE "D3"."CODE"
NOT IN (SELECT "D4"."CODE" FROM "D4") ->
Manager(mgr["D3"."CODE"]) &
persName(mgr["D3"."CODE"],"D3"."NAME")

Figure 5.17. Sample Mapping Assertions File mappingsProject.txt

In order to realize a correct parsing, then the object-to-data mappings should be specified
accordingly, by taking into account that the SQL SELECT key-word should be always
capitalized and every assertion should be written on a single line, since the Parser reads the
text file line by line and any additional white-space characters can result in unsuccessful
parsing.

5. Realization

67

D1 [ID: bigint; SSN: character varying(10); PROJ: character
varying(50); D:date]

D2 [ID: bigint; SSN: character varying(10); NAME: character
varying(50)]

D3 [ID: bigint; CODE: character varying(10); NAME: character
varying(50)]

D4 [ID: bigint; CODE: character varying(10); SSN: character
varying(10)]

Figure 5.18 Table Signatures of a Sample Project Database

The tables in Figure 3.3 store information about projects and employees, where ID is always
the primary key for the corresponding table. Table D1 stores temporary employees, their
project names and end dates, while table D2 matches a social security number of an employee
to his name. The table D3 store managers, while D4 relates managers’ codes with their SSNs.

The output of the Unfolding step is illustrated is Figure 5.19, where it can be seen that the
UCQ from Figure 5.13 and the input search query q(x,n)<-WORKS_FOR(x,_) &
persName(x,n) have produced 6 distinct UnfoldedQuery objects, revealed within a blue
rectangle and the unfolding procedure took 35 ns. As a result the green rectangular block
shows that the UnfoldedQuery objects are translated to a final SQL query, consisting of 6
unions of select-project-join queries. Finally, this SQL statement is directly issued over the
database and its results set is the result of the Unfolding step and thus also the outcome of the
entire Ontology Based Query Answering Process is displayed within the red rectangle. The
tuples (mgr[code_2], “Moeller”), (pers[55555], “OEZCEP”) and (pers[12345], “GUDOV”)
are the requested certain answers.

5. Realization

68

Figure 5.19. Unfolding Sample Output

6. Evaluation

69

6 Evaluation

6.1 Final Results and Experiments Discussion

The results, presented in Chapter 5.3.4, as well as the outcomes of further experiments are
listed in Figure 6.1. The input files for the experiments are provided in Appendix C

Test parameter Exp. 1/
Result

Exp. 2/
Result

Exp. 3/
Result

Exp. 4/
Result

Exp. 5/
Result

Tbox
concepts 5 5 3 5 5
roles 4 4 2 4 4
axioms 10 10 4 8 8
PIs 9 9 4 8 8
FeaturePaths 0 0 2 4 4
Input Query
atoms 2 2 2 2 3
concept atoms 0 0 1 1 2
role atoms 2 2 0 0 0
FeaturePath atoms 0 0 1 1 1
Perfect Rewr. Algorithm
version adapted original adapted adapted adapted
iterations 3 3 4 4 4
added queries case 1 0 x 9 9 9
added queries case 2/3 0 x 11 11 11
added queries case 4 0 x 0 0 0
queries before drop() 5 x 21 21 21
queries after drop() 5 x 1 1 1
execution time in ms 5 4 47817 47985 48711

Figure 6.1. Consolidated Experiment Results for Perfect Query Rewriting over Ontologies

Analyzing the experiments in Figure 6.1, it is obvious that the original Perfect Rewriting
algorithm performs better in pure DL-Lite ontologies, comparing Experiment 1 with the last
three experiments. However, this is not surprising, since when pure DL-Lite ontologies are
considered, the Adapted Perfect Rewriting Algorithm should behave as the original one. An
interesting outcome is the execution time of the adapted algorithm in experiment 3 and 4,
where the size of the TBox is increased and the timeexp4 > timeexp3. This increase in time is
negligible, but expected, since by adding new concept, roles, etc. then the algorithm executes
more comparisons operations in the search methods. The increase of the atoms in the input
query of experiment 5 has also a negative effect on the execution time. However, it should be
clear that experiments 3, 4 and 5 only test the dependency of increasing the number of

6. Evaluation

70

concepts and roles for the TBox and the query. That is the reason it is recommended that the
spatial part of the algorithm is tested in further experiments, by increasing the number of
FeatureParth atoms both in the Tbox and the query, i.e. adding atoms of the form ∃U1,U2.r .
Further recommended experiments are to evaluate the entire query answering process when
the number of mappings is increased. Finally, database experiments can be also performed by
increasing the length of the output select-project-join SQL query and the size of the database.

6.2 Future Research and Recommendations

The system Parser from Figure 4.1 can be improved by making use of XML files instead of
text files for the TBoxes, input queries and object-to-data mappings, since an XML file can be
automatically validated against a predefined XML schema and translated to Java objects with
the help of JAXB bindings. This modification will both reduce the error rate of wrong user
inputs and the complexity of the Parser. Furthermore, it is better to realize the query
Reformulation and Unfolding processes as threads, i.e. classes QueryReformulation and
QueryUnfolding (cf. Figure 4.2) in order to provide parallel computing possibilities. In the
developed prototype of the system, it can happen that the query answering process takes a
longer time and the GUI freezes for this period of time. This is not a desirable feature and it
can this issue can be eliminated by putting the main computation process into a thread. From a
usability point of view, it is also recommended to enrich the Graphical User Interface, so the
user can have more possibilities to interact with the system without directly modifying the
source code. A user friendly program should also encapsulate JProgressBar elements (i.e.
progress bars or download boxes) in order to illustrate how many percent of the query
answering process have been accomplished.

The developed system prototype does not understands GCQ+ query atoms of the form
r(x*, y*), r* ∊ RelRCC8 and x*,y* ∊ AxRCC8. Currently if these atoms are used then the program
identifies them as standard role without taking into account their spatial properties. However,
a slight modification should be done and respectively tested. The first proposal is not to
change the Rewriting and Unfolding parts of the Reasoner but try to use SQL spatial
correspondence functions, which can handle relations of the type DC(x*,y*), TPP(x*,y*), etc.
and embed these mappings in the mapping text files. The OpenGIS functions for geometry
relationship [38] are possible alternatives, e.g. ST_Equals(geometry, geometry),
ST_Touches(geometry, geometry), etc. However, a more reasonable approach is to include
the latter mappings, e.g. in a Java interface, since these mappings are universal and the user
does not need to specify them explicitly. Thus the Undolding process should be modified in
order to correctly insert openGIS functions into the SQL query.

Another reasonable improvement is to migrate the developed system to an online platform
that can be accessed by many users without needing to distribute the source code and thus
also benefiting from the advantages of a web application versus desktop standalone program,
e.g. less operational cost for software installation and maintenance, better system accessibility

6. Evaluation

71

and availability, immediate effect of software patches, etc. In addition, it will be beneficial if
additional features and reasoning tasks are added to the developed system, e.g. consistency
checks and satisfiability tests.

7. Conclusion

72

7 Conclusion

The core theoretical conclusions of this Master Thesis is that the query language GCQ+,
capable of querying spatial ontologies with respect to a DL-Lite(RCC8) TBox, can be used to
answer complex queries in an effective way over geographical databases. This is realized by
the integration of a realistic top-down approach that makes use of object-to-data mappings
and an optimized adapted version of a Perfect Rewriting Algorithm, considering geographic
application domains.

In a nutshell, at the first step the input query, containing GCQ+ atoms, is reformulated with
the help of the Positive Inclusions (PIs) from the DL-Lite(RCC8) TBox. After the Perfect
Rewriting processing, the second step performs an Unfolding algorithm that avoids the
explicit materialization of the virtual ABox and consequently generates an SQL query that can
be issued directly over the spatial database. This is achieved by using the object-to-data
mapping specifications. Thus, although the described reasoning algorithms are dependent on
the size of the TBox and the queries, this is not a crucial disadvantage, since normally w.r.t.
geographical scenarios, the size of the TBox and queries is relatively small in comparison to
the size of the persistent geo-data, stored in a database. The main asset of this approach is that
the result set of the output SQL query of the Unfolding step coincides with the results of the
initial query over the ontology. Thus the data complexity of the entire algorithm is in AC0,
making use of the query optimization techniques provided by current database management
systems.

Last but not least, a software application, called OnQuAnSpatial has been developed that
realizes the latter mentioned theoretical conclusion and provides the basic features of
ontology based query answering over spatial databases. Although, the developed system is not
a fully functional and bug-free commercial product, it usage is highly recommend. The
OnQuAnSpatial prototype can be successfully applied for educational purposes, e.g. in
workshops and practical exercises for students, attending lectures in Artificial Intelligence or
Computer Logics. Moreover, this application can be integrated into research projects, dealing
with ontology based query answering over spatial or traditional databases. In addition, the
OnQuAnSpatial system can be used in order to practically test the effectiveness and
computational complexity of the Adapted Perfect Rewriting Algorithm over spatial
ontologies, by defining worst-case scenarios and changing various test parameter dependences
such as size and type of the TBox, size of the input query and size of the database.

Appendix

73

Appendix

A. References

[1] Nardi, D; Brachman, R. J., "An Introduction to Description Logics," in THE DESCRIPTION LOGIC

HANDBOOK, F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-Schneider, Eds.,

Cambridge, Cambridge University Press, 2003.

[2] F. Wolter, "Ontology Languages," 19 Sep 2011. [Online]. Available:

http://www.csc.liv.ac.uk/~frank/teaching/comp08/lecture1.pdf. [Accessed 1 Sep 2012].

[3] Baader, F.; Nutt, W., "Basic Description Logics," in THE DESCRIPTION LOGIC HANDBOOK, F.

Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-Schneider, Eds., Cambridge,

Cambridge University Press, 2003, p. 43.

[4] Brachman, R. J.; Levesque, H. J., "The Tractability of Subsumption in Frame-Based Description

Languages," AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org), California, 1984.

[5] Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G; Lenzerini, M; Rosati, R, "Linking Data to

Ontologies," Rome, 2008.

[6] D. Calvanese, "Knowledge Representation and Ontologies, Part 1: Modeling Information through

Ontologies," Free University of Bolzano/Bozen, 09 July 2012 / kro_1. [Online]. Available:

http://www.inf.unibz.it/~calvanese/teaching/11-12-kro/lecture-notes/KRO-1-ontologies-

uml.pdf. [Accessed 25 08 2012].

[7] Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Poggi, A.; Rodriguez-Muro, M.; Rosati,

R., "Ontologies and Databases:The DL-Lite Approach," Springer, 2009.

[8] The PostgreSQL Global Development Group , "PostgreSQL," The PostgreSQL Global Development

Group, 2012. [Online]. Available: http://www.postgresql.org/. [Accessed 6 10 2012].

[9] Oracle, "Oracle® Spatial Developer's Guide 11g Release 1 (11.1)," Oracle, 2009. [Online].

Available: http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/toc.htm. [Accessed 7 10

2012].

[10] Microsoft, "Working with Spatial Data (Database Engine) SQL Server 2008 R2," Microsoft, 2012.

[Online]. Available: http://msdn.microsoft.com/en-us/library/bb933876.aspx. [Accessed 8 10

2012].

[11] IBM, "DB2 Spatial Extender and Geodetic Data Management Feature User's Guide and

Reference," 2009. [Online]. Available:

ftp://public.dhe.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db2sbe90.pdf. [Accessed

Appendix

74

8 10 2012].

[12] United States Census Bureau, "TIGER/Line® Shapefiles and TIGER/Line® Files," 16 Aug 2012.

[Online]. Available: http://www.census.gov/geo/www/tiger/shp.html. [Accessed 8 Oct 2012].

[13] I. Horrocks, "The FaCT System," , 2003. [Online]. Available:

http://www.cs.man.ac.uk/~horrocks/FaCT/. [Accessed 8 Oct 2012].

[14] P. F. Patel-Schneider, "The DLP Experimental Description Logic System and Propositional Modal

Logic Satisfiability Checker," June 2010. [Online]. Available: http://ect.bell-

labs.com/who/pfps/dlp/. [Accessed 8 Oct 2012].

[15] Moeller,R.; Haarslev,V., "Racer - Renamed Abox and Concept Expression Reasoner," 2012.

[Online]. Available: http://www.sts.tu-harburg.de/~r.f.moeller/racer/. [Accessed 06 Oct 2012].

[16] QuOnto, "QuOnto QUerying ONTOlogies," SAPIENZA Università di Roma --- Dipartimento di

Informatica e Sistemistica Antonio Ruberti, 2012. [Online]. Available:

http://www.dis.uniroma1.it/quonto/?q=node/25. [Accessed 8 Oct 2012].

[17] Smid, M.; Kouba, Z., "OnGIS: Ontology Driven Geospatial Search and Integration," 18 Sep 2012.

[Online]. Available: http://ceur-ws.org/Vol-901/paper3.pdf. [Accessed 8 Oct 2012].

[18] M. Vardi, "The Complexity of Relational Query Languages," 1982.

[19] J. Savage, "Models of Computation, Exploring the Power of Computing," 2008.

[20] S. Abitebou, R. Hull and V. Vianu, "Chapter 17. First Order, Fixpoint, and While," in Foundations

of Databases, Addison-Wesley, 1995, pp. 430-433.

[21] Eiter,t.; Gottlob, G.; Ortiz, M.;Simkus, M., "Query Answering in the Description Logic Horn-SHIQ,"

2008.

[22] Calvanese, D.;Zakharyaschev, M., "22nd European Summer School in Logic Language and

Information," Aug 2010. [Online]. [Accessed 16 Sep 2012].

[23] T. Pankowski, "XML Schema Mappings Using Schema Constraints and Skolem Functions," in

Knowledge-Driven Computing. Knowledge Engineering and Intelligent Computations, Springer-

Verlag Berlin Heidelberg, 2008, pp. 199-216.

[24] Barrasa, J.; Corcho, O.; Gomez-Perez, A., "R2O, an extensible and semantically based database-

to-ontology mapping language," 2004. [Online]. Available:

http://www.cs.man.ac.uk/~ocorcho/documents/SWDB2004_BarrasaEtAl.pdf. [Accessed 17 Sep

2012].

[25] Goasdoue, F.; Lattes, V.; Rousset, M.-C., "The use of CARIN language and algorithms for

information integration: The Picsel system," 2000. [Online]. Available:

http://www.lri.fr/~goasdoue/bib/GoasdoueLattesRousset-IJCIS-00.pdf. [Accessed 17 Sep 2012].

Appendix

75

[26] Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Rosati, R., "Tractable Reasoning and

Efficient Query Answering in Description Logics: The DL-Lite Family," 2007. [Online]. Available:

http://www.dis.uniroma1.it/~degiacom/papers/2007/calv-etal-JAR-2007.pdf. [Accessed 18 Sep

2012].

[27] Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Rosati, R., "Path-based Identification

Constraints in Description Logics," 2008. [Online]. Available:

http://www.dis.uniroma1.it/~degiacom/papers/2008/KR08ids.pdf. [Accessed 18 Sep 2012].

[28] Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Rosati, R., "Data Complexity of Query

Answering in Description Logics," 2006. [Online]. Available:

http://www.dis.uniroma1.it/~degiacom/papers/2006/KR06Calvanese.pdf. [Accessed 18 Sep

2012].

[29] Oezcep, O.L.; Moeller, R., "Computationally Feasible Query Answering over Spatio-thematic

Ontologies," 2012. [Online]. Available: http://www.sts.tu-

harburg.de/~r.f.moeller/papers/2012/OeMo12.pdf. [Accessed 19 Sep 2012].

[30] Oezcep, O.L.; Moeller, R., "Combining DL-Lite with Spatial Calculi for Feasible Geo-thematic

Query Answering," 2012.

[31] Randell, D. A. ; Cui,Z.; Cohn, A. G;, "A Spatial Logic based on Regions and Connection,"

PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON KNOWLEDGE REPRESENTATION AND

REASONING, 1992.

[32] J. Renz, Qualitative Spatial Reasoning with Topological Information, vol. 2293, Wien: Springer,

2002.

[33] Oezcep, O.L; Moeller, R., "Combining Lightweight Description Logics with the Region Connection

Calculus," 2011.

[34] Google Maps, "Google Maps Europe," Google, 2012. [Online]. Available:

http://maps.google.com/. [Accessed 2012 Sep 21].

[35] Oezcep, O.L.; Moeller, R., "Scalable geo-thematic query answering," Institute for

Softwaresystems (STS), Hamburg University of Technology, Hamburg, 2012.

[36] D. Calvanese, "Knowledge Representation and Ontologies Part 3: Query Answering in Databases

and Ontologies," 2012.

[37] D. Calvanese, "Knowledge Representation and Ontologies Part 5: Reasoning in the DL-Lite

Family," 2012.

[38] PostGIS, "Chapter 6. PostGIS Reference," 2012. [Online]. Available:

http://postgis.refractions.net/documentation/manual-1.3/ch06.html#id2574404. [Accessed 1

Oct 2012].

Appendix

76

[39] Brachman, R. J.; Schmolze, J. G., "An Overview of the KL-One Knowledge Representation

System," 1985. [Online]. Available:

http://eolo.cps.unizar.es/docencia/MasterUPV/Articulos/An%20Overview%20of%20the%20KL-

ONE%20Knowledge%20Representation%20System-Brachman1985.PDF. [Accessed 2 Sep 2012].

[40] M. Schmidt-Schauß, "Subsumption in KL-ONE is Undecidable," 1989. [Online]. Available:

http://www.ki.informatik.uni-frankfurt.de/papers/schauss/KLONE-UNDEC2004.pdf. [Accessed 2

Sep 2012].

[41] Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Rosati, R., "DL-Lite: Tractable

description logics for ontologies," 2005.

[42] PostGIS, "Chapter 6. PostGIS Reference," 2012. [Online]. Available:

http://postgis.refractions.net/documentation/manual-1.3/ch06.html#id2574404. [Accessed 1 10

2012].

Appendix

77

B. Abbreviations

A
AWT - Abstract Window Toolkit

B

C

D
DBMS – Database Management System
DL – Description Logics

E

F
FOL – First Order Logic

G
GCIs - General Inclusion Axioms
GPA - Grade Point Average

H

I

J
JAXB - Java Architecture for XML Binding

K
KB- Knowledge Base

L

M
MAF - Master Address File

N

O
OBDA – Ontology Based Data Access
OnQuAnSpatial - Ontology Based Query Answering over Spatial Databases
OWL - Web Ontology Language

P

Q

R
R2O - Relational to Ontology language
RCC - Region Connection Calculus

Appendix

78

R
RDMS - Relational Database Management System

S
SQL - Structured Query Language

T
TIGER - Topologically Integrated Geographic Encoding and Referencing

U
UCQ – Union of Conjunctive Queries
UML- Unified Modeling Language
UNA – Unique Name Assumption

V
v/r – value restriction

W
W3C - World Wide Web Consortium

X
XML - Extensible Markup Language

Y

Z

Appendix

79

C. CD Content

The CD attached to this Master Thesis contains:

1. A PDF document of this Master Thesis
2. The complete java source code of the developed OnQuAnSpatial system
3. Required Java libraries to run the application
4. Experiments and test results

