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1 Introduction

The analysis and verification of programs is difficult if the programming language
supports pointers. Without any knowledge about the targets of a pointer, one
must conservatively assume that any pointer dereference may yield access to any
variable in the program. In general, this leads to a significant loss of precision in the
statements one can make about a program. Therefore, pointer analyses have been
devised that compute a set of possible targets for a pointer and can substantially
reduce the number of variables that must be assumed to be accessed through that
pointer. Most of the existing analyses are for sequential programs and do not support
asynchronous, event-driven programs, where the non-deterministic execution order
of events complicates matters. This thesis provides an interprocedural, flow-, and
context-sensitive points-to analysis for event-driven programs, to foster the analysis
and verification of these programs.

The goal of a points-to analysis is to identify all possible targets of a pointer. Since
this problem is, in general, undecidable, points-to analysis algorithms compute a safe
approximation of the actual points-to relations. The precision of such an analysis is
determined by the number of wrongfully assumed points-to relations and depends
on the properties of the analysis. To achieve a high precision, the presented analysis
is flow-sensitive, that is, it considers the control-flow and determines the points-to
relations for every program point individually. Furthermore, it is an interprocedural
analysis that considers the effect of a called function on the points-to relations. This
evaluation of function calls is context-sensitive, i.e., a function is analyzed for every
call site separately, with exactly the points-to relations that were computed for that
particular call site.

The control flow of event-driven programs is influenced by the occurrence of external
events. Whenever an event is signaled to the program, the corresponding event
handler is invoked. In general, the occurrence of events is non-deterministic, and
therefore the execution order of event handlers is also non-deterministic. This is a
challenge for program analyses, as they must consider all possible execution orders to
be sound, while including unrealizable execution orders makes the result imprecise.
The existing analyses for sequential programs do not account for non-deterministic
control flow, and are therefore unsuited for event-driven programs. The points-to
analysis presented in this thesis is based upon a points-to analysis for multithreaded
programs and models all possible execution orders of the program’s events.
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The considered input language for the analysis algorithm is a subset of nesC, a
programming language for component-based, event-driven applications. It includes
assignment statements, control-flow statements, function calls, and events. Instead
of working on the input program directly, the analysis uses an intermediate program
representation: control-flow graphs for the intraprocedural analysis and an event
graph for the event-sensitive analysis. The event graph is an adaptation of the
parallel flow graph for multithreaded programs and a novel approach to model the
non-deterministic execution order of events.

The presented analysis is implemented as a prototype in the nesC compiler. The
algorithm and the prototype were evaluated by analyzing some programs. For simple
programs that adhere to the defined input language, correct points-to relations were
obtained. More complex, real world nesC programs require some extensions to the
analysis and implementation. The important features that are missing are support
for typecasts in the input language, handling of parameters and return values in the
implementation, and an extension of the analysis beyond the top-level module of an
application.

The remainder of this thesis is structured as follows: Chapter 2 provides an overview
of data-flow analyses in general, and pointer analyses in particular. Additionally,
nesC is introduced as a programming language for event-driven applications. Chap-
ter 3 presents the developed points-to analysis for event-driven programs in detail,
and chapter 4 evaluates the algorithm as well as its implementation in the nesC com-
piler. Finally, chapter 5 discusses the discovered limitations of the analysis, outlines
ideas for future work, and summarizes the results.
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2 State of the Art

This chapter provides a brief overview of the areas of data-flow analysis, points-to
analysis, and the nesC programming language, to prepare the points-to analysis
algorithm for event-driven programs that is presented in the next chapter. In sec-
tion 2.1, data-flow frameworks are introduced to statically discover properties that
hold at certain program points. Pointer analyses are presented in section 2.2. That
section also contains a description of different points-to and alias analyses, before it
concludes with the introduction of two important data structures for points-to anal-
yses: location sets and points-to graphs. Finally, the nesC programming language is
discussed in section 2.3. NesC is a language to develop asynchronous, event-driven
applications and forms the basis of the input language for the points-to analysis
algorithm in chapter 3.

2.1 Data-Flow Analysis

Points-to analysis is a data-flow analysis, and that itself is a form of static program
analysis. A static analysis infers certain properties of a program without executing
it and the result is valid for all possible sets of input data. This is in contrast to
dynamic analyses, which execute the program and report only the properties that
were observed during the execution, making the result depending on the particular
input data. Static program analyses may be as simple as reporting violations of
the coding style, e.g., more than one return statement in a function, or as complex
as mathematically proving that a program has certain properties. Static analyses
in general, and data-flow analyses in particular, are widely used in code-optimizing
compilers and program understanding tools.

Data-flow analyses determine how data generated at one point of a program reaches
other points of the program and what effect it has there. Typically, these analyses
use the technique presented by Kildall [15]: A control-flow graph (CFG) is used to
represent the program and the data-flow analysis is defined by data-flow equations
for every node of the CFG. These equations model the effect of the program part
represented by the CFG node on the data-flow values and are solved by an iterative
algorithm. The early and simple analyses were purely intraprocedural, that is, they
examined each function or procedure of a program in isolation, while today’s more
complex analyses are interprocedural, i.e., they account for the effects of function
calls.
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A data-flow analysis usually does not analyze a program in form of its source code.
A common program representation for intraprocedural analyses is the control-flow
graph. A CFG is a directed graph, where the nodes represent statements of the pro-
gram and the edges model the possible execution orders of these statements. There
are two common levels of granularity: A CFG node represents either a single state-
ment or a basic block. A basic block is a sequence of statements with the property
that, whenever the first statement is executed, the others must be executed as well,
in the order they appear in the block and each statement exactly once. The analysis
presented in chapter 3 uses a statement-level CFG as program representation, and
therefore, from now on, we will only consider such CFGs. Each CFG has two special
nodes, an entry and an exit node. The entry node indicates the beginning of the
function, i.e., the point where the control flow enters the function, and the exit node
indicates the end of the function, i.e., where the control flow leaves the function.
There is an edge from a node n1 to another node n2, if and only if the statement
represented by n2 may be executed immediately after the statement represented by
n1. An if-statement leads to a branching in the control flow, indicated by two out-
going edges from the node representing the if-statement to two distinct nodes. A
loop statement, such as while or for, leads to a backedge from the node for the last
statement of the loop body back to the node of the loop header. Important concepts
with respect to CFGs are predecessor, successor, and dominance. If there is an edge
from a node n1 to a node n2, n1 is a predecessor of n2, and n2 is a successor of
n1. A node n1 dominates a node n2, if every path from the entry node to n2 passes
through n1. Likewise, a node n1 postdominates a node n2, if every path from n2 to
the exit node passes through n1. Therefore, the entry node dominates all nodes and
all nodes are postdominated by the exit node.

Each node n of the control-flow graph, i.e., each statement of the analyzed function,
is associated with two data-flow variables: Inn and Outn. The effect of the statement
is then expressed by a data-flow equation that puts Inn and Outn in relation. The
general form of the equation depends on the data-flow direction, and whether the
analyzed property must hold either for some path reaching the node or for all paths.
In a forward analysis, the data flow is in the same direction as the control flow. The
values are propagated to a node from its predecessors and merged into the node’s Inn

variable. Outn is expressed as a function of the Inn variable. In a backward analysis,
the data flow is opposed to the control flow. Therefore, the data-flow values are
propagated to a node from its successors, are merged into the node’s Outn variable,
and Inn is expressed as a function of Outn. An analysis for a property that must
hold on all paths reaching the node, merges the incoming values by computing their
intersection. Therefore, the resulting value contains only facts that hold along all
data-flow paths to the node. An analysis for a property that must only hold on some
path reaching the node, also called any path analysis, merges the incoming values by
computing their union. Thus, the resulting value contains all facts that hold along
at least one path to the node. Examples of well-known analyses are [1, 14]:

• Reaching definitions: forward, any path
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• Available expressions: forward, all path

• Live variables: backward, any path

• Anticipable expressions: backward, all path

Combining the data-flow equations for all statements results in a system of equations
that is iteratively solved. All data-flow variables are initialized before the analysis
starts. Depending on the direction of the data flow, the initial value at either the
entry or the exit node represents the initial knowledge about the analyzed function.
This value is called boundary information. For example, for the available expressions
analysis, which is a forward analysis, the boundary information is at the entry node,
and since no expressions were computed at this point, it specifies that no expression
is available. After the initialization, the analysis iterates over all statements and
applies the flow functions to compute updated data-flow values. This iteration
continues until the computed values do not change anymore, i.e., until a fixpoint is
reached.

For this iterative algorithm to work, the set of data-flow values is partially ordered
by an “is weaker than” relation v. A value x is weaker than y if the assumption
of x instead of y is a safe approximation with respect to the analysis’s goals. We
will take may alias analysis as an example. If two distinct variable names refer
to the same location in memory, these variables are considered aliases. As a may
analysis, the analysis must identify all possible alias relations in a function. Let x
and y be two variables visible in the analyzed function. Then, {alias(x, y)} is a safe
approximation for both, {alias(x, y)} and ∅, i.e., in may alias analysis it is always
safe to assume an alias relationship. Thus, {alias(x, y)} v ∅. In must alias analysis
it is the other way around: it must report definitive aliases only. Therefore, ∅ is
a safe approximation for both, {alias(x, y)} and ∅, i.e., in must alias analysis it is
always safe to assume no alias relationship. Hence, ∅ v {alias(x, y)}. To ensure
that the iterative algorithm terminates, we require the partially ordered set (poset)
of data-flow values to be a complete lattice, to satisfy the descending chain condition,
and the flow functions to be monotonic. A monotonic function is order preserving.
Therefore, the Knaster-Tarski fixpoint theorem [26] guarantees the existence of a
fixpoint and the descending chain condition ensures that a fixed point will eventually
be reached.

An interesting point is, when data-flow information is merged. In a meet over all
path (MOP) assignment, the data-flow values of all paths that reach a node are
merged. This leads to the assignment of the strongest safe value to the node’s
data-flow variable. In contrast to the path-based MOP, the maximum fixed point
(MFP) assignment is edge-based. It immediately merges the values from all incoming
edges. The MFP assignment is weaker than the MOP assignment. Unfortunately,
the common algorithms compute the MFP assignment. For the class of distributive
flow-functions this is not a problem, as in that case, the MFP solution is equal to
the MOP solution. For monotonic but non-distributive functions, in general, the
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MFP assignment is strictly weaker than the MOP assignment. On the other hand,
as shown by Kam and Ullman [12], the problem of finding the MOP solution for
general monotonic data-flow frameworks is undecidable.

Two important properties regarding the precision of intraprocedural analyses are
flow sensitivity and path sensitivity. A flow-sensitive analysis considers the control-
flow, i.e., the order in which the statements are executed, within the function. It
results in individual information for each program point. Flow-insensitive analyses
assume that discovered facts hold throughout the entire function. Therefore, each
statement must be visited only once. That makes flow-insensitive analysis com-
putationally less complex, but reduces the precision. Path-sensitive analyses take
branching conditions into account. In a may points-to analysis, for example, there
would be no points-to edge p → NULL in the data-flow value at the first statement
of the “true” branch of if (p != NULL), even if it reached the if-statement. A
path-insensitive analysis, in contrast, propagates the same data-flow value to both
branches.

As many programs consist of more than one function, an intraprocedural analysis is
not enough. Interprocedural analyses compute the effects of called functions on the
data-flow values at the call site. Therefore, the program representation is extended
from CFGs to supergraphs or interprocedural CFGs [18]. A supergraph consists
of the individual CFGs for all functions and represents function calls by call and
return nodes. There is a call edge from the call node to the entry node of the
called function and a return edge from the exit node of the called function to the
corresponding return node in the calling function. A supergraph for three functions
main, f, and g is depicted in figure 2.1. The individual CFGs were reduced to show
just the call and return nodes. The main function first calls f and then g, and g also
calls f. This program representation has the disadvantage that it contains infeasible
paths, as can be seen in the example. It is possible to enter f from main, but take
the return edge to g. The actual execution of the program can not take this path,
therefore it is called infeasible.

An analysis that computes distinct information for a function, depending on the
calling context, is called context-sensitive. In particular, a context-sensitive analysis
does not propagate data-flow values along infeasible paths. In contrast, a context-
insensitive analysis computes the same information for all invocations of a function.
Context-sensitive interprocedural analyses were discussed thoroughly by Sharir and
Pnueli [24]. They presented two methods to handle function calls. One is a func-
tional approach that computes context-independent summary flow functions for all
functions of a program. The summary flow functions are then applied to the data
flow information at a call site and yield the data-flow facts that hold after the call
in that particular context. The other approach uses the supergraph as presented,
but amends the data-flow information with call strings to make the interprocedu-
ral control flow explicit. Their algorithm then uses the call strings to prevent the
propagation of data-flow facts along infeasible paths. Another approach, followed
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Entrymain

callf

returnf

callg

returng

Exitmain

Entryf

Exitf

Entryg

callf

returnf

Exitg

Figure 2.1: A supergraph with three functions: main, f, and g. Call edges are
depicted in blue, return edges in red.

by Emami, Ghiya, and Hendren [5], and Whaley and Lam [27] is to use a clone of
the called function at every call site, and thereby, to achieve context-sensitive results
with an essentially context-insensitive analysis. The analysis presented in this work
uses this approach for the interprocedural analysis, as described in section 3.3.

2.2 Points-to Analysis

A points-to analysis is a static program analysis that determines the targets of
pointer variables for all possible executions of a given program. The problem of
determining pointer targets is, in general, undecidable [4, 17]. Therefore, numerous
algorithms have been devised to compute approximate solutions. In his 2001 survey
paper [10], Hind counts over seventy-five papers and nine Ph.D. theses on the topic of
pointer analysis and these numbers have increased over the last decade. The devised
algorithms differ in the precision of the approximation and their computational
complexity. A more precise result generally requires a more complex analysis. In
addition to the general classification criteria of data-flow analyses, flow sensitivity
and context sensitivity, pointer analyses are classified by their modeling of memory.
A field sensitive analysis distinguishes fields of an aggregate data structure while a
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field insensitive analysis treads the entire data structure as one object. Dynamic
memory allocations further complicate matters. Simple analyses model the entire
heap memory as one single object [5]. More advanced analyses differentiate heap
blocks by the program point at which they were allocated [28]. The most precise
information for heap-allocated data structures is provided by shape analyses [8, 23]
that create shape graphs to model structures, like trees or lists, on the heap.

1: int x, *p, *a;
2: p = &x;
3: a = &p;

Figure 2.2: An example program to demonstrate points-to and alias analysis.

A pointer analysis related to points-to analysis is alias analysis. While a points-to
analysis determines the memory locations a pointer may point to, an alias analysis
determines whether two different pointer expressions refer to the same memory lo-
cation. Hence, a points-to analysis relates pointers to the addresses they point to,
whereas an alias analysis relates pointer expressions. We will use the C code in fig-
ure 2.2 to demonstrate both analyses. At line 1 one integer variable (x), one pointer
to an integer variable (p), and one pointer to a pointer to an integer variable (a) are
declared. At line 2 the address of x is assigned to p. This generates the points-to
relation p→ x and the alias relation 〈∗p, x〉. At line 3 the address of p is assigned to
a. This creates the points-to relation a → p and the aliases 〈∗a, p〉, 〈∗ ∗ a, ∗p〉, and
〈∗ ∗ a, x〉. Thus, the result for the points-to analysis after the assignment in line 3 is
a→ p→ x and the result for the alias analysis is {〈∗a, p〉, 〈∗∗a, ∗p〉, 〈∗∗a, x〉, 〈∗p, x〉}.
As it can be seen in the example, the result of a points-to analysis usually has a
more compact representation than the result of an alias analysis. The analysis that
will be presented in chapter 3 uses the compact points-to representation, but it is
possible to determine the alias relations from this representation.

The two most prominent pointer analyses are the analyses of Andersen [3] and
Steensgaard [25]. Both analyses are flow-insensitive, are specified by the means of
non-standard type systems, and compute the points-to relations by solving a system
of constraints. The analysis of Andersen is a flow-insensitive, context-sensitive,
interprocedural may point-to analysis. It computes a mapping from pointer variables
to a set of their possible targets. The analysis consists of two phases: constraints for
the target sets [2] are generated in the first phase and then the constraints are solved
in the second phase. Andersen’s analysis considers the direction of assignments, i.e.,
a statement p = q, where p and q are pointers, leads to a constraint Tp ⊆ Tq,
where Tp and Tq are the sets of possible targets for p and q respectively. Such an
analysis is called inclusion-based. In contrast to Anderson’s analysis, Steensgaard’s
analysis is context-insensitive and less precise. Initially, all pointers are placed in an
equivalence class of their own. If the algorithm discovers an assignment between two
pointers, it unifies their equivalence classes. Therefore, the direction of assignments
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is not considered. In terms of Andersen’s analysis, the assignment p = q leads to
the constraint Tp = Tq. Such an analysis is called unification-based or equality-
based. The main argument for Steensgaard’s analysis is its low time and space
requirement. The required space is linear and the required time almost linear in
the size of the input program. More precisely, the time complexity is bounded by
O(nα(n, n)), where n is the number of variables in the input program and α is the
inverse Ackermann function.

Pointer analyses more related to the analysis presented in this work are flow sensitive.
Landi and Ryder [19] presented an alias analysis for programs written in a subset
of the C programming language [13]. The analysis is a flow- and context-sensitive,
interprocedural analysis that provides a much better precision than previous works.
The restrictions on the input programs are that no typecasts are allowed and that
all function calls must be explicit, i.e., calls through function pointers are not al-
lowed. Landi and Ryder introduced the concept of non-visible variables that are
used to represent object names that are not visible in a called function, but may be
accessed through pointers. Non-visible variables are similar to ghost location sets
that will used by our analysis, as described in section 3.3.4. The points-to analysis
of Emami, Ghiya, and Hendren [5] lifted these restrictions on the input programs.
Rather than computing alias pairs, the analysis computes points-to relations that
result in a more compact representation. The analysis uses abstract stack locations
to model the program’s stack memory. Therefore, points-to relations are between
stack locations and independent of the types of variables. Hence, typecasts have
no effect on the analysis. The algorithm computes an invocation graph to model
all possible function invocations. This graph incorporates the computed targets
for function pointers and is updated when new information is discovered. Using
this graph, the analysis handles recursive function calls and calls through function
pointers. To achieve context sensitivity, the algorithm maps the available points-
to information at a call site into the scope of the called function and analyzes the
called function using that information. After the analysis of the called function is
completed, the resulting points-to information is mapped back into the name space
of the calling function. Emami, Ghiya, and Hendren separate the analysis for data
structures on the stack from the analysis of heap-allocated data structures. Their
algorithm computes points-to relations only for objects on the stack. All objects
on the heap are merged and represented by the symbolic name heap. Our analysis
adopts the mapping and unmapping of points-to information at call sites and the
points-to abstraction from this work. Wilson and Lam [28] presented a points-to
analysis that models both heap- and stack-allocated data structures, but does not
cover relationships between individual elements of recursive data structures. The
algorithm uses partial transfer functions (PTF) to describe the behavior of called
functions. Therefore, a called function must not be analyzed again for every call
site, as long as a suitable PTF was already computed. According to Wilson and
Lam this results in a better performance than for the similar analysis of Emami,
Ghiya, and Hendren. Our analysis adopts their location sets, a representation for
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positions within a block of memory.

The analyses presented up until now are for sequential programs only. Our goal
is to analyze event-driven programs, and thus, we need a different analysis. Jhala
and Majumdar [11] presented a framework for the interprocedural analysis of asyn-
chronous programs. The analysis is a generalization of the IFDS framework of Reps,
Horwitz, and Sagiv [21] that computes the precise meet-over-all-valid-paths solution
for a problem. Unfortunately, the algorithm is applicable only to problems with a
finite set of data-flow facts and distributive flow functions. The flow functions for
points-to analyses are non-distributive, and therefore, another approach is required.
Rugina and Rinard [22] presented an interprocedural, flow- and context-sensitive
points-to analysis algorithm for multithreaded programs. The algorithm computes
a conservative approximation of the memory locations a pointer may point to, tak-
ing the potential for interference between parallel threads into account. Therefore,
it computes a points-to graph for every program point, representing the points-to
relations at that point. To capture the interference from other threads, the algo-
rithm computes a points-to graph for every thread that specifies the interference
information from the parallel threads. In addition to threads, the analysis of Rug-
ina and Rinard handles recursive functions, function pointers, pointer arithmetic,
typecasts, and heap- and stack-allocated memory. Furthermore, in the context of
threads, it supports thread private global variables. Even if this is an analysis for
multithreaded programs, it forms the basis of our analysis for asynchronous, event-
driven programs. We will model these programs as programs executing multiple
threads of events in parallel. Therefore, the next chapter provides a detailed de-
scription of Rugina and Rinard’s algorithm together with the required modifications
for event-driven applications written in nesC, which is presented in the next section.

We will conclude the discussion of pointer analyses with a detailed description of
two important data structures: location sets and points-to graphs. Location sets
were introduced by Wilson and Lam [28] to represent a block of memory and a set of
locations in that block. A location set is a triple 〈n, o, s〉, where n is the name of the
block, o is the offset within that block, and s is the stride that specifies the size of an
element in an array. The name is a string of characters, and offset and stride are given
in bytes. Thus, a location set represents all locations {o + is | i ∈ N} within block
n. A block corresponds to a scalar variable, a structure, an array, or a block of heap
memory. The positions of the blocks relative to one another are undefined. Figure 2.3
lists location sets for selected expressions. A scalar variable has an offset and stride
of 0, and a field in a structure is represented by its offset in bytes from the beginning
of the structure. An entire array is represented like a scalar variable, but an element
of the array has a stride equal to the element size. Location sets for array elements
have no offset, and therefore, all elements are represented by the same location set.
Thus, the analysis does not differentiate array elements, while it differentiates fields
of structures. The location set that represents a field in a structure that is an element
of an array has the stride equal to the size of the structure and an offset equal to
the distance from the begin of the structure to the begin of the field. Hence, as
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scalar array elements, the structures are not differentiated, but the individual fields
of the structures still are. A special case are structs that contain arrays. As C and
nesC do not provide bounds checking, the analysis conservatively assumes possible
out-of-bounds accesses to arrays, and therefore models arrays in structures as if they
would overlap with the entire structure. Hence, the offset is less than the stride and
that is enforced by computing the offset modulo the stride. For expressions where
the position within the block of memory is unknown, the stride of the location set
is set to one.

Expression Location Set
var 〈var, 0, 0〉
struct.f 〈s, o, 0〉
arr 〈a, 0, 0〉
arr[i] 〈a, 0, s〉
arr[i].f 〈a, o, s〉
struct.f[i] 〈a, f%s, s〉
*(p + Z) 〈p, 0, 1〉

Figure 2.3: Location sets for some expressions: var is a scalar variable, struct is
a structure with a field f, arr is an array, p is a pointer, and Z is an
integer; o is the offset of f from the beginning of the structure and s is
the size of an array element.

Points-to graphs represent the relations between pointers and their targets. All
variables and functions are represented by location sets and the set of all location
sets is the set of nodes in a points-to graph. If a pointer may point to an object, the
points-to graph contains a directed edge from the location set corresponding to the
pointer to the location set corresponding to the object. Furthermore, the points-
to graph contains a special location set called unk that represents all unknown
memory locations. For every possibly uninitialized pointer, there is an edge from
the corresponding location set to unk. An individual edge in the points-to graph
represents a may point-to relation, but the entire graph provides both may and must
point-to information. If there is a single outgoing edge from a node p to a node x
then p must definitively point to x. On the other hand, if there are two or more
outgoing edges from a node p then p may point to either location. If there is an edge
to unk, the pointer may be uninitialized and if it is the only edge, the pointer must
be uninitialized. Figure 2.4 depicts a points-to graph. The two outgoing edges from
a indicate that a may either point to p or to q. The single outgoing edge from p
indicates that p must point to x. There are edges from q to y and to unk. Therefore,
q may either point to y or q may be uninitialized, and thus point to some unknown
location.
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a

p

q

x

y

unk

Figure 2.4: A points-to graph for the pointers a, p, and q, the variables x and y, and
the location set indicating unknown locations.

2.3 NesC

NesC [6] is a programming language for component-based, event-driven applications.
It is an extension and restriction of the C programming language [13]. The main ad-
ditions are commands, events, and tasks. NesC was designed specifically to reimple-
ment [7] the TinyOS operating system [9] for sensors in distributed, wireless sensor
networks. The characteristic of such wireless sensors is that they are small, low-
power devices that are driven by their interaction with the environment. Therefore,
nesC’s execution model is event-driven. An application waits for external events,
such as timers, received radio messages, or sensor readings. When an event occurs,
the corresponding event handler is invoked to process the event. Once processing is
complete, the application waits for the next event to occur. Triggered by changes
in the environment, a new event may occur while another is still processed. Be-
ing designed for low power consumption, the sensors are uniprocessor systems, and
therefore, can not execute program code in parallel. However, through the inter-
leaved execution of event handlers, it is possible to simulate parallel execution.

A nesC application consists of several components. Components are used to struc-
ture the application, to group related functionality, and to encapsulate the state of
different parts of the system. A component offers its services through one or more
interfaces that it implements. Interfaces in nesC are bidirectional; additionally to
the provided services they specify functionality that the interface user must imple-
ment. The interface user has to implement callback functions that are used by the
interface provider to signal the completion of the requested service. Commands are
services provided by the interface provider and are declared with the command key-
word. Events are callback functions that the interface user must provide, and are
declared with the event keyword. Operations that do not complete immediately
are split-phase. The interface user starts an operation by calling the correspond-
ing command. The interface provider schedules the operation for future execution
and returns the control immediately back to the user. After the operation was ex-
ecuted, the interface provider signals the completion and returns the result to the
user through an event. This resembles the handling of hardware events and adopts
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the event-driven paradigm as fundamental concept of nesC.

module ExampleC {
uses interface Boot;
uses interface Timer<TMilli>;
uses interface Read<uint16_t>;

} implementation {

uint16_t lastValue = 0;

event void Boot.booted() {
call Timer.startPeriodic(1000);

}

event void Timer.fired() {
call Read.read();

}

event void Read.readDone(error_t result, uint16_t val) {
if (result == SUCCESS) {

lastValue = val;
}

}
}

Figure 2.5: An example of split-phase operations.

We will use the nesC module in Figure 2.5 to demonstrate nesC’s concepts of compo-
nents (encapsulation of state), interfaces, and the event-driven execution. The mod-
ule is named ExampleC and uses three interfaces: Boot, Timer, and Read. Timer
and Read are parametrized interfaces. The parameter TMilli specifies that the
used timer should have millisecond resolution and the parameter uint16_t speci-
fies that the sensor accessed through the Read interface provides its values as 16 bit
unsigned integers. The module stores the last read value in a variable that is only
visible within the module. If the value should be accessed from another module,
the ExampleC module must provide access to it through its interface. This demon-
strates how modules provide encapsulation of internal state. The module implements
three event handlers: Boot.booted from the Boot interface, Timer.fired from the
Timer interface, and Read.readDone from the Read interface. TinyOS signals the
Boot.booted event after the sensor node was started and the basic subsystems have
been initialized, so that the higher-level components can perform their initialization.
The example module uses this event handler to call the Timer.startPeriodic com-
mand from the Timer interface to start a timer that signals the Timer.fired event
every second. After this initialization, the module waits for the timer event. When
the specified time of one second expired, the timer signals the Timer.fired event,
and thereby transfers the control to the event handler in the module. The handler
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for Timer.fired calls the Read.read command from the Read interface to acquire
a value from the sensor. The command can not immediately return the requested
value. Therefore, it initiates whatever is necessary to get the value from the sen-
sor and then returns the control back to the Timer.fired event handler. The
Timer.fired event handler has nothing else to do, so it returns the control to its
caller, somewhere in the module implementing the Timer interface. Once the value
is available from the sensor, the sensor module signals it to the ExampleC module
by invoking the Read.readDone event handler. The event handler checks whether
the read operation was successful and if it was, stores the value in the lastValue
variable. After that, the module waits for the next timer event, to trigger the next
read of the sensor’s value.

NesC divides applications into synchronous and asynchronous code. Asynchronous
code is code that is reachable from an interrupt handler. An interrupt handler is
invoked immediately when the interrupt occurs. Thus, it may execute between any
two statements in the application. Synchronous code is not reachable from interrupt
handlers, and hence, is executed only when it is invoked from other synchronous
code. Asynchronous code may lead to race conditions, where some shared state is
unexpectedly modified between two accesses from other code. In nesC, the transition
from asynchronous execution to synchronous execution is possible through tasks.
Tasks allow the deferred, synchronous execution of code. A task is declared with
the task keyword and scheduled for future execution with the post statement. Tasks
are atomic with respect to other synchronous code. Therefore, once a task started
to execute, it will run to completion.

The points-to analysis presented in chapter 3 makes four assumptions about the
analyzed programs. Since the analysis processes the top-level module only, those
assumptions must hold for that module, but not necessarily for other modules. The
first assumption concerns dynamic memory. The NesC manual [6] states that nesC
does not support dynamic memory allocation, but such allocations are still pos-
sible. Following the nesC manual and programming hint 3 in TinyOS program-
ming [20]:“Never use malloc and free”, the analysis requires that there are no dy-
namic memory allocations in the analyzed program. Thus, the analysis does not
model the heap memory. Another restriction follows from programming hint 2:
“Never write recursive functions.“ Assuming non-recursive functions limits the ap-
plication’s stack usage and simplifies the interprocedural points-to analysis. These
two assumptions are best practices in nesC. The following two assumptions are
restrictions that go beyond that. For one, there must be no interference from asyn-
chronous events. All events and tasks are assumed to be atomic with respect to all
other code. Second, a called command must not have any effect on the point-to re-
lations in the analyzed module. As only one module is analyzed, these modifications
would not be detected and the analysis would be unsound.
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3 The Analysis: Algorithm and
Implementation

Pointer analysis and event-driven programs have been introduced in the last chapter.
This chapter introduces the points-to analysis algorithm for event-driven programs.
First, section 3.1 gives an overview of the algorithm, then sections 3.2 to 3.4 introduce
the different parts of the analysis, namely intraprocedural, interprocedural, and
event-sensitive analysis. These three sections all have the same layout, starting with
the considered input language, followed by an example of what to expect from the
analysis. Then the intermediate representation—the representation of the program
that the analysis operates on—is presented, before the data-flow equations are given.
The properties of the presented algorithm are summarized at the end of each of these
sections. Finally, section 3.5 discusses the integration of the analysis into the nesC
tool chain.

3.1 Overview

The pointer-analysis algorithm for event-driven programs is built upon Rugina and
Rinard’s pointer-analysis algorithm for multithreaded programs [22]. The algorithm
of Rugina and Rinard computes a safe approximation of the points-to graph for
every program point, including any points-to edges generated due to the interleaved
execution of other threads. Their level of granularity is a single statement, i.e., the
execution of one thread may be interrupted after any statement, then one or more
statements from other threads may be executed, before the next statement of the
first thread is executed. Our analysis addresses nesC programs, where the execution
model is based on run-to-completion tasks and events. Since we ignore hardware-
event handlers and asynchronous events in general and additionally assume that
the analyzed pointers are modified by synchronous code only, our granularity, with
respect to concurrent execution, is a single event. Hence, at the top level, we will
model an event as a single statement in the analysis for multithreaded programs.
An event may trigger the future execution of another event, which in turn may
trigger the future execution of yet another event, and so on. These event sequences
are modeled as individual threads. Whenever an event directly triggers the future
execution of more than one event, the future events are modeled as concurrently
executing threads. The presented algorithm performs an interprocedural analysis of
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an application’s top-level module and, as Rugina and Rinard’s algorithm, is flow-
and context-sensitive.

The following sections give a detailed presentation of the analysis algorithm and the
developed model of event-driven programs as multithreaded programs. Section 3.2
presents the intraprocedural analysis that computes a points-to graph for every
program point within a single function or event without considering the effect of
function calls. In section 3.3, the intraprocedural analysis is extended to support
function calls in the input language and to consider the effects of the called function
on the points-to graphs. Section 3.4 completes the analysis algorithm by adding
events to the input language and considering the effect of their non-deterministic
execution order.

3.2 Intraprocedural Analysis

This section presents the intraprocedural points-to analysis, the basis of the overall
algorithm. It analyzes the points-to relations within a single function or event. The
difference between functions and events is in the time their execution starts; once
they have started, their behavior is the same. Therefore, in this section, we use the
term function to refer to both functions and events. NesC’s execution model does
not allow any concurrent code execution within a function or an event. Further-
more, once the execution of a function started it is guaranteed to finish its execution
without interference by any other function. Therefore, the simplest form of intrapro-
cedural analysis can omit support for parallel execution constructs. As we will see
in section 3.4, once we introduce parallelism at the event level, we have to modify
the data-flow equations for intraprocedural analysis to generate and propagate ad-
ditional information. Nevertheless, for clarity, we leave this additional information
out in this section and introduce it once it is needed.

3.2.1 Language

The supported input language is a subset of both the C and nesC language. It can
be divided into two parts, assignment statements and control-flow statements.

Address-of Assignment x = &y
Constant Assignment x = const
Copy Assignment x = y
Load Assignment x = *y
Store Assignment *x = y

Figure 3.1: Basic assignment statements.
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The analysis supports five basic assignment statements, which are given in figure 3.1.
The effect of these statements on the points-to graph is shown in figure 3.2. This will
be explained in detail with the help of the example in the next section. These basic
statements permit the address-of and dereference operator to appear in assignments,
as it is allowed by the C language specification, with the constraint that only one such
operator can occur in the statement. This is a constraint on the input language, but
it is not a limitation in expressiveness. Every more complex assignment statement
can be reduced to these basic forms, using temporary variables.

Before Assignment After
x y x = &y x→ y

x x = const x→ ?
x

y → a
x = y

x
↘

y → a

x

y → z → a
x = *y

x
↘

y → z → a

x→ z

y → a
*x = y

x→ z
↓

y → a

Figure 3.2: Effects of the basic assignment statements on the points-to graph.

Besides the basic assignment statements, the input language supports branches and
loops in the control flow. Branches can be expressed with if statements and loops
with for statements. This is, again, only a limitation in the input language; if-else
and while statements can be transformed into if and for statements. Furthermore,
as will be described in section 3.2.3, the algorithm works on the CFG as an interme-
diate representation. Therefore, once the CFG is available, the data-flow equations
are independent of the statements used to describe the control flow.

3.2.2 Example

After the last section introduced the input language, this section gives two example
programs to show what to expect from the analysis algorithm that is presented in
the next section. One example is to demonstrate the effect of the basic assignment
statements and the other to show how control-flow branches and merges influence
the points-to information.

The simple nesC module in figure 3.3 is our first example. It declares two 8 bit
wide unsigned integer variables (x, y), three pointers to such variables (p, q, r), and
one pointer to a pointer to such a variable (a). The event Boot.booted is the entry
point to the application. The CFG for this function is depicted in figure 3.4 together
with the known points-to graph before and after every statement. The statements
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module ExampleC {
uses interface Boot;

} implementation {
uint8_t x, y;
uint8_t *p, *q, *r;
uint8_t **a;

event void Boot.booted() {
1: x = 0;
2: y = 0;

3: p = &x;
4: q = &y;
5: a = &p;

6: r = q;

7: q = *a;

8: *a = r;
}

}

Figure 3.3: A program to demonstrate the basic assignment statements.

at lines 1 and 2 initialize the variables x and y to 0. This generates no edges in the
points-to graph, as x and y are no pointers. The statements at lines 3, 4, and 5 are
address-of assignments. At first, p is assigned the address of x, and thus, p points
to x. This adds the edge p → x to the points-to graph. Then the address of y is
assigned to q, generating the edge q → y. Finally, the address of the pointer p is
assigned to the pointer-to-a-pointer a. Therefore, we get an edge a → p and thus
the subgraph a → p → x. From this subgraph and the transitivity of the points-to
relation we can also get the information that **a is an alias of x. The statement at
line 6 is a copy assignment. r is assigned the address stored in q. As q holds the
address of y the points-to edge r → y is added to the graph and now both q and r
point to y. At line 7 is a load assignment. The pointer q is assigned the value of
the target of a; a points to p and p points to x, therefore, q now points to x. This
removes the edge q → y and adds the edge q → x instead. Finally, at line 8 is a
store assignment. The target of a is assigned the value of r. a points to p and r
points to y. Thus, p now points to y. Before this assignment p pointed to x, so the
edge p→ x is removed and the edge p→ y is added.

The other example is given in figure 3.5. It demonstrates the effects of branching
and merging in the control flow. The general conditions are the same as in the
example before. The annotated CFG is in figure 3.6. As the effects of the basic as-
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Entry

x = 0
y = 0

p = &x

q = &y

a = &p

r = q

q = *a

*a = r

Exit

p→ x

p→ x q → y

a→ p→ x q → y
a→ p→ x q → y

↗
r

a→ p→ x r → y
↗

q

a→ p→ y q → x
↗

r

Figure 3.4: Pointer-analysis result for the example program with basic assignment
statements in figure 3.3.

signment statements were already shown in the last example, sequential assignments
are combined in a single CFG node for space reasons. Up to and including line 6 this
example is equal to the example before. Therefore, we start the description with the
if statement at line 7. The if statement leads to a branch in the control flow, so the
statement that is executed afterwards is either the assignment in line 7 or the one
in line 8. In the control-flow graph, this is depicted by the two outgoing edges from
the corresponding node. The analysis does not consider the branching condition.
Therefore, it does not know whether it is impossible to take a specific branch or
what additional constraints the if statement imposes on the points-to graph for a
given branch. Thus, the points-to graph that arrives at the if node is propagated
to both branches unchanged. If the right branch is taken, the pointer-to-a-pointer
a is assigned the address of q. This removes the points-to edge a→ p and adds the
edge a → q. The interesting point is when the two branches are merged together
— in the CFG depicted by the circle-shaped node that does not correspond to any
statement. The analysis must unify the two different points-to graphs such that the
single resulting points-to graph is a safe approximation for both input graphs. The
points-to edges p→ x and q → y are in both input graphs, so they definitively must
also be in the unified graph. The points-to graph from the left branch also contains
the edge a → p, but this edge is missing in the graph from the right branch. The
graph from the right branch in turn contains an edge a → q that is missing in the
graph from the left branch. As the points-to graph must include an edge for every
possible target of a pointer at a given program point, both edges must be included.
Thus, the merged set of points-to edges in the graph is the union of the two input
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module ExampleC {
uses interface Boot;

} implementation {
uint8_t x, y;
uint8_t *p, *q;
unit8_t **a;

event void Boot.booted() {
1: x = 0;
2: y = 0;

3: p = &x;
4: q = &y;
5: a = &p;

6: if (cond)
7: a = &q;

8: *a = p;
}

}

Figure 3.5: A program to demonstrate branching and merging.

edge sets. Up to now, the points-to graph contained at most one outgoing edge from
every pointer, allowing to uniquely answer the question where a pointer must be
pointing to. After the merge, the points-to graph contains two outgoing edges from
a. Therefore, the question where a points to can no longer be answered definitively.
It is only possible to give the weaker answer that a may point to either p or q.
So we have a combined may- and must-point-to analysis. Furthermore, this weaker
answer has consequences for the store assignment in line 8. As the exact target of
a is unknown, all possible targets must be updated. This leads to the edges p → x
and q → x. The edge p→ x is already in the graph, therefore, only q → x is added
as a new edge. Moreover, a may not point to q, so the edge q → y must be kept in
the points-to graph.

3.2.3 Intermediate Representation

As already noted in section 3.2.1, the analysis does not analyze the program as it was
written in the input language, but rather uses a control-flow graph as intermediate
representation. Therefore, before the analysis starts, such a CFG must be created
for every function from the program’s source code. The begin of the function is
indicated by an entry node, called “Entry”, that has no incoming edges, but an
outgoing edge, leading to the first statement of the function. Likewise, the end of
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Entry

x = 0
y = 0
p = &x
q = &y
a = &p

if
(cond)

a = &q

*a = p

Exit

a→ p→ x

q → y

a→ p→ x

q → y
a→ p→ x

q → y
a p→ x
↘
q → y

a→ p→ x
↘
q → y

a→ p→ x
↘ ↗
q → y

Figure 3.6: Pointer-analysis result for the example program with branching and
merging.

a function is indicated by an exit node, called “Exit”, that has an incoming edge
from the last statement of the function, but no outgoing edges. The used control-
flow graph is a statement level CFG. That means that every CFG node represents
exactly one statement of the program. More precisely, every node of the CFG,
except the entry and exit nodes, contains a single basic assignment statement, as
listed in figure 3.1, or a control flow statement. Although nodes for control-flow
statements are present in the CFG, the control-flow statements are ignored by the
analysis algorithm. The control flow is determined solely by the edges of the CFG,
and thus, the analysis is path insensitive.

The analysis starts at the entry node with the boundary information that all pointers
are uninitialized. The points-to information is propagated down the edges of the
control-flow graph and is updated at every node according to the data-flow equations
that will be given in the next section. Once a fixed point is reached, i.e., the repeated
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application of the data-flow equations does not change the points-to graphs anymore,
the algorithm terminates.

3.2.4 Equations

This section presents the main part of the intraprocedural analysis: the data-flow
equations used to update the points-to graph at an assignment statement. As the
intraprocedural analysis, at this time, is not required to handle the concurrent exe-
cution of threads, only a basic form of the equations is given here. Once parallelism
is introduced at the event level in section 3.4, we will update the equations for
intraprocedural analysis in section 3.4.4. This section starts with a definition of
points-to information and shows how this forms a lattice, before defining the data-
flow equations and listing the gen and kill sets for the basic assignment statements.

In this first stage, the points-to information at any program point consists only of the
points-to graph at that point. This leads to the following straightforward definition:

Definition 3.1. Let L be the set of all location sets in the program and P = 2L×L

the set of all points-to graphs for these location sets. The points-to information
PI(p) at a point p in the program is the points-to graph C ∈ P at that point.

The current points-to graph is represented by the set of its edges: C ⊆ L × L. We
order points-to graphs by set inclusion:

C1 v C2 ⇐⇒ C1 ⊆ C2

This is a partial ordering, and thus, (P,v) is a poset. Furthermore, (P,v) forms a
lattice with set union as meet operator:

C1 t C2 := C1 ∪ C2

Let Stat be the set of all statements in the analyzed function and J K : Stat →
(P → P ) a functional that assigns a transfer function f ∈ P → P to every statement
st ∈ Stat. For basic assignment statements, the functional J K is shown in figure 3.7
and defined in terms of gen sets, kill sets, and a strong flag as given in figure 3.8.

JstKC = C ′, where:

C ′ =
{

(C − kill) ∪ gen if strong
C ∪ gen if not strong

Figure 3.7: Data-flow equations for the intraprocedural analysis.
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Address-of
Assignment x = &y

kill := {x} × deref({x}, C)
gen := {x} × {y}
strong := x.stride = 0

Constant
Assignment x = const

kill := {x} × deref({x}, C)
gen := {x} × {unk}
strong := x.stride = 0

Copy
Assignment x = y

kill := {x} × deref({x}, C)
gen := {x} × deref({y}, C)
strong := x.stride = 0

Load
Assignment x = ∗y

kill := {x} × deref({x}, C)
gen := {x} × deref(deref({y}, C), C)
strong := x.stride = 0

Store
Assignment ∗x = y

kill := deref({x}, C)× deref(deref({x}, C), C)
gen := deref({x}, C)× deref({y}, C)− {unk} × L
strong := deref({x}, C) = {z} and z.stride = 0

Figure 3.8: Basic pointer assignment statements and the corresponding data-flow
sets.

The gen set contains the points-to edges that are generated by the statement and
the kill set contains the edges that are removed, i.e., replaced by the generated
ones. The strong flag plays an important role in the points-to graph’s update. If
it is true, the pointer that is assigned a new value can be precisely determined. As
the assignment overrides the former value of the pointer, the corresponding edge
can safely be removed from the points-to graph. This is called a strong update and
reflects exactly what the program is doing. The strong flag is false, if the pointer
can not be determined exactly, i.e., if there is more than one pointer that may be
updated by the statement. As it is unclear which pointer will be updated, it is
consequently also unclear which pointers keep their original value. Therefore, the
analysis must assume that all pointers may be pointing to the new target, while at
the same time they may still point to the old one. Thus, the newly generated edges
from the gen set are merged into the points-to graph, but the edges from the kill
set are not removed. This is called a weak update and is only an approximation of
the actual assignment in the program. After both forms of update, the set of actual
points-to relations, in any program execution, is a subset of the points-to relations
expressed by the computed points-to graph. Hence, the approximation is safe.

The definition of the gen and kill sets uses the deref function

deref : 2L × P → 2L

deref(S,C) = {y ∈ L | ∃x ∈ S . (x, y) ∈ C}

to model pointer dereferences. Given a set of location sets, S, that contains the
location sets corresponding to the dereferenced pointers and the current points-
to graph C, deref (S,C) yields a set of all location sets that the pointers from S
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may point to. Since the dereference of a pointer at an unknown location yields an
unknown location, deref ({unk}, C) = {unk}, for all points-to graphs C.

The address-of assignment is straightforward. After the assignment x = &y, x points
to y, so the gen set contains exactly the edge x → y. The definition of the kill set
and the strong flag is the same for the first four assignment forms in figure 3.8. As
the pointer x is updated, it no longer points to its former target. Therefore, the kill
set contains all edges of the points-to graph that start at x. Whenever the stride of
the location set is 0, i.e., the pointer is not an element of an array, the location set
unambiguously identifies a single pointer, and thus, a strong update is performed.
Otherwise, the location set represents all array elements, but only one element is
assigned a new value. Therefore, the resulting update must be weak.

Constant assignments are assignments of a constant address to the pointer. The
most common example is the assignment x = NULL, to indicate that the pointer
does not point to a valid location. In general it is impossible to say where a given
address refers to. Hence, the analysis generates a points-to edge x→ unk, indicating
that the target is unknown.

A copy assignment x = y takes the address of the target of y and assigns it to x.
Thus, the analysis has to take all location sets for possible targets of y and generates
a points-to edge from x’s location set to the target location set.

Load assignments are a bit more complicated. For the assignment statement x = *y,
as for the assignments before, the location set for x is unambiguously determined.
However, the dereferencing on the right-hand side of the statement requires a second
application of the deref function. The first application determines the location sets
for the targets of y, but after the assignment, x points to the target of the target of
y. Therefore, a second application of deref is necessary, with the set of location sets
resulting from the first application. This second application yields all possible new
targets for x, and thus, the new points-to edges can be generated.

Store assignments are even more complicated, and different from the other assign-
ment statements. In a store assignment *x = y, the location set for the left-hand
side is not directly available and there may be even more than one. Thus, the loca-
tion sets for the left-hand side must be determined by applying the deref function
to the location set for x. Each of these location sets forms the source of points-to
edges, in both gen and kill sets. The new target of *x is the target of y, so the
targets of the points-to edges in the gen set are determined by applying deref to
y. Since deref({x}, C) may yield unk and we do not want to add irrelevant edges
starting at unk to the points-to graph, all edges starting at unk are not part of the
gen set. Nevertheless, an assignment to an unknown location is dangerous, as it may
update any pointer in the program. Therefore, the analysis should conservatively
add points-to edges from every location set to all possible targets to the points-to
graph. However, this would result in extremely imprecise results, even for programs
that ensure that the dereferenced pointer points to a valid location before updating
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that location. This results from the path-insensitivity of the analysis. The common
if (x != NULL) tests are not considered by the analysis, and thus, the analysis
optimistically assumes that there are no updates through pointers to unknown lo-
cations to yield a more precise result. The kill set consists of all edges starting at
the possible location sets for *x, as these may potentially be overridden. Whether
the edges from the kill set are actually removed from the points-to graph is, again,
determined by the strong flag. The computation of the strong flag for store assign-
ments, correspondingly, depends on the stride value of the left-hand side’s location
set. The difference here is that there may be more than one location set for the left-
hand side. In case there is, the analysis can not definitively determine which one is
updated, so that the corresponding edges could be removed. Hence, if deref({x}, C)
yields a set with cardinality greater than one, the update must be weak.

The equations in figure 3.7 and figure 3.8 resemble the ones given by Rugina and
Rinard with two differences. The nesC language does not support threads or has
any construct to express the parallel execution of code. Therefore, Rugina and
Rinard’s par-construct is not required for the intraprocedural analysis, and hence,
the I and E sets from their definition of multithreaded points-to information can
be omitted. Furthermore, while not preventing dynamic memory allocations, e.g.,
through malloc() and free(), nesC itself does not support these. In fact, the usage
of dynamically-allocated memory in nesC programs is strongly advised against. For
this reason, the analysis does not support pointers to memory locations dynamically
allocated on the heap. This decision results in a simplified definition of the strong
flag, as the heap-related part is left out.

3.2.5 Properties

This section discusses some properties of the algorithm and concludes the presenta-
tion of the intraprocedural part of the analysis. Since the intraprocedural analysis
resembles the one of Rugina and Rinard less support for some language constructs,
some properties can be transferred directly. The analysis propagates the points-
to information along the edges of the control-flow graph and maintains a separate
points-to graph for every program point in the analyzed function. Thus, the pre-
sented analysis is flow sensitive. Branches in the control flow are handled without
considering the branching condition. The points-to information that reaches the
CFG node for a control-flow statement is propagated unchanged into both branches.
Therefore, the analysis is path insensitive. The data-flow equations are monotonic,
but, as is typical for pointer-analyses, non-distributive.

A pointer p points to object x if p contains the address of x. The analysis represents
this relationship by a points-to edge p → x. Thus, to be sound, the analysis must
yield a points-to graph at program point n that contains a points-to edge p → x
whenever it is possible that p contains the address of x at n. More formal: p == &x
at program point n⇒ {p→ x} ⊆ PI(n). For p to contain the address of x, it must
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have been assigned to p at some point in the program. This assignment is either
directly by an address-of assignment or the address is copied from another pointer
by a copy, load, or store assignment. The data-flow equations for these statements
generate the corresponding points-to edges in the points-to graph, as long as an
address is not written to the target of an uninitialized pointer. Therefore, whenever
a points-to relation is created in the program, a corresponding edge is generated
in the points-to graph. What remains to be shown is that these edges are also
present in the points-to graphs at all program points where the pointer may still
contain the address of the object, i.e., no other address was assigned to the pointer
in between. The data-flow information is propagated along the edges of the control-
flow graph. Hence, all points-to graphs at program points reachable from the point
of the assignment contain the corresponding points-to edge, unless it was removed
from the graph. At a branch in the control flow, the information that reaches the
branching point is propagated into all branches unchanged and when the control
flow is merged from different branches, the points-to graph after the merge contains
all edges that are present in any graph reaching the merging point. Thus, the only
way to remove an edge from the points-to graph is that it is contained in the kill
set of a strong update. Since an update is strong only if the updated pointer can
be identified unambiguously, a points-to edge is removed from the points-to graph
only if some other address was definitively assigned to the pointer. Furthermore, let
us consider the points-to graph at a specific program point. The points-to graph
at the entry point represents the boundary information and does not change during
the analysis. For all other program points, the points-to graph initially contains no
edges. Every time the algorithm analyzes the statement at that program point, it
may only add further edges to the points-to graph. Therefore, the descending chain
condition holds, and as the analysis generates and propagates the proper points-to
edges and removes them only by a strong update, the analysis is sound.

To derive an upper bound on the complexity of the algorithm we will consider
the CFG for the analyzed function. As the analyzed function consists of a finite
number of statements, the number of nodes in the CFG is also finite. Let n be
the number of nodes in the CFG. All location sets appear in a statement of the
program. Therefore, there are at most O(n) distinct location sets, and thus the
points-to graphs have at most O(n2) edges. The points-to information could be
distinct for every program point, i.e., there is one points-to graph maintained at
every CFG node. Hence, all points-to graphs combined have at most O(n3) edges.
The points-to graph at a program point, except the entry point, initially contains no
edges. As the meet operation is set union, all subsequent analysis steps may only add
new edges to a points-to graph. The algorithm terminates after processing at most
n CFG nodes without adding an edge to a points-to graph. This results in an upper
bound of O(n4) analysis steps that must be carried out. Therefore, the asymptotic
complexity is equal to the one of the algorithm for multithreaded programs. Finally,
the algorithm terminates. This follows with arguments similar to the ones from the
complexity considerations as well as from the termination property of Rugina and
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Rinard’s algorithm.

3.3 Interprocedural Analysis

The intraprocedural part of the analysis was defined in the last section. This section
extends the analysis to support function calls. Functions are part of many high-
level programming languages and many programs make use of them. In particular,
functions are a part of the nesC programming language, and all non-trivial TinyOS
applications contain function calls, either directly or as command calls. To analyze
a function that calls another function, the algorithm must determine the effect of
the invoked function on the invoking function, or more precisely, the effect on the
points-to graph at the call site.

3.3.1 Language

The input language is an extension of the language specified in section 3.2.1. In
addition to basic assignment statements and control-flow statements, the input lan-
guage now supports statements to declare and invoke functions. The syntax follows
the syntax of the C programming language and of nesC. A function is called by
its name and a list of parameters in parentheses. The invocation of a function f
without parameters is therefore written as f().

Following programming hint 2 in TinyOS Programming [20], to never write recursive
functions, the analyzed programs are not allowed to have functions that invoke
themselves. Furthermore, a function f is not allowed to call another function that
directly or indirectly leads to a second invocation of f.

3.3.2 Example

After extending the input language, we will, again, demonstrate, what to expect
from the analysis, before presenting the extended algorithm in the next sections.
The source code for the example is given in figure 3.9. The program is a nesC
module that consists of three 8 bit unsigned integer variables (x, y, z), two pointers
to such variables (p, q), and three functions (Boot.booted, f, g). Boot.booted
is the entry point of the application. The corresponding supergraph is pictured in
figure 3.10. The solid black edges depict the intraprocedural control flow, while the
dashed blue edges illustrate the interprocedural control flow. Note that, other than
usual, the call nodes are not split into call and return nodes. This is to resemble the
intermediate representation that will be described in the next section. Furthermore,
there are two instances of the CFG corresponding to the function f, named f and f’.
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module ExampleC {
uses interface Boot;

} implementation {
uint8_t x, y, z;
uint8_t *p, *q;

void f();
void g();

event void Boot.booted() {
p = &x;

f();
g();

}

void f() {
p = &y;

}

void g() {
p = &z;
q = &z;
f();

}
}

Figure 3.9: A program to demonstrate the interprocedural analysis.

As the analysis, we start the detailed explanation of the example with the first
statement of Boot.booted. Prior to that statement, all pointer targets are unknown.
The statement p = &x generates a points-to edge p → x. Next is a call to the
function f. Here, the analysis of Boot.booted is interrupted. To determine the effect
of f on the points-to graph, f is analyzed. As f does not invoke any other function,
intraprocedural analysis suffices. In difference to the analysis in the last section,
this time, the boundary information is not that all pointer targets are unknown. At
the point where f is called, p points to x, and hence, the analysis of f starts with
a points-to graph containing that edge. The analysis is straightforward, the only
statement in f causes the points-to edge p → x to be replaced by the edge p → y.
Thus, at the exit point of f, p points to y. Next, the analysis of Boot.booted is
resumed with this information. The next statement calls g. Therefore, the analysis
of Boot.booted is interrupted again, the entry node of g’s CFG is initialized with
p→ y, and the analysis of g starts. At first, g lets p and q point to z. Then, it calls f.
The function f has already been analyzed, but with different boundary information.
Therefore, the result from the previous analysis is not reused. The analysis of g
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EntryBoot.booted

p = &x

call f()

call g()

ExitBoot.booted

p→ x

p→ y

p→ y
q → z

Entryf

p = &y

Exitf

p→ x

p→ y

Entryg

p = &z
q = &z

call f()

Exitg

p→ y

p→ z
↗

q

p→ y
q → z

Entryf’

p = &y

Exitf’

p→ z
↗

q

p→ y
q → z

p→ x

p→ y

p→ y

p→ y
q → z

p→ z
↗

q

p→ y
q → z

Figure 3.10: Pointer-analysis result for the example program with function calls.

is interrupted and the algorithm analyzes f again; this time for {p → z, q → z},
resulting in {p → y, q → z}. This second analysis of f, which is independent from
the first analysis, is depicted by a separate CFG (f’) in the supergraph in figure 3.10.
After the result for this invocation of f is available, the analysis of g is resumed.
The call to f was the last statement in g, therefore, the points-to information at the
exit node of g is also {p → y, q → z}. Having this result available, the analysis of
Boot.booted is resumed. The call to g was the last statement, and therefore, the
points-to information at the exit of Boot.booted is {p→ y, q → z}.

This example demonstrates the context sensitivity of the analysis: f is called from
two different program points, with two different points-to graphs. For both invoca-
tions, at the end of f, the points-to graph contains the edge p → y. However, the
edge q → z exists only when f is called from g. As f is analyzed for both invoca-
tions independently, the additional points-to edge q → z does not reach Boot.booted
through the direct invocation of f, but only through the invocation of g.

Depending on the context, we obtain two different results for the points-to graph
before the statement in f, and also, for the points-to graph after the statement.
If a compiler wants to optimize the generated code for f, without duplicating the
function, it may be interested in all possible points-to relations for f, independent
from the invocation context. To consider only one context may lead to the wrong
assumption that either p always points to x (f) or p always points to z (f’) at the
entry point of f. In this case, a summarizing analysis result for f is required. For
any program point in f, a summarizing result can be obtained by combining the
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points-to graphs from the distinct analyses at that point. This summarizing result
for f is shown in figure 3.11.

Entryf

p = &y

Exitf

p→ x
↘

q → z

p→ y
q → z

Figure 3.11: The combined pointer-analysis result for function f in the example
program.

3.3.3 Intermediate Representation

The CFG as intermediate representation of the analyzed program for the intrapro-
cedural analysis was described in section 3.2.3. In this section, the intermediate
representation is extended to support function calls. As in the presence of function
calls more than one function must be analyzed, there is an individual CFG for every
function. Within a CFG, a function call is denoted by a call node, as we have seen
in the example in the previous section. The call node contains a reference to the
invoked function. Therefore, all information to construct a supergraph is available.
Nevertheless, a supergraph is never explicitly constructed. The analysis algorithm
works with the set of CFGs, and leaves the interprocedural edges implicit. Since
a call node contains only a reference and the CFG corresponding to the invoked
function is initialized just with the points-to information from the invoking context
as boundary information, the analysis behaves as if every call node is effectively re-
placed with a clone of the called function. This provides context sensitivity. Another
difference from a supergraph is, that our intermediate representation has just call
nodes. Supergraphs usually split function calls into two nodes, a call and a return
node.

3.3.4 Equations

The new language construct, introduced for the interprocedural analysis, is the
function call. In the intermediate representation, a function call is represented by a
call node. Thus, the analysis must be extended to handle such call nodes.

Reaching a call node in a CFG means that the effect of the called function on the
points-to graph of the caller must be determined. To do so, the analysis of the
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calling function is interrupted, to allow the analysis of the called function. This is
done in three steps:

1. The points-to information at the call site is mapped into the name space of
the called function.

2. The called function is analyzed with this points-to information.

3. The resulting points-to information is mapped back into the name space of the
calling function.

For a program that, like the example in figure 3.9, has only global variables and
pointers, this mapping is straightforward. All variables and pointers are visible in
every function. There are no formal parameters or local variables that are only
visible in a specific function, or that hide a global variable or pointer. Therefore,
the points-to information at the call site is simply copied to the entry node of the
CFG of the called function. Likewise, the points-to information from the exit node
of the CFG of the called function is copied back and is propagated as new points-to
information from the call node to its successors.

Parameters passed to the called function, values returned to the calling function,
or local variables complicate matters. Local variables and formal parameters are
only visible in the function they are declared in. Hence, each function may have
an individual name space and the algorithm must map the points-to information
between those name spaces. All variables that are not visible in the called function
are mapped to ghost location sets, to indicate that they are not directly visible,
but may be accessed through visible pointers. Using the technique of Rugina and
Rinard, the analysis context for the invoked function is set up as follows:

• The location sets for formal parameters and local variables of the calling func-
tion are mapped to ghost location sets.

• The location sets for the actual parameters at the call site are mapped to the
location sets for the formal parameters of the called function.

• The location sets for local variables of the called function are added to the
points-to graph, together with points-to edges from these location sets to unk.

The called function is analyzed with this context and the result is mapped back into
the naming environment of the calling function as follows:

• The location sets for formal parameters and local variables of the called func-
tion are mapped to unk.

• The location set for the return value in the called function is mapped to the
location for the called function’s return value in the calling function.

• The ghost location sets are mapped back to the corresponding location sets
for formal parameters and local variables.
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After the points-to information is mapped back into the name space of the calling
function, the algorithm propagates this information along the outgoing edges of the
call node in the control-flow graph, and thereby continues the analysis.

3.3.5 Properties

The interprocedural analysis is an extension to the intraprocedural analysis. There-
fore, the properties discussed in section 3.2.5 still hold for the intraprocedural part.
Each called function is analyzed with the specific points-to information from the call
site as boundary information and the resulting information is transferred back to the
specific call site. Thus, the interprocedural analysis is context sensitive. Since the
intraprocedural analysis is sound and the interprocedural analysis uses the intrapro-
cedural analysis to compute a safe approximation of the effect of a called function on
the points-to information, the interprocedural analysis is also sound. Unfortunately,
completely reanalyzing a function in every calling context highly impacts the com-
plexity. While the intraprocedural analysis has a polynomial upper bound for the
runtime, the interprocedural analysis has an exponential upper bound, a property
that it shares with other context-sensitive analyses.

Comparing our algorithm to Rugina and Rinard’s algorithm, we have two additional
restrictions: our analysis does not support function calls through function pointers
or recursive function calls. The algorithm does not terminate for recursive function
calls and invocations through function pointers are not handled at all. In the con-
text of TinyOS applications, this is not a real restriction. First, function pointers
are unnecessary due to nesC’s component and interface model, that uses wiring to
statically replace function pointers. Second, according to the TinyOS programming
hints, recursive function calls should be avoided.

3.4 Event-Sensitive Analysis

In the previous section, the intra- and interprocedural part of the analysis algorithm
were described. This section introduces a novel approach to analyzing event-driven
programs. These programs are represented by event graphs that model the possible
execution orders of the events. Concurrently executing events are modeled as con-
current threads. It is thus possible to use the algorithm for multithreaded programs
for the analysis of event-driven programs. To express event-driven programs, the
input language is extended to support events. Thereafter, the event graph is intro-
duced as intermediate representation and the analysis algorithm is presented in its
final form.

NesC components interact with each other through interfaces. Interfaces consist of
commands and events. Commands are implemented by the component providing the
interface, and are used by a component using the interface to request a service from
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the component providing the interface. Likewise, events are implemented by the
component using the interface, and are used by a component providing the interface
to inform the interface user that something happened. We restrict our analysis to a
single nesC component, more precisely to the module that implements the top-level
application logic. Therefore, no other component will request a service from the
analyzed module, and thus, commands are not considered in the analysis.

3.4.1 Language

The input language is an extension to the language specified in section 3.2.1 and
section 3.3.1. The new constructs are events, tasks, and command calls, which trigger
the future execution of events. The syntax follows the syntax of nesC. An event is
essentially a function declared with the keyword event. Like functions, events may
take parameters from the caller and return a result. An event e that takes no
parameters and returns no value is declared as event void e(). The characteristic
of events is, that events are invoked from somewhere outside the declaring module.
Therefore, from the modules perspective, it is unknown at what time the event is
executed.

Commands, like normal functions, are invoked by their name and a list of param-
eters in parentheses, except that the keyword call is written before the name. A
command c that takes no parameters is called by call c(). As said above, we
restrict the analysis to the top-level module of the application. Commands are used
by other components to request a service, but the top-level module does not offer
services to other components. Thus, there is no need for the input language to
support commands. Commands behave like normal functions, but called commands
belong to a different component. Therefore, they are beyond the scope of the analy-
sis. As called commands are not analyzed, it is only possible to call commands that
have no effect on the points-to relations in the analyzed module. Calls to split-phase
commands are important to the analysis, and the reason why command calls are
actually included in the input language. Even if the command itself must not alter
the points-to relations, it will eventually invoke an associated event of the caller.
The invoked event is a part of the analyzed module, and therefore may influence the
points-to relations.

Another construct of the input language, and nesC, is tasks. Like events, tasks are
essentially functions, and are declared with the task keyword. Unlike events, a task
is only accessible from the module it is declared in. A task is not invoked directly,
but posted to the task queue, from where the scheduler will fetch and execute it
later. Thus, tasks enable the deferred execution of functions. The scheduler is free
to decide when to execute the task. Therefore, similar to events, it is unpredictable
when the task is invoked.
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3.4.2 Example

uint8_t x, y ,z;
uint8_t *p;

event void Boot.booted() {
1: p = &x;

2: call RadioCtl.start();
3: call Timer.startOneShot(...);

4: p = &z;
}

event void RadioCtl.startDone(...) {
5: p = &x;

6: call Radio.send(...);
}

event void Timer.fired() {
7: p = &y;

}

event void Radio.sendDone(...) {
8: p = &z;

}

Figure 3.12: A program to demonstrate the event-sensitive analysis.

In the previous section, the input language was extended to its final form. To il-
lustrate that extension, this section discusses an event-driven program that demon-
strates the event-sensitive analysis, before the required extension of the analysis
itself is formally introduced in the next sections. The essential part of the con-
sidered application is given in figure 3.12. For simplicity, some details, including
interface declarations and parameters for command calls and events, have been
omitted. The application consists of three 8 bit wide unsigned integer variables
(x, y, z), one pointer (p), and four events (Boot.booted, RadioCtl.startDone,
Timer.fired, Radio.sendDone). In short, the application starts the radio, once
the radio is ready it transmits a message and eventually receives a notification that
the message was sent. Furthermore, the application starts a timer that eventually
invokes the Timer.fired event. This timer event has the special characteristic that
it is unknown, when, in relation to the radio events, it is executed. We are not
interested in the details of sending messages, but in the effects of concurrently exe-
cuted events on the points-to relations. The event graph in figure 3.13 depicts the
application’s events and models their relationship.
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Entry

Boot.booted

parbegin

begin

RadioCtl.startDone

Radio.sendDone

end

begin

Timer.fired

end

parend

Exit

p→ z

p→ y
↘
z

p→ x
↘
y

p→ y
↘
z

p→ x
↘

z

x
↗

p→ y
↘

z

p→ y
↘
z

Figure 3.13: Pointer-analysis result for the example program with events. Black ar-
rows indicate points-to relations generated in the same thread, green
arrows interfering points-to relations generated in a concurrently exe-
cuting thread.

We will now look into the example in more detail, starting with the event graph
itself. The event graph models the relationship between the individual events. The
applications control flow is considered as a thread of events that may start other
concurrently executing threads of events. From the TinyOS specification it is known
that Boot.booted is the first event of the application that is invoked. The assign-
ments in Boot.booted are irrelevant for the construction of the event graph, but
the two command calls are split-phase, and thus lead to the future execution of
events of the analyzed module. After executing the RadioCtl.start command,
the radio will eventually signal its availability by invoking the RadioCtl.startDone
event. Likewise, the call to the Timer.startOneShot command will eventually lead
to the invocation of the Timer.fired event. The analysis algorithm can not de-
termine which event will be executed first. Therefore, it must consider both exe-
cution orders: RadioCtl.startDone before Timer.fired and Timer.fired before
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RadioCtl.startDone. This indefinite execution order is expressed by two threads,
executing in parallel. The begin of a parallel execution is indicated by a “parbe-
gin” node in the event graph. Each of the individual threads starts with a “be-
gin” node. RadioCtl.startDone is the first event in the left thread. During its
execution, it calls the Radio.send command, leading to the future invocation of
the Radio.sendDone event. Therefore, Radio.sendDone must be executed after
RadioCtl.startDone, and thus, is the second event in the left thread. It contains
no statement that triggers the future execution of another event. Hence, the left
thread of events ends. This is indicated by the “end” node in the event graph.
The right thread consists only of the Timer.fired event, which is followed by that
thread’s end node. A “parend” node indicates the end of the parallel execution, and
finally, the last node in the event graph is an exit node that indicates the end of the
application’s main thread.

Once the event graph is available, the analysis algorithm starts to analyze the ap-
plication. It starts at the entry node on top of the graph, with the boundary infor-
mation that the targets of all pointers are unknown. Following the control flow of
the main thread, the first event is Boot.booted. An event node in the event graph
is similar to a call node in a CFG. To determine the effect of Boot.booted on the
points-to graph, Boot.booted is analyzed with the intra- and, if required, interpro-
cedural analysis. The statement at line 1 leads to a points-to edge p→ x. The next
statements, at line 2 and line 3, are command call statements. They were used to con-
struct the event graph, but have no immediate effect on the points-to graph, as they
are implemented in another module, and therefore, not in the scope of this analysis.
The statement at line 4 makes z the new target of p, leading to the points-to edge
p → z at the exit of Boot.booted. This resulting points-to graph is depicted after
the node for the Boot.booted event in the event graph. The two parallel threads are
analyzed next. We start with the left one, and in the first pass, ignore the points-to
edges drawn in green. Coming from Boot.booted, {p → z} is passed as bound-
ary information to the analysis of RadioCtl.startDone. RadioCtl.startDone, at
line 5, kills the edge p → z and generates the edge p → x. Then, Radio.sendDone
kills p→ x and generates p→ z at line 8. Thus, the points-to information reaching
the end node of the left thread is p→ z. We continue the analysis with the thread
on the right-hand side. It consists of a single event: Timer.fired. This event may
be executed before RadioCtl.startDone. In this case, the boundary information
for the analysis of Timer.fired is {p→ z}, the points-to relations after the execu-
tion of Boot.booted. It can also be executed after RadioCtl.startDone and before
Radio.sendDone. Then the boundary information for the analysis of Timer.fired
is {p → x}. Finally, it may be executed after Radio.sendDone. The boundary
information is then {p → z}, coincidentally the same as when Timer.fired is ex-
ecuted directly after Boot.booted. Hence, the undetermined execution order leads
to an additional possible points-to relation p→ x at the beginning of the execution
of Timer.fired. In figure 3.13, these additional points-to edges are depicted in
green color. Directly after the execution of Timer.fired, p definitively points to y.

36



However, a moment later, one of the events from the left thread may execute and
override the assignment from Timer.fired. Therefore, after Timer.fired executed
and before both threads finished their execution, p may point to x, y, or z. After the
points-to information from the right thread is available, the left thread is reanalyzed,
to incorporate the points-to edge p → y, generated in Timer.fired. The points-to
information of the two analyzed threads reaches the “parend” node, at which it is
merged in a way to reflect the points-to relations after both threads finished their ex-
ecution. That is, either Timer.fired executed last, leading to the points-to relation
p → y, or Radio.sendDone executed last, leading to the points-to relation p → z.
Therefore, the points-to graph contains both of these edges. RadioCtl.startDone
triggers the future execution of Radio.sendDone, so the points-to relation p → x
is always overridden before that thread of events ends. Consequently, the points-to
graph after the parend node does not contain an edge p→ x.

It is fundamental to note that the points-to relation p → x, valid at the time
RadioCtl.start was called, has no influence on the boundary information for the
RadioCtl.startDone event. This independence of points-to information from com-
mand call and event execution is a significant difference to normal function calls. A
normal function call passes the points-to relations to the called function and that
function is executed immediately. A command call also passes the points-to rela-
tions to the called command, but the associated event is invoked later, observing
the effective points-to relations at the time of its execution.

3.4.3 Intermediate Representation

This section completes the description of the intermediate program representation
for the presented pointer-analysis algorithm. Section 3.2.3 introduced the CFG as
intermediate representation for functions consisting of basic assignment statements
and of control-flow statements. In Section 3.3.3, call nodes were added to the CFG
to represent function calls. This is sufficient to represent all individual functions
and events, and allows modeling the invocation of one function from another. How-
ever, such a CFG, in general, can not model all possible execution orders of the
application’s events. Therefore, the event graph is introduced as a new intermediate
representation, to describe the program at the event level.

At first glance, an event graph is similar to a CFG. Figure 3.13 of the example in
section 3.4.2 depicts an event graph. As a CFG, it has an entry node, indicating
where the execution starts, and an exit node, indicating where the execution ends.
Furthermore, the edges in both graphs represent the control flow. However, a node
in a CFG represents a single statement or block, whereas a node in an event graph
represents an entire event. In addition, an event graph may contain nodes labeled
“begin” or “end”, denoting that the nodes in between form a thread of events. Fi-
nally, “parbegin” and “parend” nodes are used to indicate that the threads of events
between a parbegin and the corresponding parend node are executed concurrently.
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This enables the event graph to represent the non-deterministic execution order of
events.

In an event graph, each event is represented by one or more event nodes. Addition-
ally, every function and event is represented by a CFG, as described for the intra-
and interprocedural analysis. An event node is similar to a call node in a CFG;
it contains a reference to the invoked event. When the analysis algorithm reaches
an event node, it looks up the CFG corresponding to the event. Then it copies
the points-to information, reaching the event node, as boundary information to the
entry node of the event’s CFG and starts to analyze the event. After the analysis
of the event is finished, the resulting points-to information is transferred back from
the CFG’s exit node to the event graph and is propagated to the next node. This is
similar to the procedure for function calls.

The first event that is invoked is Boot.booted. Therefore, its corresponding event
node is the successor of the entry node. Whenever an event e triggers the future
execution of another event, an event node for that other event is added to the event
graph as a direct successor to the node corresponding to the event e. The interesting
part is when an event triggers the future execution of more than one event. For some
events, like timer events, it may be possible to determine the execution order of these
triggered events. However, in general, the order is non-deterministic. To represent
all possible execution orders, a new thread of events is created for each of these
triggered events, with the triggered event at the beginning. The event nodes of a
thread of events are enclosed in “begin” and “end” nodes for the thread. Therefore,
the node for the triggered event is added as a direct successor to the begin node.
A pair of “parbegin” and “parend” nodes indicates that the enclosed threads are
executed in parallel. Thus, a parbegin node is added as direct successor to the
node for the event e and the begin nodes of the individual threads are added as
direct successors to the parbegin node. The triggered events themselves may invoke
events that are consequently added to the invoking event’s thread. If an event does
not trigger the future execution of any other event, the thread it belongs to ends.
Therefore, the thread’s end node is the direct successor of this event’s node. The
end node itself has the parend node as its only direct successor. Finally, the exit
node is added to the event graph, such that it postdominates all other nodes. The
example in section 3.4.2 illustrated the event graph construction.

Another concept to model is that of recurring events. Recurring events are events
that are signaled more than once during the program execution. If it is guaranteed
that an event only recurs after all of the other events that its execution triggered
have finished their execution, the recurrence can be modeled by a backedge from
the end of this chain of events to its beginning, as long as the constraints for event
graphs are not violated. Examples of such events are timer events with intervals
much longer than the time it takes to execute the event handler and the related
code. Events signaling incoming network messages, on the other hand, may arrive
before the processing of the previous message is completed. Therefore, this type
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of recurring events can not be modeled with backedges, as all possibly interleaved
executions of these chains of events must be considered. The nodes for such events
are placed between “recbegin” and “recend” nodes in the event graph. The nodes
“recbegin” and “recend” are similar to “parbegin” and “parend” nodes respectively.
The difference is that the threads in the par-construct are different from each other
and there is exactly one instance of each thread, while the rec-construct contains
just one thread, but models the parallel execution of infinitely many instances of it.

There are some constraints regarding the control flow through threads and their
enclosing parbegin and parend nodes as well as recbegin and recend nodes. There
are no edges allowed between any nodes belonging to different parallel threads.
Therefore, every node of a thread is dominated by the thread’s begin node and
postdominated by the thread’s end node. Each node of a thread, except the begin
node, has all incoming edges only from nodes of the same thread. Likewise, each
node of a thread, except the end node, has all outgoing edges only to nodes of
the same thread. For each thread, there is exactly one edge from the corresponding
parbegin node to the thread’s begin node and exactly one edge from the thread’s end
node to the corresponding parend node. There are no other edges to begin or parend
nodes and no other edges from end or parbegin nodes. The same constraints apply
to nodes for threads of recurring events. Every event node in a chain of recurring
events is dominated by the recbegin node and postdominated by the recend node.

Besides events, the input language supports tasks. Tasks are functions in the same
module whose execution is deferred. A task is posted, i.e., marked for future ex-
ecution, and later selected and invoked by the scheduler. Therefore, tasks can be
treated like events in the event graph. Tasks are also represented by event nodes,
and whenever a task is posted, an event node corresponding to the task is added
as successor of the task or event posting that task. Hence, we will not differentiate
between tasks and events.

3.4.4 Equations

The event graph was introduced in the previous section. This section presents the
data-flow equations to analyze programs represented by event graphs. Event nodes
are equal to call nodes in a CFG. One might therefore expect that only threads and
groups of parallel threads require additional data-flow equations. Unfortunately,
this is not entirely true. In order to handle parallel threads, we must revise and
extend the previously presented equations, starting with the definition of points-to
information.

Definition 3.1 on page 22 defined the points-to information at a program point p
as the points-to graph at p. To capture the effect of assignments in concurrently
executing threads, the definition of points-to information is extended to parallel
points-to information as follows:
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Definition 3.2. Let L be the set of all location sets in the program and P =
2L×L the set of all points-to graphs for these location sets. The parallel points-to
information PPI(p) at a point p in the program is a triple 〈C, I, E〉 ∈ P 3 consisting
of:

• C: the current points-to graph,

• I: the set of interference edges generated by concurrently executing threads,

• E: the set of all points-to edges generated in the current thread.

The current points-to graph, C, as before, represents the points-to relations at a
program point p. The interference graph, I, describes the effect that pointer as-
signments in other threads have on the points-to relations in the currently analyzed
thread. It consists of all points-to edges generated in concurrently executing threads.
The set of all points-to edges generated in the current thread, E, is used to compute
the interference graph for the other threads, executing in parallel.

Extending the points-to information from a single points-to graph to a triple of
these graphs makes it necessary to revise the ordering, and therefore, the lattice of
points-to information. As the parallel points-to information is a triple of points-to
graphs, we will consider the product lattice. The partial order from P is extended
to P 3 by considering the partial ordering of the individual sets of points-to edges:

〈C1, I1, E1〉 v 〈C2, I2, E2〉 ⇐⇒ C1 ⊆ C2 ∧ I1 ⊆ I2 ∧ E1 ⊆ E2

Therefore,
(
P 3,v

)
is a poset and forms a lattice with the extended meet operator:

〈C1, I1, E1〉 t 〈C2, I2, E2〉 := 〈C1 ∪ C2, I1 ∪ I2, E1 ∪ E2〉

Next, we have to redefine the functional J K that assigns a transfer function to every
statement of the program. Stat is still the set of all statements in the program,
but the extension of the points-to information to PPI(p) ∈ P 3 must be reflected in
the transfer function f , which is now f ∈ P 3 → P 3. Therefore, the functional J K
becomes J K : Stat →

(
P 3 → P 3). For basic assignment statements, this extended

functional is shown in figure 3.14 and, as before, defined in terms of gen sets, kill
sets, and a strong flag. The definitions of the gen set, the kill set, and the strong
flag are the same as for the earlier analyses, given in figure 3.8 on page 23.

The extensions are straightforward. The interference edges created by all assign-
ments in the other, concurrently executing threads are also included in the current
points-to graph. If the set of interference edges is empty, the algorithm computes
the same current points-to graph as the analysis for sequential programs, presented
in section 3.2. An assignment in the current thread has no effect on the interference
edges generated by other threads. Therefore, the interference graph is unchanged.
Finally, as E is the set of all points-to edges generated in the current thread, all
edges in the gen set for the current statement must be included in E.
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JstK〈C, I, E〉 = 〈C ′, I ′, E′〉, where:

C ′ =
{

(C − kill) ∪ gen ∪ I if strong
C ∪ gen ∪ I if not strong

I ′ = I

E′ = E ∪ gen

Figure 3.14: Data-flow equations for the event-sensitive analysis.

Having these extensions to the intraprocedural analysis in place, the extension of
the interprocedural analysis is straightforward. The two additional sets, I and E,
must also be mapped into the scope of the called function, like the set C, before
the analysis of that function starts, and afterwards must be mapped back into the
scope of the caller. Next, we consider the analysis of parallel threads. The data-flow
equations for the parallel construct and threads are given in figure 3.15.

Jpar{{t1} . . . {tn}}K〈C, I, E〉 = 〈C ′, I, E′〉, where:

C ′ =
⋂

1≤i≤n

C ′i

E′ = E ∪
⋃

1≤i≤n

Ei

Ci = C ∪
⋃

1≤j≤n
j 6=i

Ej

Ii = I ∪
⋃

1≤j≤n
j 6=i

Ej

JtiK〈Ci, Ii,∅〉 = 〈C ′i, Ii, Ei〉

Figure 3.15: Data-flow equations for the parallel construct and threads.

The parallel points-to information flowing into a parbegin node passes through it
unchanged and is propagated to the begin nodes of all threads. At a thread’s begin
node, the individual points-to information for the thread is computed. The thread
may be the first one that is executed. Therefore, all edges of the current points-to
graph C reaching the parbegin node, are included in the current points-to graph Ci

at the begin of the thread. Furthermore, any points-to relation that is generated
by the other threads may be valid at the time the thread’s execution starts. Thus,
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all points-to edges generated in the other threads are also included in the current
points-to graph Ci. Interference edges describe the points-to relations generated by
threads executing in parallel to the current one. As threads executing in parallel to
the entire par block also execute in parallel to the individual threads of that block, all
interference edges reaching the parbegin node are included in the set of interference
edges Ii for an individual thread. As for the current points-to graph, all points-to
edges generated by other threads of the same par block are also interference edges for
the current thread. The E set just accumulates the edges generated by the current
thread, and hence, it is empty at the begin of the thread. The current points-to
graph C ′i at the end of a thread is the same as the one reaching the end node. The
same holds for the set Ei of all generated points-to edges for that thread. Interference
edges are only computed at the threads begin node, and then left unchanged inside
the thread. Therefore, the set of interference edges Ii at the begin of the thread is
also the set of interference edges at the end of the thread. At the end of the parallel
block, i.e., when all threads have finished their execution, the points-to information
from the different threads must be combined. The interesting part is the resulting
current points-to graph C ′. It must contain all edges that reached the parbegin node
and were not killed by a strong update in any thread. These points-to edges are
in the points-to graphs at the exit of all threads, and therefore in the intersection
of the sets C ′i. In addition, the graph must include all points-to edges generated in
any thread that are not killed later in the same thread. These edges get into the
points-to graphs of the other threads as interference edges, and thus, are also in the
intersection of the sets C ′i. The set of interference edges is updated only at the begin
node of a thread. Therefore, the set of interference edges at the parend node is the
same as it was at the parbegin node. Finally, at the parend node, the set E′ of all
points-to edges generated in the current thread, must include all edges it contained
at the parbegin node and all edges generated in all threads of the parallel thread
group.

Chains of recurring events execute in parallel and that leads to interleaved execu-
tions of the related events. Therefore, these event chains are treated as threads that
execute in parallel. Since, in this case, all threads consist of the same sequence of
events, it is sufficient to analyze just one thread instance. The interference infor-
mation is computed from this instance and then merged into the points-to graphs
for the thread. Figure 3.16 lists the data-flow equations for recurring events. These
equations yield a safe approximation of the points-to relations for an unknown num-
ber of concurrently executing instances of event chains. There is a difference in the
possible points-to relations between one and two instances executing in parallel, but
any number of instances higher than two yields the same possible relations as two
instances. Furthermore, the possible points-to relations for one instance are a subset
of the relations for more than one instances and thus, these equations yield a sound
result for any number of instances executing concurrently.

The extension of the points-to information from a single graph to a triple of such
graphs also influences the initialization values. The algorithm presented in sec-
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Jrec{c}K〈C, I, E〉 = 〈C ′c, I, E′〉, where:

E′ = E ∪ Ec

Cc = C ∪ Ec

Ic = I ∪ Ec

JcK〈Cc, Ic,∅〉 = 〈C ′c, Ic, Ec〉

Figure 3.16: Data-flow equations for recurring events.

tion 3.2 initialized all CFG nodes, except the entry node, with an empty set of
points-to edges. This initialization is extended: the event-sensitive algorithm ini-
tializes all event graph and CFG nodes, except the entry node of the event graph,
with a triple 〈∅,∅,∅〉 consisting of empty sets. At the entry node of the event
graph, i.e., before any statement of the analyzed application was executed, the cur-
rent points-to information is, as before, that all pointers point to unknown locations.
The main thread is not executed in parallel with any other thread. Therefore, the
set of interference edges is empty. Without any statement executed, there can be
no generated points-to edges, and thus, the set of all edges generated in the current
set is also empty. Hence, the boundary information at the entry node of the event
graph is 〈L× {unk},∅,∅〉.

3.4.5 Properties

This section concludes the presentation of the pointer-analysis algorithm for event-
driven programs by discussing its properties. There are two essential extensions to
the analysis that was presented in sections 3.2 and 3.3: the event graph to model the
dependencies of events, and the possibility to concurrently execute code. As long as
the order of execution is deterministic for all events, the event graph describes this
sequence. For the event-sensitive analysis, the points-to information is propagated
along the edges of the event graph as it is propagated along the edges of the CFG
for the intraprocedural analysis. The event nodes are like call nodes in the interpro-
cedural analysis. Therefore, the event-sensitive analysis, in the strictly sequential
case, is a straightforward extension of the intra- and interprocedural analyses, and
thus, it is sound.

The other extension is the concurrent execution of events, modeled by the par-
and rec-constructs. One thread of events influences parallel threads by creating
or killing points-to relations between shared pointers and variables. Since a safe
approximation must have a points-to edge p → x whenever p contains the address
of x, the analysis must consider the points-to edges generated by events in parallel
threads, but may neglect killed ones. Therefore, all points-to edges generated by
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a thread are captured by the E set and merged into the interference graph I of
the other threads. The data-flow equations ensure that all edges in the interference
graph at a program point are also in the current points-to graph at that program
point. Thus, the analysis is sound for parallel threads of events. The rec-construct
for recurring events is a special case of the par-construct. It models all possible
interleaved executions of an instance of a thread with other instances of the same
thread. As for the par-construct, the computed interference graph ensures that all
points-to edges possibly generated by another instance are present in the current
points-to graph. Hence, the analysis is sound.

3.5 Integration into the NesC Toolchain

The algorithm presented in the previous sections is implemented in the nesC com-
piler. The nesC compiler is a source-to-source compiler that translates nesC code
to C code. This C code is later compiled to machine code by a C compiler. The
nesC compiler parses the application’s source code and connects the individual com-
ponents (wiring). After that, the nesC graph extractor (NGE), an experimental
compiler extension by Arne Wichmann and Volker Menrad that is still under devel-
opment, creates the megagraph for the application’s top-level module. A megagraph
is an extended supergraph for event-based systems. In contrast to the presented
event graph, the megagraph represents every event exactly once. If an event trig-
gers the future execution of another event, there is an invoking edge from the exit
node of the triggering event to the entry node of the triggered event. The non-
deterministic execution order is represented by additional interleaving edges. There
is an interleaving edge from the exit node of one event to the entry node of another
event, if the execution of the other event is not triggered by the first event, but may
nevertheless happen after the first event finished. This does not fit in the model of
the event graph, which requires that concurrently executing events are modeled as a
group of parallel threads and that there are no control-flow edges between any nodes
belonging to different threads. Therefore, the implementation of the presented algo-
rithm does not use the megagraph, but it uses the information it provides, namely
what event triggers the future execution of what other event. The available NGE
implementation can not infer the relation between a command call and the future
execution of an event. The user of the compiler must provide these split-phase
relations in a separate file. Based on the information from the megagraph, the im-
plementation of the points-to analysis creates the event graph for the application.
For testing purposes and to cover applications for which the current implementation
fails to create a correct event graph, the user of the compiler may also provide a file
containing an event-graph specification.

The main components of the nesC compiler, the relevant extensions, and the ex-
changed data-structures are depicted in figure 3.17. On the left-hand side are the
input files, namely the nesC source code, the split-phase information that relates
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Figure 3.17: Schematic depiction of the nesC compiler with NGE and points-to anal-
ysis extensions.

commands to events, and the optional event-graph specification. On the right-hand
side are the output files, namely the application as a single file of C code and the
results of the implemented program analyses. At the moment, the presented points-
to analysis (depicted in red) is the only implemented program analysis. However,
its result, the megagraph annotated with possible points-to relations (also depicted
in red), will be the input to other analyses currently under development. One of
these planned analyses is a memory ownership analysis that determines what com-
ponent of an application owns what memory location, to enforce TinyOS program-
ming hint 4: only one component should be able to modify a pointer’s data at any
time [20].
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An event is represented by a single node in the event graph. This is not enough to
analyze the event’s effects on the points-to relations. Therefore, a CFG is required
for every event and function that is analyzed. The megagraph, as an extended
supergraph, contains the required CFGs as subgraphs. Thus, the intraprocedural
part of the implemented points-to analysis operates on the available megagraph.
Since the megagraph contains nodes and edges that belong to events and functions
other than the analyzed one, it is important to limit the intraprocedural analysis
to the currently analyzed function. Hence, it must start at the entry node of the
analyzed function and ensure that it does not follow any control-flow edges leaving
the exit node. In contrast to the event graph and the CFGs presented in this work,
the megagraph has the statements on its edges. Nodes only indicate the begin and
end of a function, separate the edges of two adjacent statements, and are used to split
and merge the control-flow. For simplicity, the points-to analysis implementation
follows this design for the intraprocedural analysis. The implemented event graph
still has the events as its nodes.

The analysis starts by creating location sets for the module’s global variables. Then
it creates the event graph from the information available in the megagraph and at-
taches the initial points-to information to the nodes and edges. The implementation
uses a worklist to record the nodes that must be analyzed. It adds the event graph’s
entry node to the worklist and enters the analysis loop. In the loop, a node is fetched
from the worklist. Then the meet of the points-to information from the incoming
edges is computed and compared to the points-to information stored at the node.
If there are differences, the stored points-to information is updated and the node is
analyzed. For an event node, the algorithm performs an interprocedural analysis of
the corresponding event. For a begin node of a thread, the algorithm computes the
Ci and Ii sets to propagate them into the thread. For a parend node, C ′ and E′ are
computed and stored as outgoing points-to information. Finally, for end or parbe-
gin nodes, the points-to information is simply copied from the in-set to the out-set.
If the points-to information stored at the node was changed, the successors of the
node are added to the worklist. For an end node of a thread, the begin nodes of
all other threads of its group are added to the worklist additionally. The algorithm
terminates when the worklist is empty.

The implementation of the intraprocedural analysis is similar. It initializes the sub-
graph of the megagraph that forms the analyzed function’s CFG. Thereby it replaces
the data stored at the megagraph’s nodes and edges with the initial points-to infor-
mation. After the analysis of the function is completed, the original data is restored
and the computed points-to relations are added to it. The implementation of the
intraprocedural analysis, like the analysis on the event graph level, uses a worklist
to record nodes that must be analyzed. The difference here is that the nodes do not
correspondent to statements. Therefore, only the meet of the incoming points-to in-
formation is computed and, if it is different from the information stored previously,
the statements at the outgoing edges are analyzed with this new information. Then
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the successors of the analyzed node are added to the worklist, to analyze them with
the newly computed information.

The pointer analysis is enabled together with the megagraph construction by invok-
ing the compiler with the -fnesc-nge-meta flag. The megagraph annotated with the
possible points-to relations at every program point is written to a file in DOT format,
if the file is specified by the -fnesc-dfa-pa-graphfile flag. For further debugging
purposes, the CFGs resulting from the intraprocedural analyses can also be writ-
ten to files by invoking the compiler with the -fnesc-dfa-pa-write-debug-files
flag. The -fnesc-dfa-pa-eventgraph flag allows to specify a file that contains an
alternative event-graph layout. If specified, that layout overrides the automatically
constructed event-graph. Finally, the -fnesc-verbose flag lets the compiler write
additional information to the standard error stream. The points-to analysis con-
tributes to this additional information by reporting, which statement is currently
analyzed, what the computed gen and kill sets are, and which nodes are added to
the worklist.
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4 Evaluation

The points-to analysis algorithm for event-driven programs was presented in the
previous chapter. A large part of the analysis has been implemented in the nesC
compiler and was used to evaluate the algorithm. This chapter presents the findings.
Section 4.1 describes the test setup. Sections 4.2 to 4.5 evaluate the obtained anal-
ysis results for programs that test the correct handling of the language constructs
introduced in chapter 3. Finally, section 4.6 presents the results of the evaluation.

4.1 Test Setup

Since the analysis is implemented in the nesC compiler and runs as a step of the com-
pilation process, the test applications were compiled with the nesC compiler. The
points-to analysis is enabled by invoking the compiler with the -fnesc-nge-meta
flag. This flag also enables the construction of the megagraph that contains the
CFGs that are required for the points-to analysis. The module that should be
analyzed is specified by the -fnesc-nge-components compiler flag. Furthermore,
to evaluate the analysis process, the compiler is invoked with -fnesc-verbose to
write a trace to the console, and with -fnesc-dfa-pa-write-debug-files to pro-
duce CFGs annotated with points-to information for every analyzed function. Since
the applications use the build system of TinyOS the compilation is run with:

CFLAGS="-fnesc-nge-components=MODULE\
-fnesc-nge-meta\
-fnesc-verbose\
-fnesc-dfa-pa-write-debug-files\
-fnesc-nge-help=nge-help.txt\
-fnesc-nge-invokeout=invoke.dot\
-fnesc-nge-metaout=meta.dot"

make CFLAGS="${CFLAGS}" iris

MODULE is a placeholder for the name of the module to analyze. The additional flags
that were not explained above are required by the megagraph-construction code. The
file given with the flag -fnesc-nge-help specifies split-phase pairs of commands and
events. Each line of the file contains a command name, an event name, and a number
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that indicates how often the event is triggered by a single call to the corresponding
command. For example, calling the command Timer.startOneShot() leads to a
single Timer.fired() event, but calling Timer.startPeriodic() leads to recurring
Timer.fired() events. The last two compiler flags specify files where the NGE
compiler extension writes intermediate graphs into. This is not necessary for the
points-to analysis, but the NGE extension requires these files to be specified. The
target platform is irrelevant to the analysis of the top-level module, and therefore
“iris” was chosen arbitrarily.

4.2 Basic Assignment Statements

The intraprocedural analysis considers the effects of basic assignment statements.
Therefore, the evaluation starts with the analysis of an application that consists
of basic assignment statements. We use a program similar to the module given in
figure 3.3 on page 18. For reasons of space, the second constant assignment, y = 0,
has been removed from the program.

Boot.booted_ENTRY
C = {a->?, p->?, q->?, r->?, x->?, y->?}
I = {}
E = {}

after assignment 1
C = {a->?, p->?, q->?, r->?, x->?, y->?}
I = {}
E = {x->?}

 [x = 0]
 C = {a->?, p->?, q->?, r->?, x->?, y->?}
 I = {}
 E = {x->?}

after assignment 4
C = {a->p, p->x, q->y, r->?, x->?, y->?}
I = {}
E = {a->p, p->x, q->y, x->?}

after assignment 5
C = {a->p, p->x, q->y, r->y, x->?, y->?}
I = {}
E = {a->p, p->x, q->y, r->y, x->?}

 [r = q]
 C = {a->p, p->x, q->y, r->y, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->y, r->y, x->?}

after assignment 2
C = {a->?, p->x, q->?, r->?, x->?, y->?}
I = {}
E = {p->x, x->?}

 [p = &x]
 C = {a->?, p->x, q->?, r->?, x->?, y->?}
 I = {}
 E = {p->x, x->?}

after assignment 3
C = {a->?, p->x, q->y, r->?, x->?, y->?}
I = {}
E = {p->x, q->y, x->?}

 [q = &y]
 C = {a->?, p->x, q->y, r->?, x->?, y->?}
 I = {}
 E = {p->x, q->y, x->?}

 [a = &p]
 C = {a->p, p->x, q->y, r->?, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->y, x->?}

after assignment 6
C = {a->p, p->x, q->x, r->y, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, q->y, r->y, x->?}

 [q = *a]
 C = {a->p, p->x, q->x, r->y, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, q->y, r->y, x->?}

Boot.booted_EXIT
C = {a->p, p->y, q->x, r->y, x->?, y->?}
I = {}
E = {a->p, p->x, p->y, q->x, q->y, r->y, x->?}

 [*a = r]
 C = {a->p, p->y, q->x, r->y, x->?, y->?}
 I = {}
 E = {a->p, p->x, p->y, q->x, q->y, r->y, x->?}

Figure 4.1: CFG for the program to evaluate the analysis of basic assignment state-
ments, annotated with parallel points-to information.

The compiler-generated CFG for the event Boot.booted of the analyzed program,
annotated with the computed points-to relations, is shown in figure 4.1. As men-
tioned in section 3.5, in this CFG, statements are represented by edges rather than
nodes. The trace on the console (not depicted) shows that the following location sets
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were identified: 〈?, 0, 0〉, 〈a, 0, 0〉, 〈p, 0, 0〉, 〈q, 0, 0〉, 〈r, 0, 0〉, 〈x, 0, 0〉, and 〈y, 0, 0〉.
〈?, 0, 0〉 is the unk set that is automatically generated for every analysis and the
other six location sets correspond to the six module variables. Therefore, the loca-
tion sets were identified correctly. The set C of the boundary information at the
“Boot.booted_ENTRY” node contains six points-to edges, one from each of the lo-
cation sets for the module variables to unk. The sets I and E at that node are empty.
Thus, the implemented algorithm generated the correct boundary information.

The control-flow edge from “Boot.booted_ENTRY” to “after assignment 1” repre-
sents the constant assignment x = 0. The trace on the console shows the computed
gen set, kill set, and strong flag. The kill set contains the points-to edge x → ?
that reached the assignment statement, the gen set also contains the edge as x→ ?,
and the update is strong. According to the rules for constant assignments, given in
figure 3.8 on page 23, that values are correct. Due to the edge x→ ? in both gen set
and kill set the set C remains unchanged while the edge from the gen set is added to
the set E. This is as specified by the data-flow equations in figure 3.14 on page 41.

Following the control flow, the next three edges correspond to address-of assign-
ments. The trace on the console shows that these assignments were identified cor-
rectly and that the gen sets, kill sets, and strong flags were computed according to
the data-flow equations. This can also be seen in the data-flow values depicted in
the CFG. The points-to edges from the location sets of the updated pointers to the
location set unk are removed from the set C, and the corresponding edges to the
location sets of the new targets are added. These new edges are also added to the
set E.

The next control flow edge, from “after assignment 4” to “after assignment 5”,
represents the copy assignment r = q. Before that assignment, r pointed to an
unknown location and q definitively pointed to y. The location set for r identifies
a single location, and therefore the update is strong. Thus, after the assignment,
the set C should contain an additional points-to edge r → y, while the edge r → ?
should no longer be present. Furthermore, the set E should contain the generated
edge r → y. As it can be seen in the annotated CFG, this is indeed the case, and
hence the copy assignment is handled correctly.

The next statement is the load assignment q = *a. Since a points to p and p points
to x, and before the assignment q pointed to y, the kill set must contain the points-to
edge q → y and the gen set must contain the edge q → x. The trace shows that the
algorithm computed exactly these gen set and kill set and the CFG indicates that
the sets C and E were updated in accordance with the data-flow equations.

The last statement is the store assignment *a = r. Since a points to p and r points
to y the points-to edge p → y must be added to the sets C and E. Furthermore,
the update is strong, and therefore the edge p → x must be removed from C. The
annotated CFG shows that the implemented algorithm handled the store assignment
correctly.
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The analysis result for the basic assignments module shows that the implemented
algorithm identified the module variables and created the corresponding location
sets. Furthermore, the implementation handled the basic assignment statements
according to the data-flow equations given in chapter 3. A comparison of the ex-
pected result of the analysis, depicted in figure 3.4 on page 19, and the actual result,
depicted in figure 4.1, shows that the computed points-to graphs, C, match the
expected points-to graphs. Therefore, this program confirms that the presented
data-flow equations for basic assignment statements are sound and correctly imple-
mented in the nesC compiler.

4.3 Control-Flow: Branching and Merging

In addition to basic assignment statements, the input language supports control-
flow statements. A program that contains an if statement, and therefore has a
branching point in the control-flow, was presented as an example in section 3.2.2.
The program’s source code is given in figure 3.5 on page 20, the computed points-to
information is depicted in figure 4.2. Comparing the computed result of the analysis
with the expected result in figure 3.6 shows that the correct points-to information
was computed. The points-to information reaching the branching node, “after as-
signment 3”, is propagated along both outgoing control-flow edges. At the join node,
“if JOIN 5”, the information from the branches is merged. This merge leads to a
points-to graph that contains two points-to edges for a: a → p and a → q. There-
fore, the update *a = p can not be strong and this fact is correctly discovered by
the implemented analysis.

Another construct of the input language that leads to branching and merging of the
control-flow is for loops. A program that contains such a loop is given in figure 4.3,
the analysis result is shown in figure 4.4.

This program reveals an imprecision in the analysis. The algorithm reports a possible
assignment to an unknown location for the statement *a = q. Only in the first
iteration of the loop, a is a null pointer. After the first iteration, a points to p. Since
the assignment *a = q is guarded by a check that a points to a valid location, the
program never writes to an unknown memory location. However, since the analysis
is path-insensitive, it does not compute that information. Another imprecision, also
due to path-insensitivity, is that the points-to edges a → ? and p → ? reach the
exit node. Since the loop is executed two times, a definitively points to p and p
definitively points to x at the exit node.
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Boot.booted_ENTRY
C = {a->?, p->?, q->?, x->?, y->?}
I = {}
E = {}

after assignment 1
C = {a->?, p->x, q->?, x->?, y->?}
I = {}
E = {p->x}

 [p = &x]
 C = {a->?, p->x, q->?, x->?, y->?}
 I = {}
 E = {p->x}

after assignment 2
C = {a->?, p->x, q->y, x->?, y->?}
I = {}
E = {p->x, q->y}

 [q = &y]
 C = {a->?, p->x, q->y, x->?, y->?}
 I = {}
 E = {p->x, q->y}

after assignment 3
C = {a->p, p->x, q->y, x->?, y->?}
I = {}
E = {a->p, p->x, q->y}

 [a = &p]
 C = {a->p, p->x, q->y, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->y}

if JOIN 5
C = {a->p, a->q, p->x, q->y, x->?, y->?}
I = {}
E = {a->p, a->q, p->x, q->y}

 [!((p) == (q))]
 C = {a->p, p->x, q->y, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->y}

TRUE 4
C = {a->p, p->x, q->y, x->?, y->?}
I = {}
E = {a->p, p->x, q->y}

 [(p) == (q)]
 C = {a->p, p->x, q->y, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->y}

Boot.booted_EXIT
C = {a->p, a->q, p->x, q->x, q->y, x->?, y->?}
I = {}
E = {a->p, a->q, p->x, q->x, q->y}

 [*a = p]
 C = {a->p, a->q, p->x, q->x, q->y, x->?, y->?}
 I = {}
 E = {a->p, a->q, p->x, q->x, q->y}

 [a = &q]
 C = {a->q, p->x, q->y, x->?, y->?}
 I = {}
 E = {a->p, a->q, p->x, q->y}

Figure 4.2: CFG for the program to evaluate the handling of branches in the control
flow, annotated with parallel points-to information.
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module ForC {
uses interface Boot;

} implementation {
uint8_t x;
uint8_t *p;
uint8_t *q;
uint8_t **a;

event void Boot.booted() {
q = &x;

for (x = 0; x < 2; x++) {
if (a != NULL)

*a = q;

a = &p;
}

}
}

Figure 4.3: ForC: A module to test the analysis of loops.

4.4 Function Calls

A program that consists of three functions was presented in section 3.3.2. The
source code is shown in figure 3.9 on page 28 and the expected result of the points-
to analysis in figure 3.10. This program is used to evaluate the implementation of
the interprocedural analysis. The result obtained by analyzing the program with
the implemented algorithm is depicted for each function and context individually.
Figure 4.5 shows the result for Boot.booted, figure 4.6 the result for f in the context
of the call from Boot.booted, figure 4.7 the result for g, and figure 4.8 the result
for f in the context of the call from g.

The obtained results correspond with the expected results, and that indicates that
the implementation correctly handles function calls. An important observation is
that the implemented analysis yields two different results for the function f, de-
pending on the calling context. That demonstrates the context sensitivity of the
analysis.

One feature of the presented analysis that is not implemented in the prototype is
support for parameters and return values of functions. Therefore, the evaluation of
the interprocedural analysis is limited to the effect of called functions on module
variables and pointers, and hence this section does not present a program with
functions that take parameters or return a value.
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Boot.booted_ENTRY
C = {a->?, p->?, q->?, x->?, y->?}
I = {}
E = {}

after assignment 1
C = {a->?, p->?, q->x, x->?, y->?}
I = {}
E = {q->x}

 [q = &x]
 C = {a->?, p->?, q->x, x->?, y->?}
 I = {}
 E = {q->x}

condition 2
C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, x->?}

 [x = 0]
 C = {a->?, p->?, q->x, x->?, y->?}
 I = {}
 E = {q->x, x->?}

Boot.booted_EXIT
C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, x->?}

 [<AST-node kind: 111>]
 C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

for condition TRUE 2
C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, x->?}

 [<AST-node kind: 111>]
 C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

if JOIN 4
C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, x->?}

 [!(<AST-node kind: 114>)]
 C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

TRUE 3
C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, x->?}

 [<AST-node kind: 114>]
 C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

for JOIN 2
C = {a->p, p->?, p->x, q->x, x->?, y->?}
I = {}
E = {a->p, p->x, q->x, x->?}

 [a = &p]
 C = {a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

 [*a = q]
 C = {a->?, a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

 [<AST-node kind: 91>]
 C = {a->p, p->?, p->x, q->x, x->?, y->?}
 I = {}
 E = {a->p, p->x, q->x, x->?}

Figure 4.4: CFG for Boot.booted of ForC, annotated with parallel points-to infor-
mation.
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Boot.booted_ENTRY
C = {p->?, q->?, x->?, y->?, z->?}
I = {}
E = {}

after assignment 1
C = {p->x, q->?, x->?, y->?, z->?}
I = {}
E = {p->x}

 [p = &x]
 C = {p->x, q->?, x->?, y->?, z->?}
 I = {}
 E = {p->x}

after function call 2
C = {p->y, q->?, x->?, y->?, z->?}
I = {}
E = {p->x, p->y}

 [<call> f(<NULL>)]
 C = {p->y, q->?, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y}

Boot.booted_EXIT
C = {p->y, q->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z, q->z}

 [<call> g(<NULL>)]
 C = {p->y, q->z, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y, p->z, q->z}

Figure 4.5: CFG for Boot.booted of the program to evaluate the interprocedural
analysis, annotated with parallel points-to information.

f_ENTRY
C = {p->x, q->?, x->?, y->?, z->?}
I = {}
E = {p->x}

f_EXIT
C = {p->y, q->?, x->?, y->?, z->?}
I = {}
E = {p->x, p->y}

 [p = &y]
 C = {p->y, q->?, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y}

Figure 4.6: CFG for f of the program to evaluate the interprocedural analysis, anno-
tated with parallel points-to information in the context of the call from
Boot.booted.
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g_ENTRY
C = {p->y, q->?, x->?, y->?, z->?}
I = {}
E = {p->x, p->y}

after assignment 5
C = {p->z, q->?, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

 [p = &z]
 C = {p->z, q->?, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y, p->z}

after assignment 6
C = {p->z, q->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z, q->z}

 [q = &z]
 C = {p->z, q->z, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y, p->z, q->z}

g_EXIT
C = {p->y, q->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z, q->z}

 [<call> f(<NULL>)]
 C = {p->y, q->z, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y, p->z, q->z}

Figure 4.7: CFG for g of the program to evaluate the interprocedural analysis, an-
notated with parallel points-to information.

f_ENTRY
C = {p->z, q->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z, q->z}

f_EXIT
C = {p->y, q->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z, q->z}

 [p = &y]
 C = {p->y, q->z, x->?, y->?, z->?}
 I = {}
 E = {p->x, p->y, p->z, q->z}

Figure 4.8: CFG for f of the program to evaluate the interprocedural analysis, anno-
tated with parallel points-to information in the context of the call from
g.
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4.5 Events

The goal of the presented algorithm is the analysis of event-driven programs. To
evaluate its capabilities, the implemented analysis is used to analyze the program
presented in figure 3.12 on page 34. As in section 3.4.2, we will focus on the points-
to relations on the event-level. The constructed event graph with the computed
points-to information is depicted in figure 4.9. For comparison, the expected result
is shown in figure 3.13 on page 35. Both graphs show the same result, they differ only
in the positions of the parallel threads, and the computed event graph has additional
identifiers on the “parbegin”, “parend”, “begin”, and “end” nodes. Of special interest
is the parallel construct that models the non-deterministic execution order of the
events RadioCtl.startDone, Radio.sendDone, and Timer.fired. The depicted
event graph shows that the interference information for the individual threads of
events is computed properly and correctly merged into the current points-to graphs
of the respective thread.

To evaluate the analysis of programs with recurring events, the event graph con-
struction in the nesC compiler is instructed to treat RadioCtl.startDone and
Timer.fired as recurring events. This results in the event graph depicted in fig-
ure 4.10. Treating RadioCtl.startDone and Timer.fired as recurring events leads
to a “recbegin” and a “recend” node in the event graph that enclose the parallel
threads of events. Since recurring events may execute in any order—one instance of
a thread of events may even interfere with another instance of the same thread—any
of the three concurrent events may be executed before any other concurrent event of
the program. Therefore, the computed points-to graphs for the recurring events con-
tain all points-to edges generated by all other recurring events. This is the desired
result and indicates the correct implementation of the event-sensitive analysis.

4.6 Results

The evaluation showed that the implemented points-to analysis for event-driven pro-
grams correctly handles programs that adhere to the input language. An exception
are programs that use structures or arrays, or contain functions that take parame-
ters, return a value, or have local variables. Unfortunately, support for these features
is currently missing from the implementation. The other constructs of the defined
input language are handled correctly, and therefore we obtain the expected points-to
relations for the example programs from chapter 3, as well as for some additional
programs. It should be noted that the unsupported features are an implementation
detail and not a limitation of the presented algorithm.

Another observation is that the analysis of example applications of the TinyOS dis-
tribution that contain pointers is infeasible with the current analysis. Contrary to
our assumptions about analyzed programs, these applications pass pointers through
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C = {p->?, x->?, y->?, z->?}
I = {}
E = {}

<begin 0.0>
C = {p->?, x->?, y->?, z->?}
I = {}
E = {}

C = {p->?, x->?, y->?, z->?}
I = {}
E = {}

Boot.booted
C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

C = {p->y, p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

<end 0.0>
C = {p->y, p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

<parbegin 1>
C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

<begin 1.1>
C = {p->x, p->z, x->?, y->?, z->?}
I = {p->x, p->z}
E = {}

C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

<begin 1.2>
C = {p->y, p->z, x->?, y->?, z->?}
I = {p->y}
E = {}

C = {}
I = {}
E = {}

<parend 1>
C = {p->y, p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

C = {p->x, p->z, x->?, y->?, z->?}
I = {p->x, p->z}
E = {}

Timer.fired
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->z}
E = {p->y}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->z}
E = {p->y}

<end 1.1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->z}
E = {p->y}

C = {p->y, p->z, x->?, y->?, z->?}
I = {p->y}
E = {}

RadioCtl.startDone
C = {p->x, p->y, x->?, y->?, z->?}
I = {p->y}
E = {p->x}

C = {p->y, p->z, x->?, y->?, z->?}
I = {p->y}
E = {p->x, p->z}

<end 1.2>
C = {p->y, p->z, x->?, y->?, z->?}
I = {p->y}
E = {p->x, p->z}

C = {p->x, p->y, x->?, y->?, z->?}
I = {p->y}
E = {p->x}

Radio.sendDone
C = {p->y, p->z, x->?, y->?, z->?}
I = {p->y}
E = {p->x, p->z}

Figure 4.9: Event graph for the program to evaluate the event-sensitive analysis,
annotated with parallel points-to information.
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C = {p->?, x->?, y->?, z->?}
I = {}
E = {}

<begin 0.0>
C = {p->?, x->?, y->?, z->?}
I = {}
E = {}

C = {p->?, x->?, y->?, z->?}
I = {}
E = {}

Boot.booted
C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

<end 0.0>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

C = {p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->z}

<recbegin 1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

<parbegin 1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x, p->y, p->z}

<recend 1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {}
E = {p->x, p->y, p->z}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

<begin 1.1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

<begin 1.2>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

C = {}
I = {}
E = {}

<parend 1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x, p->y, p->z}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

RadioCtl.startDone
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x, p->z}

<end 1.1>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x, p->z}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {}

Timer.fired
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->y}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->y}

<end 1.2>
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->y}

C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x}

Radio.sendDone
C = {p->x, p->y, p->z, x->?, y->?, z->?}
I = {p->x, p->y, p->z}
E = {p->x, p->z}

Figure 4.10: Event graph for the program with recurring events.
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module boundaries. Since the analysis considers the top-level module of an ap-
plication only, it can not discover modifications to the points-to relations outside
of the analyzed module. Furthermore, typecasts are rather common in TinyOS
applications, but neither does the defined input language contain typecasts nor are
statements that contain typecasts handled by the implementation. These limitations
will be discussed in the next chapter, together with ideas to improve the situation.
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5 Limitations, Conclusions, and Future
Work

The evaluation showed that there are some limitations. Some arise from the limited
input language, some from limitations of the implementation, some from limitations
of the available infrastructure in the nesC compiler, and some from our initial as-
sumptions about the analyzed programs. In this chapter, first, these limitations are
discussed and ideas to improve the situation are presented. Then, some ideas for
future research are provided, and finally, this chapter concludes with a summary of
the work and the obtained results.

The input language for the intraprocedural analysis allows only if, for, and basic
assignment statements. At first glance, this is not a real limitation since other forms
of assignment and control-flow statements can be transformed into statements al-
lowed by the input language. However, an important feature that is missing from
the input language is typecasts. Many existing programs use typecasts and there-
fore this is a real limitation. To enable the analysis of such programs, typecasts
should be supported by the input language. Fortunately, the analysis uses location
sets to represent blocks of memory and is independent of a pointer’s or variable’s
type. Therefore, support for typecasts appears to be a straightforward extension to
the input language and the implementation in the compiler (that must handle the
corresponding AST nodes), while the analysis algorithm itself remains unchanged.

The current implementation does not consider parameters, return values, and local
variables of functions. These were left out of the implementation due to time con-
straints on this thesis. The presented analysis algorithm supports parameters, return
values, and local variables, by mapping the points-to graph at the call site into the
scope of the called function, as described in section 3.2.4. Therefore, support for
parameters, return values, and local variables seems to be merely an implementation
detail.

Another limitation of the implementation is the missing support for structures and
arrays. To compute the location sets for structures and arrays, the offset and stride
values must be known. Unfortunately, these values are unavailable in the nesC com-
piler that transforms nesC code into C code and does not cover the layout of objects
in memory. Whether the required values can be obtained within the implementation
in the compiler or must be provided externally remains to be investigated.
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The restriction of the points-to analysis to the top-level module of a program turned
out to be a major limitation in the analysis of TinyOS applications. A manual
inspection of the example applications in the TinyOS distribution showed that the
pointers used in top-level modules reach that module as parameters of events or
as return values of command calls. Furthermore, the top-level modules pass the
pointers as parameters to commands. Therefore, the assumption that code in other
modules has no effect on the points-to relations in the analyzed module does not
hold for these applications. To analyze such applications, the points-to relations
must be tracked across module boundaries. This is no problem for the presented
points-to analysis, but the current implementation relies on the megagraph provided
by the NGE extension of the nesC compiler. Since this compiler extension provides
the megagraph for the top-level module only, some work is required to extend the
points-to analysis across module boundaries.

The presented analysis is not path-sensitive, i.e., it does not consider branching
conditions. Path-insensitivity is a common property of data-flow analyses, and, in
general, this is not a major limitation. Whereas making the analysis completely
path-sensitive requires techniques beyond data-flow analyses, there is one case that
can be handled with the available points-to information and may improve the pre-
cision of the result: considering branching conditions like “if (p != NULL).” The
current analysis displays warnings about accesses to unknown memory locations due
to uninitialized pointers, even if the pointer dereference is guarded by a check that
it is properly initialized. Thus, investigating the inclusion of such simple pointer
equality and inequality checks may be worthwhile.

One minor point is that the analysis does not handle concurrent events as completely
atomic. If a pointer p is first assigned the address of a variable x and then later in
the same event is assigned the address of a variable y, both points-to edges p → x
and p → y are included in the set of generated edges. Therefore, both edges are in
the interference graph of the parallel threads of events, even though the points-to
edge p → x is never visible outside the event, due to its atomic execution. Events
can be handled completely atomic by introducing separate data-flow equations for
event nodes. The analysis of an event would always start with an empty set E.
The points-to edges from the gen set would be added to the set E as before, but
additionally, the edges from the kill set would also be removed from the set E by
a strong update. Finally, on the event-graph level, the set E′ after the event node
would be merged with the set E before the event. This results in completely atomic
events. However, the presented analysis is sound and handling events completely
atomic may only increase the precision. Therefore, the precise handling of atomic
events was deferred until it is investigated in the broader context of asynchronous
events and traditional threads.

In addition to synchronous, atomic events, nesC also supports asynchronous events
that may interrupt the execution of other events. Hence, future work should extend
the presented algorithm to support asynchronous events. The current imprecise
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handling of atomic events may be a good starting point in that direction. Further-
more, there is support for threads in TinyOS [16]. Since the presented analysis for
event-driven programs is based upon an analysis for multithreaded programs, the
integration of threads into the analysis seems possible. Therefore, an extensive anal-
ysis that covers synchronous and asynchronous events as well as threads should be
explored in future research.

In conclusion, this thesis presented an interprocedural, flow-, and context-sensitive
points-to analysis for event-driven programs. The novel feature of this analysis is
the event graph to model the dependencies of events. Sequences of concurrently
executing events are modeled as parallel threads of events. This enables the analysis
of event-driven programs with an algorithm based upon Rugina and Rinard’s points-
to analysis for multithreaded programs. For every thread of events, the algorithm
computes the interference information from parallel threads and merges it with the
points-to information computed for the current thread. Additionally, this thesis
argued that the presented analysis is sound and terminates. The evaluation showed
that the algorithm and its implementation in the nesC compiler correctly analyze
programs written in the presented input language. There are some limitations, but
most of them are due to missing features in the implementation. Future support
for typecasts, parameters, and return values, as well as a whole-program analysis
that lifts the restriction to the top-level module of an application will improve the
applicability to real world TinyOS applications. The presented analysis is not limited
to the nesC programming language. It is also a valuable instrument for the analysis
of event-driven programs written in other programming languages. One example is
applications with a graphical user interface that react to events triggered by user
input.
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