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Chapter 1

Introduction

1.1 Motivation
Real world applications that require to reason over uncertain domains, such
as in medical diagnosis, natural language processing systems or applica-
tions in the field of computational biology are successfully modeled with
probabilistic graphical models like Bayesian Networks or Markov Networks.
However all these applications have in common that the data that is used in
these areas is of a relational nature, meaning that the objects in the domain
interact with other objects or are in some other relation to each other. When
applying models that assume non independent and identically distributed
(i.i.d.) data, the data is flattened, accordingly the relational structure is
lost. Moreover this is equivalent to a loss of information that could be used
to generate more accurate results when working with this data. As a conse-
quence it is an active field of research to find a way to model the relational
structure of the data with probabilistic graphical models.

First Order Logic (FOL) is a very powerful language to represent and to
reason over relational data. However modeling systems in FOL is very hard,
and in some cases, when the systems get too complex, even infeasible to be
performed by the user due to tight modeling constraints. Consequently, the
idea is to combine the benefits of FOL and probabilistic graphical models in
one formalism that exploits their advantages. This field of research is called
Statistical Relational Learning [13, p.3].

In the last two decades a wide variety of systems has been proposed
to unify the two formalisms. In this work two more recent ones, Markov
Logic and Relational Markov Networks are presented. These two share
many characteristics that are common among many other approaches to
the Statistical Relational Learning (SRL) problem. The aim of this work
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is to provide a concise introduction to the field of SRL to the reader. This
introduction covers representation as well as inference in the two formalisms,
it discusses limitations and benefits of each model, and shows how the models
are related.

1.2 Structure
First an introduction of necessary foundations essential to understand ap-
proaches to SRL is given in Chapter 2. We begin with basics of probability
calculus, logic and probabilistic graphical models. Having explained all the
prerequisites, Relational Markov Networks (RMNs) and Markov Logic (ML)
are introduced and discussed in Chapter 3. Moreover improvements to in-
ference and possible extensions are subject of Chapter 4. The work ends
with a description of the connection between the models as well as showing
the reader an outline of possible future work in this field.
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Chapter 2

Foundations

2.1 Probability Calculus
In the next section an introduction to probability calculus is provided. This
introduction is inspired by [30][Chapter 1.1] and provides the most funda-
mental concepts of modern probability theory, necessary to understand the
concepts elaborated in the rest of this work.

2.1.1 Introduction

Probability theory deals with experiments that have a defined set of out-
comes. The collection of all outcomes of an experiment is called the sample
space. A sample space can be finite or infinite. Subsequently only the finite
case will be considered. Every subset of the sample space is called an event,
and if the cardinality of the event set is one, it is called elementary event.

Definition 2.1.1 ([30][p.4]). Suppose Ω is a sample space containing n
elements. That is,

Ω = {e1, e2, . . . , en}.

A function that assigns a real number P (E) to each event E ⊆ Ω is called
a probability function on the set of subsets of Ω if it satisfies the following
conditions:

1. 0 ≤ P ({ei}) ≤ 1 for 1 ≤ i ≤ n.

2. P ({e1}) + P ({e2}) + . . .+ P ({en}) = 1

3. For each E = {ei1 , ei2 , . . . , eik} that is not an elementary event

P (E) = P ({ei1}) + P ({ei2}) + . . .+ P ({eik})

The pair (Ω, P ) is called a probability space.
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Theorem 2.1.1 follows from the conditions of probability given earlier
that are the basis of the set-theoretic definition of probability.

Theorem 2.1.1 ([30][p.5]). Let (Ω, P ) be a probability space. Then

1. P (Ω) = 1

2. 0 ≤ P (E) ≤ 1 For every E ⊆ Ω.

3. For E and F ⊆ Ω such that E ∩ F = ∅,

P (E ∪ F ) = P (E) + P (F )

With the basic definitions of the foundations of probability theory more
sophisticated concepts can be introduced.

2.1.2 Conditional probability

One of the most important concepts in probabilistic graphical models is the
concept of conditional probability.

Definition 2.1.2 ([30][p.6]). Let E and F be events such that P (F ) 6= 0.
Then the conditional probability of E given F , denoted as P (E|F ), is given
by

P (E|F ) = P (E ∩ F )
P (F )

In the case that the knowledge about an event F does not influence the
probability of an event E, these two events are called independent. Formally:

Definition 2.1.3 ([30][p.6]). Two events E and F are independent if one
of the following holds:

1. P (E|F ) = P (E) and P (E) 6= 0, P (F ) 6= 0

2. P (E) = 0 or P (F ) = 0

In a different setting two events E and F might only be independent
given the knowledge about some other event C, denoted as E ⊥ F |C. This
is called conditional independence and one of the key ideas used by the
models presented in this work.

Definition 2.1.4 ([30][p.7]). Two events E and F are conditionally inde-
pendent given C if P (C) 6= 0 and one of the following holds:

1. P (E|F ∩ C) = P (E|C) and P (E|C) 6= 0, P (F |C) 6= 0

2. P (E|C) = 0 or P (F |C) = 0
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A set of events E is called exhaustive if
⋃
iEi = Ω. The events Ei are

called mutually exclusive if Ei ∩ Ej = ∅ for i 6= j.
From the definition of conditional probability the very important Bayes

Theorem is derived.

Theorem 2.1.2 (Bayes [30][p.9]). Given two events E and F such that
P (E) 6= 0 and P (F ) 6= 0

P (E|F ) = P (F |E)P (E)
P (F ) (2.1)

Furthermore, given nmutually exclusive and exhaustive events E1, E2, . . . , En
such that P (Ei) 6= 0 for all i, for 1 ≤ i ≤ n

P (Ei|F ) = P (F |Ei)P (Ei)
P (F |E1)P (E1) + P (F |E2)P (E2) + . . .+ P (F |En)P (En) (2.2)

where P (E) is called the prior, P (E|F ) the posterior and P (F |E) the like-
lihood of E[37][p.713]. In order to introduce probabilistic graphical models
one additional concept, the concept of random variables, is needed.

2.1.3 Random variables

In order to give a mathematical description of the outcomes of experiments
Random Variables are introduced. Given a probability space (Ω, P ), a ran-
dom variable is a function on Ω that assigns a distinct value to each element
in the sample space. For a random variable X, X = x is an event description
which represents the event where the value of X is x ∈ ΩX . X = x∧ Y = y
represents the case that the value of X is x and the value of Y is y. This
is often abbreviated as X = x, Y = y. P(X) is the probability distribution
of the random variable X and P assigns to each value of X a probability.
Given two random variables X and Y , that are defined on the sample spaces
ΩX and ΩY , the joint probability distribution P(X,Y ) is a function that as-
signs a probability to each event that is defined in terms of X and Y . Given
the joint probability distribution P(X,Y ), then P(X) can be computed as

P(X) =
∑
y∈ΩY

P (X,Y = y) (2.3)

This algorithm is called marginalization and the operation in 2.3 is often
referred to as "summing Y out" of the distribution. In this case the distri-
bution P(X) is called a marginal probability distribution.

The given insights and definitions allow the introduction of a graphical
model that encodes relationships between different random variables in a
concise way.
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2.2 Markov networks

2.2.1 Introduction to probabilistic graphical models

Using graph structures to model the interactions of variables in a multidi-
mensional distribution dates back to the early 20th century where it was used
in physics to model the interaction of particles [15]. The study of interac-
tions of variables was introduced to statistics with the study of contingency
tables in 1935 [4]. In computer science the need to have systems that can
handle uncertainty was first encountered by scientists trying to build expert
systems. Early models were developed in the 60s and 70s [8; 17]. Despite
successful demonstrations of the abilities of the systems developed, the re-
search focus shifted to rule based systems because of the belief that it is
best to model artificial intelligence by copying human intelligence. It was
widely accepted that human intelligence would not take probabilities into
account since humans do not calculate while making decisions. Probabilistic
approaches reclaimed their acceptance with the invention of the Bayesian
Network Framework [33] which encodes independence assumptions of ran-
dom variables in a directed graphical model. Moreover the application of
this framework lead to very successful systems that had less strong assump-
tions than the early probabilistic models. Pathfinder [19] is one of the most
famous systems, where a Bayesian network is used for diagnosis of pathol-
ogy samples. Undirected representation became popular because of cyclicity
constraints in the directed approach as well as the ability to model symmet-
ric influences of variables in a more compact way.

2.2.2 Introduction to Markov Networks

A Markov Network (MN) or Markov Random Field is an undirected graph-
ical model of the joint distribution of a set of random variables. As a means
to reduce the effort necessary to model the joint distribution it encodes
independence assumptions of the variables.

2.2.3 Formal definition

Definition 2.2.1 ([42]). A vector XV with random variables as elements,
indexed by vertex set V , is a Markov Network over an undirected graph
G = (V,E), with a set of edges E, if and only if each random variable Xv,
conditioned on its neighbors, is independent of all other elements of Xv with
E ⊆ V × V and v1, v2 ∈ V , (v1, v2) ∈ E ⇒ (v2, v1) ∈ E:

(∀v ∈ V ) : Xv ⊥ {Xu : u 6= v, (u, v) /∈ G}|{Xu : (v, u) ∈ G}

Following Definition 2.2.1, a MN encodes conditional independence as-
sumptions and these assumptions are called the Markov assumptions. How-
ever the definition does not state anything about how a distribution is de-
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fined over the network. To make that connection the result of a famous
theorem in MNs is needed.

Theorem 2.2.1 (Hammersly-Clifford [35]). A positive probability distri-
bution P over X = {Xi, i ∈ V } satisfies the global Markov assumption for
a graph G = (V,E) if and only if P(X) factorizes according to the set of
cliques C in G, , i.e. can be represented as a proportional product of the
cliques in G.

P(X) ∝
∏
C∈C

φC(XC) (2.4)

where φC is a function that depends only on the variables XC = {Xv1 , . . . , Xvn}
and C = {v1, . . . , vn}.

Less formally theorem 2.2.1 states that if a distribution P is positive and
the graph encodes conditional independencies then the distribution is the
product of Clique Potentials or Potential Functions over the cliques of the
graph G. Clique potentials are functions that assign each state of the clique
a value where a state is an assignment of a value to each variable in the
clique. The distribution P is also referred to as the Gibbs distribution. The
benefit of this representation lies in the number of parameters that need to
be specified to represent a distribution. This number is the same as for the
full joint distribution in the worst case but in many cases the number of
parameters that need to be specified is much smaller.

The values captured in clique potentials can in the discrete case be rep-
resented as matrices or tensors where each configuration of values represents
a state of the clique. As a consequence a definition of the product in 2.4 is
needed in order to multiply the distributions:

Definition 2.2.2 ([24][p.107]). Let X, Y and Z be three disjoint sets of vari-
ables, and let φ1(X,Y) and φ2(X,Z) be two clique potentials, called factors.
The factor product φ1 × φ2 is defined to be a factor ψ : Val(X,Y,Z) → R
as follows:

ψ(X,Y,Z) = φ1(X,Y) · φ2(Y,Z) (2.5)

In other words the product of two distributions with two variables for
each distribution and one common variable, is a new distribution that con-
tains all three variables. The values of the resulting distribution are com-
puted by multiplying the values of the two original distributions where the
truth values of the common variables overlap. An example of operation 2.5
is provided in Table 2.1.
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MC(J) MC(B) Φ

True True 2
True False 1
False True 1
False False 1

(a) The Jackie,Bobby clique

MC(J) MC(C) Φ

True True 1
True False 2
False True 2
False False 1

(b) The Jackie, Charlie clique

MC(J) MC(B) MC(C) Φ

True True True 2
True True False 2
True False True 1
True False False 2
False True True 2
False True False 1
False False True 2
False False False 1

(c) The resulting distribution

Table 2.1: Two distributions are multiplied using the factor product from
definition 2.2.2.
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Values of the clique potentials in a MN can be greater than 1. Conse-
quently the sum of all states does not add up to 1, and the distribution needs
to be normalized by the sum of the product of all states of the distribution.

P (X) = 1
Z

∏
C∈C

φC(XC) (2.6)

Z =
∑
X∈X

∏
C∈C

φC(XC)

with X being the set of all variables in the network and X being the set of all
possible assignments of values to the network’s variables. The normalizing
function Z is called the Partition Function. As the definition of the partition
function indicates, its computation is intractable because the number of
assignments in a network grows exponentially in the number of variables.
However, it can be done using sampling methods as described in [12; 21; 29].

For cliques of small size this representation is fine, however if the cliques
have too many nodes then the representation becomes unclear for the de-
signer of the network because the number of assignments that need to be
done becomes too big. To overcome this problem there needs to be a repre-
sentation that can exploit the structure of the potentials.

2.2.4 Log-Linear Model

In most cases the joint distribution over a MN shows some structure. A
distribution often exhibits a structure where only some of the values in the
distribution are of importance. Hence the distribution can be modeled by
describing only the features that are relevant. In order to have to formulate
only the features of interest that are entailed in the potentials of the distri-
bution, the distribution 2.6 is transformed into a Log-Linear representation:

P (X) = 1
Z

∏
C∈C

φC(XC) (2.7)

P (X) = 1
Z

∏
C∈C

exp(ln(φC(XC)) (2.8)

P (X) = 1
Z

exp(
∑
C∈C

ln(φC(XC))) (2.9)

For

ln(φC(XC)) = wC · fc(X) (2.10)

the log linear model is formulated as

P (X) = 1
Z exp(

∑
C∈C

wC · fc(X)) (2.11)
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The clique potentials are transformed into one or many Feature Functions
f(x)C with weights wC . On the one end of the extremes there is one fea-
ture for each state of the clique or on the other end one feature compactly
represent many states of one clique. A feature is defined as follows

Definition 2.2.3 ([24][p.125]). A feature f(D) is a function over a set of
variables D from D to R.

The definition of a feature is very general and allows for a wide variety
of different functions that can be used which makes it possible to represent
complex structures in the distribution as a feature.

In order to build efficient learning and inference techniques an exact
definition of the independence assumptions that hold in a MN is essential.

2.2.5 Independence in Markov Networks

The problem of independence in a Markov Network is the problem to de-
termine if two variables are independent of each other just by the structure
of the graph. The concept of independence in MNs is intuitive and easy
to understand after the concept of an active path in a graph structure is
introduced.

Definition 2.2.4 ([24][p.114]). Let H be a graph structure of a Markov
Network, and let X1 − . . . − Xk be a path in H. Let Z ⊆ X be a set of
observed variables. The path X1− . . .−Xk is an active path given Z if none
of the X ′is, i = 1, . . . , k, is in Z.

The concept of the active path is used to define the independence in
MNs.

Definition 2.2.5 ([24][p.115]). A set of nodes Z separates X and Y in H
denoted sepH(X; Y|Z), if there is no active path between any node X ∈ X
and Y ∈ Y given Z. The global independencies associated with H are
defined to be:

I(H) = {(X⊥Y|Z) : sepH(X; Y|Z)} (2.12)

This is called the global independence criterion because the criterion
characterizes the entire set of independencies induced by the network struc-
ture. The global independence in MN is sound, i.e. every distribution
that factorizes over a Markov Network satisfies the independence assertions
implied by separation. However the global independence is not complete
[24][p.115-117], i.e. it is not the case that every pair of nodes X and Y that
are not separated in H are dependent in every distribution which factorizes
over H. For completeness only a weaker version holds:

Theorem 2.2.2 ([24][p.117]). Let H be a graph structure of a Markov
Network. If X and Y are not separated given Z in H, then X and Y are
dependent given Z in some distribution P that factorizes over H.
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See [24][p.117] for the proof. This type of independence is much sim-
pler to verify than the independence in Bayesian Networks (BNs) where d-
separation asks for more elaborate algorithms(e.g. The Bayes-Ball algorithm
[39]). Additionally to the global independence there are local independence
assumptions.

Local Markov Assumptions

In MNs there are two local Markov independence assumptions:

Definition 2.2.6 ([24][p.118]). Let H be a graph structure of a Markov
network. The pairwise independencies associated with H are defined to be:

Ip(H) = {(X⊥Y |{X \ {X,Y }}) : X − Y /∈ H} (2.13)

for X representing the set of all variables in the network.

The type of independence defined in 2.2.6 is called pairwise indepen-
dence. One very crucial concept of independence is the Markov Blanket
of a node. A node is independent of the rest of the MN given its Markov
Blanket.

Definition 2.2.7. [24][p.118] For a given graph structure of a Markov Net-
work H the Markov Blanket of X in H, denoted MBH(X), is defined to be
the neighbors of a node X in H. The local independencies associated with
H are defined to be

Il(H) = {(X⊥{X \ {{X},MBH(X)}}) : X ∈ X} (2.14)

An example is now used to illustrate the concepts developed so far.

2.2.6 An example

The following example has been introduced by Koller and Friedmann [24]
and will be used throughout this work.

Example 2.2.1. Prof. Huth gives a task in class to his students. Unfortu-
nately while doing so he makes a small mistake so that some students have
a misconception. Some figure out the mistake by themselves or asking the
professor after class.

18



MC(Jackie)

MC(Charlie)MC(Bobby)

MC(Sandy)

Figure 2.1: The Misconception Example as a Markov Network.

The students form small study groups to work together on the task. The
students who figure out the problem may or may not share their insights
with the other students. The groups of students in the case of four students
in this example are {Bobby, Jackie}, {Charlie, Sandy}, {Sandy, Bobby}
and {Jackie, Charlie}. Hence the following independencies must hold in
the model:

• {MC(Bobby)} ⊥ {MC(Charlie)}|{MC(Jackie),MC(Sandy)}

• {(MC(Jackie)} ⊥ {MC(Sandy)}|{MC(Bobby),MC(Charlie)}

where MC(X), X ∈ {Bobby, Charlie, Jackie, Sandy} models the probabil-
ity that a student X has the misconception.

The example 2.2.6 represented as a MN is given in Figure 2.1 and an
arbitrary distribution for the clique {MC(Jackie), MC(Bobby)} is given in
Table 2.2. The entries in Table 2.2 convey that it is more probable that
Bobby and Jackie both have the misconception.

A more compact representation of Table 2.2 is expressed with a feature
function in a log-linear model. One possible feature function for the given
example is the logical AND function:

f(x) =
{

1: (MC(Bobby) ∧MC(Jackie)) = true

0: otherwise
(2.15)

with weight w = ln(2). This yields exactly the same representation as shown
in Table 2.2.

For the example the following independencies hold:
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MC(Jackie) MC(Bobby) φ(MC(Jackie),MC(Bobby))

True True 2
True False 1
False True 1
False False 1

Table 2.2: A sample for one clique of the misconception example. The
potential function φ captures that the state where Bobby and Jackie both
have the misconception is more likely than the situation where one or none
of them have a misconception.

• {MC(Jackie)}⊥{MC(Sandy)}|{MC(Charlie),MC(Bobby)}

• {MC(Charlie)}⊥{MC(Bobby)}|{MC(Jackie),MC(Sandy)}

The independencies that hold in this network are a motivation to use undi-
rected models since the independencies cannot be modeled compactly in this
fashion using a BN[24][p.83].

2.3 Inference Techniques

2.3.1 Introduction

Probabilistic inference in Bayesian Networks as well as in Markov Networks
is generally NP-hard or harder, meaning there are no algorithms that can
solve the problem in polynomial time complexity [13][p.24]. This raises the
problem of how to efficiently compute query answers to these types of net-
works. Different algorithms have been proposed for approximate and exact
inference. Exact methods include Belief Propagation [22], the variable elim-
ination algorithm and variants such as the forward-backward algorithm that
performs inference in Hidden Markov Models [34] or the message passing al-
gorithm for singly connected graphs [22]. Approximate inference techniques
include sampling techniques like importance sampling [40], Markov Chain
Monte Carlo [32] or message passing algorithms like loopy belief propaga-
tion. (see [28] for a comprehensive analysis on the latter) Since the exact
inference is NP-hard the exact methods only work efficiently on special sub-
sets of possible networks[13][p.25]. In the following first the problem of
probabilistic inference and the complexity is presented. Following is the Be-
lief Propagation algorithm which is exact in singly connected networks and
most of the time converges in other networks.
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2.3.2 Probabilistic Inference

One of the main tasks when using a joint probability distribution over mul-
tiple random variables is to answer queries of interest [24][p. 26]. The two
most common query types include

• the conditional probability query

• the maximum a posteriori (MAP) query

Conditional Probability Query

The conditional probability query consists of two parts:

• a subset E of random variables in the network and an instantiation e
to these variables. This is called the evidence

• a subset Y of random variables in the network. These are called the
query variables.

The task is to compute

P (Y|E = e) (2.16)

that is, the posterior probability distribution over the values y of Y condi-
tioned on the fact that E = e.

Maximum a Posteriori Query

The second type of queries is the task to find a high-probability joint assign-
ment to some subset of random variables X given evidence e in the network.
From this follows the task to compute

MAP (X|e) = arg max
X

P (X|e) (2.17)

Complexity of Probabilistic Inference

In order to provide a complete analyses of the complexity of exact and
approximate probabilistic inference in MNs an introduction to complexity
theory is needed which is out of the scope of this work. A good introduction
is found in [24][A. 3.4]. The result of an analyses of the complexity of exact
and approximate probabilistic inference in MN yields that both are NP-hard.
However, the complexity describes only worst cases and in many cases there
exist algorithms that perform good enough for the task.
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2.3.3 Belief Propagation

The belief propagation algorithm has been introduced by Pearl [31] and is a
message passing algorithm. The algorithm generalizes the Bayes-likelihood
updating rule 2.1.2 with the aim to efficiently and asynchronously propagate
the impact of new evidence and beliefs through a complex network.

Subsequently, the details of a generalization of Pearl’s algorithm are
presented, the Sum-product algorithm [25].

The Sum Product Algorithm

The Sum product algorithm generalizes many existing algorithms developed
in artificial intelligence, signal processing and digital communication [25]. In
the following the algorithm is described in a general fashion to highlight the
way it works.

The joint probability distribution factorizes over the cliques of a MN as
given in 2.2.1. This factorization can be represented using a factor graph. A
factor graph is a different representation of a mathematical relation between
variables and local functions.

Definition 2.3.1 ([25]). A factor graph is a bipartite graph that expresses
the structure of the factorization in 2.2.1. A factor graph has a variable
node for each variable Xi, a factor node for each local function φi, and an
edge connecting variable node Xi to factor node φi if and only if Xi is an
argument of φi.

Figure 4.1 shows the factor graph for the MN given in 2.1 where the φ
represents the clique potentials, and the nodes are random variables from
the MN. A factor graph is used to send messages along its edges to per-
form probabilistic inference such as P (MC(Jackie) = true). Although the
algorithm is performed on an undirected graph, the algorithm assumes a
tree with changing parent-children relationship depending on the edge over
which messages are received. This means that at some point a node can
be parent and in the next step can be child, depending over which edge a
message is send.

1. At the start each node is considered a leaf in a tree.

2. Each variable leaf sends an identity message to all its parents that
specifies the a priori knowledge stored in the function that creates
them. Each factor leaf sends a description of f to its parents.

3. Each node waits until it received messages from all its children, i.e.
messages over all edges except the one that is currently considered
parent.
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MC(Bobby)

φ(Bobby, Jackie)

MC(Jackie)

φ(Bobby, Sandy) φ(Jackie, Charlie)

MC(Charlie)

φ(Sandy,Charlie)

MC(Sandy)

Figure 2.2: The factor graph for the misconception example.

4. When a node v received messages from all its children it computes a
message to its parent:

• if v is a function node:

µf→x(x) =
∑

all variables but x

f(X)
∏

y∈n(f)\{x}
µy→f (y)

 (2.18)

• if v is a variable node:

µx→f (x) =
∏

y∈n(f)\{x}
µy→f (y) (2.19)

5. The algorithm terminates, when the messages converge, i.e. the change
of the messages is smaller than a defined constant ε, then goto 6.
Otherwise, i.e. change greater than ε, goto 3.

6. In the termination step the belief is calculated as the product of the
received messages:

P (x|e) = β
∏

h∈n(x){f}
µh→x(x) (2.20)

with evidence e and β is a normalizing constant so that
∑
x P (x|e) = 1.
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The formulas 2.19 and 2.18 give the name to the algorithm: The Sum Prod-
uct Algorithm. In a acyclic graph only two messages have to be sent over
each edge for the algorithm to terminate but in a cyclic setting, as it often
occurs in MN, convergence may take more steps.

Having defined the Markov Network formalism and having shown how
inference is done on this type of network, the next section introduces Logic
which is the second key stone for relational models that are the subject of
this work.

2.4 Logic
Logic is a powerful representation for relational data and provides sophis-
ticated reasoning techniques. The following section follows the ideas and
structure of [37][chapter 7].

2.4.1 Propositional logic

Syntax

Propositional Logic is a very simple form of logic. The syntax of proposi-
tional logic defines which sentences are allowed, where sentences arise in two
forms:

• atomic sentences:
indivisible syntactic elements, consisting of a single proposition sym-
bol. Each such symbol stands for a proposition that either be true or
false.

• complex sentences:
constructed from simpler sentences using logical connectives and paren-
theses.

Sentences are either True or False. True and False are proposition symbols
themselves but their value is fixed. The possible logical connectives are
NEGATION(¬), AND(∧), OR(∨), IMPLICATION(⇒) and
EQUIVALENCE(⇔).

A literal is either an atomic sentence (positive literal) or a negated atomic
sentence (negative literal). The grammar of the syntax of propositional logic
is provided in table 2.4.

Semantics

The semantics of propositional logic define the rules by which the meaning
of a sentence, i.e. the truth value of each formula is derived. A model, also
called a world, is the set of all propositions each fixed to one truth value, i.e.
for three propositions there exist 23 = 8 possible models.
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A B ¬A A ∧B A ∨B A⇒ B A⇔ B

True True False True True True True
True False False False True False False
False True True False True True False
False False True False False True True

Table 2.3: The truth values of the four logical connectives in propositional
logic. The precedence is highest to lowest from left to right. Parentheses
can be added to change the order of execution.

Sentence → Atomic Sentence | Complex Sentence
Atomic Sentence → True | False | Other proposition symbols

Complex Sentence → (Sentence) | [Sentence]
| ¬Sentece
| Sentence Connective Sentence

Connective → ⇒ | ∨ | ∧ | ⇔

Table 2.4: The Backus-Naur Form grammar of Propositional Logic.

The truth value of a sentence is determined by its components, the atomic
sentences and the truth values of atomic sentences which are specified in the
model. The truth value of the complex sentence can be determined using
the truth value of the atomic sentences and the logical connectives. The
truth values are obtained according to Table 2.3.

2.4.2 Decision problems in propositional logic

Two decision problems in logic are essential for the understanding of the
later chapters of this work. The first, Logical entailment, is the relation
A |= B that holds between two sentences A and B if and only if, in every
model in which A is true, B is also true.
The second, satisfiability, denotes that a sentence is true in some model. If
a sentence A is true in a model M it it said that M satisfies A.[37][p.211]
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2.4.3 First-Order logic

FOL generalizes propositional logic to a higher level of expressiveness. FOL
has the ability to reason over sets of objects concisely whereas propositional
logic does not have objects.

Syntax

FOL consists of six basic syntactic elements:

• logical connectives :
as in propositional logic

• constant symbols:
represent objects

• variable symbols:
used to quantify over objects

• predicate symbols:
represent relations

• function symbols:
represent functions

• quantifier symbols:
used to quantify over objects

The domain is the set of objects that the FOL deals with, it can either be
finite or infinite. The grammar for the syntax of FOL is given in table 2.5.

In order to define the semantics of formulas the extended model needs
to be introduced as notation. Given a model M = 〈D, I〉, a variable x and
an object o ∈ D , the extended model M[x→o] is a model that is identical to
M , except that I is extended to interpret x as o.

Finally FOL with equality introduces the equality symbol "=". It is used
to express that two terms refer to the same object.
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Formula → Primitive Formula
| (Formula Connective Formula)
| ¬Sentence
| Quantifier V ariable Formula

Primitive Formula → Predicate(Term, . . . , T erm)

Term → Function(Term, . . . , T erm)
| Constant
| V ariable

Connective → ⇒ | ∨ | ∧ | ⇔
Quantifier → ∀ | ∃
Constant → a string that is not a variable predicate or function
V ariable → a string that is not a variable predicate or function
Predicate → a string that is not a variable predicate or function
Function → a string that is not a variable predicate or function

Table 2.5: The Backus-Naur Form grammar of First Order Logic.

Semantics

A first order modelM is a tupleM = 〈D, I〉 where D is a non-empty domain
of objects and I is an interpretation function that assigns a meaning to the
syntactic elements:

• If c is a constant symbol:
I(c) is an object in the domain D.

• If f is a function symbol of arity n:
f maps n domain objects to the domain D.

• If p is a predicate symbol of arity n > 0:
I(p) is a subset of Dn, i.e. a set of tuples from the domain.

• If p is a predicate symbol of arity 0:
I(p) is either true or false.

Terms relative to a model M = 〈D, I〉 are interpreted as follow:

• If t is a constant or variable, then tM = I(t)

• If t is of the form f(t1, . . . , tn) where f is a function symbol and the ti
are terms, then tM = I(f)(tM1 , . . . , tMn ). Hence terms are interpreted
as distinct objects of the domain D.

27



Finally, Formulas relative to a model M are interpreted as either true or
false in the following way:

• If φ is a primitive formula of the form p(t1, . . . , tn), where p is a pred-
icate and the ti are terms there is:

φM =
{
true : if 〈tM1 , . . . , tMn 〉 ∈ I(P )
false : otherwise

(2.21)

• If φ is of the form φ1 ◦ φ2 and ◦ is a logical connective, φM = φ1 ◦ φ2

• If φ is of the form ¬φ1 and φ1 is a formula, φM = ¬φM

• If φ if of the form ∃xφ1 where φ1 is a formula:

φM =

true : if there exists an o ∈ D such that φ
M[x→o]
1 = true

false : otherwise
(2.22)

• If φ is of the form ∀xφ1 where φ1 is a formula

φM

true : if for all o ∈ D there is φ
M[x→o]
1 = true

false : otherwise
(2.23)

Decision Problems in First Order Logic

The decision problem of entailment is the same as in the propositional case.
That is the relation A |= B if all the models of A, i.e. the models that A is
true in, are also models of B. The reader should note that the task to verify
this is different from the propositional case where the space of models is
finite. In FOL the space can be infinite and since entailment is a statement
about all models the task is usually harder.

The second decision problem, satisfiability, is also the same as in the
propositional case.

2.5 Template Based Approaches
Template based representations are a compact way to represent an entire
class of distributions of the same type, especially over richly structured
spaces that consist of multiple objects [24][p.199]. This means that there is
one distribution for each set of objects applied to a template.[24] stresses
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two main fields where template based representations are used.

• Temporal models

• Relational models

Temporal models deal with reasoning about the state of the world as it
evolves over time. These models assume stationary processes, hence the
world itself doesn’t change. Some of the most important approaches in-
clude, Hidden Markov Models [34], which are a special case of Dynamic
Bayesian Networks [9]. Many other representations have been proposed that
generalize Hidden Markov Models or are special cases of Dynamic Bayesian
Network. Relational models are the subject of Chapter 3.

2.5.1 Formalism

The key concept of Template Based approaches is the underlying template
that is instantiated many times within the model. A template can be the
property of a single object or even properties of tuples of objects.

The objects in the domain are divided into a set of mutually exclusive and
exhaustive classes Q = Q1, . . . , Qk. Examples for such classes are "Students"
and "Courses" in a university domain. Each class has attributes that are
defined as follows:

Definition 2.5.1. An attribute A is a function A(U1, . . . , Uk), whose range
is some set V al(A) and where each argument Ui is a typed logical variable
associated with a particular class Q[Ui]. The tuple U1, . . . , Uk is called the
argument signature of the attribute A, and denoted as α(A).

The idea of having a template attribute makes it possible to instantiate
a set of those to produce probability spaces with multiple random variables
of the same type. In order to instantiate a set of template attributes, the
set of objects for each class needs to be defined.

Definition 2.5.2 ([24][p.214]). Let Q be a set of classes, and N a set of
attributes over Q. An object skeleton κ specifies a fixed, finite set of objects
Oκ[Q] for every Q ∈ Q. Also defined is

Oκ[U1, . . . , Uk] = Oκ[Q[U1]]× . . .×Oκ[Q[Uk]]. (2.24)

By default, Γκ[A] = Oκ[α(A)] is defined to be the set of possible assignments
to the logical variables in the argument signature of A. An object skeleton
may also specify a subset of legal assignments, Γκ[A] ⊂ Oκ[α(A)]
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Ground random variables are now defined as:

Definition 2.5.3 ([24][p.215]). Let κ be an object skeleton over a set of
classes Q and a set of attributes N. Sets of ground random variables are
defined as:

Xκ[A] ={A(γ) : γ ∈ Γκ[A]} (2.25)
Xκ[N] =

⋃
A∈N

Xκ[A] (2.26)

In order to define a probability distribution over the ground random
variables the notion of template factors is used that is defined over template
attributes.

Definition 2.5.4. A template factor ξ defined over a tuple of template
attributes A1, . . . , Al, where each Aj has a range V al(A). It defines a map-
ping from V al(A)× . . .× V al(Al) to R. Given a tuple of random variables
X1, . . . , Xl, such that V al(Xj) = V al(Aj) for all j = 1, . . . , l, ξ(X1, . . . , X)
is defined to be the instantiated factor from X to R.

This notation is used to introduce relational Markov networks in the
next chapter.
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Chapter 3

Relational Models

3.1 Overview
The attempt to represent, reason and learn in environments that are char-
acterized by data with a complex relational and rich probabilistic structure
is a very active field of research [24][Introduction p.3].

One major aspect of motivation to do research in this field is the need
to model relationships between objects in a domain. This means by making
a connection between two instances, a probabilistic statement about one
instance is established with the knowledge about another, related instance.
E.g. consider two patients that are friends. If one of them has the flue the
other one is more likely to have the flue as well.

This field of research is called Statistical Relational Learning (SRL).
Even if learning is not part of the current discussion the following will always
refer to SRL as it is common practice in this field.

SRL research can roughly be divided into two main groups that follow
two different strategies.[24]

• Frame based formalisms 1

• First-order approaches

3.1.1 Frame Based Formalisms

The Frame Based Formalism is an approach to build systems that can range
over a variety of situations whereas traditional graphical models are used
for one particular situation. More precisely, systems that follow the Frame
Based Formalism, model one distribution over all possible worlds for a par-
ticular set of objects. Usually this is done by using a first-order declarative

1In [23] this is called Knowledge Based Model Construction (KBMC) but the term
is frequently used to refer to a specific approach in [45] that follows the Frame Based
Formalism.
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language to compactly model a template. This template is used to create a
propositional graphical model, e.g. Bayesian Network or Markov Network
on which inference queries can be applied [23]. Examples other than the
ones presented in Sections 3.2 and 3.3 are included in [14; 20; 26]

3.1.2 First-order approaches

In first-order approaches probabilistic statements establish constraints on
probabilistic models without enforcing a single, unique probability distribu-
tion [23]. The benefit of this approach is that the designer does not have
to make assumptions in case no knowledge is available. First Order Logics
of Probability capture probabilistic knowledge by attaching FOL formulas
with probability values. Moreover formulas can be put in relation to other
formulas in order to express that the knowledge expressed by one formula is
more probable than the knowledge expressed by the other formula [18]. For
a general overview over the different methods in that field see [27].

3.2 Relational Markov Networks
The Relational Markov Network (RMN) formalism is a representation intro-
duced by Taskar et al. [43, 44] and extends the ideas of MNs to relational,
i.e. non i.i.d. data. RMN follow a Frame Based approach where a template
model is unrolled creating a MN using a relational Knowledge Base (KB).

RMNs consist of different frames, or classes as introduced in Section
2.5.1, of objects, or different entity types. Moreover an entity, more specif-
ically an attribute of that entity, can be in relation to some other entities’
attribute by participating in a relation.

3.2.1 Formalism

In recent years different notations have been proposed to describe RMNs.
In the following a more recent one found in [24] is used.

Definitions

Following from the previous definitions a RMN is defined right after the
introduction of template features.

Definition 3.2.1. A Template Feature f(λ) is a strictly positive, real valued
function over a set of template-level attributes as defined in 2.5.1 and logical
arguments that follow a propositionalized first order logic.
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Definition 3.2.2 ([24][p.229]). A Relational Markov Network MRMN is
defined in terms of a set Λ of template features where each λ ∈ Λ comprises

• a real valued template feature fλ whose arguments are
N(λ) = {A1(U1), . . . , Al(Ul)}, N as defined in 2.5.3.

• a weight wλ ∈ R

α(λ) is defined so that for all i, Ui ⊆ α(λ) where α(λ) is the signature of λ.

Using the definitions just provided a Gibbs distribution is defined over
the unrolled MN for the log-linear representation.

Definition 3.2.3 ([24][p.229]). Given a RMNMRMN and an object skele-
ton κ, a ground Gibbs distribution PMMRN

κ is defined as follows:

• The variables in the network are X[N]

• PMMRN
κ contains a term

exp(ωλ · fλ(γ)) (3.1)

for each feature template λ ∈ Λ and each assignment γ ∈ Γκ[α(λ)].

An edge connects two variables if they appear together in one factor
in the ground MN. Important to note is that this does not mean that all
predicates appearing in the description of the template features are going
to be grounded variables since only the variables are grounded that match
the specifications of the template features. This can considerably reduce the
complexity of the resulting grounded network.

In order to connect ground variables of the network Template Features
are defined at the template level that entail conditions when ground variables
are connected and therefore build cliques in the ground network. Moreover
to model the feature templates f(λ) the engineer needs to know what kind
of patterns he is looking for. He needs to be an expert in the field and
needs to understand how the RMN works. The assignment of weights is the
classical supervised learning task or done by experts.

Since RMN as defined so far only define a general concept, details of
implementation are left to the user and offer a lot of freedom. The RMNs
formalism does not prescribe a specific relational description language that
is used to define the cliques of the model.

More elaborate introductions to the RMN formalism, with slightly dif-
ferent notations, are given in [13; 24; 43; 44]

For now only uncertainty with respect to the values of attributes has
been considered. The next section describes how RMNs can be used to
model structural uncertainty.
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3.2.2 Structural Uncertainty

RMNs can be used to model structural uncertainty. [24][Section 6.6] distin-
guishes between two types of structural uncertainty:

• Relational Uncertainty

• Object existence Uncertainty

Relational Uncertainty

Relational Uncertainty is the uncertainty about the relations between ob-
jects in the domain which is expressed as the uncertainty about the relations
between the attributes of objects in the domain. One way this could mani-
fests itself in example 2.2.6 is in the uncertainty whether two students study
together in a study group. This type of uncertainty is modeled in a concise
way in RMNs using feature templates.

Changing the example from Section 2.2.6 so that study groups of size
greater than two may exist, there is a feature template that models the fact
that if student A studies with student B and B studies with C there is a
higher probability that A studies also with C (transitivity pattern) and has
the form:

f(S1, S2, S3) = [Study-group(S1) = Study-group(S2)] = true

∧ [Study-group(S2) = Study-group(S3)] = true

∧ [Study-group(S1) = Study-group(S3)] = true

where Study − group(S) is a function symbol and encodes the study group
of a particular student S. Assigning this feature template a higher weight
reflects this preference [24, p.235]. Of course this changes the assumptions
made earlier about the pairs of students studying together. From this ex-
ample it is clear that the existence of a relationship between two objects can
be encoded as another template level attribute.

The major caveat of modeling relational uncertainty using RMNs is that
the model creates all possible groups. Accordingly the ground networks
are dense, include lots of variables, and each clique has a large number of
members. Consequently, inference and learning in the grounded network
can be very hard as described in Section 2.3.2.

Object Uncertainty

Object Uncertainty addresses the problem of insufficient knowledge about
the set of objects that exist in the world. An example for Object Uncertainty
is the uncertainty about two points being the same in a stereo vision prob-
lem know as the Correspondence Problem or Entity Resolution Problem in
social network analysis and related fields [5; 6; 38]. In the example from
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Section 2.2.6 multiple instances of the same object can exist by the fact that
the students are known by different writings of their name, maybe includ-
ing second names or leaving them out. This leads to the problem that one
student can appear multiple times in the network.

[24] proposes two methods for representing this type of uncertainty. The
first introduces an additional class that represents references of objects. The
members of that class symbolize the roles in the network that the objects
can take, e.g. different writing of names. The instances of that object-
reference class participate in a relationship with objects in the domain. Now
the uncertainty is in the relation between the reference objects and the
objects from the domain. As a consequence the object uncertainty problem
is transformed into an instance of the relational uncertainty problem. For
this approach all the objects that exist in the domain have to be known.

The second approach eliminates the genuine objects and only works with
the reference instances. A "same-as(R1,R2)" predicate is introduced that the
reference objects participate in, meaning a random variable expressing the
belief that two instances are the same is introduced in the unrolled MN.
This "same-as(R1,R2)" predicate satisfies the standard axioms of equality:

• Reflexivity

• Symmetry

• Transitivity

Additionally, the axioms of equality show that the "same-as(R1,R2)" predi-
cate to express object uncertainty can only be used in an undirected setting.
The consequence is the same in that there is a probabilistic relation. How-
ever, both suggestions have major drawbacks because they create highly
peaked posteriors, i.e. only few relations are probable at all. In addition,
densely connected unrolled networks are a consequence which make inference
using traditional approaches hard or even intractable. A possible solution
to the problem, lifted inference, is subject of Section 4.1. For a detailed
discussion on structural uncertainty see [24][section 6.6].

Having defined the RMN formalism an example is used to show how this
can be exploited to model relational data in a very compact way.

3.2.3 An Example

The following section extends the example that has been introduced in Sec-
tion 2.2.6 to clarify the definitions that have been given in Section 3.2.1.

The model

In order to model the misconception from Section’s 2.2.6 example as an
RMN there has to be a definition of the classes. For example "Student" is
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Student

MC

A-Level-Score Name

Figure 3.1: A Student class modeled in a plate like way. Three attribute
descriptions that are defined for the class Student

Name A-level-score MC

Jackie 2.0 ?
Bobby 1.7 ?
Sandy 2.3 ?
Charlie 1.0 ?

(a) The student objects

S1 S2

Jackie Bobby
Bobby Sandy
Sandy Charlie
Charlie Jackie

(b) The study groups.

Table 3.1: The knowledge base of objects and relations that is used for the
misconception example. All study pairs that are not mentioned are assumed
to have the value false.

such a class. A student has the attribute "MC", "Name" and "A-Level-Score".
The "MC" attribute is modeling the uncertainty whether a student has the
misconception or not. "A-level score" and "Name" are observed. Intuitively
the attributes "Name" and "A-level score" are not needed for the model and
can be omitted. This example is supposed to show that objects are a group
of attributes that do not need to have a direct relation in a specific context.

Figure 3.1 shows one entity using a symbolism known from plate models
[16]. An example KB with the sample entities is given in table 3.1a and the
relations of the entities in table 3.1b.
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MC(Jackie)

MC(Charlie)MC(Bobby)

MC(Sandy)

Figure 3.2: The unrolled Markov Network of the misconception example for
4 students.

The feature templates define the cliques that are created in the unrolled
MN. In this example a feature template over the Variables(attributes that
appear in the grounded network) "MC(S1), MC(S2)" is:

f(λ) =
{

1 λ true
0 otherwise

λ =[Study-pair(S1, S2) = true

∧MC(S1) = MC(S2)] = true

∧ ¬(S1 = S2)]
ω =1

(3.2)

The feature template 3.2 expresses the tendency of students with the same
level of understanding to study together. How much each feature adds to
the distribution is defined by the weight assigned to the feature template
and each instantiation that participates in a feature adds the same fraction.
The result of the application of this feature to the KB 3.1 gives the unrolled
MN in Figure 3.2. The value of the cliques are given for one sample clique
in Table 3.2. As specified by the designer only the misconception variables
are created. This is possible since all the study-pairs are provided in the
data base. The RMN formalism requires the designer to carefully model the
feature templates in order to make sure that the variables in the network
have a connection.

Table 3.2 indicates that the state of Jackie and Bobby having the same
state of misconception is more likely than not having the same state of
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MC(Jackie) MC(Bobby) φ(MC(Jackie),MC(Bobby))

True True 2.7
False True 1
True False 1
False False 2.7

Table 3.2: The resulting factor table.

MC(Bobby) MC(Sandy) MC(Jackie) MC(Charlie) Φ P

true true true true 53.1441 27.146%
true true true false 7.29 3.723%
true true false true 7.29 3.723%
true true false false 7.29 3.723%
true false true true 7.29 3.723%
true false true false 1 0.5%
true false false true 7.29 3.723%
true false false false 7.29 3.723%
false true true true 7.29 3.723%
false true true false 7.29 3.723%
false true false true 1 0.5%
false true false false 7.29 3.723%
false false true true 7.29 3.723%
false false true false 7.29 3.723%
false false false true 7.29 3.723%
false false false false 53.1441 27.146%

Table 3.3: The complete unnormalized distribution with the corresponding
probability of the states.

misconception, just as the feature template dictates. The structure of the
tables look the same for all cliques and hence the other cliques are omitted
here. The complete distribution is given in Table 3.3. To compute the
probability of, e.g. Bobby and Jackie having both the misconception, the
probabilities in table 3.2 have to be added, yielding:

P (MC(Bobby) = tr.,MC(Jackie) = tr.) = 27.147% + 2 ∗ 3.723% + 0.5%
= 35.093%

Although no information about the state of misconception is given, the
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template feature implicitly makes an assumption about the misconception
if two students study together. This assumption is one of the benefits of
using probabilistic relational models where the knowledge about a relation
indicates something about the state of the attributes.

Relational Uncertainty

The example is used to show how relational uncertainty can be modeled
using RMNs.

Consider the KB previously provided in table 3.1. It is assumed that the
study groups of the students are not known, leaving the relations of the stu-
dents as a stochastic event. Taking the feature template 3.2 and treating the
relations as non observed random binary events, the RMN yields Figure 3.3.
As is evident directly from the figure, the MN is more complex having more
random variables and involving now cliques of size three. Consequently the
number of entries in the complete joint distribution, assuming only binary
variables, has 210 = 2056 entries opposing 24 = 16 entries for the previous
network given in Figure 2.1.

This result captures the big problem with structural uncertainty. Infer-
ence in those networks can get intractable due to the dense structure.

Object existence uncertainty

Object uncertainty is a phenomenon in real world environments. As de-
scribed in section 3.2.2 two different approaches have been suggested to
tackle this challenge and these approaches reduce the problem to relational
uncertainty. In the given example the students might be known by different
names to the university and to different professors. The name "Bobby" for
example is the american short form for "Robert". Official transcripts will
most likely take the full name "Robert Lindbergh" but a list that is kept
within the class might have "Bobby" and the name on the homework might
be "Robert". A variable can now model the belief that "Robert" and "Bobby"
refer to the real world object "Robert Lindbergh".

The second method introduces a "Same-as" variable that represents the
belief that two roles represent the same "real-world" object.
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Study-Pair(Bobby,Sandy) MC(Bobby) Study-Pair(Bobby,Jackie)

MC(Sandy) Study-Pair(Sandy-Jackie) MC(Jackie)

Study-Pair(Sandy,Charlie) MC(Charlie) Study-Pair(Charlie,Jackie)

Study-Pair(Bobby,Charlie)

Figure 3.3: The unrolled Markov Network of the misconception example for 4 students and relational uncertainty.
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3.2.4 Probabilistic Inference

Probabilistic inference is traditionally done on the unrolled MN. As a conse-
quence the query types that need to be answered are the same as defined in
Section 2.3.2. Moreover all of the existing algorithms can be used, approxi-
mate ones as well as exact ones. One has to keep in mind though that the
networks resulting from templates usually are very densely connected and
very big. Doing exact probabilistic inference in these networks can be very
expensive. Consequently only approximate algorithms are practical.

Research tries to find a way to do probabilistic inference on the template
level where we could range over a big class of models. This type of inference
is called Lifted Inference and is further discussed in Section 4.1.

3.2.5 Discussion

Strengths

RMNs are a tool that has many strengths when modeling uncertainty over
non i.i.d. data. First, the use of a declarative representation allows the sep-
aration of knowledge and reasoning common for all graphical models. This
admits for separate development of algorithms and representation. More-
over the template design with a description language for the cliques allows
an easy modeling of cliques and patterns in data. Furthermore the choice
of using an undirected representation, a MN, enables one to model rela-
tionships without having to care about cyclicity and causality. Finally, the
incorporation of structural uncertainty by adding additional variables for
modeling of real world environments makes it a promising tool to reason
over probabilistic object relational domains.

Weaknesses

The RMN formalism has many weaknesses that limit the usability as well
as the guaranteed future of the model. First, the dense structure of the un-
rolled network in many situations make it a necessity to develop good lifted
inference techniques. Especially in the presence of structural uncertainty.
Likewise the absence of any temporal version of the model needs to be the
subject of future research in order to transfer the model to different domains.
At last in RMN the number of objects in the domains needs to be finite and
the number of objects needs to be known in advance. Consequently the
model is propositional.
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3.3 Markov Logic
ML is a frame based approach to SRL suggested by Richardson and Domin-
gos [36].

ML is a template based approach where a KB with weighted FOL formu-
las is used as a template for a MN. The basic idea of this approach relaxes
the constraint of FOL that the violation of one formula in a world makes the
world impossible. In ML such a world is less probable but not impossible.
Intuitively ML defines a probability distribution over all possible worlds of
the FOL-KB. Each formula is assigned a weight that expresses how much the
violation of this formula changes the log-likelihood of the particular world
where the formula is violated.

3.3.1 Formalism

Definition 3.3.1 ([11][p.12]). A Markov Logic Network (MLN) L is a set
of pairs (Fi, wi) where Fi is a formula in First Order Logic (FOL) and wi is
a real number. Together with a finite set of constants C = {c1, . . . , c|C|}, it
defines a Markov Network (MN) ML,C as follows:
• ML,C contains one binary node for each possible grounding of each
predicate appearing in L. The value of the node is 1 if the ground
predicate is true, 0 otherwise.

• ML,C contains one feature for each possible grounding of each formula
Fi in L. The value of this feature is 1 if the ground formula is true,
and 0 otherwise. The weight of the features is the wi associated with
Fi in L.

Following Definition 3.3.1 we see that there is an edge between two nodes
in the ground MN if and only if the two predicates that belong to the nodes
appear together in at least one grounding of one formula. As a result the
predicates in each ground formula form a not necessarily maximal clique in
the ground network[11][p.13].

The MLN is a template for a MN, consequently the set C determines
the exact MN. Different sets of constants lead to different resulting MNs.
The MN that is created by one possible grounding is called a grounded MN.

Possible groundings are obtained as follows:
• replace each variable in the predicate with each constant in C

• replace each function term in the predicate by the corresponding con-
stant

An algorithm to obtain the groundings is given in [11, p.14]. The rules are
deduced by three assumptions that ensure that the set of possible worlds
for (L,C) is finite, and ML,C represents a unique, well-defined probability
distribution over those worlds. [11, p.13]
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Assumption 3.3.1 (Unique names). Different names refer to different ob-
jects.

Assumption 3.3.2 (Domain closure). The only objects in the domain are
those representable using the constant and function symbols in (L,C)

Assumption 3.3.3 (Known functions). For each function appearing in L,
the value of that function applied to every possible tuple of arguments is
known, and is an element of C

The probability distribution over possible worlds x specified by the ground
MN ML,C is given by:

P (X = x) = 1
Z

exp
(∑

i

wini

)
= 1
Z

∏
i

φi (xi)ni(x) (3.3)

where Z is the partition function known from MN and ni is the number of
true groundings of the associated formula Fi in x, x{i} is the state of the
predicates appearing in Fi. From the definition of the probability distribu-
tion follows that in ML no world can be impossible, i.e. have P (X = x) = 0.
Moreover the definition of the probability distribution in 3.3 entails theorem
3.3.1

Theorem 3.3.1 ([11, p.16]). Let KB be a satisfiable KB, L be the MLN
obtained by assigning weight w to every formula in KB, C be the set of
constants appearing in KB, Pw(x) be the probability assigned to a (set of)
possible world(s) x byML,C, XKB be the set of worlds that satisfy KB, and
F be an arbitrary formula in FOL. Then:

• ∀x ∈ XKB limw→∞ Pw(x) = |XKB|−1

∀x /∈ XKB limw→∞ Pw(x) = 0

• For all F , KB |= F iff limw→∞ Pw(F ) = 1

The theorem states that if all weights go to infinity, the distribution
over all worlds that satisfy the KB is of a uniform nature and that every
entailment query can be answered by checking whether the probability of
the query formula is 1. This implies that for weights that go to infinity ML
subsumes FOL over fixed domains.

In general:

Theorem 3.3.2 ([11, p.15]). Every probability distribution over discrete or
finite-precision numeric variables can be represented as a MLN.

The proof is given in [11, p.15]. Following from Theorem 3.3.2, MLNs
can be used to represent a wide variety of existing approaches to SRL. See
Section 5.1 for the connection between RMNs and ML.
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3.3.2 Structural Uncertainty

Structural uncertainty is modeled by loosening Assumption 3.3.1. This leads
to a representation close to the one developed for RMNs in Section 3.2.2.

Relational uncertainty

Relational uncertainty is expressed by introducing predicates that encode
the relationship between two objects. This predicate defines a distribution
between any two objects that are grounded with that predicate. As a con-
sequence the networks get dense with highly peaked posteriors.

Object existence uncertainty

Object uncertainty can be represented by introducing the equality predicate.
The properties of the equality predicate are :

• Reflexivity

• Symmetry

• Transitivity

Practically this is done by expressing the properties in the MLN. Ergo create
rules that reflect this behavior. This also introduces predicates that could
be named "same-as(S1,S2)" that express the probability that two instances
are the same [11, p.14].This is very similar to the techniques proposed in
section 3.2.2 for RMNs.

3.3.3 Probabilistic inference

Probabilistic inference can be done with approximate or exact methods on
the ground MN. In order to improve runtime the use of lifted algorithms as
described in section 4.1 is a promising approach.

3.3.4 Example

The example used in Section 3.2.3 can be easily transferred into the ML
formalism.

The logical formula that captures the same knowledge as the template
feature 3.2 is given in equation 3.4.

f = (Study-Pair(S1, S2) (3.4)
∧ [MC(S1) = MC(S2)]

w = 1

A grounded network for the KB 3.1a, Figure 3.4, is almost the same as
given for the relational uncertainty in RMNs. This is due to the fact that
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the "Study-Pair(S1,S2)" relation is grounded into a variable as it is done for
all predicates in ML. However in the definition of the formula ¬(S1 = S2)
has been omitted. This allows for pairs of the form Study-Pair(Sandy,Sandy)
to be created. The relations given in Table 3.1b can be included as formulas
in the knowledge base. However they are only incorporated as priors and
queries of the type "What is the probability that Jackie and Bobby form
a study pair, given that they both have the misconception" are possible.
Hence the relational uncertainty is automatically built into the formalism.

Structural uncertainty is included in the same way as it was done in
Section 3.2.3.
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SP(Bobby,Bobby)

SP(Bobby,Sandy) MC(Bobby) SP(Bobby,Jackie)

SP(Sandy,Sandy) MC(Sandy) SP(Sandy-Jackie) MC(Jackie) SP(Jackie,Jackie)

SP(Sandy,Charlie) MC(Charlie) SP(Charlie,Jackie)

SP(Bobby,Charlie)

SP(Charlie,Charlie)

Figure 3.4: The unrolled Markov Logic Network of the misconception example for 4 students. "SP" abbreviates "Study-Pair"
and "MC" abbreviates "Misconception".
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Chapter 4

Improvements

4.1 Lifted Inference
Lifted algorithms are an essential development for probabilistic relational
approaches to succeed in a wide range of applications. Lifted inference algo-
rithms have the ultimate goal to run inference completely on the template
level, so that no ground network needs to be instantiated in order to reduce
the computational effort. A less strong goal is to make use of repeated sub-
structures in the ground network so that as a consequence the number of
computations can be reduced. These substructures exist because of the use
of a template and will be exploited by the algorithm presented in the next
section.

4.1.1 Lifted Belief Propagation

Lifted Belief Propagation (LBP) extends the inference algorithm described
in Section 2.3.3 to exploit the structures in the resulting MN that are created
because of the logical rules applied to the KB [11, p.35]. The key idea is
not to instantiate all objects in the domain. In [3] an algorithm is presented
that lifts inference for networks when no evidence is given. LBP for MLN
extends the ideas presented in [3] to the case where evidence is presented to
the network and can consequently be used to answer arbitrary queries.

The main mechanism in LBP is the identification of the nodes in the
network that compute and send the same messages while performing Belief
Propagation (BP) as defined in 2.18 and 2.19 to compute marginal functions.
Doing these computations just once for certain structres saves computational
cost

A lifted network that consists of vertices that group the vertices of the
ground network as just described is defined in Section 4.1.2. Section 4.1.1
provides definitions for the nodes of the network.
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Let L be a MLN, C a set of constants and ED an evidence database.

Definition 4.1.1 ([11, p.37]). A supernode is a set of groundings of a pred-
icate that all send and receive the same messages at each step of belief
propagation given L, C and ED. The supernodes of a predicate form a
partition of its groundings.

A superfeature is a set of groundings of a clause that all send and receive
the same messages at each step of belief propagation, given L, C and ED.
The superfeatures of a clause form a partition of its groundings.

The resulting network is defined in Definition 4.1.2.

Definition 4.1.2 ([11, p.37]). A Lifted Network is a factor graph, as defined
in Definition 2.3.1, composed of supernodes and superfeatures. The factor
corresponding to a superfeature g(x) is

exp (w · g(x))

where w is the weight of the corresponding first-order clause. A superfeature
and a supernode have an edge between them if and only if some ground
atom in the supernode appears in some ground clause in the superfeature.
Each edge has a positive integer weight. A minimal lifted network is a lifted
network with the smallest possible number of supernodes and superfeatures.

The regular BP algorithm is applied to the minimal network where the
message from a supernode x to superfeature f is computed as follows:

µx→f = µ
n(f,x)−1
f→x

∏
h∈nb(x)\{f}

µh→x(x)n(h,x) (4.1)

with nb(f) being all the arguments of f and n(h, x) is the weight of the edge
between h and x. The marginal of each supernode is given by

P ∝
∏

h∈nb(x)
µ
n(h,x)
h→x (x) (4.2)

Since a supernode represents a set of groundings of predicates the marginal
for the supernode is the same as for all the grounded atoms in it.
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The minimal lifted network is constructed in an iterative process of
grounding and merging superfeatures. The outline of the algorithm is as
follows:

1. Create initial supernodes by grounding all predicates and group the
grounded objects by their truth values(true, false, unknown). For each
predicate there are now at most three supernodes.

2. Create superfeatures by grounding clauses using all possible combina-
tions of grounded predicates in 1). Group the groundings of the clauses
by the sets they are made of(the cartesian product of the supernodes)

3. Count the number of occurrences of each atom in each position in
each superfeature. Atoms with the same counts for all superfeatures
are clustered into new supernodes.
→ goto 2) until convergence

Following a modified example from Table 2.2 with the change that "Jackie"
and "Bobby" are considered to have the "Misconception",
i.e. MC(Jackie) = true and MC(Bobby) = true is presented. The ex-
ample shows how the algorithm checks the counts and merges the nodes to
create a minimal lifted network. Table 4.1 indicates that MC(Sandy) and
MC(Charlie) have the same counts for all superfeatures that were created
in the earlier phase of the algorithm with the factor graph given in figure
4.1. As a result these two can be used to create a combined supernode in
the next step of the algorithm.

The example indicates how the algorithm reduces the size of the net-
work by checking whether two nodes send and receive the same messages
[11][p.35].

F1 F2 F3 F4 F5 F6

MC(Jackie) 1 1 − − 1 −
MC(Sandy) 1 − 1 1 − 1
MC(Charlie) 1 − 1 1 − 1
MC(Bobby) 1 1 − 1 1 −

Table 4.1: Counts for the Misconception atom.
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MC(Jackie)
MC(Bobby)

SP(Jackie,Charlie)∧[MC(Jackie)=MC(Charlie)]
SP(Sandy,Bobby)∧[MC(Sandy)=MC(Bobby)]

SP(Jackie,Bobby)∧[MC(Jackie)=MC(Bobby)]

MC(X)
X 6= {Bobby,Jackie} SP(Sandy,Charlie)∧[MC(Sandy)=MC(Charlie)]

SP(Jackie,Sandy)∧[MC(Jackie)=MC(Sandy)]
SP(Bobby,Charlie)∧[MC(Bobby)=MC(Charlie)]

SP(Jackie,Charlie)
SP(Jackie,Bobby)
SP(Sandy,Charlie)
SP(Sandy,Bobby)

SP(Bobby,Bobby)∧[MC(Bobby)=MC(Bobby)]
SP(Jackie,Jackie)∧[MC(Jackie)=MC(Jackie)]

SP(Charlie,Charlie)∧[MC(Charlie)=MC(Charlie)]
SP(Sandy,Sandy)∧[MC(Sandy)=MC(Sandy)]

SP(Jackie,Sandy)
SP(Bobby,Charlie)
SP(X,X)

True

Unknown

True

False

F1

F2

F3

F4

F5

F6

Figure 4.1: The factor graph in the first stage to create a minimal factor graph for the misconception example. "MC"
abbreviates "Misconception" and "SP" abbreviates "Study-Pair". The truth values of the grounded atoms are located to left
of the supernodes and the names of the superfeatures are located to the right of them.
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4.2 Infinite domains
The ML theory has been extended to infinite domains on a theoretical
basis[11][p.75]. This is a desirable extension because it makes the model
non propositional so that the complete power of FOL can be exploited.
However to the knowledge of the author this extension has not yet been
implemented. As a result details are not presented in this work and it is
merely mentioned.
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Chapter 5

Analysis

5.1 Relational Markov Network and Markov Logic
Networks

MLNs can be used to represent different models and approaches to the
problem of modeling uncertainty over non i.i.d. data as stated earlier. This
work will focus on the relationship to the RMNs.

RMNs and MLNs are to some extend very similar approaches to the
SRL problem. Both models use templates from which with the help of a
relational skeleton a MN is derived.

RMNs use weighted feature templates to create cliques in the unrolled
network. The same mechanism is used in ML where weighted FOL formulas
are used for this purpose. The difference lies in the description languages
used for the formulas and feature templates. ML dictates to use FOL which
in turn create variables in the grounded network for all terms that appear in
the formulas. RMNs on the other hand does not require to use any specific
language. Moreover the terms that appear in the feature template do not
necessarily appear in the grounded network The latter approach seems less
formalized and leaves a lot of free interpretation to the developer of such
systems.

The probability distribution of a RMN is given as

P (VC) = 1
Z

∏
C∈CT

∏
c∈C

exp (wC · fC(VC)) (5.1)

where CT is the set of clique templates and fC is a grounded feature template
with the associated weight wC . In other words the probability distribution is
given by the product over all clique templates and the product over all cliques
that are created by such a template. In the special and useful case that the
feature function fC is binary function(indicator feature) and all terms in
the feature template are grounded another interpretation is possible as well
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where the distribution is given as follows

P (X = x) = 1
Z

∏
C∈CT

exp (wc × nc) = 1
Z

exp

 ∑
C∈CT

wc × nc

 (5.2)

where nc is the number of true groundings of the feature template. This
representation is exactly the same as given for the probability distribution
of a MLN in 3.3. Ergo, in the given case the two models are equivalent since
formulas as well as the feature templates define the same cliques and factors
which are going to be created in the grounded network.

As a result of the stronger formalism in ML one can conclude that ML
allows to develop applications in a much more structured way. Surprisingly
the lack of choice of a description language does not lead to a lack of ex-
pressiveness. Nonetheless the propositional nature of ML limits the use of
FOL as a description language and doesn’t make it more expressive than, for
example, the SQL like description language used in some implementations
of RMNs[13].

Moreover ML is in a way a much more formalized framework. This is
reflected in the vast amount of research that is done in the ML commu-
nity that came up with open source tools [1; 2], many extensions of the
framework[11][chapter 5] as well as the active research of many different
universities. On the other hand the research on RMNs seems to be less
focused, i.e. not driven to the extend by its developers as it is the case for
ML.

5.2 Cost and benefits of probabilistic models over
object relational domains

In this section limitation and benefits of probabilistic models over object
relational domains using frame based approaches are discussed.

5.2.1 Limitations

To have efficient inference techniques over probabilistic object relational do-
mains is a key element that needs to be provided in order to let the modeling
of these domains succeed in machine learning. This calls for the develop-
ment of lifted inference algorithms that exploit the FOL structure of the
models extensively. Although first successes are presented[7; 41] those seem
not yet sufficient in order to tackle huge, complicated domains since they
are in the worst case as slow as traditional algorithms and the convergence
of approximate algorithms is not guaranteed.
Moreover the lack of "real" FOL as a description language for the templates,
that can deal with infinite domains, limits the expressive power of the mod-
els to the propositional case.

53



Furthermore the number of parameters that need to be learned in those
models increases potentially exponential in a domain that already was ex-
ponentially large. This asks for sophisticated algorithms whose analyses is
outside the scope of this work. At last, as was pointed out by Domingos:
"the biggest problem is that it is much more complex for the user to model
non i.i.d. data"[10]. The designer of the system needs to understand the
domain well in order to be able to model the complex relational structures
that can be exploited by this modeling approach.

5.2.2 Benefits

Better predictive accuracy is one of the key goals of SRL. Results show
that this goal can be met by the implementation of ML [11] as well as
RMNs[14; 43].
Furthermore the necessity to model relationships between the objects in
a domain leads to a better understanding of the domain of interest. This
understanding is crucial while optimizing the models in order to know which
information can be left out of the model so that the algorithms can perform
better.
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Chapter 6

Conclusion

This work introduces probabilistic graphical models. In particular two mod-
els have been presented that deal with the more complex relational data.
This is achieved by the attempt of unifying First Order Logic and Probabilis-
tic Graphical Models. Moreover it has been shown that First Order Logic
is only incorporated insufficiently in Markov Logic as well as in Relational
Markov Networks and used merely as a relational query language.

Despite the strong competition in the scientific community it has been
shown that Relational Markov Networks and Markov Logic share many com-
mon aspects and are in fact related very closely. Nevertheless, Markov Logic
as well as Relational Markov Networks have shown to perform well in real
world environments.

6.1 Future Work
Future work in the field of statistical relational learning needs to address
several problems that exists to date. First is the creation of more lifted
algorithms that can leverage the FOL nature of the models. Furthermore it
needs to be analyzed in which network structures these algorithms converge.
Second the integration of infinite domains into the developer tools today
and by that making real FOL a core part of the formalisms eliminating the
propositional nature of the approaches. And thirdly the development of
temporal relational models that can reason over time is a desirable goal.
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