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vorgelegt.

Hamburg, den 24. September 2012

Jonathan Hüser
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1 Introduction

Asynchronous programs contain procedure calls that are not executed from the call
site, but posted as tasks in a queue for later (asynchronous) execution. Tasks are
always run to completion after which the next task is “dispatched” from the queue
in a non-deterministic order, creating a schedule of executed tasks [4].

With this execution style, tasks in asynchronous programs are similar to atomic
operations in concurrent programs. Writing correct concurrent programs is chal-
lenging, and the same can be said about asynchronous programs.

Global variables may be altered by operations between the call and the dispatch
of a task and it is non-deterministic which operations appear between these points.
To gain control, it is important to consider how to enforce a certain execution order
(scheduling). A possible option is to utilize boolean flags as guards as seen in the
following asynchronous program:

task main:

pending := false

post prepare

post send

task prepare:

pending := true

task send:

if pending then

R: ...

The program starts at the entry of the main task by assigning the global boolean
variable pending to false. Then the tasks prepare and send are posted, either of
which could be executed next because of the non-determinism of the dispatcher.

Considering all possible execution traces, we come to the conclusion that the code
at label R can only ever be reached if the prepare task was dispatched before send,
due to the global flag pending.

The non-deterministic aspect in the execution of asynchronous programs generates
a critical need for better precision in static analysis techniques (as asynchronous
programs are typically written to provide high-performance infrastructure) [4]. The
method of eliminating unwanted schedules from the list of possible execution orders
with boolean guards as seen in the program above, is not yet considered by the
approach to data flow analysis of Jhala and Majumdar [4], despite the fact that it
provides potential to improve them.

The goal of this thesis is to improve an existing interprocedural analysis for asyn-
chronous programs by considering global boolean flag values to make it path-sensitive
and eliminate invalid data flow. We present an extended approach to the interpro-
cedural analysis of asynchronous programs by taking the following steps:
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1 Introduction

• We present a unified approach to path-sensitive interprocedural analysis of
asynchronous programs combining the previous works of Ball and Rajamani
with that of Jhala and Majumdar (Section 4). Path-sensitive data flow anal-
yses provide the general means to rule out infeasible paths by tracking corre-
lations between data flow facts, which is exactly what we need to deal with
boolean guards.

• A boolean value analysis can be used to correlate flag values to program paths,
making it possible to ignore paths from the analysis, that are eliminated by
the use of guards. In Section 4 we present a straight-forward boolean value
analysis.

• Using the boolean analysis for path-sensitivity in interprocedural analyses adds
precision to the meet-over-all-valid-paths solution of such problems. We show
this with the example of a classical reaching definition analysis running on our
path-sensitive dataflow engine by evaluating it for some example programs and
determining the accuracy of the results (Section 5).

• In Section 5 we also show that in some cases our boolean analysis causes
the combined analysis to converge to a fixpoint faster, making the underlying
algorithm that is used to compute the solution to be more efficient. This is an
interesting result, because generally there is a trade-off between precision and
efficiency in dataflow analyses.
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2 Background: Data Flow Analysis

In this section we will introduce all the relevant ideas about data flow analysis
that are necessary to understand both the problems that occur when attempting
to analyze asynchronous programs, and the solutions to those problems that were
developed in the context of the thesis work.

2.1 Bitvector Analysis

We will start by introducing intraprocedural data flow analysis by taking the example
of a reaching definition analysis. The reaching definition analysis belongs to a group
of analyses called bitvector analyses, that work well as a basis for the techniques
developed throughout the rest of the thesis.

The general goal of data flow analyses is to figure out how data flows through
a programs control structures [5]. This can be done by looking at how statements
and expressions manipulate and transport the values of variables. There are very
different data flow analyses and each of them has the goal of answering a different
question. In order to understand how data flow analyses actually work, we first need
to understand what it is they analyze and how data flow information is represented.

Flow-sensitive analyses, the kind of data flow analyses we are interested in, work
with a control flow graph representation of a program.

Control Flow Graph. A procedure is represented by a directed graph Gp =
(Vp, Ep) called a control flow graph (CFG). The CFG has a unique Start node sp
and a unique End node ep. The other nodes represent the statements and conditions
(basic blocks). The edges describe the flow of the represented program.

The reaching definition analysis is a data flow analysis that determines for all
program points, which definitions (assignments) of a variable can possibly reach that
point without being overwritten [5]. The emphasis is on “possibly”, because it is
not always possible to get an accurate result with data flow analyses in general. The
result of the reaching definition analysis approximates by providing more definitions
than are actually valid at a program point, rather then leaving one out. A reaching
definition analysis can be useful for finding relations between definitions of variables
and expressions in which they are used (definition-use pairs) to build data flow
dependency models while debugging and for optimization purposes by eliminating
definitions that are never used [5].

Consider Figure 2.1, in which you can see the control flow graph of a simple
procedure with only one variable a and the result of a reaching definition analysis
annotated on the edges of the graph.
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2 Background: Data Flow Analysis

Start

1: a := 1

if a < 2 2: a := 2

R: skip

End

{}

{(a, 1)}

{(a, 1)}

{(a, 1)} {(a, 2)}

{(a, 1), (a, 2)}

Figure 2.1: Reaching definition analysis for a single variable

There are two assignments in Figure 2.1 that involve variable a labeled 1 and 2.
The reaching definition analysis starts at the Start block of the CFG. Because a is
undefined at that point, the set of reaching definitions is empty, which is annotated
as {} on the edge from the Start block to the first assignment. We use tuples of
variable name and assignment label, to refer to a certain definition of a variable.
After the first assignment, the set of reaching definitions is {(a, 1)}, meaning the
definition in the first assignment reaches the following program points until there is
another assignment. At that point, the control flow splits into two branches, one
of which would never be executed in an actual run of the program, because the
condition a < 10 always holds. A simple flow-sensitive reaching definition analysis
still considers both paths because it does not keep track of the values of variables.
Just before the End block, the set of reaching definitions is {(a, 1), (a, 2)} because in
one branch another assignment is made and after the branches are joined either of
the two assignments could be the reaching definition.

Given that all nodes in the CFG can be referred to by their unique labels n and
pred(n) is defined as the set of labels of all predecessors of node n, the relation
between the sets of possibly reaching definitions between different points in the
program can generally be described by the following data flow equations [5]:
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INn =


∅ n is a Start block⋃

p∈pred(n)

OUTp otherwise

OUTn = (INn \KILLn) ∪GENn

The INn set is responsible for combining the previously valid data flow facts and
is defined as the union of all OUTp sets of the nodes predecessors. This combination
of data flow fact is also called meet. OUTn is the actual data flow transfer function
or just data flow function. It is formulated using the three sets INn, KILLn and
GENn, where

• INn is the parameter of the data flow function, the set of data flow facts that
are valid before block n,

• KILLn is the set of data flow facts that are killed by block n, meaning they
are not valid after that block, and

• GENn is the set of data flow facts that are generated by block n.

In case of the reaching definition analysis only assignment blocks actively manip-
ulate the data flow. The KILLn and GENn sets are defined as follows:

KILLn =

{
{(a,m) ∈ vars× labels | a is defined in m and n} n is assignment

∅ otherwise

GENn =

{
{(a, n) ∈ vars× labels | a is defined in n} n is assignment

∅ otherwise

An assignment block kills all previous definitions of the assigned variable and
generates the tuple of that variable and the assignment label.

The reaching definition analysis is a classical example of a bitvector analysis.
It is called a bitvector analysis because its data flow facts can be encoded using
bitvectors. Bitvectors allow for fast set union and intersection computation as bit-
wise operations [5]. Some bitvector analyses use intersection instead of union to
combine (meet) data flow facts, run backwards, or both. All of them necessarily have
finite data flow information, something that will turn out to be a useful property
later on.

We learned that data flow analyses can be used to gather information about
programs for optimization purposes or debugging. We also saw how simple analysis
problems such as the bitvector analyses can be described with data flow equations
by defining GEN and KILL sets.
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2 Background: Data Flow Analysis

2.2 Data flow Frameworks

We will now introduce some of the concepts needed to show that there can be a
solution to an analysis problem that can be computed algorithmically. Our goal is
to arrive at a simple framework that can be used to formulate data flow problems
for which we know that an algorithm to solve them correctly also terminates.

If a set of data flow equations can be used to describe how information propagates
through the CFG of a program, then solving this set of equations solves the data
flow analysis problem [5].

Data flow frameworks can be used to categorize analysis problems. Different kinds
of analyses require different levels of complexity in the algorithms that solve them.

The relation between data flow facts and the data flow equations in the reaching
definition analysis in Figure 2.1 are relatively simple. Consider the data flow facts
in Figure 2.2.

{(a, 1), (a, 2)}

{(a, 1)} {(a, 2)}

{}

Figure 2.2: Complete lattice for reaching definition example in Figure 2.1

The way in which data flow facts in Figure 2.2 are arranged, represents the order
in which they appear in the analysis in Figure 2.1. At the beginning of the program
there is no data flow information present, so the analysis starts at the bottom with
an empty set. With each assignment there is either a new definition (as is the case
in block 1), or another definition is overridden (block 2). In the first case it causes
the data flow information to be extended which correlates to going up in Figure 2.2.
In the second case it causes some data flow fact to be replaced which correlates to
staying at the same level in Figure 2.2.

When different sets of data flow facts meet in the IN set of a block, this also
correlates to going up in the lattice, if they are different or staying at the same level,
if they are equal.

It will later become relevant that at no point in the analysis data flow information
is reduced.

For now it is sufficient to realize that the subset operator ⊆ induces a partial order
over the data flow facts in the reaching definition analysis of Figure 2.1.

Partially Ordered Set. A partially ordered set (P,v) is a set P with a relation
v over P × P that is a partial order, meaning it is:

1. Reflexive. For all d ∈ D : d v d

2. Transitive. For all d1, d2, d3 ∈ D : d1 v d2 and d2 v d3 implies d1 v d3
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3. Anti-symmetric. For all d1, d2 ∈ D : d1 v d2 and d2 v d1 implies d1 = d2

All of the conditions of a partial order hold for the subset ⊆ relation, but there can
also be partially ordered sets with other relations. The subset operator ⊆ induces
a partial order not only on the data flow facts in Figure 2.2 but on any power set
2D. Within a partially ordered set (2D,⊆) there is also the notion of the least upper
bound and greatest lower bound.

Least upper bound / Greatest lower bound. For a partially ordered set (P,v)
an upper bound (lower bound) of a subset S ⊆ P is an element s1 ∈ S such that for
all s2 ∈ S: s2 v s1 (s1 v s2). The least upper bound (or join) of a subset S ⊆ P is⊔
S an upper bound s1 ∈ S such that for all other upper bounds s2 ∈ S: s1 v s2.

The greatest lower bound (or meet) of a subset S ⊆ P is
d
S a lower bound s1 ∈ S

such that for all other lower bounds s2 ∈ S: s2 v s1.
Within the partially ordered set (2D,⊆) the least upper bound of a subset S ⊆ 2D

is actually
⋃
S, the union of all sets in S and the greatest lower bound of a subset

S ⊆ 2D is
⋂
S, e.g. in the case of the example in Figure 2.2, the least upper bound

of {{(a, 1)}, {(a, 2)}} is
⋃
{{(a, 1)}, {(a, 2)}} = {(a, 1) , (a, 2)}.

The reason we need the least upper bound and the greatest lower bound is to
show that the power set of data flow facts is not only a partially ordered set, but
also a complete lattice.

Complete Lattice. A partially ordered set (P,v) is a complete lattice iff for all
subsets S ⊆ P , both the least upper bound

⊔
S and the greatest lower bound

d
S

are in P .
The example in Figure 2.2 is a complete lattice, although a trivial case. More

generally, all power sets (2D,⊆) of data flow facts with the subset relation are
complete lattices.

We already hinted that the data flow equations cause the data flow information
in the sets to “go up” in the lattice. Actually the bottom element ⊥ in its lattice is
the most accurate statement an analysis can make at any point. The top element
> is the most inaccurate or approximated.

What accurate means in this context is not necessarily that something is correct,
but that there is no ambiguity. Just giving the top element > as answer for all
points in the program, always gives a correct solution to the analysis problem which,
however, is inaccurate or ambiguous.

The above is relevant because complete lattices have a property that is useful
for data flow analyses: If you know “the ways that only go up eventually lead to
a fixpoint” and “you only go up” you can prove that you eventually arrive at a
solution. The first condition is called the ascending chain condition.

Ascending Chain Condition. A partially ordered set (P,v) satisfies the ascend-
ing chain condition iff every ascending chain p1 v p2 v ... (pi ∈ P ) stabilizes,
meaning there exists an n such that for all m > n pn = pm.

The ascending chain condition trivially holds for finite complete lattices because
there is no element in the lattice that is bigger than the least upper bound of all
elements.
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2 Background: Data Flow Analysis

The second condition that needs to be met for an analysis to terminate is that
data flow facts may only “go up” or “stay at the same level” in the lattice throughout
the analysis. A formal way of expressing this, is by saying that data flow functions
have to be monotone.

Monotone Function. A data flow function f : 2D → 2D is called monotone iff for
all d1, d2 ∈ 2D: d1 v d2 implies f(d1) v f(d2).

If f is monotone then f(d1 u d2) v f(d1) u f(d2).
What it means for a data flow function to be monotone is that applying that

function to a set of data flow facts cannot make them more specific. An even
stronger statement is to say that a data flow function is distributive.

Distributive Function. A data flow function f : 2D → 2D is called distributive iff
for all d1, d2 ∈ 2D: f(d1 u d2) = f(d1) u f(f2).

If f is distributive, it is also monotone.
If a data flow function is distributive, it does not matter whether you put two sets

of data flow facts through the manipulating effects of a block (such as an assignment)
and let them meet after the block, or let them meet first and then apply the data
flow function of the block.

All bitvector analyses are examples of distributive analysis problems, because of
the way their IN sets are defined using the meet of previous data flow information
[5]. Distributive analysis problems have the advantage that it is actually possible to
calculate their precise solution with low complexity [6].

After discussing complete lattice, ascending chain condition and distributive func-
tions, we can use these concepts to define a framework for analysis problem for which
it is always possible to compute a solution, by demanding that an analysis

• has to have a finite set of data flow facts,

• needs to be distributive and

• has data flow facts that form a power set with the meet operator either being
set union or intersection.

FDS Instance. The instance of a finite distributive subset framework is a tuple
(G,D,F,M,u), where

1. G = (V,E) is the CFG of a program,

2. D is a finite set of data flow facts,

3. F ⊆ 2D → 2D is a set of distributive data flow functions,

4. M : E → F maps each edge of G to a distributive data flow function,

5. The meet operator u is either union or intersection.

Looking at the reaching definition analysis example in Section 2.1 as an FDS
instance we get:

8
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• G is the CFG visible in the Figure 2.1,

• D = {(a, 1), (a, 2)},

• F is set of functions f(X) = (X \KILL) ∪GEN with KILL,GEN ∈ 2D,

• M maps outgoing edge of block n to OUTn,

• The meet operator u is union ∪.

There are more general formulations of distributive frameworks than FDS. There
are also even more general monotone frameworks that can be used to describe non-
distributive data flow problems such as constant propagation [5]. The FDS frame-
work serves well enough as a general basis to build upon to develop the more complex
analysis problems presented throughout the rest of the thesis.

2.3 Meet-over-all-Paths Solution

The previous sections give an intuition on what the result of a data flow analysis is.
We will now actually define the precise solution to an FDS instance and show how
it can be computed with an iterative algorithm.

The question of how data is manipulated from the beginning of program execution
up to a point in the program, answered for all points in the program, is the solution
to a data flow analysis problem. From the perspective of a single program point,
finding the solution means finding all the paths in the control flow that could possibly
lead to that point and figuring out how the blocks on that path manipulate the data.
The results are then combined using the meet operator of the analysis, producing
the meet-over-all-paths (MOP) solution. In the case of node R in Figure 2.1, the
MOP solution is

MOPR = {(a, 1) , (a, 2)} = {(a, 1)} ∪ {(a, 2)} = ...

There are only two paths that lead to R and manipulate the data flow facts so
that they are {(a, 1)} for one path and {(a, 2)} for the other. The meet operator in
the reaching definition analysis is the set union ∪. Note that the MOP solution,
there are no IN sets like we saw in the data flow equations. The argument to the
data flow function is not INn =

⋃
p∈pred(n)OUTp in this context, but Xn = fp(Xp)

for the single predecessor p along the path.

To formally define the MOP solution, we first need to define what a path actually
is:

Path. A path π = (e1, ..., en) from node v to v′ is a sequence of edges, where v is
the source of e1, v

′ is the target of en and for each 1 ≤ k ≤ n − 1, the target of ek
is the source of ek+1. π (k) is the kth edge of the path π. We denote the set of all
paths from the Start block to n by P (n).

9



2 Background: Data Flow Analysis

To define how the data flow behaves through a single path, we define the path
function. It is just the data flow function applied to every single node on the path
based on the result of the previous node.

Path Functions. The path function that corresponds to a path π, is the function
PFπ = fn◦ ...◦f2◦f1, where for all k, 1 ≤ k ≤ n, fk = M(ek), the data flow function
on the according edge. The path function for the empty path is the identity function.

To get the general meet-over-all-paths solution to an analysis problem, we not
only need a single node and all of its paths. The path function of every path from
program start to every node in the CFG needs to be considered.

MOP Solution. The meet-over-all-paths solution to an FDS instanceA = (G,D,F,M,u)
is a map MV Pn : V → 2D:

MOPn =
l

π ∈ P (n)

PFπ (⊥) for each n ∈ V

For intraprocedural analyses the MOP solution is the precise solution [6].

A straight forward way of implementing an analysis that computes the MOP
solution would be to go through all paths for all nodes and computing the path
functions separately. This approach has high complexity and is not efficient enough
in most cases.

A better strategy is to go through the control flow graph and iteratively calculating
the IN and OUT sets of blocks on the basis of what is already known until the
content of all sets stop changing and a fixpoint is reached. An efficient way of
implementing such a strategy is by using a worklist algorithm.

WL := nil;
forall the (l, l′) ∈ edges(CFG) do

WL := cons((l, l′), WL);
end
forall the l ∈ blocks(CFG) do

INl := ⊥;
end
while WL 6= nil do

(l, l′) := head(WL);
WL := tail(WL);
if INl′ 6= OUTl then

INl′ := INl′ ]OUTl;
forall the l′′ with (l′, l′′) ∈ edges(CFG) do

WL := cons((l′, l′′), WL);
end

end

end
Algorithm 1: Worklist Algorithm

10
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The worklist algorithm has a list of edges (the worklist) on which it operates until
it is empty. In the beginning, all edges of the CFG are put into the worklist. Each
iteration the algorithm computes the data flow through the node that is the target
of the edge at the head of the worklist and if the result in the OUT set differs from
what it previously was, all edges pointing to successor nodes are added at the back
of the worklist. The worklist will only ever be empty, if a fixpoint is reached.

The result computed by this algorithm is not the MOP solution, because data flow
facts meet at the IN set of a node in every iteration and not just before the node.
The solution computed by an iterative approach is called the maximum-fixed-point
solution for historical reasons [5], and in the context of how data flow analyses were
introduced within this thesis should rather be called smallest-fixed point, because it
is the most imprecise fixpoint solution.

MFP Solution. The maximum-fixed-point (MFP) solution is the smallest fixpoint
of the data flow equations in a lattice where the most accurate solution is at the
bottom and solutions are approximated by moving upwards. For the instance of
a monotone framework as its input, the worklist algorithm always terminates and
computes the MFP solution to the instance.

The MFP solution safely approximates the MOP solution for monotone frame-
works (MFP vMOP ), because f(d1 u d2) v f(d1)u f(d2). For distributive frame-
works the MOP solution is equal to the MFP solution (MFP = MOP ), because
f(d1 u d2) = f(d1) u f(d2) [5]. Therefore, the worklist algorithm can be used to
compute the precise solution of distributive frameworks such as FDS frameworks.

We now have all the tools to explore the problems of asynchronous program anal-
ysis and also saw a practical example of what data flow analysis could generally be
used for.
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3 Analysis of Asynchronous Programs

In this section, we will describe the problems that arise when analyzing asynchronous
programs, specifically those that use boolean flags to manipulate execution order.

3.1 Asynchronous Programs

In regular procedural programs, whenever a (synchronous) call is made, the execu-
tion jumps into the called procedure directly from the call site. In contrast to that,
in asynchronous programs, procedures can be called asynchronously causing them
to not be executed from the call site, but scheduled in a task queue to be executed
later. Asynchronously called procedures will therefore be called tasks. Tasks are
always run to completion, after which a non-deterministic scheduling mechanism
choses the next task from the queue. This execution model results in the fact that
in asynchronous programs, global variable values can change between the call site
and the jump into a procedure, a relevant difference to regular procedural programs
when concerned with data flow analysis.

The fact that asynchronous programs are an extension of regular interprocedural
programs will be ignored in this thesis. We will not consider synchronous calls at
all, because this adds unnecessary confusion to an already complex problem.

The concept of asynchronous calls permits for some of the advantages of paral-
lel programming, without having to worry about synchronization, e.g. to support
non-blocking I/O-intensive operations. Asynchronous programs also form the basis
of event-driven programming, the paradigm in which external events influence the
execution of programs. In asynchronous programs, this behavior can be modeled
through callback tasks, which are scheduled to respond to external events.

Consider the example program in Figure 3.1. There are three tasks: main,
prepare and send. It is safe to assume that an actual execution of the program
would start by dispatching the main task. Within the main task, the two other tasks
are posted to be executed later on, after the end of the main task. After the End

node, there is no deterministic way of knowing how execution will continue. Either
prepare is dispatched first and run to completion after which send would be the
only task left to be executed or the other way around. The dotted arrows that con-
nect all End nodes of the individual tasks with all Start nodes describe the control
flow between tasks.

The intraprocedural CFG of each task can be collapsed and what remains is a
complete directed graph. This observation is valid for any asynchronous program
and directly results from the fact that the most general assumption we can make
about the dispatcher is, that tasks are executed in an arbitrary order.

13



3 Analysis of Asynchronous Programs

Start

1: a := 1

pending := false

post prepare

post send

End

main:

Start

End

2: a := 2

pending := true

prepare:

Start

End

if pending

send:

R: skip

true

false

Figure 3.1: Asynchronous Program

Asynchronous Control Flow Graph. An asynchronous program is represented
by a directed graph Ĝ = (V̂ , Ê) called asynchronous control flow graph (ACFG).
Ĝ consists of a collection of CFGs G1, G2, ..., one for each task. In addition to the
intraprocedural edges, Ĝ contains interprocedural asynchronous dispatch edges from
every End node to every Start node in the graph.

The problem of the ACFG in the context of data flow analysis is that with the
straight-forward approach of treating the ACFG like a CFG and the analysis as
an intraprocedural one, the results will be very inaccurate [6]. This is true for
interprocedural analysis in general, but even more so for asynchronous programs,
because they are so highly connected interprocedurally [4]. In order to obtain a
precise analysis result, an addition to the analysis is necessary that adds a sense of
context to data flow information based on the asynchronous calls that were made.

The general difficulty with asynchronous programs is, that there is no determin-
istic connection between the asynchronous calls and the interprocedural execution
order. Ignoring this difficulty, leads to unsound results [4]. Not ignoring it leads to
the necessity of an analysis that is much more complex than what we have seen so
far.
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3.2 AFDS Framework

We will now show how the analysis of asynchronous programs can be made context-
sensitive to allow only valid execution orders. Context-sensitivity makes the impor-
tant step towards accurate data flow analysis for asynchronous programs by giving
data flow information a sense of interprocedural context. Specifically, the goal is to
keep track of the calling context in the paths of the MOP solution, to be able to
ignore interprocedurally invalid paths.

For regular interprocedural programs, context-sensitivity can be achieved by using
a Dyck language (a language with balanced parentheses labeled according to calling
context) to check whether all called procedures are returned from to the correct pro-
cedure. Normally, this feature needs to be included in the interprocedural analysis
of asynchronous programs, because they support synchronous calls as well [4]. We
will ignore synchronous calls entirely, for reasons of simplicity.

Context for asynchronous calls is in a way simpler than that of synchronous calls,
because there are no interprocedural return edges in the control flow and therefore
there is no need to check for a balance between call and return edges. But context for
asynchronous calls is in another way also more complicated, because asynchronous
execution order is non-deterministic and there is no simple way of formulating valid
interprocedural context with a context-free language [6]. One way to achieve context-
sensitive interprocedural analysis for asynchronous programs is to use counters that
track how often each task has been posted [4].

Consider the example in Figure 3.2, which shows a reaching definition analysis
with counters. There are now three numbers in addition to the data flow facts of the
reaching definition analysis on each edge. These numbers are counter that indicate
how often each of the tasks is scheduled to be executed respectively (the first number
for main, the second for prepare the third for send).

The analysis starts with the counter for the main task being at 1 and all other
counters at 0, i.e. main is the task that is dispatched and executed first in any case.
Within the main task, the two asynchronous calls cause the respective counters of
the called task to be increased.

After the End block of the main task, data flow information is propagated to the
Start blocks of all three tasks according to the interprocedural edges. In the case of
main, data flow information is ignored, because the respective counter is zero. In the
other two tasks data flow information is propagated through the Start block, and
the respective counter is decreased to indicate that the task has been dispatched.
The rest of the analysis continues as expected while some of it is left out in Figure
3.2 in order to keep it clear.

It is relevant to notice, that two different data flow facts reach R, when actually
only one of them would in a real execution of the program. We define the framework
for the category of problems that can be solved with a counter analysis as the
asynchronous finite distributive subset framework.
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Start

1: a := 1

pending := false

post prepare

post send

End

main:

Start

End

2: a := 2

pending := true

prepare:

Start

End

if pending

send:

R: skip

1, 0, 0, {}

0, 0, 0, {}

0, 0, 0, {(a, 1)}

0, 0, 0, {(a, 1)}

0, 1, 0, {(a, 1)}

0, 1, 1, {(a, 1)}

0, 1, 1, {(a, 1)} 0, 1, 1, {(a, 1)}

0, 0, 1, {(a, 1)}

0, 0, 1, {(a, 2)}

0, 0, 1, {(a, 2)}

0, 1, 0, {(a, 1)}

0, 1, 0, {(a, 1)}

0, 1, 0, {(a, 1)}

0, 0, 1, {(a, 2)}

0, 0, 0, {(a, 2)}

0, 0, 0, {(a, 2)}

0, 0, 0, {(a, 2)}

true

false

Figure 3.2: Asynchronous Program with Reaching Definition and Counter Analysis

AFDS Instance. An instance of an asynchronous finite distributive subset problem
is a tuple A = (Ĝ,D, F,M,u) where:

1. Ĝ is the asynchronous control flow graph (V̂ , Ê) of an asynchronous program,

2. D is the finite set of global data flow facts,

3. F ⊂ 2D → 2D is the set of distributive data flow functions,

4. M : Ê → F maps each edge in Ĝ to a data flow function,

5. u is the meet operator, which is either set union or intersection.

In contrast to the analysis problems it can be combined with, the counter analysis
itself is not an FDS instance, because it is not finite. The fact that the counter
analysis combined with an AFDS instance terminates is also not as straight forward
as it is for regular FDS instances.

There is a proof by Jhala and Majumdar, that their AFDA algorithm solves
AIFDS instances which are the same as AFDS instances except they include syn-
chronous interprocedural analysis [4]. The AFDA algorithm executes two variations
of the counter analysis multiple times for increasing values of an integer k, starting
with k = 1. In one analysis the counters count to k and then stop to increase.
In the other analysis the counters count to k, then jump to ∞ and never decrease
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afterwards. There will be a value of k, for which both of these analyses produce the
same solution. For this fixpoint, the analysis is shown to be correct. The AFDA
algorithm that computes the solution is EXPSPACE-hard [4].

Further details of how exactly the counter analysis works are not relevant to
understanding the problem solved in the context of this thesis. All we need to know
is, that there is a way of computing the precise solution.

To define the precise solution to an interprocedural analysis of asynchronous pro-
grams, we first need a formal notion of what an interprocedurally valid path is. We
will then define the solution as a meet-over-all-valid -paths solution. For a path to
be interprocedurally valid it has to have a schedule.

Schedule. φ : N → N is a schedule for a path π iff φ is one-to-one and for each
1 ≤ k ≤ n, if π(k) is an asynchronous dispatch edge to task t then:

• 0 ≤ φ(k) ≤ k (meaning the node in which the dispatched task was posted
must have appeared on the path) and

• the source of π (φ (k)) is an asynchronous call (post) to task t.

We denote the set of all paths from the Start block in the main task to n for
which there exists a schedule by ScheduledP (n) and call them valid paths in the
context of asynchronous programs.

In the example in Figure 3.2 a schedule for the path from the Start block in the
main task, to the End block of the prepare task would have φ(e) = n with e being
the edge from the End block of main to the Start block of prepare and n being
the index of the edge that has the block with post prepare as a source within the
path.

Given the above definition of a schedule, we can now define the solution to an
AFDS instance as.

MVP Solution. The meet-over-all-valid-paths (MVP) solution to an AFDS in-
stance A = (Ĝ,D, F,M,u) is a map MV Pn : v̂ → 2D:

MV Pn =
l

π ∈ ScheduledP (n)

PFπ (⊥) for each n ∈ V̂

For asynchronous programs, the MVP solution is the precise solution [4].

All of what we have arrived at so far does not change anything about the fact,
that the data flow facts in Figure 3.2 at label R are not completely accurate. If there
was not just a skip statement at R but another post main or more, there could be
much longer interprocedurally valid paths that are infeasible because they would
not occur in an actual execution.

The problem of infeasible paths is a general one, but it is especially relevant
for asynchronous programs. Using intraprocedural control structures is the only
way of enforcing certain interprocedural execution orders when multiple tasks are
scheduled. Figure 3.2 demonstrates the use of a global boolean flags to ”guard” a
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task, which causes it not to be executed if certain conditions have not been met (in
this case if pending is not true).

The key to the problem we just described lies in making the analysis path-sensitive.
Similar to how the counter analysis is combined with the reaching definition analysis
to keep track of interprocedural context, we can add an additional analysis that
correlates paths to intraprocedural control structures making the combined analysis
a path-sensitive one. Because boolean values are easy to keep track of and boolean
guards are a powerful way of manipulating the control flow, we will focus on utilizing
them to obtain a path-sensitive analysis.

We learned that the analysis of asynchronous programs is more complex than
that of regular interprocedural programs and that an additional effort to eliminate
infeasible paths has to be made. Although there is already a good approach available,
in some cases there can be many infeasible paths left even in a context-sensitive
MVP solution, because it ignores the influence of enforced execution orders through
control flow structures.
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In this section, we are going to present a technique that attempts to contribute to the
quality of interprocedural analyses for asynchronous programs. Specifically, we will
introduce a boolean value analysis to make the analysis of asynchronous programs
path-sensitive. We will also provide a more general approach to formulating path-
sensitive analyses for asynchronous analysis problems based on the conditional-subset
meet-over-all-paths solution.

4.1 Boolean Analysis

We will now describe the boolean value analysis approach for path-sensitive inter-
procedural analyses of asynchronous programs. We argue that this approach makes
data flow analyses for asynchronous programs not only more accurate, but also more
efficient in some cases.

The idea behind path-sensitivity is to capture a relation between data flow in-
formation and control structures in a program. What this actually means is: Only
data flow information for which a condition may be true, is propagated along the
according branch in an if-condition or a loop. The same holds for the data flow
information for which a condition may be false.

In the case of a boolean analysis, we want to keep track of the value of a couple
of global boolean flags that are used specifically for the purpose of ordering task
executions. The goal is to eliminate infeasible execution traces depending on con-
ditions that involve the global boolean flags. If booleans that used as guards are
explicitly separate from other values in the program, such an analysis can be very
efficient, because it causes only very little overhead while increasing the accuracy of
the result significantly.

Figure 4.1 shows what a boolean analysis looks like for the example program in
the previous section. The set of data flow facts for a boolean value analysis represent
all possible value combinations (valuations) the boolean flags in the program could
have. There is only one boolean value in the program, so the data flow facts are also
just either true or false.

In fact pending starts out with either being true or false. After the first as-
signment involving pending, the data flow information is reduced so the value of
pending becomes definite. The effect of the boolean value analysis on the reaching
definition analysis can be seen when looking at the data flow information that is
propagated from the main task to the send task. It does not go down the branch of
the if-condition that leads to R, because it is clear that at this point in the program
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Start

1: a := 1

pending := false

post prepare

post send

End

main:

Start

End

2: a := 2

pending := true

prepare:

Start

End

if pending

send:

R: skip

1, 0, 0, {t, f}, {}

0, 0, 0, {t, f}, {}

0, 0, 0, {t, f}, {(a, 1)}

0, 0, 0, {f}, {(a, 1)}

0, 1, 0, {f}, {(a, 1)}

0, 1, 1, {f}, {(a, 1)}

0, 1, 1, {f}, {(a, 1)}

0, 0, 1, {f}, {(a, 1)}

0, 0, 1, {f}, {(a, 2)}

0, 0, 1, {t}, {(a, 2)}

0, 1, 1, {f}, {(a, 1)} 0, 0, 1, {t}, {(a, 2)}

0, 1, 0, {f}, {(a, 1)}

0, 1, 0, {f}, {(a, 1)}

0, 0, 0, {t}, {(a, 2)}

0, 0, 0, {t}, {(a, 2)}

true

false

Figure 4.1: Asynchronous Program with combined Count, Boolean and Reaching
Definition Analysis

pending is false. Because pending is only set to true in the prepare task, only
data flow information that has passed through that task will ever reach R.

For programs with multiple global boolean flags, flags are assigned an ordering
that does not change throughout the analysis. A bitvector x can then be used to
assign a set of boolean values to all the flags in the program, where xi is the value
assigned to the ith flag in the ordering. The set of all possible data flow facts D are
all 2|x| permutations of bitvectors of length |x|, with |x| being the total number of
flags in the program.

Since one bitvector x ∈ D presents one possible valuation of flags, the actual data
flow information can be any set of permutations S ⊆ 2D. The power set of data flow
facts 2D and the subset relation ⊆ form a complete lattice (2D,⊆) in which ⊥ = set
of all permutations and > = ∅.

The relevant blocks in the case of a boolean value analysis are similar to those of a
reaching definition analysis: First of all, assignments have to be considered, because
they manipulate the values of the flags and that is what the boolean analysis is
supposed to keep track of. If-condition and loops are also relevant, because they
involve conditional splitting of the control flow.

Different control structures can be used to influence the flow of a program, but
they all involve a condition and multiple successors in the CFG. We will focus only
on if-condition, because loops, switches etc. can all be handled in the same way.

In each assignment block, only one boolean flag is assigned a new value. The new
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value is the result of the evaluation of some formula with a boolean outcome, that
can consist of propositional elements but may also involve relations over numeric
values or functions. Since the analysis only keeps track of boolean values, we cannot
say anything about the results of relations over numeric values or the return value of
functions. We will focus only on the propositional parts of the formulas, substituting
the non-propositional parts by variables of which we do not know the value.

In the boolean analysis different data flow facts, bitvectors representing different
valuations of flags, are manipulated by assignments one-by-one. For every bitvector,
the formula in the assignment has to be evaluated and the original bitvector will be
replaced with all possible bitvectors in which the newly assigned value is replaced.
The following example illustrates this process.

Imagine a program with two flags flag1 and flag2, and an integer variable a.
Consider following assignment of flag1:

flag1 := flag2 or (a > 2)

If we know that before the assignment flag2 = true, then we know that after
the assignment flag1 = true. If before the assignment flag2 = false, then we
do not know what value flag1 has after the assignment and we have to consider all
possibilities by splitting the existing data flow information into two separate sets,
one for each of the possible scenarios. This splitting of the data flow is essentially,
what path-sensitivity is all about. What happens in the case of a conditional control
flow split illustrates the behavior of a path-sensitive analysis in contrast to that of
a regular flow-sensitive analysis even better.

A condition is also a formula with a boolean outcome, just as the formulas that
are used for assignments. The difference between an assignment block and an if-
condition is basically just, that the assignment splits the data flow information and
propagates both parts to its one successor in the CFG, while the if-condition splits
the data flow information and propagates each part to one of its two successor
branches. The if-condition is simpler, because it does not actually manipulate the
data flow facts like the assignment does.

All data flow facts for which the condition formula could possibly evaluate to
true, are propagated along the ”then”-branch of the if-condition and all data flow
facts for which it could possibly evaluate to false, are propagated along the ”else”-
branch. Some data flow facts may be propagated along both branches, because
the formula could evaluate to either true or false for them just like the case that
flag2 = false in the assignment example above.

To define the boolean analysis using data flow equations, we first need to make
some extensions to the CFG in order to be able to describe the behavior of propa-
gating two different sets of data flow information in the case of if-conditions. The
easiest way to differentiate between the ”then”-branch successor and the ”else”-
branch successor of an if-condition block, is to label all the edges in the graph with
either true or false.
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Conditional ACFG. An asynchronous program is represented by a conditional
ACFG (CACFG) in the same way as by a regular ACFG, with the following addi-
tions: Control flow edges are labeled with either true or false, depending on their
position in the control flow. All edges are labeled true except those, that are outgo-
ing from conditions for the case that the condition is false.
pred(n) is now defined as the set of tuples (p, b), the predecessor labels of block n

and the label of the edge that has p as a source and n as a target.
The changes made to the CFG do not change anything about the arguments that

can be made to prove that an analysis terminates. The conditions an analysis has
to satisfy are still such that all data flow functions need to be monotone. The only
difference is, that the path function will now depend on what labels are on the edges
of the path and the used data flow functions in the chain of function compositions
is chosen accordingly.

It is possible to transform the CACFG into a regular ACFG by replacing an if-
condition with two separate nodes with two different data flow functions. As long
as both of these data flow functions are monotone, the analysis terminates.

Aside from the data flow functions for different kinds of blocks, an analysis also
needs a meet operator to combine data flow information. There are two approaches
in the context of a path-sensitive analysis that combine a boolean value analysis with
some other analysis (like reaching definition). One way is somewhat more intuitive,
but has the issue of causing the analysis not to be distributive. An analysis that
is not distributive is troublesome when arguing about the accuracy of the solution
computed with a worklist algorithm. The other approach is straight forward but
might not be as efficient.

Consider the following three scenarios:

• Two paths meet, for which the set of possible boolean values are the same: In
this case, the data flow facts of the underlying analysis are just combined with
their meet operator and the two paths can be combined into one. Notice that
we only need to keep track of different paths, if we actually have means to
tell how they differ. If the boolean values in both paths are equal, we cannot
differentiate between them and can just recombine the data flow facts of the
underlying analysis.

• Two paths meet, for which both the set of possible boolean values and the
underlying facts are different from each other: In this case, the two paths are
simply kept separate by building a set with two tuples that contain the set of
possible boolean values and the underlying facts for the two paths respectively.
This way of keeping data flow facts split up in a superset, depending on some
other data flow facts (in this case the boolean value facts) is the actual path-
sensitive aspect of the combined analysis.

• Two paths meet, for which the set of boolean values differ, but the underlying
facts are equal: In this case, there is no need to keep the two paths separate,
because they manipulated the underlying data flow information in the same
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way. The intuitive approach would be, to combine the two paths into one, and
just widen the set of possible boolean values. This approach would cause the
boolean analysis not to be distributive and will therefore not be discussed any
further, although it may be viable in practice. We will treat this case as if the
underlying facts were different.

Data flow facts in a combined analysis consist of tuples 〈x, ρ〉 of bitvectors x and
data flow facts of the underlying analysis ρ. u is the meet operator of the underlying
analysis. The meet operator ] of the combined path-sensitive analysis is defined as

X ] Y = {〈z, ρ u σ〉 | 〈z, ρ〉 ∈ X, 〈z, σ〉 ∈ Y } ∪
{〈x, ρ〉 | 〈x, ρ〉 ∈ X, 〈x, σ〉 /∈ Y } ∪
{〈y, σ〉 | 〈y, σ〉 ∈ Y, 〈y, ρ〉 /∈ X}.

To define the combined boolean analysis in terms of data flow equations, we call
Ci the if-condition block with label i, where BFCi is the formula that describes the
condition. BFCi can be evaluated for a given set of flag values x: BFCi(x).
Ai is the assignment block with label i, where xai := BFAi . ai is therefore the

index of the flag, that is assigned in Ai, in the bitvectors that describe the flag
valuation of the program.

Both, the boolean value analysis and the underlying analysis have data flow facts
that form a complete lattice. ⊥b = set of all possible valuations and >b = ∅ are
bottom and top element of the lattice for the boolean analysis as explained earlier.
⊥υ and >υ are the bottom and top element of the lattice for the underlying analysis
and fn is its flow function at block n.

The combined boolean analysis is finally defined by the following data flow equa-
tions:

INn =


〈⊥b, ⊥υ〉 block n is Start of the main task⊎

(p,b)∈pred(n)

OUT bp otherwise

OUT bn =


{〈x, fn(σ)〉 | 〈x, σ〉 ∈ X,BFCi(x) = b} n is Ci

{
〈
(x0, ..., xai−1, BFAi(x), xai+1, ..., x|x|), fn(σ)

〉
| 〈x, σ〉 ∈ X} n is Ai, b is true

{〈x, fn(σ)〉 | 〈x, σ〉 ∈ X} b is true

∅ otherwise

We argue that a combined boolean analysis can be formulated as an AFDS in-
stance, as long as the underlying analysis is the instance of a FDS framework. Any
two data flow analyses with lattices can be combined by constructing a complete
lattice out of the product set of the power sets of data flow sets of the individual
analyses.

We just need to show that the boolean value analysis is a monotone framework:
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1. The power set 2D of the set D of all 2|n| bitvectors of length n and the subset
relation ⊆ are a partially ordered set. (2D,⊆) is a complete lattice, because
for any subset S ⊆ 2D,

⋃
S and

⋂
S are in 2D (⊥ = D, > = ∅).

2. The ascending chain condition trivially holds for the lattice (2D,⊆) because it
is finite.

3. All data flow functions are monotone, because

• if-condition blocks only filter out some of the data flow facts for a branch,
that do not satisfy the condition and

• assignments only ever change one position in every bitvector in a set
of bitvectors, which can only cause the set to decrease in size, because
bitvectors can turn out to be equal that were not equal before. One
bitvector cannot turn into two different ones, without causing the set to
split.

If-conditions and assignments are the only two relevant manipulating blocks,
because for all other blocks the flow function is the identity.

The combined analysis is distributive, because the meet operator ] is applied
before each block and can therefore easily be formulated as an AFDS instance and
its MV P solution can be calculated with the AFDA algorithm [4].

We saw, that a boolean value analysis is a straight forward way to splitting
data flow information according to control structures in order to eliminate infea-
sible paths. There are other options, e.g. integer value analyses could be utilized
in case counters are used within an asynchronous program, to check that a task is
executed a certain number of times.

4.2 Conditional-Subset MVP Solution

We will take the path-sensitive approach a step further and generalize it based on
the ideas of Ball and Rajamani [3]. Our goal is to formulate a formal definition of the
path-sensitive solution of an interprocedural analysis for asynchronous programs.

In the first example of a reaching definition analysis in Figure 2.1, there is a
condition a < 2 that in an actual execution would cause the ”else”-branch never
to be executed. In a path-sensitive analysis that considers integer variables instead
of just booleans, the infeasible path would be eliminated and the set of reaching
definitions at R would just be {(a, 1)}.

The general idea behind value analyses is, to figure out all the possible values
(intervals) a variable could have at any given point in the program, without actually
executing the program itself. Boolean values can only accurately describe boolean
variables or very roughly approximate facts about numeric values. The less approx-
imations have to be made, the better the correlation between values and control
structures. Whenever a control structure in the program depends on the value of
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a variable, it is possible to split the data flow and make it path-sensitive based on
that information. In essence, we can say that the more accurate the information
in a value analysis, the higher the quality of path-sensitivity that can be achieved
using this value analysis.

Based on the above observation that there is a more general approach to path-
sensitivity than through boolean values, we can define the general conditional-subset
meet-over-all-valid-paths solution, an extension of the MVP solution that contains
only sets of data flow facts for which the path functions are path-sensitive.

CSMVP Solution. The conditional-subset meet-over-all-valid-paths (CSMVP)
solution to an AIFDS instance A = (Ĝ,D, F,M,u) and a set C of path correlating

data flow facts with flow functions ci, is a map CSMV Pn : V̂ → 22
D

:

CSMV Pn =
⊎

π ∈ ScheduledP (n)

PFπ (⊥) for each n ∈ V̂ ,

with F ⊆ 22
D → 22

D
the set of path-sensitive data flow functions.

The difference between MVP solution and CSMVP solution is mainly, that data
flow information in the CSMVP solution is sets-of sets-of data flow facts, instead of
just sets-of data flow facts. The inner sets are now correlated to the individual paths,
i.e. every path in the path-sensitive solution corresponds to one subset solution
S ⊂ 2D and the overall solution is a set of path solutions [3].

Ball and Rajamani go into further detail, by describing how binary decision dia-
grams can be utilized in algorithms that compute this sort of path-sensitive solutions
[3]. There is also a relationship to ”tri-vectors” that can be useful for the efficient
implementations of a boolean value analysis [7]. Although interesting, these topics
go beyond the scope of this section and we will not go into more detail about them.

We have seen that there is a general way of defining path-sensitive analysis so-
lutions. Different approaches can be taken to gain accuracy, which is especially
relevant with asynchronous programs. Experimentation will be necessary to figure
out how feasible the different approaches turn out to be.

We think the boolean analysis provides a straight-forward way of achieving a
degree of path-sensitivity that actually pays off in practice.
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5 Evaluation

In this section we will talk about the implementation of the boolean analysis that was
developed in the context of the thesis work. The boolean analysis was implemented
as an extension of an existing analysis toolchain targeted at the nesC programming
language. We will also see how the analysis performed in practice when applied
to a set of programs that use boolean flags as guards and we will argue about its
usefulness in applications.

5.1 Implementation

We will now introduce the toolchain that was extended to be path-sensitive in the
context of this thesis and talk about what parts where extended in what ways.

The toolchain itself is written in Haskell, a programming language that because
it is functional, allows for a very direct translation of data flow equations within the
implementation. The target language is nesC.

In Section 3 we talked about how asynchronous programs can be used to describe
the execution model of event-driven languages. One use case of event-driven pro-
gramming is sensor-based devices, in which external sensor input is seen as an event
that schedules a task to handle this input.

nesC extends the C programming language with interfaces to facilitate in devel-
oping sensor network applications on the TinyOS platform. The nesC execution
model is event-driven and callback tasks are realized as part of the different inter-
faces that provide abstractions to hardware components and can be used to access
sensors.

The execution model of nesC is relatively complex and only its application layer
falls into the category of asynchronous programs. Furthermore, nesC differs from
the notion of asynchronous programs described in the previous parts of the thesis
in that it actually supports three different event types. Its task queue also allows
only one instance of a task to be scheduled at one time, which makes for a different
execution behavior than the one that was discussed so far.

All of the above makes for a good reason to use nesC as a testing ground of how
our ideas apply to real world examples because it is not just a direct implementation
of the boolean analysis. Also, the use of global boolean flags as guards for events is
common in nesC and the example used in the previous sections is actually inspired
by a program that is part of the TinyOS example programs library.

The toolchain and its analyzer work autonomously from the nesC compiler and
it actually does not support real nesC programs yet, but a similar language that
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contains all of nesC’s relevant event system features. Figure 5.1 illustrates its
design.

Parser Preprocessing
Worklist

Algorithm

"nesC"
Code

AST ACFG
+

Static Information

CSMVP
Solution

Figure 5.1: Analysis Toolchain

From left to right, the role of each symbol in Figure 5.1 and how it was extended
in the context of this thesis can be described as the following:

• nesC Code: The toolchain is targeted at the nesC programming language,
it does not fully support the real nesC grammar yet, just some of nesC’s
relevant features, most notably its three different categories of events.

• Parser: The parser is implemented using Alex and Happy, two Haskell
tools that work as a parser generator. The extension that was made in this
part was to parse global boolean variables as flags explicitly for the use in
the boolean analysis. The idea behind handling them separately from other
variables is to allow developers to achieve more accuracy in their analyses
without any overhead by just using a certain naming convention.

• AST: The parser generates an abstract syntax tree. Up to here everything is
just the same as what usually happens in a compiler, making the parts outside
the dashed box in Figure 5.1 somewhat redundant. The nesC compiler is
different from what one might expect in that it generates actual C code and
uses a C compiler to compile the generated code with optimization.

• Preprocessing: The preprocessing step involves generating the asynchronous
control flow graph from the abstract syntax tree and obtaining all necessary
information for the analysis. This part of the toolchain was extended to ac-
tually generate the conditional asynchronous control flow graph and to count
and order the global boolean flags as necessary for the boolean analysis.

• The worklist algorithm was extended to work on data flow triples consisting
of counter facts, boolean value facts and facts for the actual analysis (e.g.
reaching definition analysis). This is also the part where the actual data flow
equations of the boolean analysis were implemented.

• The result is the CSMVP solution based on the assumption of a distributive
analysis. In the case of this toolchain the output is not processed or used for
any further computations. The result could be used for code optimization or
debugging purposes in the future.
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Haskell provides QuickCheck, a library for random testing of program prop-
erties. We used QuickCheck to test some of the most important specifications
and properties of the boolean analysis such as the distributivity of the flow equa-
tions. Because Haskell is a functional programming language the formulation of
mathematical properties is a straight-forward process.

Based on the property tests and a growing library of test-program and analysis
result pairs we trust the extended toolchain to be a correct implementation of the
boolean analysis formulated within this thesis without further verification of the
code.

5.2 Test Suite

We will now introduce the test suite that was used to test the actual analysis based
on the assumption that the implementation is a correct encoding of the algorithm
that computes the solution to the analysis.

The focus in the evaluation of the toolchain was on programs that actually use
global boolean flags to influence interprocedural control flow. Specifically, the pro-
grams we evaluated always consist of a main task that posts a certain number of
other tasks that use boolean flags to enforce only one legal order of execution. The
chain of tasks is enforced by having a boolean flag for every task, that has to be
true in order for its ”actual” control flow to be executed. If the guarding flag is
false and the task is dispatched, it just gets re-posted, which causes it to ”wait”
for its guarding flag to finally turn true.

main

T1 T2
f2 f3 fn... R: Tn

Figure 5.2: Test Suite

Figure 5.2 illustrates the enforced execution order using regular edges. The dashed
edges picture the asynchronous calls made from the main task. A behavior like this
can be enforced when the individual tasks look somewhat like the following piece of
code:
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5 Evaluation

task Ti:

if fi then

f(i+1) := true

Ri: ...

else

post Ti

We analyzed programs with different amounts n of tasks and flags put together
in a chain in the way described above in order to see how the ”depth” of an invalid
path influences the analysis result. In addition to the number of paths arriving at
the label of interest Rn in the last task of the chain Tn, we also counted the number
of iterations the worklist algorithm took until termination in order to be able to
argue about efficiency in those cases.

The test suite is one specifically chosen to test the properties of the boolean
analysis and is not necessarily a valid representation of asynchronous programs in
general. The tested programs are a valid representation of the parts of a program
that use what the boolean analysis is aimed at. We think that our test suite is
sufficient and useful because for those parts of a program that do not involve boolean
flags the overhead is negligible.

5.3 Results

We will now present the solution to our experiments and discuss its results. The
following table compares the number of paths that are considered at a label R for
an analysis over a program with a certain number of tasks executed in chain, with
R being in the last task of the chain. The task chains are constructed exactly the
way described in the previous section.

Tasks 1 2 3 4 5 6 7 8 9

Paths to R 1 2 4 8 16 32 64 128 256

Paths to R (path-sensitive) 1 1 1 1 1 1 1 1 1

The number of paths considered at the label of interest R is as expected from
the “completeness” of the ACFG. For the analysis without path-sensitivity it grows
exponentially compared to the length of the task chain. For the path-sensitive
analysis only the one feasible path is considered in any case.

The next table contains the number of iterations a worklist algorithm requires to
terminate for the analysis of an asynchronous program with a task chain of a certain
length.

Tasks 1 2 3 4 5 6 7 8 9

Iterations 13 32 61 100 149 208 277 356 445

Iterations (path-sensitive) 12 28 54 89 133 186 248 319 399
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The results in this table are more interesting because they might not be as ex-
pected. Usually, there is a trade-off between efficiency and accuracy in data flow
analyses [3]. Just as the first table confirms, the boolean analysis is more accurate,
so one would normally expect it to be less efficient.

The experiment shows it to be otherwise at least for the category of programs that
were tested. We assume this to be the case because some paths could be eliminated
very early on, causing some of the longer invalid paths not having to be analyzed at
all.

Because of the way the analysis of asynchronous programs works the insight that a
gain of efficiency is possible may turn out to be especially valuable. As we explained
in Section 3, in order to reach a fixpoint the analyses of asynchronous programs may
have to be computed multiple times for increasing values of k such that the counters
count to k. Eliminating invalid paths early on is especially valuable in this context
because some of the invalid paths could cause for an analysis to arrive at a fixpoint
very late in the worst case, due to the fact that counters would have to count to
high values of k in those cases.

An extreme example is the value analysis in which an integer is only increased by
one on a path on which a task posts itself. The increased value of the integer would
cause changes in the data flow facts to be re-propagated to that task over and over
again. If such a path is invalid it must be eliminated early on. The above is a very
extreme example of how a path-sensitive analysis can become very useful and a case
in which one might consider adding it just for the purpose of allowing the analysis
to terminate at all.

Overall the results from the test suite have satisfied our expectations. We should
notice that the test suite and the results in this section are not meant to represent
the application of the boolean analysis to actual nesC programs.
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6 Related Work

In this section, we will explain how the boolean analysis and the path-sensitive
approach presented in this thesis fit into a context of prior work.

Although the aspect of interprocedurally valid paths for synchronous interpro-
cedural calls was ignored in this thesis, the work by Reps, Horwitz and Sagiv on
precise interprocedural data flow analysis via graph reachability [6] can be seen as
its foundation. In their paper, Reps, Horwitz and Sagiv introduce the interproce-
dural finite distributive subset IFDS framework and an algorithm for computing
solutions for IFDS instance via context-free graph reachability. They define the
meet-over-all-valid-paths solution for interprocedural programs.

Based on the MVP solution to IFDS instances Jhala and Majumdar present their
MVP solution to asynchronous IFDS (AIFDS) programs [4]. The AFDS framework
that is presented within this thesis is based on the AIFDS framework introduced
in their work and is equivalent except that it ignores synchronous calls. Jhala and
Majumdar also describe the counter analysis and the AFDA algorithm that can be
implemented on top of the RHS algorithm and, thereby, extend the work of Reps,
Horwitz and Sagiv for asynchronous programs.

The approach to path-sensitivity taken in this thesis is inspired by the Bebop
model checker for boolean programs [3, 1]. Ball and Rajamani present a path-
sensitive version of the RHS algorithm and also extend on the work of Reps, Hor-
witz and Sagiv. The conditional-subset meet-over-all-paths solution is introduced in
their work and this thesis applies this to the interprocedural case for asynchronous
programs. Ball and Rajamani also utilize binary decision diagrams for more effi-
cient path-sensitive approaches, a technique we also used in the implementation of
the boolean algorithm.

The approach to path-sensitivity presented in this thesis is the attempt of effec-
tively combining the ideas of Jhala and Majumdar with those of Ball and Rajamani
by solving the AIFDS instance not with the RHS algorithm, but an algorithm
that is similar to the SPrhs algorithm in ”Bebop: A Path-sensitive Interprocedural
Dataflow Engine” [3].
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7 Conclusion

The goal of the thesis was to improve an existing interprocedural analysis for asyn-
chronous programs by considering global boolean flag values to make it path-sensitive
and eliminate invalid data flow.

We discussed the problem of infeasible paths in interprocedural analyses of asyn-
chronous program and presented a solution. By combining analyses with a simple
boolean value analysis we have made them path-sensitive and managed to achieve
the overall gain in performance we desired.

We saw that despite the common trade-off between precision and efficiency a path-
sensitive approach to interprocedural analysis can actually make for a gain in both
for some asynchronous programs.

The boolean analysis approach is only useful for asynchronous programs that
actually use global boolean flags to control interprocedural execution order. We did
not test memory usage for real world applications.

There are several next steps that can be taken in future work.
We think it is necessary to do some further experimentation to see how a path-

sensitivity of the boolean analysis influences the ADFA algorithms behavior for deep
call counter values, especially concerning memory usage. Such experiments could
possibly deliver interesting results based on the reasoning provided in Section 5.

Since other value analyses can also be used for path-sensitivity it would be inter-
esting to see how they perform in combination with other analyses, especially with
tools that perform value analyses anyways.

There is also the approach of translating interesting properties of a program into
boolean values as used by the Bebop model checker [2]. An example of this would be
formulating a points-to-null flag for pointers in a C program. The boolean analysis
presented in this paper could be utilized to do model checking over asynchronous
boolean programs.
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