
Institute for Software Systems

University of Technology (TUHH)

Project Work

User Event Tracking for Test Case
Generation for Web Applications

Author:
Anna Mempel

Supervisor:
Prof. Dr. Sibylle Schupp

February 16, 2012

Abstract

Testing of applications is an essential factor for successful software development. When it
comes to business web applications testing ensures the functioning of software, which in
turn ensures satisfied customers. Therefore, testing is a key success factor for software
development business. Yet testing web applications is not trivial. Depending on the
respective application different aspects have to be considered.
This thesis presents an approach to testing web applications based on the events, alias
interactions, that users generate in a web application. User interactions like clicks or
form filling are recorded by a proxy. Therefore a proxy modifies HTML and JavaScript
code and adds extra tracking functions. The collected information is represented as a
click sequence, which describes a test case. The test cases can be executed automatically
and for example be used to regression-test the web application. The goal is to reduce
manual testing efforts and redundancy in test suites and to maximize the number of
interactions that are tested.

Affidavit

I hereby declare that the following project work thesis ”User Event Tracking for Test
Case Generation for Web Applications” has been written only by the undersigned and
without any assistance from third parties.
Furthermore, I confirm that no sources have been used in the preparation of this thesis
other than those indicated in the thesis itself.

Hamburg, February 16, 2012

Contents 5

Contents

Glossary 6

Acronyms 8

1 Introduction 9

2 Tracking User Events via Proxy 11
2.1 WebQuilt Proxy . 12

2.1.1 General Principle of Operation 12
2.1.2 Principle of Event Logging . 13
2.1.3 Capabilities, Problems and Limitations of the Release Version . . 18
2.1.4 Extending the Logfile Format . 19
2.1.5 Extending the Parsing Algorithms 20
2.1.6 Extending the List of Observable Events 22

2.2 Alternative Approach . 24

3 Test Case Generation 26
3.1 Software Testing . 26
3.2 From User Events to Test Cases . 27

3.2.1 Classification of Test Cases . 27
3.2.2 Compilation of Test Cases to Test Suites via Similarity Check . . 28

3.3 Test Case Application - Regression Testing 30
3.3.1 Test Case Execution . 30

4 Application to Real World Software 32
4.1 Standardization of Test Cases . 33
4.2 Reproduction of Test Cases . 34
4.3 Contribution to Testing Process . 35

5 Future Work 35

6 Conclusions 36

Literature 37

List of Figures 39

List of Tables 40

List of Listings 41

Glossary 6

Glossary

Event
As event in the scope of this thesis we define

• Clicks on links or other elements in order to navigate through a web applica-
tion

• Provided information by filling and submitting a form

HTTP GET
For a definition of the HTTP GET method we refer to RFC 2616 [1] of the World
Wide Web Consortium: “The GET method means retrieve whatever information
(in the form of an entity) is identified by the Request-URI. If the Request-URI
refers to a data-producing process, it is the produced data which shall be returned
as the entity in the response and not the source text of the process, unless that
text happens to be the output of the process.[. . .]“

HTTP POST
For a definition of the HTTP POST method we refer to RFC 2616 [1] of the
World Wide Web Consortium:“The POST method is used to request that the
origin server accept the entity enclosed in the request as a new subordinate of the
resource identified by the Request-URI in the Request-Line. POST is designed to
allow a uniform method to cover the following functions:

• Annotation of existing resources;

• Posting a message to a bulletin board, newsgroup, mailing list, or similar
group of articles;

• Providing a block of data, such as the result of submitting a form, to a data-
handling process;

• Extending a database through an append operation.

The actual function performed by the POST method is determined by the server
and is usually dependent on the Request-URI.[. . .]”

Proxy
A proxy can interrupt HTTP communication and modify requests and responses.

Regular Expression
Regular expressions (RegEx) are an instrument for matching strings. It is possible
to express anchors (e.g., start or end of string), character classes (e.g., control
characters, digits, words), etc. in a formal language that can be interpreted.

Same Origin Policy
For a definition of Same Origin Policy we refer to the World Wide Web Consortium
[2]: “An origin is defined by the scheme, host, and port of a URL. Generally

Glossary 7

speaking, documents retrieved from distinct origins are isolated from each other.
For example, if a document retrieved from http://example.com/doc.html tries
to access the DOM of a document retrieved from https://example.com/target.

html, the user agent will disallow access because the origin of the first document,
(http, example.com, 80), does not match the origin of the second document (https,
example.com, 443).”

Test Case
As test case in the scope of this thesis we define a sequence of events or a sequence
of interactions.

Acronyms 8

Acronyms

AJAX Asynchronous JavaScript and XML

CFG Control Flow Graph

DOM Document Object Model

GUI Graphical User Interface

HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure

MTC Module Test Case

PTC Performance Test Case

RegEx Regular Expression

SOP Same Origin Policy
STC Structural Test Case

WTC Workflow Test Case

XSS Cross-Site Scripting

Introduction 9

1 Introduction

Web applications have become a very important part of the business of many companies
these days. A single failure in an application may deadlock a whole company. And it
might cost the company that once developed the faulty application - and did not test
it well - more than just money. Companies whose everyday business is developing and
selling business applications have a special interest in their software working properly.
Business web applications in the context of this thesis deal with a varying amount of
users and provide much of functionality. They are extended continuously and updates
are done at irregular intervals (e.g., every month). Such web applications need to be
tested continuously so that potential bugs are detected before users spot them.

Testing web applications in general is not a trivial task. There are many questions
to be clarified beforehand. Web applications often contain code that is executed on the
server (e.g., servlets) and code that is executed in the clients browser (e.g., JavaScript
code). One question is how to test server-side and client-side code in general. For
server-side code one can for example send HTTP requests to the server to see whether
an exception occurs or not. In order to do this, the web application needs to be up and
running. One might also have a look at the logfiles of the server but then one needs
access to it. Client-side code is also hard to test, because it is often based on JavaScript
and Asynchronous JavaScript and XML (AJAX), which makes it highly dynamic. In
addition, there are many different browsers, operating systems, screen resolutions, etc.
available that the users of the web application might use and that one has to consider [3].
Looking at a more detailed level, there are further possibilities to consider regarding the
testing methods that can be used: If the source code of an application is available, there
are several ways to find the presence of bugs. Structural testing for example can tell
about the node and edge coverage, and data-flow testing helps to analyze dependencies
in the source code. Wang et al. [4] present an approach for testing interactions between
pages of a web application. They generate test sequences to cover all pairwise interac-
tions, e.g., a link from one page to another as seen in figure 1. Therefore, a graph model
of the application is generated “where each node represents a web page (or a portion of
it), and each edge represents a direct link from one node to another” [4]. With such a
model it is possible to test all links that exist in a web application. In a web application
where every page contains a link to every other page, the number of links (or possibilities
of interaction) is

n(n− 1)

2
(1)

A web application with four pages would have six links. An application with 20 pages
would already have 190 possibilities of interaction. Complex business web applications
have usually more than 20 pages and usually the pages contain other elements that
one can interact with (e.g., frames) and therefore need to be considered. Testing all
interactions becomes a very complex task.

To circumvent this complex task, testing can be limited to a subset of interactions.
On this base, two assumptions are made for this thesis. Firstly, it is assumed that an
application under test has a fixed configuration (e.g., a fixed constellation of parameters)

Introduction 10

Figure 1: Exemplary link structure of a web application; arrows indicate links from one
page or frame to another

Figure 2: Example field of application; users use a released version of a web application
while developers create new features using collected information about the user
interactions for regression tests

that leads to a fixed number of possible interactions. Secondly, it is assumed, that users
of a web application do not use 100% of the provided functionality and therefore do not
use all possible interactions. For example, in a web mail application a specific user might
always carry out a sequence of three actions: opening a new mail document, writing mail
text, and sending the mail. All other functionality, like the calendar or address book, is
not important for the user. Links to pages of this part of the application will never be
used.

The second assumptions opens up the perspective to let the users generate test cases
with interactions they do with the web application. In business cases the users of a web
page and especially their satisfaction are very important for success. The developer of
the web application has a special interest in a well-functioning application. It is desirable
that potential bugs are not detected by the users.

Tracking User Events via Proxy 11

An exemplary field where user-generated test cases can be used is regression testing.
Let us assume, like shown in figure 2, a released version of a business web application
used in several companies (user side on the left). In all companies all user interactions
(clicks on navigation elements like links, form filling) are recorded continuously. Since
every user uses the same application somehow differently, a wide range of interactions is
recorded this way. Let us assume that in the meantime the web application is developed
further (developer side on the right) and gets some new features. During this process
test cases can be generated from the gathered information about interactions with the
released version. These test cases can be used to test the existing (old) functionality in
the new version of the software.

This thesis presents an approach to record user interactions with a web application
and to use the recorded information to automatically generate test cases for testing the
web application. The goal is to minimize the runtime and eliminating the redundancy of
tests by replacing manually generated test cases by automatically, uniformly generated
test cases. The approach is not based on browser plugins, since plugins are dependent
on a specific web browser. The approach is rather based on a proxy that neither acts on
the server-side nor on the client-side. Another advantage is that users are not burdened
with setup. They do not have to install third party programs or to set up the proxy in
the browser settings, since the proxy is URL based [5].

Section 2 discusses the definition of user events and how they are tracked with the
proxy approach. Besides the WebQuilt proxy an alternative approach is discussed. Sec-
tion 3 gives a short overview of software testing, and shows how user events recorded
by the WebQuilt proxy are represented as test cases. An example field of application of
the generated test cases is also presented.

Section 4 is related to the application of the proxy approach to a real-world application.
The standardization and reproduction of existing test cases are discussed to estimate
the quality of the presented approach, and the contribution of the proxy to the testing
process is shown.

2 Tracking User Events via Proxy

Logging user activities on a web application is a common activity. Administrators log on
to the back-end to solve upcoming internal problems (e.g., database problems as result
of a complex query many users trigger at the same time) effectively. Programmers log
on to the front-end to get useful information for enhancement of their web application
(e.g., to test different layouts of an online shop to find out which layout best leads to
successful orders).

For our approach we are interested in logging the events a user carries out in order to
interact with, and navigate through the application. As event we define

• Clicks on links or other elements in order to navigate through the web application

• Provided information by filling and submitting a form.

Tracking User Events via Proxy 12

Logging such events, in the following also called interactions, can be approached in
different ways. On the one hand, one can prepare the application to log events and then
consult the logs on the server-side. The advantage is that the users do not need to care
about the logging procedure. They do not need to configure anything. But a problem
might be that the code and the logs are only available to administrators of the website
and that it is not possible to change the code. On the other hand one can log users
actions on the client-side. In this case, the users need to download and install some
kind of software (e.g., a browser plugin) that is responsible for event recognition. But
it might be a problem to handle compatibility with a wide range of web browsers and
operation systems. An alternative to server or client-side logging is a proxy that acts
in the middle of client and server (refer to figure 3 in section 2.1.1). Hong et al. [5]
therefore propose a proxy for logging web usage on any website. The proxy that is used
in this approach is part of the WebQuilt tool and can track clicks on links and form
filling. Atterer and colleagues [6] propose a similar approach that is not URL-based and
that also recognizes mouse positions and scrolling. In our approach we make use of the
WebQuilt proxy to track user a a web application.

The following section 2.1 treats the WebQuilt proxy, the principle of operation, and
the state of the release version. Extensions of the proxy are explained in detail. Section
2.2 discusses an alternative approach.

2.1 WebQuilt Proxy

The WebQuilt project, that was once designed for web site usability analysis, provides
tools to log and illustrate web activity. WebQuilt comes along with a proxy that records
user interactions with web applications. It is based on Java Servlet and JSP technology
[7]. For our approach we made use of the released WebQuilt Proxy v1.0RC1.

WebQuilt contains four additional components: the action inferencer, the graph
merger, the graph layout component, and the visualization component, but these are
not available for download or development.

2.1.1 General Principle of Operation

In General the WebQuilt proxy works like a normal proxy (refer to figure 3): It inter-
ceptsHyper Text Transfer Protocol (HTTP) communication.

The proxy receives HTTP requests e.g., for an Hyper Text Markup Language (HTML)
document from a client, modifies them, and forwards the modified request to the server.
Then the proxy receives a document as response, modifies it, and forwards it to the client.
Unlike common proxies, the WebQuilt proxy is URL based. That means that all links in
a HTML page are modified to redirect through the proxy again. The user does not have
to specify the proxy in the web browser, instead the proxy is used automatically when
clicking a modified link. The modification of HTML documents happens in several
steps. When a request is received, WebQuilt-specific parameters are registered and
saved. These parameters are appended by the proxy to all links and used to identify

Tracking User Events via Proxy 13

Figure 3: Interrupting HTTP communication with a proxy

the user interactions explained in the following section. An URL modified by WebQuilt
looks as follows:

http://www.proxy.de?wq_replace=www.example.de&wq_linkid=4¶m=test

The WebQuilt-specific parameters always start with “wq ”.
In the next step the originally requested document is requested. The HTML code of

the response is then analyzed and all links are modified like mentioned. In the last step
the modified response is cached and then sent back to the client.

2.1.2 Principle of Event Logging

The WebQuilt-specific parameters are used to log the user actions on a page and to
redirect links through the proxy. For example one parameter represents the originally
requested URL inclusive original parameters and one the ID of the corresponding page.
One parameter corresponds to the ID of the link the user clicked on. For example, the ID
of the third link in the Document Object Model (DOM) tree, represented by < a > tags,
is 3. Another parameter represents the ID of the current page’s HTML frame parent,
and one the frame number of the current page and so on. The whole list of parameters is
documented in the WebQuilt “ReadMe” file [7]. Based on the information gained from
the WebQuilt parameters and further calculations, the WebQuilt proxy builds a logfile
as shown in tables 2 to 5.

Table 2 shows an example logfile of a user that visited the website of the Institute for
Software Systems of the Hamburg University of Technology (figure 4). The first row of
table 2 shows the start of the logged sequence. The user’s session is active for almost three

Tracking User Events via Proxy 14

Figure 4: Website of the Institute for Software Systems of the Hamburg University of
Technology [8]

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

175467 0 12 -1 200 -1 -1 GET http://www.sts.tu-harburg.de/ -1
178986 12 13 -1 200 -1 3 GET http://www.sts.tu-harburg.de/

contact/index.html

contact/index.

html

183230 14 15 -1 200 -1 8 GET http://www.sts.tu-harburg.de/

service/index.html

../service/index.

html

190631 16 17 -1 403 -1 10 GET http://www.sts.tu-harburg.de/

service/intern/faq.html

intern/faq.html

Table 2: Example logfile of the website of the Institute for Software Systems of the
Hamburg University of Technology where the user clicked different links

Tracking User Events via Proxy 15

Figure 5: Website of the Hamburg University of Technology [9]

minutes (column one). Columns two to four show different IDs: Column two represents
the page the user came from. Column three is the current page. These numbers are based
on the user’s HTTP session. The page on which the user started the session has ID 1, the
page visited next has ID 2 and so on. Column four shows the frame parent of the current
page, or −1 if there is none. Column five contains the server status code. Common server
status codes are 200 “OK”, 301 “Moved Permanently”, 403 “Forbidden” or 404 “Not
Found”. The ID in column six tells about the current frame (e.g., in a frameset) or −1
in case it is not a frame. Column seven is important, it gives the ID of the link the user
clicked. Column eight denotes the HTTP method that was used. Column nine and ten
are also very important. Column nine shows the current URL and a potential parameter
string (query) that comes along with it. Column ten contains the href element of the
link the user clicked on1. The link cell (column ten) of the second row shows that
the user clicked on a link contact/index.html with ID 3 to get to http://www.sts.

tu-harburg.de/contact/index.html. The third row shows that the user navigated
to http://www.sts.tu-harburg.de/service/index.html afterwards via clicking link
8. Then it was tried to open http://www.sts.tu-harburg.de/service/intern/faq.

html but the server returned the error code 403, since the user did not have sufficient
rights to request the page.

Table 3 shows how WebQuilt recognizes the usage of the back button of the browser.
Row one shows that the user visited the website of the Hamburg University of Tech-
nology (figure 5). It was clicked on /tuhh/studium/studierende.html (row two) and
afterwards /tuhh/studium/studieninteressierte.html (row three). The IDs in col-
umn two, which depicts the page the user came from, are the same for row two and
three. That means that the user came from the same page in both cases. From that fact
it can be derived that the back button of the browser must have been used in between.

Table 4 shows an example logfile of a page with a GET form (figure 6) where the name
of a city needs to be filled in. The user typed “chicago” and submitted the form. In a

1Column ten was inserted within this project and is not part of the release version of the WebQuilt
proxy.

Tracking User Events via Proxy 16

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

21981 0 2 -1 200 -1 -1 GET http://www.tu-harburg.de/ -1
29292

2
4 -1 200 -1 11 GET http://www.tu-harburg.de/

tuhh/studium/studierende/

rund-um-das-studium.html

/tuhh/studium/

studierende.html

40060
2

9 -1 200 -1 10 GET http://www.tu-harburg.de/tuhh/

studium/studieninteressierte/

bachelor-studiengaenge.html

/tuhh/studium/

studieninteressierte.

html

Table 3: Example logfile of the website of the Hamburg University of Technology where
the user used the back button of the browser

Figure 6: Example GET form [10]

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

41776 0 2 -1 200 -1 -1 GET http://www.htmlcodetutorial.

com/forms/_FORM_METHOD_GET.html

-1

43016 2 3 -1 200 -1 -1 GET http://www.htmlcodetutorial.

com/cgi-bin/mycgi.pl?town=

chicago

town=chicago

-1

Table 4: Example logfile of a website with a GET form where the user filled in
information

Tracking User Events via Proxy 17

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

13602 0 6 -1 200 -1 -1 GET http://www.htmlcodetutorial.

com/forms/_FORM_METHOD_POST.

html

-1

14313 6 7 -1 200 -1 -1 POST http://www.htmlcodetutorial.

com/cgi-bin/mycgi.pl

realname=Foobar&
email=foobar%40baz.com&
nosmoke=on&
hatesanchovies=on&
washesdaily=on&
brooklyn=on&
dogs=on&
myself=I+am+just+a+dummy

-1

Table 5: Example logfile of a website with a POST form where the user filled in
information

Figure 7: Example POST form [11]

GET request all parameters are appended to the URL. The WebQuilt proxy recognizes
them and lists the parameters in column nine (town=chicago).

Table 5 shows an example logfile of a page with a POST form (figure 7) where some
information needs to be filled in. The user filled in the name, the email, and the myself
field and checked several checkboxes. Then the form was submitted. In a POST request
nothing is appended to the URL. The WebQuilt proxy recognizes the parameters any-
way and lists them in column nine.

The proxy does not capture IP addresses. Nevertheless it logs parameters that can
contain personal data like usernames and passwords. The proxy provides a function to
replace passwords with wildcards before writing them to the logfile. Enabling this func-
tion makes generated test cases useless, since they can not be executed automatically if
the password is unknown (refer to tables 8 and 9 in section 4.2). Therefor all parameters,

Tracking User Events via Proxy 18

even passwords, are saved in the clear. According to §15 of the German Teleservices Act
[12] users need to be advised in case personal characteristics are logged.

Tables 2 to 5 always show just a small piece of a logfile. In general, logfiles can become
very large, since all actions of a user are tracked during a session. Thus in a normal use
case all the different scenarios shown can occur many times in a single logfile.

2.1.3 Capabilities, Problems and Limitations of the Release Version

The WebQuilt proxy is delivered as web application within a pre-configured Apache
Tomcat server. The server simply needs to be started with a script file in order to get
the proxy up and running. This fact enables the proxy to be set up on the fly on any
machine.

The proxy modifies links in HTML pages in order to redirect through the proxy again
and to identify user actions. As described in section 2.1.1 the interactions the proxy can
capture in the release version are

• clicking a link,

• clicking the back button of the web browser,

• submitting a GET form, and

• submitting a POST form.

In the release version of the proxy the < base > tag of an HTML page is modified.
This tag is used to set the base URL for links in the website. But the proxy places the
tag at the end of the head part of the modified HTML page as shown in figure 8. Code
that is written above the < base > tag (e.g., an include of a JavaScript file) does not
know about this < base >, so related sources are not available. This leads to errors and
malfunctioning web applications when using the proxy. We solved this problem with

Figure 8: Example HTML file with base tag at the end of the HEAD part

Tracking User Events via Proxy 19

several changes in the HTML parsing and modification algorithm of WebQuilt.
In general the set of user interactions that can be captured by the proxy is limited.

The proxy records the links, the user clicks on as well as a click on the back button of
the browser. Also, when the user fills a form, all values written to the fields are recorded.
But there is for example no information captured about the position of the cursor on the
screen. With such information the graphical arrangement of the elements (e.g., buttons)
of a page could be tested [5]. The proxy approach of Atterer et al. [6] provides this
functionality.

One big limitation of the release version of the proxy are dynamic web applications that
use JavaScript. Nowadays, many web applications use AJAX requests to load content
dynamically. The proxy is not able to modify JavaScript code. This leads to several
problems. First of all, there are many situations where URLs are used in JavaScript
function calls. One example is the window.open(URL,windowName) method that is
used to open a pop-up window. If the URL is not modified before the call is executed,
the browser security restrictions (Same Origin Policy (SOP)) will prevent the pop-up
from executing JavaScript code in the parent window (Cross-Site Scripting (XSS)) [5].
The reason is that the parent window has a modified WebQuilt URL but the pop-up
not, so the origin is different. How we tried to overcome this JavaScript limitation is
described in chapter 2.1.5.

The second problem are JavaScript events. With events like onclick it is possible to
interact with a web application. For example a menu structure in the Graphical User
Interface (GUI) of a web application can technically be a HTML table where clicks on
table rows would switch between menus or submenus (refer to listing 4 in section 2.1.6).
The proxy can not capture such navigation. How we tried to deal with this limitation
is shown in chapter 2.1.6.

The proxy also has some limitations regarding the scheme of URIs. URIs consist of
four parts, where the first part describes the scheme:

< schemename > < hierarchicalpart > [? < query >][# < fragment >].

The proxy is not able to detect clicks on links with mailto URI scheme that open a
new email document in the user’s email client. Therefore such events are by-passed and
not listed in logfiles. The https scheme leads to exceptions. Referring to [13] and [5]
WebQuilt supports Hyper Text Transfer Protocol Secure (HTTPS) but we were not able
to use it with this version. In our tests the proxy only worked with the http scheme.

2.1.4 Extending the Logfile Format

In order to overcome WebQuilts limitations we did several small and bigger modifica-
tions. The first modification extends the logfile format of the proxy. When modifying
HTML pages, different parameters are appended to the links in the code. In this way
every link gets an ID or the ID of a parent frame appended as parameter. The parame-
ters are filtered by the proxy when a request for this URL passes it. In this way actions
are identified and logged (refer to section 2.1.1). In order to provide easier identification
of the links the user clicked on, the logging algorithm was modified. The href element

Tracking User Events via Proxy 20

value of a link is extracted and appended as additional parameter wq link. The href
value is the exact text that is in the final HTML page, for example the text people.html
in listing 1:

Listing 1: Example code for a HTML link

1

It is important to keep existing encoding in the href parameter value in order to
be able to find the exact value later while testing. Therefore the wq link parameter is
appended to the link URL without further encoding.

2.1.5 Extending the Parsing Algorithms

A second extension was done to enable the proxy to parse JavaScript additionally to
HTML code. Script code can contain URLs that need to be modified in order to redirect
through the proxy again. But since the code is executed on the client-side, URLs might
not be detected when the request passes the proxy. The reason is that URLs are often
computed dynamically with variables. Consider the code from listing 2:

Listing 2: Example JavaScript code containing an URL

1 . . .
2 var bar = ” l o g i n ? browserCheck=1&eChar=%E2%82%AC” ;
3 . . .
4 window . open (foo () + bar , ” Browsercheck ”) ;
5 . . .

There are several difficulties regarding dynamic URLs as shown in listing 2. First of
all, it might not be obvious that the variable bar contains some part of a URL. Secondly,
even if it is known that a call of window.open() always contains a URL as first parameter
one needs to handle the concatenation of strings to deal with the whole URL.

When it comes to proxying JavaScript code two different situations need to be con-
sidered: JavaScript code can be embedded in an HTML file with simple < script >
tags on the one hand. In this case the code is placed between a pair of < script > and
< /script > tag. On the other, hand one can include one or more JavaScript files via
including a src element in a < script > tag like shown in listing 3:

Listing 3: Example code for including a JavaScript file

1 <script type=” text / j a v a s c r i p t ”
2 src=” http ://www. example . com/ j s /example . j s ”>

Parsing the code in the first case can be done at the same time when the HTML file is
proxied. For the second case it is necessary to redirect the whole JavaScript file through
the proxy.

For handling the second case the proxy was modified to

• modify the src parameter of < script > tags via appending the original URL as
parameter. Thereby a request for the file will go through the proxy, e.g., http:
//proxy?wq_replace=http://www.example.com/js/example.js.

Tracking User Events via Proxy 21

• spot incoming requests with content type application/x-javascript etc., which marks
the content as JavaScript code.

• handle these requests separately to parse and modify the JavaScript code.

In order to parse and modify JavaScript code it was first tried to use the Rhino API
[14] to include a full JavaScript parser. Parsing the code would enable syntax check.
But since dependent JavaScript code can be interspersed throughout different documents
and script blocks, it is difficult to keep track of the right order while parsing. Another
problem comes from the fact that JavaScript normally runs in a web browser. Since the
proxy does not provide a browser environment, no browser variables (e.g., document)
are available when parsing the code in the proxy. This leads to parsing errors and needs
to be treated. In order to keep the JavaScript code analysis and modification simple, we
abandoned the implementation of a parser. Instead the JavaScript code is scanned with
regular expressions to find URLs at common places in source code. One of this places
is a call to open(method, url, async) that is used to open an AJAX request. The code
can be scanned for such calls with a regular expression like this:

/.*\.+(open)+\(+.*,.*,.*\)+;+.*/

If a method call was found with such a regular expression, the second parameter, the
URL, needs to be modified. This is done on the client-side by a JavaScript function that
the proxy inserts into all HTML pages it proxies. The function adds the original URL
as parameter to the URL of the proxy. Other places where URLs are used and that need
to be handled are

• calls of window.open(URL,name,specs,replace)

• replacements of the document URL with location.href=

• or with calls of location.replace(URL)

• changes of the src property of an element with src=

For all these cases a Regular Expression (RegEx) was created that finds the respec-
tive pattern in JavaScript code. But there is a challenge that makes modification of
JavaScript code difficult, even if a complete list of patterns to modify would exist: there
is no coding standard. The result of that is that every web application may have differ-
ently looking code with different formatting etc. It is not possible to guarantee that the
regular expression will find every dynamically generated URL in every website.

This problem aside, the XSS limitation was offset: URLs of popups generated with
window.open() get modified. Therefore popups have the same origin as the parent
windows. This enables pop-ups to execute JavaScript in the parent window and AJAX
requests to successfully execute.

Tracking User Events via Proxy 22

2.1.6 Extending the List of Observable Events

Based on the explained JavaScript parsing extension another modification was done in
order to extend the list of events the proxy can capture (refer to section 2.1.3). With
JavaScript it is possible to change the content or structure of a web application without
sending new HTTP requests. In such cases the code for all elements is already present
but not all elements are visible at the same time. A click on an element will toggle the
visibility of elements so that the user can access new functions and other functions are
hidden. Such cases can not be recognized by the released version of the proxy, since
no HTTP request will pass through it. Since the web application used to measure the
quality of the proxy (refer to section 4) uses many of such navigation elements, the
proxy was extended to capture such events. Therefore every HTML element that has
an onclick event gets an additional function appended to the existing onclick functions.
When the event fires, an AJAX call to the proxy will log the ID of the clicked element.
Elements that had no onclick event before proxying do not get one, since a click on
the element was not relevant before and this should not change. The difficulties of this
extension are the different ways to build an HTML page. One way is to write static
HTML code with elements specified by distinct tags like shown in listing 4. The opening
tag of an HTML element can contain an onclick parameter.

Listing 4: Example code for statically building of HTML code

1 <body>
2 <table id=”menue”>
3 <tr onclick=” se l e c tPage (’ overview ’) ; ”>overview</ tr>
4 <tr onclick=” se l e c tPage (’ s e t t i n g s ’) ; ”>s e t t i n g s</ tr>
5 </ table>
6 </body>

HTML code like the one in listing 4 will be parsed by the proxy and the onclick element
will be recognized, extracted, modified, and written back to the modified version of the
page. This case is easy.

Another way to built an HTML page is dynamically with the help of JavaScript like
shown in listing 5.

Listing 5: Example code for dynamically building of HTML code

1 <head>
2 <script type=” text / j a v a s c r i p t ”>
3

4 f unc t i on i n i t () {
5 var t ab l e = $ (”#menue”) ;
6 f o r (var i in getMenueItems ())
7 t ab l e . append (”<t r o n c l i c k =’ s e l e c tPage (”
8 + i
9 + ”); ’>”

10 + i

Tracking User Events via Proxy 23

11 + ”</tr>”) ;
12 }
13

14 window . onload = i n i t ;
15

16 </ script>
17 </head>
18

19 <body>
20 <table id=”menue”></ table>
21 </body>

In this example the HTML code is built dynamically when the page is loaded and the init
function is called. HTML code like this can only by modified by the proxy at the time the
JavaScript code is modified. In order to include such modification the same technique as
described in the previous section was used: By applying several regular expressions the
code is scanned for onclick parameters in HTML code. If such a parameter is spotted a
short piece of code is inserted before the first instruction inside the onclick parameter.
With this a new onclick event is added to the element. Line 7 to 11 in listing 5 would
be modified like shown in listing 6:

Listing 6: Example code for adding a new onclick event

7 t ab l e . append (”<t r o n c l i c k =’”
8 + ” var r eque s t = new XMLHttpRequest () ; ”
9 + ” reques t . open (’GET’ , ”

10 + proxyURL
11 + ” ’? w q c l i c k e d i d =’”
12 + t h i s . id
13 + ” , t rue) ; ”
14 + ” reques t (send) ; ”
15 + ” se l e c tPage (”
16 + i
17 + ”); ’>”
18 + i
19 + ”</tr>”) ;

When a user clicks this modified table row, an AJAX request is asynchronously sent to
the proxy. The proxy can then log the ID of the element that was clicked on. Afterwards
all onclick events are executed that existed for this element before.

This modification comes along with the same problem as the one described in the
last section: it can not be guaranteed that the regular expression will find every onclick
parameter in the code.

This modification is also not appropriate for a live usage of the proxy. If a user
triggers this asynchronous logging and shortly afterwards a synchronous event occurs,
the logging order might get screwed up. Additionally this modification infringes the

Tracking User Events via Proxy 24

proxy concept of intercepting HTTP communication: The client triggers the logging by
directly requesting the proxy. This modification therefore is a temporary workaround in
order to be able to use the proxy with heavy JavaScript and AJAX related applications
(refer to section 4).

2.2 Alternative Approach

With the shown modifications (refer to sections 2.1.4 to 2.1.6) the WebQuilt proxy can
now modify JavaScript code. Also the logfile format was extended and with a workaround
it was tried to extend the list of events the proxy can capture. Figure 9 shows how the
modified and extended version of the WebQuilt proxy works. [h]

Figure 9: WebQuilt Proxy (extended)

The released version as well as the extended version of the WebQuilt proxy is error-
prone. Since the proxy modifies the content the user will see, it can not be ensured that
errors found with the generated test cases are not caused by the proxy itself (e.g., due
to implementation faults).

An alternative is a proxy that does not change the code of the response page. Such an
approach is shown in figure 10. Compared with WebQuilt this proxy is not URL-based.
The web browser of the users needs to be configured in order to redirect all traffic through
the proxy. When a request reaches the proxy the request is forwarded unchanged. When
the server returns a response, the unchanged response is stored in a lookup-database and

Tracking User Events via Proxy 25

Figure 10: Alternative approach

forwarded to the user. Let us assume the user clicks a link in the page that was returned.
The request will go through the proxy. The proxy will now search the lookup-database for
the document the request came from (source). The source can for example be identified
by the HTML referrer header. The stored document contains the link the user clicked
on. Different algorithms could compute unique characteristics (e.g., an ID specifying its
position in the DOM) for the link. For this the HTML and JavaScript code would be
analyzed similar to the WebQuilt approach. Afterwards the link and its characteristics
are stored in a logfile, just like in the WebQuilt approach.

The advantage of this approach is that the page content is not modified, so the web ap-
plication will be displayed correctly in any case. Errors found by test cases are definitely
not generated by the proxy. Another advantage is the same origin that is preserved for
all documents that are transferred during a concrete client-server-communication. This
comes from the fact that the proxy is not URL-based. But at the same time this is also
a disadvantage, because the user needs to configure the web browser in order to redirect
the requests through the proxy.

The main problem that exists with this approach comes from dynamic links and is
basically the same as with the WebQuilt proxy. When a link is calculated or changed
dynamically on the client-side with JavaScript, it might not be possible to find it in the
cached page, since the cached page does not contain the calculated or changed version
of the link. To solve this problem it is necessary to analyze the cached page for patterns,

Test Case Generation 26

that could modify links and derive possible changes from that. In this way it might be
possible to find dynamically changed links and recognize events caused by those links.
In the worst case it would not be possible to track all users actions on pages that use
JavaScript and AJAX for dynamic code changes.

Another problem is the recognition of events that do not cause an HTTP request.
As described in 2.1.4 it is possible to toggle the visibility of content on the client-side
with JavaScript events and therefore provide or hide parts of the functionality. Since
this happens on the client-side, this alternative proxy will not recognize such events. To
overcome this problem in a nice way it might be helpful to make use of the approach of
Atterer et al. [6]. In this approach the proxy injects a JavaScript file into the response,
which is responsible for logging events. The script appends onclick events to the elements
of an HTML page. This solution would change the concept of this alternative approach
as follows: The proxy will also change the code on the client-side like WebQuilt does.
But this code modification is different compared to WebQuilt. The first modification
happens in the proxy by injecting a script to the response page. The second modification
happens on the client-side. The injected script will append an onclick event to the
elements. Therefore this modification does not parse HTML or JavaScript code.

3 Test Case Generation

The user event tracking approaches presented make it possible to capture interactions
of the users with a web application. In order to make use of this information for testing
purposes, software testing will be shortly explained in section 3.1. Section 3.2 shows how
user events recorded by the WebQuilt proxy are represented as test cases . The test cases
are classified and an algorithm for similarity checks is presented. Finally, an example of
an application for the generated test cases is shown in 3.3 including automated execution
of test cases.

3.1 Software Testing

Referring to IEEE 610 [15], in (software) testing the whole software or a part of it is
executed under specified terms. Results are monitored, logged, and analyzed. Many
different methods and techniques exist to test software in an efficient way. Pezze and
Young [16] describe five levels of testing: module testing, integration testing, system
testing, acceptance testing and regression testing. Module testing tests the behavior of
modules against expectations and specifications. With integration tests the compatibil-
ity of the modules of an application is checked. System testing, including systemwide
tests, actually represents the last step of integration testing. Acceptance tests check
the match of the users expectations with the final application. With regression testing
possible faults are uncovered that were introduced during further development.

When it comes to methods on how to test Pezz and Young present for example func-
tional testing to test the program specifications, structural testing to test branches,
statements etc. and data flow testing to test variable definitions and uses. Such meth-

Test Case Generation 27

ods can be applied to the testing levels mentioned but not all methods work for all
levels. Regardless of the level and selected method of testing, almost always test cases
are defined.

3.2 From User Events to Test Cases

A test case in the scope of a web application is an event sequence, or technically rather a
sequence of URLs specifying the pages and potential parameters as input (e.g., for forms)
[17]. With the WebQuilt approach as well as with the alternative approach presented
we log event sequences generated by the user of the web application. One logfile or an
event sequence respectively represents one test case.

3.2.1 Classification of Test Cases

For a web application there are many aspects that should be tested. One aspect is
the functionality of the back-end, another is the functionality of the front-end, and yet
another is the proper layout of the GUI. In this thesis we focus on testing methods
where testing can be done from the user perspective. The different testing methods can
be represented by different classes of test cases.

Module Test Cases This type of test case tests connectivity from one module of the
web application to another. Two modules of a web application can be connected for
example by a link.

Functional Test Cases This type of test case tests some isolated functionality of the
web application and the desired output e.g., that a pop-up opens or that field validation
works.

Content Test Cases This type of test case tests the correctness of the displayed con-
tent, e.g., text that is based on calculations.

Workflow Test Cases This type of test case tests a workflow of the application from
start to end, e.g., logging in, opening a mail document, writing text, sending the mail.

Non-Functional Test Cases This type of test case tests usability related aspects like
arrangement of the elements of a website.

Performance Test Cases This type of test case tests the performance of a web appli-
cation e.g., if the application can deal with an extreme high amount of requests (stress
test).

Security Test Cases This type of test case tests security issues e.g., finds and uses
vulnerabilities to do a cross site scripting attack.

Test Case Generation 28

Structural Test Cases This type of test case tests the structure of the software e.g.,
a path, branches or statements in the Control Flow Graph (CFG).

The presented WebQuilt proxy approach captures click sequences that can be used as
test cases of type Module Test Case (MTC), Workflow Test Case (WTC), Performance
Test Case (PTC), and Structural Test Case (STC).

3.2.2 Compilation of Test Cases to Test Suites via Similarity Check

Test cases are usually grouped in test suites in a way that is useful for the respective test-
ing level. For example for regression testing several methods for selecting an appropriate
set of test cases exist in order to reduce the required testing time [18].

For a web application that is continuously developed further the set of test cases
also needs to be extended continuously. This can be done with the presented proxy
approaches. In order to avoid redundancy in such a suite of tests a similarity-check
algorithm needs to be established. This algorithm checks whether a newly generated
test case would increase the interaction coverage of a test suite. This coverage can be
expressed as

cI =
exercised interactions i(pj, pk), i ⊂ I, pj, pk ⊂ P

interactions I
(2)

where I represents the set of possible interactions that exist for any two pages p (or
parts of them) from the set of pages P that exist for a web application. The interaction
coverage increases, if the test case to be added contains a sequence of events that is
not a subsequence of the event sequence of another test case. The event sequence of a
test case t1 is a subsequence of the events of another test case t2 if all elements of all
events of t1 are equal to all elements of a sequence of events of t2. Technically an event
is identified by several elements that are logged by the WebQuilt proxy (refer to 2.1.1):
the ID of the parent element in the page, the HTTP response code, the ID of the frame,
the ID of the link the user clicked on, the method type, an URL and parameter and the
href parameter of the link. All these elements need to be equal for two events in order
to declare these events as equal. For example the event sequence shown in table 6 is a
subsequence of the event sequence shown in table 7 because all parameters that identify
an event are equal for the respective events in both sequences.

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

22528 0 2 -1 200 -1 -1 GET http://www.sts.tu-harburg.de/ -1
35568 2 4 -1 200 -1 3 GET http://www.sts.tu-harburg.de/

contact/index.html

contact/index.

html

37131 4 5 -1 200 -1 8 GET http://www.sts.tu-harburg.de/

service/index.html

../service/index.

html

46034 5 6 -1 200 -1 15 GET http://www.sts.tu-harburg.de/

service/benutzerantrag.html

benutzerantrag.

html

Table 6: Example logfile of a test case t1, the event sequence is a subset of the event
sequence shown in table 7

Test Case Generation 29

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

60741 0 7 -1 200 -1 -1 GET http://www.sts.tu-harburg.de/ -1
63556 7 8 -1 200 -1 3 GET http://www.sts.tu-harburg.de/

contact/index.html

contact/index.

html

65256 8 9 -1 200 -1 8 GET http://www.sts.tu-harburg.de/

service/index.html

../service/index.

html

68703 9 10 -1 200 -1 15 GET http://www.sts.tu-harburg.de/

service/benutzerantrag.html

benutzerantrag.

html

70505 10 11 -1 200 -1 11 GET http://www.sts.tu-harburg.de/

service/benutzbestim.html

benutzbestim.html

Table 7: Example logfile of a test case t2, the event sequence shown in table 6 is a subset
of this event sequence

The time, from and to fields that are always logged by the WebQuilt proxy and
therefore part of the logfile are not important for the comparison of two events.

For the similarity check algorithm four scenarios are important: Firstly, let us assume
a test suite T1 that contains the test case t2 from table 7. With the WebQuilt proxy,
test case t1 from table 6 is generated. Since the event sequence of t1 is a subsequence of
the event sequence of t2, like shown in figure 11 A, t1 would not increase the interaction
coverage and therefore not be added to T1.

Secondly, when we assume a test suite T2 that contains t1, adding t2 would increase
the interaction coverage but also add redundancy because some of the events are already
tested by t1. Therefore t2 would be added and t1 would be removed. The same procedure
(inverted) would be applied if the event sequence of t2 would be a subsequence of the
event sequence of t1 like shown in figure 11 B.

Thirdly, let us assume a test suite T3 containing a test case t1 with a sequence of
events. Now a test case t2 is generated where the first x, x ∈ N events (head) are equal
to the last x events (tail) of t1 like shown in figure 11 C. To keep the redundancy minimal
but increase the interaction coverage, t1 and t2 would be merged to a new test case t3
that contains events e1 to en of t1 and events ex + 1 to em of t2. t3 would be added to
the test suite, replacing t1.

Figure 11: A test case t2 where the event sequence is a complete subsequence of the event
sequence of t1 (A); a test case t1 where the event sequence is a complete
subsequence of the event sequence of t2 (B); and two test cases t1 and t2
where some part of the event sequence of t1 is equal to some part of the event
sequence of t2 (C)

In a fourth case where test suite T4 contains t1 and a part in the middle of the event

Test Case Generation 30

sequence of t1 is similar to a part in the middle of the event sequence of a new test cases
t2, t2 is added to the test suite. This will increase redundancy because some events of
t2 are already tested with t1. It is not possible to split up or shorten t2, since this will
break up possible dependencies between the events and this can cause t2 to be useless.

A pseudecode version of the similarity-check algorithm that considers all cases is shown
in listing 7.

Listing 7: Similarity check algorithm for test suite extension

1 public boolean addTestCaseToSuite (TestCase tNew) {
2 for (a l l TestCases t in the TestSu i te) {
3 i f (tNew i s a subset o f t
4 or tNew i s equal to t) {
5 return fa l se ;
6 }
7 i f (t i s a subset o f tNew) {
8 remove t from TestSu i te ;
9 add tNew to TestSu i te ;

10 return true ;
11 }
12 i f (t . t a i l i s equal to tNew . head
13 or tNew . t a i l i s equal to t . head) {
14 merge t and tNew ;
15 return true ;
16 }
17 }
18 add tNew to TestSu i te ;
19 return true ;
20 }

3.3 Test Case Application - Regression Testing

The test cases that can be generated with the presented proxy approach can for example
be applied in regression testing. Let us assume a web application P and an established
test suite T . When the web application is developed further (e.g., new features are
added or changed) it may happen that in this modified version P ′ existing functionality
was changed unintentionally. In such a scenario regression testing attempts to use T to
test P ′ [19].

3.3.1 Test Case Execution

The test cases that are generated by the proxy represent click sequences that the users did
to interact with a web application. The click sequences are stored in logfiles. Every entry
represents one event. Several tools exist that can execute click sequences automatically
in web browsers and act as a remote control. These tools usually require the click

Test Case Generation 31

sequence represented in some special input format. One of these tools is Selenium,
which “is possibly the most widely-used open source solution” [20] for web application
test automation. Selenium comes along with a web driver and “a collection of language
specific bindings to drive a browser” [21]. It is for example possible to write a Java JUnit
test to test a test case or a whole test suite generated by the proxy. Selenium can handle
click sequences in different ways so that it is possible to use the proxy output directly.
The logfiles contain the href parameter of the links the users clicked on. Selenium is
able to use this parameter to find and click elements in a web page. The logfiles also
contain name and value of form elements that the user filled. Selenium can find and fill
form elements, too. The logfiles also contain information about the usage of the back
button of the browser. Selenium provides methods to use this button.

Listing 8 shows a pseudocode example of a JUnit test that uses the Selenium Web-
Driver to execute test cases generated with the WebQuilt proxy. The driver will open
a specified web browser at the given startURL. It iterates over all entries in a logfile
(the test case). When the user clicked a link, the driver will search the link and click
it. Before it must be checked if the user used the back button. If so, the driver will also
use the back button. When the user filled a form the driver will iterate over all fields of
the form and write the values into them. Afterwards it will submit the form.

Listing 8: Pseudocode of a Selenium test suite execution program

1 @Test
2 public void t e s t () throws Exception {
3 se len ium . open (startURL) ;
4 for (a l l e n t r i e s in a l o g f i l e) {
5 i f (user c l i c k e d a l i n k) {
6 i f (user used the back button
7 o f the browser be f o r e) {
8 se len ium . useBackButton () ;
9 }

10 se len ium . c l i c k (l i n k) ;
11 a s s e r t (se lenium .HTTPCode == HTTPCode) ;
12 } else i f (user f i l l e d a form) {
13 for (a l l f i e l d s o f the form) {
14 se len ium . f i l lTheF i e ldWith (value) ;
15 }
16 se len ium . c l i c k (submit) ;
17 a s s e r t (se lenium .HTTPCode == HTTPCode) ;
18 }
19 }
20 }

Checking the result of the test case is done with assert statements. The HTTP response
code that Selenium retrieves is always compared to the one expected (found in the log
file). If an assertion fails, the whole test fails. The test also fails if selenium can not
find an expected element like the link to click on. A fail indicates that the test case (the

Application to Real World Software 32

Figure 12: Regression testing; users use a released version of a web application and pro-
duce event sequences that are logged. Developers use the logged information
to regression test the further developed web application

click sequence) could not be executed the same way as before. This can indicate a fault.
The algorithm in listing 8 can be used as shown in figure 12. Users use a released

version of the web application and produce event sequences with their interactions that
are logged. The developers of the web application in the meantime develop the appli-
cation further and invent new features. They use the generated logfiles and run these
test cases against the new version. If tests fail it might indicate unintended changes
to existing code. But it might also indicate that test cases are not usable anymore in
case functionality was removed. Therefore it is necessary that the developers check the
meaning of the test results manually. New test cases for the features that are invented
will be initially generated by the users after the new version is released. To test the new
features with the proxy beforehand the developers can make use of the proxy to record
their usage of these features.

4 Application to Real World Software

In order to measure the quality of the WebQuilt proxy we used an existing web appli-
cation and a set of existing test cases. The application is a web management software
for professional customer communication via eMail, fax, letter, SMS, social media etc.
The web application makes use of many AJAX calls and other dynamic JavaScript code.
For this thesis the focus is on a part of the application that uses less dynamic code and

Application to Real World Software 33

therefore can be tested with help of the proxy (refer to 2.1.4). Section 4.1 discusses
the standardization and section 4.2 the reproduction of existing test cases. Section 4.3
shows how our approach contributed to testing the application.

4.1 Standardization of Test Cases

For this part of the web application a test suite S with 143 test cases t exist. This number
does not include duplicate test cases and test cases that are not valid anymore due to
software changes. These duplicates and invalid test cases were eliminated manually.
The test cases t were generated manually by many different persons. In a standardized
version every test case t consists of a list of events e1,. . . ,en and an expected result r
but they need not have a uniform level of detail. For example one test case might have
this event list

• e1: click the “Reports” tab

• r: everything is displayed correctly

which is not very detailed and the expected result is open to interpretation: Only the
person who generated the test case once might have known the meaning of “correctly”
at this time.

For 113 of the existing test cases the list of events can be represented as pure click
sequence or a form filling or a combination. For example a test case for a successful
login to the application is

• e1: (on the login page) enter existing username

• e2: enter correct password

• e3: click login

• r: login successful

and the test case for a failed login is

• e1: (on the login page) enter existing username

• e2: enter wrong password

• e3: click login

• r: login denied

Such test cases only consist of events e1,. . . ,en that the users of the application do on
the page. Therefore such test cases can be generated by the proxy and are the base for
the proxy quality calculation.

There are other test cases that require some interaction with the back-end of the
application, like

Application to Real World Software 34

• e1:(in a config file on the server) set workflow parameter “configure.clients = true”

• e2: click the “Clients” tab

• r: clients are editable

Such test cases are not within the scope of the presented WebQuilt approach.

4.2 Reproduction of Test Cases

By trying to reproduce all of the 113 test cases, the quality q of the proxy is measured.
The quality can be in general expressed with formula 3:

Quality q =
reproduced test cases tr, t ⊂ t

test cases t, t ⊂ S
(3)

In an experimental setup of the software, the click sequences of the 113 existing test
cases were clicked manually. In this way 97 test cases could be generated by the proxy.
The equivalent test case for a successful login is shown in table 8, the test case for a
failed login is shown in table 9.

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

7058 0 1 -1 200 -1 -1 GET http://example.com/app/login -1
18197 1 2 -1 200 -1 -1 POST http://example.com/app/index

username=amempel
password=asd4fg

-1

Table 8: Example logfile of the reproduction of a successful login

Time From To Parent
ID

Code Frame
ID

Link
ID

Method URL+Parameter Link

7058 0 1 -1 200 -1 -1 GET http://example.com/app/login -1
18197 1 2 -1 200 -1 -1 POST http://example.com/app/login?

error=authentication&username=

amempel

username=amempel
password=asasdf

-1

Table 9: Example logfile of the reproduction of a failed login

With 113 test cases given and 97 test cases regenerated the quality of the current
version of the proxy is

q =
97

113
= 0, 86 = 86% (4)

The 16 test cases that could not be regenerated are those click sequences where fail
or success is indicated by an AJAX response, for example

• e1: click the “Template” tab

• e2: click the “File” tab

• e3: click the “error.txt”

Future Work 35

• e4: click “delete”

• r: template can not be deleted

The proxy is in the current version not able to log the AJAX request and response, so
the result of the test case can not be captured.

4.3 Contribution to Testing Process

Regenerating 86% of the test cases for this part of the web application is just a small
contribution to the testing process that exists for the whole application. But it gives a
foretaste of how testing will look like when the proxy is capable of dealing with highly
dynamic pages. Automatic execution of automatically generated test cases will speed
up the testing process extremely. A manual test showed that a developer or tester that
knows the application very well and is responsible for testing needs about 30 seconds to
execute the test cases of tables 8 and 9 in a sequence and verify the result. An automatic
execution of both test cases with Selenium takes only 6 seconds on the same machine.

During the reproduction process all duplicate or invalid test cases were eliminated
manually before executing the click sequences. Therefore the redundancy was minimized.
An implementation of the similarity check algorithm (refer to section 3.2.2) would not
have reduced redundancy more effective. Eliminating duplicates and invalid test cases
in the first place resulted in 113 test cases that were clicked manually to end up with 97
reproduced rest cases. Using a similarity check algorithm means clicking all test cases,
including duplicates, manually to end up with the same 97 reproduced test cases.

5 Future Work

In order to be able to track user events even on pages that use AJAX and JavaScript,
the WebQuilt proxy is unsuitable. Since the proxy modifies the content the users see, it
can never be guaranteed that the faults found are not generated by the proxy itself. The
presented alternative addresses this problem. We would like to implement such a proxy
that does not change the code but has similar HTML analysis and link-identification
algorithms for logging. When implementing such a proxy a solution for the dynamic link
difficulty needs to be found. Dynamic links are composed on the client-side, for example
when the user clicks an element. A disadvantage of the presented alternative is that the
proxy is not URL-based. The consequence is that the users need to specify the proxy in
the web browser.

We would like to add some functionality to the proxy that enables the user to indicate
the start and end of a sequence. This would enable easy and precise test case generation.
In the current version of the proxy users needs to end the session in order to indicate
the end of a sequence or start on the proxy main page to start a new session. A simple
solution would be a link or a button, injected into the user interface by the proxy, that
sends a request to the proxy to invalidate the session.

Conclusions 36

6 Conclusions

This thesis has presented an approach to track users interactions with a web site to
automatically generate test cases for testing a web application.

It was shown that it is possible to track interactions with an URL-based proxy that
intercepts HTTP communication. The proxy analyzes and manipulates HTML and
JavaScript code on the way from server to client. Every link the proxy finds this way
gets several parameters appended. The parameters are used to identify interactions and
to redirect through the proxy again when a user clicks the link. On the way from client
to server the proxy filters out the parameters and generates and saves log information.
This way form filling as well as clicks on links or other elements in a web application to
navigate through the application can be recorded. The users do not have to manipulate
the browser or install any third party program.

By trying to modify and extend the WebQuilt proxy, new problems and limitations
of this approach were covered and it was shown that this proxy is error-prone (refer to
sections 2.1.4 to 2.1.6). An alternative is a proxy that modifies the content of the web
page to a lesser extent.

It was also shown that one logfile that contains an event sequence represents a test
case. Test cases are usually grouped in test suites. For the expansion of test suites
we have given an algorithm for checking the similarity of test cases (refer to section
3.2.2). The algorithm only adds a new test case to a suite, if the interaction coverage
would be increased. The test cases generated by the proxy can be applied in various
testing methods and levels. One example application is regression testing. Developers
can use test cases that were generated by users of the current version of an application
to regression test a further developed version. In this way unintended changes could
be spot. With the Selenium tool we illustrated how the generated test cases could be
executed automatically (refer to section 3.3.1).

The presented proxy approach was also tested in real world applications. On web
applications that do not contain dynamic elements and do not make use of AJAX the
proxy works very well. It can record click sequences with all link combinations that are
possible in order to navigate through the web application. The proxy was tested with
a complex web application that uses JavaScript extensively. The test was restricted to
a part of the application that can largely be tested with the proxy, with respect to the
limitations. The whole application was tested manually in the past. From this procedure
several test cases exist for the part that was tested with the proxy. We were possible to
reproduce 86% of the existing test cases with the proxy (refer to section 4.2). Running
the produced test cases automatically is likely to increase the effectivity compared to
manually testing these cases many times over (refer to section 4.3).

References 37

References

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “RFC 2616, Hypertext Transfer Protocol – HTTP/1.1,” 1999. http://www.

w3.org/Protocols/rfc2616/rfc2616-sec9.html.

[2] “Definition of Same Origin Policy,” December 2011. http://www.w3.org/

Security/wiki/Same_Origin_Policy.

[3] “Aspects of Web Application Testing,” December 2011. http://robdmoore.id.

au/blog/2011/03/12/web-application-testing/.

[4] W. Wang, S. Sampath, Y. Lei, and R. Kacker, “An Interaction-Based Test Sequence
Generation Approach for Testing Web Applications,” in Proceedings of the 2008
11th IEEE High Assurance Systems Engineering Symposium, (Washington, DC,
USA), pp. 209–218, IEEE Computer Society, 2008.

[5] J. I. Hong and J. A. Landay, “WebQuilt: a framework for capturing and visualizing
the web experience.,” in Proceedings of the 10th International Conference on World
Wide Web, pp. 717–724, 2001.

[6] R. Atterer, M. Wnuk, and A. Schmidt, “Knowing the user’s every move: user activ-
ity tracking for website usability evaluation and implicit interaction,” in Proceedings
of the 15th International Conference on World Wide Web, WWW ’06, (New York,
NY, USA), pp. 203–212, ACM, 2006.

[7] “WebQuilt Readme File,” November 2011. http://dub.washington.edu:2007/

projects/webquilt/download/RC1/WebQuiltProxy-v1.0RC1/README.html.

[8] “Homepage of the Institute for Software Systems of the Hamburg University of
Technology,” February 2012. http://www.sts.tu-harburg.de/.

[9] “Homepage of the Hamburg University of Technology,” February 2012. http://

www.tu-harburg.de/index_e.html.

[10] “Example Website with GET Form,” February 2012. http://www.

htmlcodetutorial.com/forms/_FORM_METHOD_GET.html.

[11] “Example Website with POST Form,” February 2012. http://www.

htmlcodetutorial.com/forms/_FORM_METHOD_POST.html.

[12] “Telemediengesetz,” 2010. http://www.gesetze-im-internet.de/tmg/.

[13] J. I. Hong, J. Heer, S. Waterson, and J. A. Landay, “WebQuilt: A proxy-based
approach to remote web usability testing,” Information Systems, vol. 19, no. 3,
pp. 263–285, 2001.

[14] “Rhino API,” November 2011. http://grepcode.com/snapshot/repo1.maven.

org/maven2/com.jolira/rhino/1.7.3.1/.

References 38

[15] IEEE, “IEEE 610.12 Standard Glossary of Software Engineering Terminology,”
1990.

[16] M. Young and M. Pezze, Software Testing and Analysis: Process, Principles and
Techniques. John Wiley & Sons, 2005.

[17] F. Ricca and P. Tonella, “Analysis and testing of Web applications,” in Proceedings
of the 23rd International Conference on Software Engineering, ICSE ’01, (Wash-
ington, DC, USA), pp. 25–34, IEEE Computer Society, 2001.

[18] G. Rothermel and M. J. Harrold, “Analyzing Regression Test Selection Techniques,”
IEEE Transactions on Software Engineering, vol. 22, pp. 529–551, August 1996.

[19] G. Rothermel and M. J. Harrold, “Selecting tests and identifying test coverage
requirements for modified software,” in Proceedings of the 1994 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’94, (New York,
NY, USA), pp. 169–184, ACM, 1994.

[20] “Introduction to Selenium,” January 2012. http://seleniumhq.org/docs/01_

introducing_selenium.html.

[21] “Selenium Project Homepage,” January 2012. http://seleniumhq.org.

List of Figures 39

List of Figures

1 Exemplary link structure of a web application; arrows indicate links from
one page or frame to another . 10

2 Example field of application; users use a released version of a web appli-
cation while developers create new features using collected information
about the user interactions for regression tests 10

3 Interrupting HTTP communication with a proxy 13
4 Website of the Institute for Software Systems of the Hamburg University

of Technology [8] . 14
5 Website of the Hamburg University of Technology [9] 15
6 Example GET form [10] . 16
7 Example POST form [11] . 17
8 Example HTML file with base tag at the end of the HEAD part 18
9 WebQuilt Proxy (extended) . 24
10 Alternative approach . 25
11 A test case t2 where the event sequence is a complete subsequence of the

event sequence of t1 (A); a test case t1 where the event sequence is a
complete subsequence of the event sequence of t2 (B); and two test cases
t1 and t2 where some part of the event sequence of t1 is equal to some
part of the event sequence of t2 (C) . 29

12 Regression testing; users use a released version of a web application and
produce event sequences that are logged. Developers use the logged in-
formation to regression test the further developed web application 32

List of Tables 40

List of Tables

2 Example logfile of the website of the Institute for Software Systems of the
Hamburg University of Technology where the user clicked different links . 14

3 Example logfile of the website of the Hamburg University of Technology
where the user used the back button of the browser 16

4 Example logfile of a website with a GET form where the user filled in
information . 16

5 Example logfile of a website with a POST form where the user filled in
information . 17

6 Example logfile of a test case t1, the event sequence is a subset of the
event sequence shown in table 7 . 28

7 Example logfile of a test case t2, the event sequence shown in table 6 is a
subset of this event sequence . 29

8 Example logfile of the reproduction of a successful login 34
9 Example logfile of the reproduction of a failed login 34

List of Listings 41

List of Listings

1 Example code for a HTML link . 20
2 Example JavaScript code containing an URL 20
3 Example code for including a JavaScript file 20
4 Example code for statically building of HTML code 22
5 Example code for dynamically building of HTML code 22
6 Example code for adding a new onclick event 23
7 Similarity check algorithm for test suite extension 30
8 Pseudocode of a Selenium test suite execution program 31

