Urager

Hamburg University of Technology Drager Medical
Institute for Software Systems Section User Interfaces

Technische Universitdt Hamburg-Harburg

Master Thesis

Ontology Based Data Access

for Separating User Interfaces
from Application Logic

Hannes Molsen
#20730260

First Supervisor: Prof. Dr. Ralf Moller

Second Supervisor: Prof. Dr. Helmut Weberpals
Issue Date: April 18, 2012

Filing Date: October 18, 2012

Erklarung

Hiermit erklare ich, dass ich die von mir am heutigen Tage eingereichte Masterarbeit
vollkommen selbststandig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe.

Wortlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter
Angabe der Quellen kenntlich gemacht.

Alle Abbildungen in dieser Arbeit sind eigene Darstellungen. Wo Abbildungen iibernom-
men und abgeandert wurden, ist die Quelle der urspriinglichen Abbildung angegeben.

Liibeck, 18.10.2012
Hannes Molsen

All hyperlinks to resources on the Internet have been checked and last accessed on
Monday, 2012-10-15.

Abstract

The separation of user interfaces from the underlying application logic is a constant re-
search topic. The misuse of Reenskaug’s Model View Controller as a system architecture
provides only modular separation on source code level, while UI and application logic
remain in tight sematic coupling.

To break this coupling, we will present an approach, which applies the highly efficient
and scalable techniques of ontology based data access. It is thereby possible to pro-
vide an ontology as intermediate formal model to semantically separate the two system
components, whilst still being performant enough to display large amounts of frequently
changing continuous data.

The presented concept includes patterns to derive an entire OBDA system, including
database schema, ontology and mapping rules from an entity relationship data model.
In contrast to other existing separation approaches, the presented one can easily be used
to enhance existing software systems. This is proved by adapting an existing medical
decision support system to the implemented OBDA system by altering only a single line
of existing source code.

Zusammenfassung

Die Trennung von Benutzerschnittstellen von der zugrundeliegenden Anwendungslogik
ist ein konstantes Forschungsfeld. Durch den Missbrauch von Reenskaugs Model View
Controller als Systemarchitektur ist lediglich eine modulare Trennung auf Quelltextebene
erreichbar, wahrend die Komponenten nach wie vor eng gekoppelt sind.

Um diese Kopplung aufzubrechen werden im dargestellten Ansatz die leistungsstarken
und skalierbaren Techniken des ontologiebasierten Datenzugriff (OBDA) angewandst.
Dadurch wird es ermdglicht, eine Ontologie als formales Zwischenmodell einzusetzen,
um die Komponenten auf semantischer Ebene zu trennen, aber gleichzeitig den hohen
Anspriichen der grolen Mengen sich schnell verandernder Daten gerecht zu werden.

Das hier vorgestellte Konzept enthalt Muster, welche es ermoglichen von einem En-
tity Relationship Modell ein komplettes OBDA System abzuleiten, inklusive des Daten-
bankschemas, der Ontologie und den notwendigen Abbildungsregeln. Im Gegensatz zu
anderen Anséatzen kann der préasentierte auf bestehende Softwareprodukte angewandt
werden, ohne in den ersten Entwicklungsphasen berticksichtigt werden zu miissen. Um
dies zu beweisen wurde das Konzept auf ein bestehendes medizinisches Entscheidungsun-
terstiitzungssystem angewandt. Dazu musste lediglich eine einzige Zeile existierenden
Quelltextes angepasst werden.

Contents

1.

Introduction

1.1.
1.2.
1.3.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

Motivation
Objectives e
Contributions

. Background

Description Logics
2.1.1. Languages
2.1.2. Terminological and Assertional Descriptions
2.1.3. Reasoning
2.1.4. The DL-Lite Family
Ontologies
2.2.1. Definitions
2.2.2. Languages and Syntaxes
2.2.3. Querying Ontologies
2.2.4. Ontology Editors
2.2.5. Applications and Types of Ontologies
Ontology Based Data Access
2.3.1. Conventional RDF Stores
2.3.2. Relational Data vs. Graph Data
2.3.3. Quest Reasoner
234, OWL2QL
2.3.5. Mappings
2.3.6. The -ontop- framework
User Interface Architecture o0
2.4.1. Reenskaug’s Models-Views-Controllers
2.4.2. Separated Presentation
2.4.3. Limitations of Current Approaches
2.4.4. User Interface Data
2.4.5. Ontology-Enhanced User Interfaces
Related Worko
2.5.1. Paulheimetal.
252, Tillyetal. oo
2.5.3. SUmMmary
SmartPilot View
2.6.1. Problems

3. Concept
3.1, Overview
3.2. DataFlow
3.2.1. Application to User Interface
3.2.2. User Interface to Application
3.2.3. Eventing Mechanisms 0L
3.3. Key Components
3.3.1. Data Model
3.3.2. Database
3.3.3. Ontology
3.3.4. Mapping Rules
3.4. Connections to the Core
3.4.1. Connecting the Application
3.4.2. Connecting the User Interface

4. Implementation
4.1. Data Model
4.2. Database
4.2.1. Autogenerated Primary Keys
4.2.2. Representation of Graph Data
4.2.3. Units of Measure
4.3. Ontology
4.3.1. Enumerations
4.3.2. Representation of Graph Data
4.3.3. Units of Measure,
4.4. Mapping Rules
4.4.1. Representation of Graph Data
4.4.2. Units of Measure
4.5. Connecting the Application L.
4.5.1. Inverse Object Relational Mapping
4.5.2. Adapter
4.5.3. Automatically Generated Primary Key
4.5.4. Representation of Graph Data
4.5.5. Units of Measure,
4.6. Connecting the User Interface
4.6.1. Java: Accessing Quest
4.6.2. SPARQL: Accessing the Data
4.6.3. Representation of Graph Data

5. Evaluation
5.1. Correct Result
5.2. Mapping Rules Completeness
5.3. Write Performance
5.4. Read Performance

o N ®

m

5.5, Summary

. Conclusion and Future Work
6.1. Conclusion

6.2. Future Work

. Overview: Description Logics
A.1. Basic Languages
A.2. Extension Operators
A.3. Abbreviations L.

SmartPilot View: Ontology

SmartPilot View: Ul Data Subset

. System Overview

Evaluation Results

E.1. Mapping Completeness
E2 Case
E.3. Drugs o
E.4. NSRI Curves
Eb. Patient00 oo
E.6. Used Drugs

78
78
79

95
95
95
95

1. Introduction

1.1. Motivation

The separation of user interfaces from application logics is a constant research topic since
the 1970s, when Reenskaug introduced Model View Controller (MVC). Over the decades,
MVC has become the silver bullet of user interface separation and is often misused as
entire system architecture. While it provides an efficient means of achieving modular
separation on the source code level, this procedure inevitably leads to a tight semantic
coupling between both components. Depending on the implementation, this architecture
can make the deployment of the two components on physically different systems (spatial
separation), the integration of multiple applications into one or more user interface, or
the parallel development by independent teams difficult, if not impossible. To overcome
the above shortcomings, semantic separation of user interfaces and application logics is
a necessary condition.

Ontologies provide a conceptual access point to data, enabling to exploit knowledge
about, e.g., the interrelations of such data individuals. In contrast to conventional
data stores as relational databases, the semantics of the data is accessible at run-time
through so called inference systems. Thereby, ontologies are predestined for being used
as an intermediate layer to achieve a high degree of separation. But at the present
time, no such inference system for native ontology stores is capable of handling the high
amount of frequently changing data, which is exchanged between user interfaces and
applications.

Ontology based data access (OBDA) is a comparably young technology, which is able
to provide a conceptual view on relational data sources through an ontology. The -ontop-
Quest reasoner is an inference system which enables such access, by using mapping rules
to translate SPARQL ontology queries to SQL database queries. It is thereby possible
to exploit both, the conceptual knowledge of the ontology, and the mature algorithms of
query answering for relational data. In contrast to native ontology approaches, Quest is
thereby able to maintain the high scalability and efficiency of the underlying relational
database management system.

1.2. Objectives

The objectives of this work are to investigate, how ontology based data access can
be applied to existing software systems in order to increase the degree of separation
between user interfaces and application logic. Therefore, the requirements of the data
exchange between the two system components have to be analyzed, and suitable OBDA

1. Introduction 1.3. Contributions

techniques have to be examined, to show the general feasibility of such an approach. On
that basis, a new system architecture is to be developed, which results in the desired
degree of separation. Often the requirements for software systems increase as they evolve.
Therefore, in contrast to other existing approaches, the designed architecture has to be
retrofitable to enhance existing software systems. This shall be proved by applying the
concept to an existing medical decision support system, and measuring, whether the
architecture ia able to handle the high amounts of continuous data.

1.3. Contributions

The main contributions of this work are twofold. In the research topic of user interface
architecture, we will present a new approach to achieve semantic separation between
user interfaces and applications, which, at the same time, is able to integrate the data
of different applications.

In the topic of ontology based data access, this work will contribute potentially au-
tomatable patterns for deriving an entire OBDA system, including database schema,
ontology and mapping rules, from an entity-relationship data model.

2. Background

2.1. Description Logics

Description Logics are a family of logic based knowledge representation formalisms.
Their foundations lie in the field of semantic networks, developed in the 1960s by R.F.
Simmons and M.R. Quillan [Sim63, Qui63], which are the descendants of KL-ONE
[SBI85]. In Description Logics a specific domain is described by its concepts (or classes),
roles (or relationships/properties) and individuals. Most Description Logics are subsets
of First Order Logic (FOL), but trade expressive power for decidability [Bor96] and
reasoning performance [THO03]. In this Section, we will describe common Description
Logic languages (2.1.1), and explain their allowed operators and the naming convention.
We will illustrate the distinction between TBoxes and ABoxes (2.1.2), and introduce an
example ontology, which will be referred throughout this chapter. The basic concepts of
reasoning and query answering over ontologies will be listed in 2.1.3, and 2.1.4 gives an
overview about the DL-Lite family, which is the foundation of OBDA systems.

2.1.1. Languages

With regard to First Order Logic, the concepts in Description Logics are equivalent to
unary predicates, the roles to binary predicates, and the individuals to constants. These
basics are valid for all DL languages. They differ in the set of operators or constructors
that are allowed to build complex concept and role expressions in that language. This
has an influence on the expressiveness as well as on the complexity of the Description
Logic.

To distinguish between the different DLs, a naming convention has been agreed upon,
which directly shows the allowed operators. There are three different types of basic
logics, AL, FL, and £L, as well as several possible extensions allowing more operators,
each denoted by a single capital letter.

The most commonly used constructors are the ones that correspond to boolean opera-
tors, and the ones for quantification, i.e. complement / negation (—), concept conjunction
(M), disjunction (L!), universal (V), and existential (3) quantification. These are the basis
for ALC, which is one of the most important DLs, as it is the smallest propositionally
closed one [SSS91]. The logic ALC, together with R, for transitive roles, often acts as
the basis for further extensions, and is thus abbreviated with S.

In the following explanations the letter a will be used for individuals, the letters C'
and D will be used for concepts, while r and s will denote roles. Its operators are shown
in the upper part of Table 2.1.

10

2. Background 2.1. Description Logics

Table 2.1.: Description Logics: Languages and semantics

DL Name Syntax Semantics
([Top Concept T AT
Bottom Concept il 0
Negation -C AT\C*
ALC Conjunction cnbD CctnD?
Disjunction cubD cCctuD?
Value Restriction vr.C {d € AT|Ve.(d,e) € T — e € C7}
| Existential Restriction 3r.C {d € AT|3e.(d,e) € r* Ne € CT}
H Role hierarchy rCs rtCst
@) Nominals I I* Singleton
z Inverse roles T {(d,e)|(e,d) € rt}
N Cardinality Restriction <nr {d € AT|#{(d,e) € 1} < n}
> nr {d e AT|#{(d,e) € r*} > n}
Q Qualified Cardinality — < nr.C {d € AT|#{(d,e) € rt| d € CT} < n}

Restriction >nr.C {d e AT#{(d,e) € r*| e € C*} > n}
Datatype Properties, Data Values or Data Types

€

The semantics of Description Logics is based on so called interpretations. With A being
the domain of Z, which is a non-empty set, and -Z an interpretation function, such an
interpretation is a pair Z = (A%, .T). Therein, -Z assigns an element a” € AZ to each
individual a, a set C* C A7 to each concept name C, and a binary relation 77 C AT x A
to each role name r. An overview of syntax and semantics of ALC and frequently used
extensions can be found in Table 2.1.

2.1.2. Terminological and Assertional Descriptions

Description Logics describe knowledge in terms of facts. An example knowledge base
will formalize the facts that

e men are humans,
e fathers are men, which have a human child,
e John is a man, and

e Jack is a father.
The notions TBox and ABox [Turl0] are common to split the facts into two groups.
While the TBox contains the terminological knowledge, being the statements about

the concepts and their inter-relationships, the ABox contains the assertional knowledge,
being facts about the individuals. Equation 2.1 shows an example for terminological

11

2. Background 2.1. Description Logics

statements, and Equation 2.2 one for the assertional facts that represent the example
knowledge base. It is also depicted as graph in Figure 2.1.

Human hasChild MCLTL E Humcm (2 1)
Zr Father = Man M 3hasChild. Human)
Man e Father

John : Man
— < (2.2)

Jack : Father

Figure 2.1.: Example Knowledge Base with TBox (2.1) and ABox (2.2)

2.1.3. Reasoning

TBox and ABox axioms together (7, .4) form a knowledge base K. This knowledge base
(also called DL-ontology, cf. section 2.2) is accessed usually through an interface to an
inference system. These systems are capable of making knowledge explicitly available,
which is contained only implicitly in the TBox and ABox knowledge, i.e., the given facts
do not contain this knowledge, but it can be derived from them. Using the example from
Figure 2.1, “Jack is a man” is implicit knowledge and can be derived from the explicit
facts that “Jack is a father” and “fathers are men”. As this knowledge has not been
specifically expressed, it is also referred to as new knowledge [BLOT7], which has been de-
rived from K. This process is called reasoning and the underlying applications reasoner.
The reasoning again can be split as well into the two parts terminological reasoning
and assertional reasoning. While the first comprises only operations on the TBox, the
latter uses the whole knowledge base pair (T, .4). Baader and Lutz identify satisfiabil-
ity and subsumption as the two fundamental inference problems for terminological, and
consistency and instance checking for assertional knowledge [BLOT7]:

Satisfiability A concept description C' is satisfiable with respect to a TBox T if there
exists a common model of C' and T.

Subsumtion A concept description C' is subsumed by a concept description D with
respect to a TBox T if CT C D? for every model Z of T (written C Ty D).

Consistency An ABox A is consistent with respect to a TBox T if there exists a common
model of A and 7.

Instance Checking An individual name a in an ABox A is an instance of a concept
description C' with respect to a TBox T if aZ € C? for all models Z of A and T
(written A Fr C(a)).

12

2. Background 2.1. Description Logics

They state that some additional inference problems, such as equivalence can be reduced
to the fundamental ones in a trivial way, while some others can only be reduced to a
composition of the them. These are called compound inference problems, and need to
be mentioned separately, as the naive serial execution of the basic problems would lead
to intolerable run-time behaviour:

Classification Given a TBox 7T, compute the restriction of the subsumption relation
“C+” to the set of concept names used in 7T .

Realization Given an ABox A, a TBox 7, and an individual name a, compute the set
R4 7(a) of those concept names A that are used in T, satisfy A Fr A(a), and are
minimal with this property with respect to the subsumption relation “C4”.

Retrieval Given an ABox A, a TBox 7T, and a concept C', compute the set 14 7(C) of
individual names a used in A and satisfying A Fr C(a).

The instance retrieval is the most basic form to query an ABox, that requires the
relational structure of the query to be tree shaped [CDGL98]. A more generalized way
of querying ABoxes, the conjunctive query answering has been first studied for DLs by
Calvanese et al. in 1998 [CDGL98]. Given a concept C, a role r, variables v, v/, a
conjunctive Query ¢ is a finite set of expressions C(v) or r(v,v’), called atoms. Var(q)
is the set of variables occurring in ¢, which can be split in answer variables Ans(q) and
(existentially) quantified variables Ezq(q).

Conjunctive Query Answering Given an ABox A, a conjunctive query ¢, an individual
a, an interpretation Z of A, and 7 : Var(q) — AT a total function, such that
for every v € Ans(q) there is an a, such that w(v) = a (written Z E™ C(v)
if 7(v) € CZ, for roles analogously). Compute 7 such that Z E™ atom for all
atom € q.

Therefore, the aforementioned deduction that “Jack is a man” is an instance check:
AEr Man(“Jack”).

As mentioned in Section 2.1.1, there is always the trade-off between computational
complexity, which is important for tolerable run-time behaviour of the reasoners, and
expressive power, which in turn is important to model non-trivial knowledge bases.

The most commonly found reasoner implementations are tableau! [BS01] based reason-
ers. A tableau algorithm evaluates the explicitly given facts in a knowledge base and
derives new facts for as long as new facts can be deduced or a contradiction is found.
Some well-known tableau-based reasoning tools are RACER [HMO01] for the SHZQ de-
scription logic, Pellet [SPGT07] for SHOZN (D) and FaCT++ [TH06] for SHOZQ(D),
restricted to string and integer datatypes. An extension to the classic tableau is the
hypertableau, used by the reasoner HermiT [MSHO09].

A second type of reasoner implementations is based on logic programming. The
deduction of knowledge is carried out by translating the knowledge base into a program

Lthe notion tableaux is also used in literature, both as singular and as plural

13

2. Background 2.2. Ontologies

of a logic programming language, e.g. datalog. Query answering is thereby delegated
to the corresponding language interpreters. The reasoners KAON2 [MS05] for Horn?-
SHZQ and OntoBroker [DEFS98] for Horn-Logic are famous representatives of this

type.

2.1.4. The DL-Lite Family

The DL-Lite family was designed by Calvanese et al. [CDGL"07] for the special purpose
to handle reasoning, especially (conjunctive) query answering, on knowledge bases with
a large number of instances. It is the foundation of ontology-based data access, as it
provides the possibility of terminological reasoning in polynomial time, and answering
complex queries over large ABoxes in LOGSPACE data complexity [PLCT08].

One big advantage and the intention behind DL-Lite is, that by restricting Description
Logics to the expressivity of, e.g., entity relationship diagrams (cf. Section 2.3.2), queries
to the knowledge base can be rewritten into highly efficient SQL queries to a relational
database, as it will be further described in Section 2.3 Ontology Based Data Access.

A core language called DL-Lite... was developed as the basis for all languages of the
whole family. In addition to that the two extensions DL-Liter and DL-Litegr were pro-
posed. DL-Liter allows for cyclic assertions, is-a on concepts, inverses on roles, domain
and range on roles, mandatory participation on roles, and functional restrictions on roles
[PLCT08]. Beneath fully capturing the DL part of RDF Schema (see Section 2.2.2), DL-
Liter also allows mandatory participation on roles and disjointness between concepts
and roles. It has been shown [CDGL'07] that these two languages of the DL-Lite fam-
ily are the maximum subsets for efficient query answering, as any further extension to
them, even the combination of both [PLCT08|, would increase data complexity to at
least NLOGSPACE and thus hinder the delegation of ABox query answering to data-
base management systems. The fact, that the QL subset of OWL 2 (cf. Sections 2.2.2
Languages and Syntaxes and 2.3.4 OWL 2 QL) is underpinned by DL-Liteg [W3C09b]
emphasizes the significance of this logic family.

Poggi et al. proposed a new member to the DL-Lite family, called DL-Lite4. It has
been specifically designed for ontology-based data access, taking for example a clear
distinction between objects and values into account. They extend DL-Liter by features
of DL-Litez, like functional properties, but restrict them by, e.g., requiring the unique
name assumption (UNA)3 to retain the LOGSPACE data complexity.

2.2. Ontologies

The term ontology originates from the philosophical study (Aoyos) of being (ovTog) and
reality, as well as the basic categorizations of things and relations between them. There,
the singular form is used (the ontology, as in “the biology”), whereas the computer scien-
tist’s notion accepts plural (ontologies, as in “databases”). Following the philosophical

2a horn clause is a disjunction with at most one positive (i.e. non-negated) literal
3Logics with UNA assume that different names never refer to the same entity in the world [RN02]

14

2. Background 2.2. Ontologies

definition, the term ontology in computer science is often referred to as a formal model of
a domain, although several different uses and definitions exist. This section will give an
overview about different definitions of ontologies, the languages that are recommended
by the World Wide Web Consortium to model such ontologies and how they are used
in practice.

2.2.1. Definitions

Gruber [Gru93] gives the now frequently cited definition that “an ontology is an explicit
specification of a conceptualization”. He refers to Genesereth’s and Nilsson’s [GN87]
definition of conceptualization, and states, that this is an “abstract, simplified view of
the world” containing “objects, concepts and other entities [...]| and the relationships
that hold among them.”

Guarino and Giaretta later discuss seven different interpretations of the term ontology
in their article from 1995 [GG95]. Their result is that ontologies in computer science are
clearly independent of the philosophical antecedents and they propose a simple glossary.
Therein, the term conceptualization is described as “an intensional semantic structure
which encodes the implicit rules constraining the structure of a piece of reality” and
ontology as “(sense 1) a logical theory which gives an explicit, partial account of a
conceptualization; (sense 2) synonym of conceptualization.”

Based on these results and the definitions used by Xiaomeng and Ilebrekke [SI06],
Uschold and Groninger [UG96] and Gruber [Gru93], a combined definition, which fits
for this work could be:

An ontology is a formal, partial representation of a conceptualization.
This conceptualization includes a set of objects*, concepts®, and their inter-
relationships®.

This definition includes that an ontology is usually not all-embracing, but only a
partial model of a certain domain of interest. The ontology also has to be a formal
representation in such way that machines are able to interpret it. Often the instances of
a concept are not captured by the cited definitions of ontologies, but certainly play an
important role, especially in reasoning over large ABoxes.

Ontologies can also be described as a new kind of data model, which includes the
semantics of the data in the form of metadata and stores data on a graph basis. This
will be further described in the following Section 2.2.2 Languages and Syntaxes.

2.2.2. Languages and Syntaxes

Ontologies are one of the pillars of the semantic web vision, introduced by Tim Berners-
Lee et. al in 2001 [BLHLO1]. The vision that knowledge is not only written as human

4also being referred to as instances or individuals in literature
5also being referred to as categories or classes in literature
6also being referred to as roles or properties in literature

15

2. Background 2.2. Ontologies

User Interface & Applications
Trust
Proof C
r
Unifying Logic y
p
t
Query: Ontology: Rules: o
SPARQL OWL RIF g
r
RDF-S a
p
Data interchange: RDF h
y
XML
URI Unicode

Figure 2.2.: The Semantic Web Stack [BLO09]

readable text, but encoded in a way that machine agents can understand the meaning of
the information. Therefore the World Wide Web Consortium W3C standardized a set
of languages that meet the requirements to specify machine understandable knowledge.
The foundations of those languages is the eXtensible Markup Language XML [BPM*08],
as Tim Berners-Lee depicts in the semantic web stack, shown in Figure 2.2, but also
other syntactic representations of these languages exist.

Resource Description Framework

The Resource Description Framework RDF [MMO04] allows to formally describe knowl-
edge. That is, expressing information about resources as logical statements, called facts.
It is used to describe the data stored in an ontology. Such a fact consists of the three
parts subject, predicate, and object. In “John is a man” (see Figure 2.1), John is the
subject, is a is the predicate and Man is the object. Because of these three elements,
RDF statements are referred to as triples, and therefore native storage solutions as triple
stores. In each of those triples, subject, predicate and object are basically names for
concrete or abstract entities in the real world, which have the URI [BLFMO5] format,
are literals, or blank nodes. A literal can be seen as a value, being just raw text data.
In the example in Listings 2.1 and 2.2 the title “TUHH - Startseite” is such a literal.
If the title itself is not known, but it is known that the resource has a title, it can be
modeled using a blank node. The below listing shows this in Turtle syntax, where such
a node is preceded with an underscore.

1 <http://www.tu-harburg.de/> dc:title _:a

16

2. Background 2.2. Ontologies

1 <?xml version="1.0"7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://www.tu-harburg.de/">
5 <dc:title>TUHH - Startseite</dc:title>
</rdf:Description>
</rdf :RDF>

Listing 2.1: RDF /XML syntax

1 @prefix dc: <http://purl.org/dc/elements/1.1/>
O@prefix rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>

<http://www.tu-harburg.de/> dc:title "TUHH - Startseite"

Listing 2.2: Turtle syntax

RDF Syntaxes

To express RDF triples, different syntaxes can be used. The two most common ones
are RDF /XML [Bec04] and Turtle, the Terse RDF Triple Language [Bec12]. The latter
provides a less verbose syntax alternative to RDF/XML, and directly shows the triple
character of the statements. This syntax was first introduced by Notation3, or short
N3 [BLC11], which, beneath providing that syntax, is a superset of RDF, extending
it by formulae, variables, logical implication and functional predicates. Thus Turtle is
the RDF-only subset of N3. A comparing example below states that http://www.tu-
harburg.de (subject) has the title (predicate) “TUHH - Startseite” (object), once in
RDF/XML syntax (Listing 2.1) and once in Turtle syntax (Listing 2.2). The Turtle-
Syntax provides the possibility to define prefixes, which allow for even less verbose and
easy to read triples, as the long and often repeated part of the URIs is substituted and
thus the focus remains on e.g. the concept or role descriptors. To avoid repetitions in
Turtle, it is possible to combine multiple statements about the same subject or about
the same subject and predicate. In the former, only different predicate-object pairs for
one subject are delimited by a semicolon, while in the latter the different predicates are
delimited by a comma. Examples of this can be found in the example ontology in Listing
2.4.

Web Ontology Language

In addition to the data description capabilities of RDF, using RDF Schema (RDFS)
[GB04] and the Web Ontology Language OWL” [MvHO04] - the current version is OWL2
[W3C09b] - are used in the semantic web stack (cf. Figure 2.2) and allow to make
metadata statements about concepts of, and the inter-relationships between resources.

"The abbreviation OWL instead of WOL was chosen for unambiguous pronunciation and the associ-
ation to the wisdom of owls [Fin01]

17

2. Background 2.2. Ontologies

While RDF was about the individuals (cf. ABox, Section 2.1.2), with RDFS and OWL
it is possible to describe the TBox (cf. Section 2.1.2) classes, properties, their hierarchies
as well as inheritance. For example “all men are humans”, or more formally:

1 :Man rdfs:subClass0f :Human .

Listing 2.3: All Men are Humans in Turtle Syntax

In OWL, the facts are not split explicitly into ABox and TBox statements, but if one
expresses the triples in natural language, the distinction is easy: Using the singular
(John is a man) usually refers to individuals and thus the ABox, whereas the plural
(men are humans) usually describes concepts and thus the TBox.

Regarding the syntax, an OWL and RDFS ontology can be serialized in all nota-
tions that exist for RDF since these ontology languages are syntactically embedded into
RDF. Especially RDF /XML has been chosen as interchange format between ontology
software [W3C09b]. Nevertheless, there exist several others syntaxes for other purposes.
The Manchester Syntaxz [HDGT06] for easier writing DL ontologies, Functional Syntaz
[IMPPS09] to easily see the formal structure of ontologies, OWL/XML [PPSMO09] for use
by XML tools, and again Turtle for its RDF triple readability.

Description Logics, especially the SH family (cf. Section 2.1.1), underlie the Web On-
tology Language [HPSHO3] which itself comes in three levels of expressive power in
descending order, or in three levels of computational complexity in ascending order:
OWL Full, OWL DL, and OWL Lite. One could say that OWL together with RDF
provides a LISP-like syntax for the Description Logics, such that it can be written in
the ASCII character set. As inference in OWL Full is undecidable [Hor05], it will not
be further considered here. OWL DL is equivalent ot the DL SHOZN®), while OWL
Lite comprises the slightly simpler SHZF ™) logic (see Table 2.1).

The new W3C recommendation OWL 2 proposes three new profiles as subsets of
its full capabilities, EL, RL and QL, all based on specific DLs which allow tractable
reasoning [MFHT09]. The first has its basis in the Description Logic ££ + + [BBLO05],
the second is based on Description Logic Programs (DLP) [GHVDO03], and the third, and
most important for this work, is based on the description logic DL-Liter (cf. Section
2.1.4). Section 2.3.4 will pick up this profile, as it is the foundation of OBDA.

The reason for the proximity to Description Logics is that OWL ontologies are thereby
able to exploit the already advanced research on DL, its properties and complexities, as
well as to use the already implemented applications and algorithms, especially in terms
of reasoners and inference systems.

Listing 2.4 shows the Turtle syntax for the example ontology from Section 2.1.2 Ter-
minological and Assertional Descriptions.

18

2. Background 2.2. Ontologies

1 @prefix : <http://www.draeger.com/onto/example#>
Oprefix owl: <http://www.w3.0rg/2002/07/owl#>
@prefix rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>

5 <http://www.draeger.com/onto/example> rdf:type owl:0Ontology

:hasChild rdf:type owl:0bjectProperty ;
rdfs:domain :Father ;
rdfs:range :Human

10
:name rdf:type owl:DatatypeProperty ;
rdfs:domain :Human ;
rdfs:range xsd:string

15 :Father rdf:type owl:Class ;
rdfs:subClass0f :Man ,
[rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom :Human

20]
:Human rdf:type owl:Class

:Man rdf:type owl:Class ;
25 rdfs:subClass0Of :Human

:Jack rdf:type :Man ,
owl : NamedIndividual ;
:name "Jack""“xsd:string
30
:John rdf:type :Father ,
owl:NamedIndividual ;
:name "John"""xsd:string

Listing 2.4: Example ontology in turtle syntax

Ontology Constructs

In the following, we will describe the subset of ontology constructs important for this
work. For more information, see [W3C09a].

Class owl:Class A category for instances

Class Hierarchy rdfs:subClass0f Allows a hierarchy by adding specializations of such
categories

Object Properties owl:0bjectProperty A relation between individuals of classes.

Datatypes owl:DatatypeProperty Relate individuals to data values. OWL can be used
with the XML Schema datatypes [W3C04], like xsd:string or xsd:integer. The
default datatype is a plain Literal.

19

2. Background 2.2. Ontologies

1 PREFIX : <http://www.draeger.com/onto/example#>
PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>

SELECT 7x
5 WHERE

{
?x rdf:type :Human
¥

Listing 2.5: Querying for all Humans

2.2.3. Querying Ontologies

Data stored in the RDF triple format can be accessed with the query language SPARQL.
The name is a recursive acronym for SPARQL Protocol and RDF Query Language, which
has been standardized as W3C recommendation in 2008 [PS08]. With SPARQL it is
possible to query required and optional graph patterns, as well as conjunctions and
disjunctions of those.

Although SPARQL is roughly based on the SQL SELECT-FROM-WHERE structure, it is a
pure query language, which means that the recommendation does not allow for updating,
inserting or deleting in RDF graphs. It provides four different forms of queries:

SELECT returns the variables bound in a query pattern match

CONSTRUCT returns an RDF graph constructed by using the given graph template and
the solutions to a query

ASK returns a boolean answer to the question if the query has a solution

DESCRIBE returns an RDF graph containing the known data about the resources from
the query

For the construction of the queries the above described Turtle syntax is used, so that
each triple can be seen explicitly. Variables in SPARQL have global scope and are
prefixed with a question mark ? or a dollar sign $. In the query in Listing 2.5, the
example ontology is asked to return all humans. Following the SPARQL specification,
the result of this query will be a table with one column for the variable x, and two rows
for the individuals : Jack and :John.

To answer such queries, inference systems as described in section 2.1.3 are used. A
simple SELECT query, for example, corresponds to a retrieval inference problem, more
complex ones to conjunctive query answering.

2.2.4. Ontology Editors

To create and modify an ontology it is possible to use plain text or XML editors, but
due to the possible complexity it is more convenient to fall back to more sophisticated
tools. Several different tools exist, some examples of which are the open source NeOn

20

2. Background 2.2. Ontologies

800 example (http://www.draeger.com/onto/example) : [/Users/hannes/Dropbox/Masterarbeit/Others/example.owl]
E = \ © example (http:/ /www.draeger.com/onto/example) :_\ Q
|m Classes Object Properties Data Properties Annotation Properties Individuals =~ OWLViz = DL Query = OntoGraf = SPARQL Query WM |
Emwﬂ Class hierarchy {inferred) l@
C“ Lo boher fERE
I N -E:.]
- ."Fhin Show: [grhis E disjoints [21 named sub/superclasses
v o ngmarl Found 5 uses of Fatt
¥ @ Man ¥ @ Father
@ Father SubClassOf Man
L Father
@ Father SubClassOf hasChild some Human
¥ #John

John Type Father

¥ mhascChild
® hasChild Domain Father
QObject property hierarchy Data property hierarchy > Equivalent To
Object property hierarchy: MEEE
== SubClass Df
v mtopObjectProperty @ Man
m hasChild @ hasChild some Human

SubClass Of (Anonymous Ancestor

Momb

Reasoner active (W] Show Inferences

Figure 2.3.: The Protégé Ontology Editor

toolkit [HLSE0S], developed as an EU IST® project, the commercial OntoStudio® or the
discontinued SWOOP ontology editor [KSPHO04] from the University of Maryland.

But with a market share of above two thirds in 2007 [Car(07], the very mature Protégé
ontology editor [GMF103], developed at the universities of Standford and Manchester,
is the most frequently used. Despite being a five year old survey, this result seems to be
still valid, since about 200 projects are listed in the Wiki'® and over 200.000 registered
users'! are using Protégé, which undergoes frequent updates and improvements. Figure
2.3 shows a screenshot of Protégé, displaying the aforementioned example ontology (cf.
Figure 2.1).

The flexible architecture allows for plugins to be developed to extend the functionality
and the field of application. An important representative for this work is the -ontopPro-
plugin from the University of Bolzano [RLCO08], decried in detail in Section 2.3.6 The
-ontop- framework.

8IST is the abbreviation for Information Society Technologies http://cordis.europa.eu/ist/
about/about.htm
http://www.semafora-systems.com/en/products/ontostudio/
Onttp://protege.cim3.net/cgi-bin/wiki.pl?ProjectsThatUseProtege
Uhttp://protege.stanford.edu/

21

http://cordis.europa.eu/ist/about/about.htm
http://cordis.europa.eu/ist/about/about.htm
http://www.semafora-systems.com/en/products/ontostudio/
http://protege.cim3.net/cgi-bin/wiki.pl?ProjectsThatUseProtege
http://protege.stanford.edu/

2. Background 2.2. Ontologies

usage:
. design time run time
domain:
Ontology Driven Ontology Based
real world Development Architectures
¢ Ontology Enabled Ontology Enabled
system Development Architectures

Figure 2.4.: Classification of ontologies, according to Happel and Seedorf [HS06]

2.2.5. Applications and Types of Ontologies

Ontologies can be used in many different application fields. To illustrate these uses,
Happel and Seedorf [HS06] analyzed different use cases for ontologies and classified
them by their usage in software engineering. The classification uses two dimensions: the
ontology usage time and the ontology domain. This matrix is depicted in Figure 2.4.

Ontology Driven Development uses ontologies at design time to formalize the real
world application domain.

Ontology Enabled Development uses ontologies at design time to formalize the com-
ponents of the application.

Ontology Based Architectures use ontologies as central part of the application at run
time.

Ontology Enabled Architectures use ontologies to achieve intelligent software infras-
tructure, such as semantic web services.

Guarino distinguishes ontologies by their level of dependence. In Figure 2.5, these lev-
els are one below each other, and the arrows denote specializations. Top-level ontologies
describe very generic concepts like space, time or event. Domain ontologies describe the
vocabulary for a generic domain, like medicine and task ontologies a special task like
diagnosing. The last kind is called application ontology. Its concepts may depend both
on task and domain ontologies, and specify their concepts for a concrete application.
These ontologies are therefore usually not reusable.

22

2. Background 2.3. Ontology Based Data Access

top-level ontology

/\

domain ontology task ontology

reusable

not reusable

application ontology

Figure 2.5.: Classification of ontologies, according to Guarino [Gua97]

Uschold and Gruninger [UG96] identified three main categories of uses for ontologies:

Communication between people and organisations, by reducing conceptual or termino-
logical confusion between people with different viewpoints

Inter-Operability between systems, by providing an Inter-Lingua between different soft-
ware systems

Systems Engineering reusable components, specification, reliability. In this context
ontologies are used during system design and development rather than being used
at runtime.

In the context of this work, we will make extensive use of the techniques of ontology-
based data access as an intermediate layer between two software parts. The therefore
created application ontology will be used as the central part of the application at run
time, which will provide access to the data for the user interface. With an ontology
based architecture, the inter-operability between the Ul component and the business
logic component will be established.

We will further describe the use of ontologies, specifically in the context of user inter-
faces in Section 2.4.5 Ontology-Enhanced User Interfaces.

2.3. Ontology Based Data Access

2.3.1. Conventional RDF Stores

The triples that make up an ontology can be stored in several different ways. Well known

RDF triple stores are for example the open source frameworks Apache Jena'?, Sesame!?,

12http://jena.apache.org
3http://www.openrdf .org/

23

http://jena.apache.org
http://www.openrdf.org/

2. Background 2.3. Ontology Based Data Access

Virtuoso'* and Mulgara!®, or the commercial tools OntoBroker!¢ from semafora or Al-
legroGraph!” from Franz Inc.
Basically there exist three categories of RDF storage solutions:

In-memory triple stores provide the entire RDF graph in main memory. Due to the
space limitations, this is not feasible for large data sets as they occur in most
real-world applications.

Native triple stores provide persistent storage by implementing own, purpose-tailored
graph-based database systems.

Non-native triple stores use external, often relational database systems to store the
RDF data.

While Mulgara is a pure native store, most frameworks like Apache Jena or Sesame
offer all three storage solutions. For non-native storage they provide adapters for most
common relational database systems.

2.3.2. Relational Data vs. Graph Data

Relational databases are one, if not the most mature way to store and query large
amounts of data. The data is stored in tables, where each entry is a row, which has values
for each named column. The most common query language for relational databases is
SQL.

The idea to store data in that way grew in the late 1960s and had its breakthrough with
Edgar Codd’s publication in 1970 [Cod70]. Over forty years of constant research have
improved relational database management systems and SQL query answering. Although
there are other database types, like key-value, document, and object stores, which are
usually summarized by the term NoSQL'®, many applications still use the relational
model, as it has proven itself to work, scale well and be reliable over decades. In
addition to that, the model is backed by services, software products, and support of
large companies like Oracle and IBM.

Figure 2.6 shows a direct comparison between the relational and the graph data model.
This will be briefly discussed in the following.

In contrast to graph-based databases like triple stores, where the instances of concepts
are stored as objects, relational databases store the values itself in cells. The discrepancy

Mhttp://virtuoso.openlinksw.com/

Bhttp://www.mulgara.org

Yhttp://www.semafora-systems.com/de/produkte/ontobroker/

"http://www.franz.com/agraph/allegrograph/

18The term NoSQL was first used 1998 by Carlo Strozzi for a relational database system that intention-
ally does not use SQL. As this has nothing to do with the movement of not using relational data mod-
els, he proposes to rather use the term NoREL or something similar. http://www.strozzi.it/cgi-
bin/CSA/tw7/I/en_US/NoSQL/Home’,20Page

24

http://virtuoso.openlinksw.com/
http://www.mulgara.org
http://www.semafora-systems.com/de/produkte/ontobroker/
http://www.franz.com/agraph/allegrograph/
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home%20Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home%20Page

2. Background 2.3. Ontology Based Data Access

Model Data Identifier Query Metadata Semantics
At Runtime
5
Cell Values Primary Key SQL Columns / ERD no
5
Relational RDF Objects URI SPARQL RDFS / OWL yes

Figure 2.6.: Data Model Comparison

between objects and values is known as impedance mismatch. If those systems are to be
used together, this mismatch needs special attention.

Tables in RDBs must have one column or a composition of them as uniquely identi-
fiable primary key to allow retrieval of entries and the modeling of relations via foreign
keys. RDF stores use URIs to uniquely identify each object.

During the process of designing a database for a specific application, Entity Relation-
ship Diagrams (ERDs) can be used to determine what data has to be stored and how it
is grouped and related. While this information contained in the ERD, often referred to
as implicit knowledge, is generated and used at the design time, it can not be exploited
at runtime, as the following example illustrates.

Given the ontology already introduced in Figure 2.1, one could create a relational
database that contains the modeled information, as depicted in Figure 2.7 and Figure
2.8. If we now query the database for all humans that have children, the answer would
be empty, as there are no entries in the table tb_hasChild for the hasChild relation:

1 SELECT Father_ID FROM tb_hasChild

However, the correct answer would be 2 (Jack), as the semantics of our model imply,
that every father has a child. Although this knowledge is contained in the ER diagram,
there is no way to make use of it. Using a reasoning service on the ontology, the TBox
information can be used and a SPARQL query (prefixes omitted) would give the correct
answer:

1 SELECT ?x WHERE { ?x :hasChild :child . }

Nevertheless, relational databases usually outperform triple stores in terms of data ca-
pacity and query answering performance. There exist several huge petabyte-sized rela-
tional databases, which have proved the model to be incredibly scalable and still provide
acceptable run-time behaviours for query execution [Lai08]. In contrast to that, query
answering in expressive description logics is limited to comparably small ABox sizes. In
2008 RacerPro [HMO1], as an example, was able to cope with ABoxes of about 10.000
to 100.000 individuals [M6l108].

25

2. Background 2.3. Ontology Based Data Access

tb_Father tb_Man tb_Human tb_hasChild
Human 1D Human 1D Human_ID Name Father ID Human 1D
2 1 1 John
2 2 Jack

Figure 2.7.: Example Database

tb Father is a» tb Man is a» tb Human
Human_ID {PK|FK} 0 1 1 Human_ID {PK]|FK} 0 1 1 Human_ID {PK}
N o Name
1 hasChild» 0f.n
T

tb_hasChild

Father_ID {FK}
Human_ID {PK|FK}

Figure 2.8.: Example Entity Relationship Diagram

2.3.3. Quest Reasoner

The idea of ontology-based data access is, to use data that is stored in relational
databases, link it to a single ontology that contains a common conceptualization of
the data, use this ontology as coherent access point to heterogeneous data, and utilize
the sophisticated algorithms developed for relational data for fast query answering.

In contrast to extract the data from the database, transform it into triples and store
it in conventional RDF stores (This process is called ETL by Rodriguez-Muro [RMC12],
i.e., Extract, Transform, Load) with OBDA the data in the relational database is ac-
cessed directly, such that no data duplication, and thus, no synchronization between
database and ontology is necessary. Data, which is utilized on the fly in such manner is
called wvirtual ABox, and the difference to a ordinary ontology is depicted in Figures 2.9
and 2.10.

To allow this access, a reasoner called Quest [RMC12] has been developed at the Uni-
versity of Bolzano. Quest is specifically tailored for efficient query answering services
and uses the techniques of query rewriting to retrieve answers to SPARQL queries from
relational data sources. The semantic model contained in the TBox is exploited dur-
ing the rewriting process, such that implicit knowledge can be obtained as in ordinary
ontologies.

How a data store can be used by Quest is described in a so called OBDA model. Such

26

2. Background 2.3. Ontology Based Data Access

TBox O TBox 0]
n n
t t
0] (0]
4 A I |
i : (0] 0
/] K g g
// | ABox : ‘\ Y Y
/ ,' | \
\
@ | @ \
(D~ __ \
Figure 2.9.: Ordinary ABox Figure 2.10.: Virtual ABox
TBox AN
Quest g ciient
OBDA N
Model

Figure 2.11.: Quest System Overview, from [RMC12]

a model consists of a data source definition, which contains information of how the data
can be accessed (i.e., a JDBCY connection), and a set of mapping axioms, which will be
further explained in Section 2.3.5.

Figure 2.11 shows how quest is set up in virtual ABox mode. After Quest has per-
formed an initialization process, a client can pose a query in SPARQL, and Quest pro-
cesses it in three steps. It first rewrites it by using the knowledge from the TBox, then
unfolds it into a single SQL query by using the mapping rules and finally executes this
SQL query. The query results are then streamed to the client. A detailed description
of Quest, its initialization steps as well as its rewriting and unfolding mechanisms can
be found in Rodriguez-Muro and Calvanese’s article Quest, an OWL 2 QL Reasoner for
Ontology-Based Data Access [Rod12a).

Quest is not only able to operate in virtual ABox, but also in classic ABox mode.

19 Java Database Connectivity, http://www.oracle.com/technetwork/java/overview-141217 .html

27

http://www.oracle.com/technetwork/java/overview-141217.html

2. Background 2.3. Ontology Based Data Access

In both modes, the OBDA model is used for query answering, but while in virtual
ABox mode the data is accessed directly in the relational database, classic ABox mode
requires the Ontology to be filled also with the ABox triples. Quest then takes care
of the storage, either in memory or in a non-native triple store (cf. Section 2.3.1), as
well as the necessary mappings. But as this causes the data to be duplicated, which is
accompanied by synchronization and performance issues, the virtual ABox mode was
chosen for this work. The avoidance of negative impacts of these issues is an important
factor for the use of OBDA techniques in conjunction with user interfaces, as the data,
like graph data, is volatile and may constantly and rapidly change.

2.3.4. OWL 2 QL

In Order to make query rewriting possible for the reasoner, the TBox of the ontology
must adhere to the OWL 2 profile QL. This profile is specifically designed for enabling
LOGSPACE query answering with respect to data complexity, especially through passing
rewritten queries to relational database management systems. The expressivity is chosen,
such that conceptual models (e.g., entity-relationship diagrams) can be expressed. As
described in Section 2.1.4, the foundation of the QL profile is the description logic DL-
Litegr. OWL 2 QL supports the following axioms, constrained so as to be compliant
with the mentioned restrictions on class expressions:

subclass axioms (SubClass0f)

class expression equivalence (EquivalentClasses)

class expression disjointness (DisjointClasses)

inverse object properties (InverseObjectProperties)

property inclusion

(SubObjectProperty0f not involving property chains and SubDataProperty0f)
property equivalence

(EquivalentObjectProperties and EquivalentDataProperties)

property domain (ObjectPropertyDomain and DataPropertyDomain)

property range (ObjectPropertyRange and DataPropertyRange)

disjoint properties (DisjointObjectProperties and DisjointDataProperties)
symmetric properties (SymmetricObjectProperty)

reflexive properties (ReflexiveObjectProperty)

irreflexive properties (IrreflexiveObjectProperty)

asymmetric properties (AsymmetricObjectProperty)

assertions other than individual equality assertions and negative property as-
sertions (DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion,
and DataPropertyAssertion)

The above list, as well as a complete description of features supported by OWL 2 QL
can be found in the corresponding W3C Recommendation [MFH*09).

28

2. Background 2.3. Ontology Based Data Access

2.3.5. Mappings

The mapping rules allow that the rewritten SPARQL queries can be unfolded into SQL
queries. Up to now, these mappings have to be created manually and there exist no tools
or best practices yet for automating the process, although such tools are announced to
be developed in the near future [RMC12].

Quest uses the mapping language introduced by Poggi et al. [PLCT08]. Therein,
a mapping consists of an SQL query and a so called ABox assertion template. Such
templates are a set of RDF triples that are written in a syntax leaned on Turtle (cf.
Section 2.2.2). The columns in the result of the SQL query can be referenced via
variables in the subject and object of the triples, whereby the values in each result
row can be used to generate virtual ABox assertions.

With the example database introduced in Figure 2.7 and the TBox (2.1) from Figure
2.1, we could define the following mapping, that makes all humans with their respective
names accessible through the ontology. Please note, how the columns Human ID and
Name are referenced with a preceding $ in the RDF triple, and how the URI for each
Human is generated by using the primary key $Human ID of the table tb_Human.

1 # Target
<"&:;human/{$Human_ID}"> rdf:type :Human ;
:name $Name” "xsd:string

Source
5 select Human_ID, Name from tb_Human;

Listing 2.6: OBDA Mapping

There do exist other mapping languages, like R20 [B()CGpO4], Virtuoso RDF Views
[Opel0], D2RQ [Biz04], or D2RML [DSC12]. Nine of them have been thoroughly com-
pared by Hert et al. in 2011 [HRG11]. For this work the mapping language introduced
above [PLC108] has been chosen, as it comes with a powerful environment, the -ontop-
framework, whose reasoner is known to outperform other systems®, and will support
other mapping languages like R2RML or D2RQ in the near future [RMC12].

2.3.6. The -ontop- framework

The -ontop- framework?! is a collection of tools for the tasks of ontology-based data
access. The parts of -ontop- are the above described Quest reasoner (cf. Section 2.3.3),
with its most recent version QuestOWL, and a plugin called -ontopPro- for the ontology
editor Protégé (cf. Section 2.2.4). This plugin provides a graphical user interface for
defining an OBDA model, as well as a SPARQL interface which allows to save and
execute SPARQL queries on the ontology.

20according to a blog post, a paper from the University of Manchester is about to be published, which

states that Quest is usually 6-10 times faster than Virtuoso and the performance is almost as good
querying the RDB directly [Rod12al.
2lhttp://obda.inf .unibz.it/protege-plugin/

29

http://obda.inf.unibz.it/protege-plugin/

2. Background 2.4. User Interface Architecture

QuestOWL is a recently (2012-08-22) [Rod12b] released version of the Quest reasoner,
which is compatible to the OWLAPI3 22, by which it is possible to use the OBDA model
directly from Java applications, without the previous need for Protégé. This was an
important aspect during the environment decision process for the application presented
in this work, as it enables convenient access to the data from any Java based user
interface.

2.4. User Interface Architecture

User interfaces play one of the most important roles in current software products, during
design and development as well as at runtime. They are responsible for up to 50% [MR92]
(70% [KGO03]) of the total application developement and maintenance time and costs.
As all information between the software system and the human user is passed through
such interfaces [IEE9Q], they are the most perceived part of a software system by the
user. Already in the 1970s, when graphical user interfaces were not quite common, there
was the need to modularize the complex user interface and application code into several
components, to allow for better overview and maintainability.

2.4.1. Reenskaug’s Models-Views-Controllers

Since its first introduction in 1979 [Ree79b, Ree79a] by Trygve Reenskaug, Model View
Controller is one of the, if not the most applied and cited idea for the design of user
interfaces. It was conceived as “a general solution to the problem of users controlling a
large and complex data set,” and was supposed to “bridge the gap between the human
user’s mental model and the digital model that exists in the computer.” [Reell]

Reenskaug defined Model-View-Controller when he was working in the context of
the object-oriented Smalltalk-80 programming language at Xerox PARC. By applying
MVC, it was possible to add new presentations to an existing Model, which could be
left untouched in the process. This can be seen in the dependency diagram in Figure
2.13, as both View and Controller depend on the Model, but not the other way around.
He defined the three entities as follows [Ree79al:

Models represent the knowledge contained in a system, i.e., it is responsible for the
data.

Views are visual representations of the model. Views is attached to a model and can
update it.

Controllers are the link between the system and the user. Thus, it translates between
user output?® and model data, as well as model data and user input.

22nttp://owlapi.sourceforge.net/
23Reenskaug uses user output for system input, and user input as system output

30

http://owlapi.sourceforge.net/

2. Background 2.4. User Interface Architecture

Additionally, he defines an optional fourth entity, the Editor, which works as interface
between View and input devices, such as mouse and keyboard. In later implementation,
he also uses the term Tool for a composition of Controller and Views, as depicted in
Figure 2.12.

2 —
/ \
| \
megti ,/ AN Controller |
model Tool \ computer %
/ N model A
Controller N : Model
1 * Model \V4 A
* * View [[————— -
View
User

Figure 2.13.: MVC Dependencies
Figure 2.12.: MVC model, adapted from [Reell]

2.4.2. Separated Presentation

Model View Controller can often be read, when investigating modern software systems.
However, in today’s applications it is inaccurate to refer to the MVC, as not only a large
number of different implementations exist?*, but also a variety of interpretations. Model
View Controller is referred to as a “triad of classes” [GHIJV94], as “Metaphor” [KP8§],
“GUI Architecture” [Fow06], “Design Pattern” [Buc09], “Paradigm” [BHS07], “Philos-
ophy” [Sha96], “Principle” [Fow03] or “Architecture Pattern” [McGO04]. As example for
implementation hints, the renowned Gang of Four book Design Patterns (GHIJV94] splits
MVC up into the collaboration of the Observer, Strategy and Composite pattern. Over
the years, MVC has apparently become the silver bullet of user interface development
for many authors, although, its meaning is often ill-defined and the interpretations of
the three terms differ from Reenskaug’s definition.

Fowler found out, that the idea of the separated presentation was “the most influential
to later frameworks”, which, on the other hand, take other ideas from Reenskaug’s MVC,
freely interpret them, and re-describe them as MVC. Thereby, the understanding of MVC
as a whole, as well as the understanding of the distinct entities and their responsibilities
changed, and is not commonly agreed upon. Fowler explains this by the fact, that the
original MVC does not “make sense for rich client systems these days” [Fow06].

There do exist a number of user interface design ideas beneath MVC. Examples in-
clude Presentation/Abstraction/Control [Cou87], which is quite similar to MVC [LR01],
DocumentView?®, which sort of combines Model and Controller into a Document, Model-

24g5ee, e.g., the wikipedia comparison of web application frameworks http://en.wikipedia.org/wiki/

Comparison_of_web_application_frameworks
2http://msdn.microsoft.com/en-us/library/4x1xy43a(v=vs.80) .aspx

31

http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks
http://msdn.microsoft.com/en-us/library/4x1xy43a(v=vs.80).aspx

2. Background 2.4. User Interface Architecture

View-Presenter [Pot96], a revised version of MVC for Java and C++-, or Martin Fowler’s
separation of MVP into the two patterns Passive View?® and Supervising Controller®”.
They all address different shortcomings and provide specific improvements, like improved
testability or the like.

The original MVC has several drawbacks, especially concerning the degree of sepa-
ration, and all of the mentioned MVC-derivatives share these problems. But we espe-
cially criticize the misuse of MVC as an application architecture, which, induced by
the above mentioned dependencies, inevitably leads to tightly coupled software compo-
nents. Therefore, a new architecture will be proposed in this work, which improves or
avoids these shortcomings, as it allows the user interface and the application logic to be
completely separated from each other.

2.4.3. Limitations of Current Approaches
Distributed Systems

The original Model View Controller does not provide means for using it for distributed
systems, like for common client-server architectures or even more complex systems.
Nevertheless, there do exist a lot of frameworks for this purpose that claim to be “MVC”.
In these cases the three entities of MVC are redefined for nearly each framework that
exists and the intersections in the understanding of the terms are often superficial: The
Model somehow contains the data, and sometimes the entire application logic, which
is located mostly on the server side. In contrast, the Views present the data to the
user, sometimes as parts of the user interface like in Reenskaug’s definition, sometimes
as synonym for the entire user interface, and are located on the client side. In modern
web application frameworks like, e.g., Ruby on Rails, the Controller is used as the “glue
between model and view”2?®, which is clearly not what Reenskaug intended. It is often
imposed with the new obligations of this field, i.e., it also contains the communication
logic and thus needs to be split up between client and server.

The Model and Controller code can be split in nearly any number of ways between
client and server and it is up to the developers to decide, how to partition the application
[LRO1]. Fowler therefore writes that MVC is also one of the most misquoted patterns
around [Fow06].

Also notice, how Reenskaug’s plural form (Models, Views, Controllers) changed to
the singular (Model, View, Controller). This falsely suggests that there exist just one
instance of each of the three parts per application, which might be a mix-up with the
widely accepted three layer model of software, introduced by Fowler [Fow03, pp. 97].
He therein distinguishes between the data source layer, the business logic layer?®®, and
the presentation layer. The data source layer in this case explicitly refers to access to
some means of persistent storage, like databases. The Model in MVC can refer to either

26nttp://martinfowler.com/eaaDev/PassiveScreen.html
2"http://martinfowler.com/eaaDev/SupervisingPresenter.html
28guides .rubyonrails.org/getting_started.html

2originally called domain layer by Fowler

32

http://martinfowler.com/eaaDev/PassiveScreen.html
http://martinfowler.com/eaaDev/SupervisingPresenter.html
guides.rubyonrails.org/getting_started.html

2. Background 2.4. User Interface Architecture

modular spatial semantic

Degree of Separation

Figure 2.14.: Degrees of Separation

the data source layer, or volatile storage, as objects in the business logic layer. Not all
applications do have a separate data source layer.

All this ambiguity of MVC causes confusion among developers and system designers,
as it is never clear, what exactly is meant by the terms. Additionally, the controller
is thereby imposed with way more than one task and thus violates the separation of
concerns principle, which was the initial idea of MVC.

By the use of a new semantic intermediate layer between the user interface and the
business logic, we will provide a clear point of separation for distributed systems, without
another redefinition of the terms Model, View and Controller.

Degree of Separation

Although Reenskaug’s MVC splits an application in distinct entities, these are not inde-
pendent of each other. There still exists a strong coupling, especially between the Views
and the Model. This is due to the fact, that in order to pass data between Model and
Views, the Views have to know much about the implementation of the model. In an
article about user interfaces for object-oriented systems, Allen Holub argues that MVC
therefore can not be considered as an object-oriented approach [Hol99]. Even Reenskaug
itself states in his original MVC report that “all these questions and messages have to
be in the terminology of the model, the view will therefore have to know the semantics of
the attributes of the model it represents.” [Ree79a]

To further investigate the problem, we will adhere to a notion, introduced in 2010 by
Tilly et al. They distinguish between modular, spatial and semantic separation as three
degrees of separation (see Figure 2.14).

Modular Separation describes separation at source code level, such that different re-
sponsibilities can be found in different locations.

Spatial Separation is the separation between the actual deployment of the software,
e.g., on physically different machines.

Semantic Separation introduces an intermediate semantic layer which allows full se-
mantic decoupling between the user interface and the execution layers.

33

2. Background 2.4. User Interface Architecture

While, e.g. the original MVC provides good modular separation, as the source code
of the distinct parts is clearly separated, today’s reinterpretations of MVC also try to
achieve spatial separation. But Tilli et al. argue that separation only on modular and
spatial level cause an application to be designed, implemented and operated as a single
monolithic unit. This coupling makes it hard to develop user interface and application
logic in parallel by different developers, as both implementations strongly depend on
each other, usually the UI more on the application logic than the other way around.
A full agreement about the exchanged data, its labels, like variable names and the
provided access functions must be derived from a higher level domain model. Therefore
it is difficult to dedicate tasks to user interface experts that don’t have knowledge about
the application logic.

Nowadays, such parallel development is handled by design documents that are unread-
able for machines. The developers rely on the common understanding of these design
documents, supported by best practices like the RFC2119 [Bra97|, which for example
defines keywords for requirement levels.

By using a formal domain model as an intermediate language, the user interface will
be completely independent from the implementation of the application logic and vice
versa. Both parts of the system can be developed in parallel. It will be possible to
extend functionality or to partially or completely rewrite either side, without the other
side noticing it, due to the semantic separation of the components.

Cardinality

To further investigate the limitations, we have to distinguish between four different
types of cardinality for the relationship between user interfaces and application logics
on architectural level (see Figure 2.15).

1-to-1: The most common relationship is 1-to-1. Here one application and one user
interface form a closed unit. Usually it is not intended to change the relationship
later on, and if nevertheless, it is often accompanied by massive redesign and
refactoring.

1-to-n: The general approach of most MVC frameworks is to allow multiple user in-
terfaces for one application logic; be it to allow different representations of the
same data, or to develop interfaces for different platforms. These can be shipped
as n different 1-to-1 units, with the same, portable application logic, and platform
specific user interfaces.

n-to-1: When multiple application logics are connected to a single user interface, this
is called integration. According to Paulheim [Paull, p. 9], this integration can be
done on all three application levels (see Section 2.4.3), i.e., on data source, business
logic or presentation level.

n-to-m: The most general way to interconnect user interfaces and application logics is
n-to-m. An arbitrary number of applications can be connected in multiple ways
to an arbitrary number of user interfaces.

34

2. Background 2.4. User Interface Architecture

User User User User
Interface Interface Interface Interface

Application Application Application Application
Logic Logic Logic Logic
[[

1-to-1 1-to-n n-to-1 n-to-m

Figure 2.15.: User Interface to Application Logic Cardinality

Please note that the focus of this work is limited to single-user systems, and therefore
the above mentioned n or m user interfaces are not specifically meant to be connected
to the application logic simultaneously. However, as our approach is heavily based on
relational databases, which provides multi-user access out of the box, we expect this
extension to be feasible.

Current means of separation, like the above described MVC and its derivatives, be it in
distributed or local environments, only cover I-to-1 or 1-to-n relationships. The OBDA
approach will pave the way for connecting multiple application logics to the semantic
intermediate layer, and thus allow for n-to-1 or n-to-m relationships as well.

Application Logic Centered Design

Figure 2.16 shows the architecture of a common software system with data source and
presentation, in analogy to [Fow03, pp. 97]. In this design the application is the central
point, and the application developer has the responsibility for two interfaces: a connec-
tion to the data source and one to the presentation layer. This dependency prevents
parallel and independent development of the user interface and the application to a
certain extent, as the user interface relies on the data representation of the application
logic.

Databases, in turn, are specifically designed for parallel access of multiple sources.
Most of them, if not all, provide this feature out of the box. So we will present an
approach as depicted in Figure 2.17, where the data source is the central element of the
architecture, and save an interface in the application logic, as it is not directly connected
to the user interface anymore.

35

2. Background 2.4. User Interface Architecture

User Interface User Interface
| N1

LV LV
Application Logic Data

Data Application Logic

Figure 2.16.: Application Centered Figure 2.17.: Data Centered

Redundant Data Handling

In many application fields, especially in medical systems, it is important to maintain a
complete history of the data that was generated during the runtime of an application
for later reference. This persistence is either achieved by simply serializing the data to
some data sink, e.g., disk storage, or by using a database. The in Section 2.4.2 presented
separation techniques do not cover the possibility to persist the presented data.

In the presented approach, the two tasks of persisting and transferring data to the
user interface will be combined into a single one, and as a result avoid this redundancy.

2.4.4. User Interface Data

After analyzing the data, which needs to be handled by graphical user interfaces, we
distinguish between data that has to be displayed, and data that has to be modified.
The displayed data comprises quasi static, dynamic, and continuous data. The data that
has to be modified is usually only quast static data.

Quasi Static Data comprises data that is not expected to change frequently and can
be considered to be constant throughout a case. Examples of which include the
age and weight of a patient, or the used drugs for this case. In other words, the
probability of returning identical values when querying for a quasi static datum at
different points in time is high.

Dynamic Data comprises data like heartbeat or blood pressure values. These are ex-
pected to change frequently and thus executing the same query at different times
most likely returns different values.

36

2. Background 2.4. User Interface Architecture

Continous Data can be compared to streaming data, which is data, where existing
values are continuously appended with new values. Continuous data extends the
definition of streaming data, as it also allows for changing already existing data
of the stream. This will be needed for prediction values of the NSRI and drug
effect-site concentrations.

Transient Data comprises data like events and notifications sent between the applica-
tion logic and the user interface.

2.4.5. Ontology-Enhanced User Interfaces

In Section 2.2.5 we presented classification proposals of ontologies in general. Now, we
will extend the previous categorization specifically in the context of user interfaces.

In 2010, Heiko Paulheim and Florian Probst were the first to publish a big survey
on the application of ontologies to improve user interfaces [PP10]. They argue that
ontologies applied on the data source and business logic layer (see Section 2.4.3) are
quite common, while the use on the presentation layer has not gained much attention.

They differ between ontology-enhanced and ontology-driven user interfaces. While
the latter are using ontologies as a key element, the former may use them to improve,
for example, just one single part in a large user interface. In their survey, they present a
five dimensional categorization schema, depicted in Figure 2.18, for ontology-enhanced
user interfaces and a definition of the term:

Ontology-Enhanced User Interfaces are user interfaces whose visualization capabili-
ties, interaction possibilities, or development processes are enabled or (at least)
improved by the employment of one or more ontologies.

In the following, only the definitions of Paulheim and Probst that are relevant for
this work, and not already covered by the definition of Happel and Seedorf [HS06] (see
Section 2.2.5) will be reflected. The interested reader is referred to [PP10, pp. 5] for
complete definitions of the terms used in Figure 2.18.

Domain: Real World. The ontology characterizes a part of the real world, typically
the one that the application is used in (e.g., banking, travel, etc.). The goal is to
identify the central concepts and their relations.

Complexity: Medium. Ontologies of medium complexity also contain relations other
than the subclass relation. Like for ontologies with low complexity, RDF-S and
OWL Lite can be used.

Presentation: No presentation. The ontology is completely hidden, which means that
the user of the system is not aware of the ontology in the back of the system.

Interaction: No interaction. The user cannot interact with the ontology, i.e., the on-
tology can’t be extended, modified or altered.

37

2. Background 2.5. Related Work

Ontology Complexity Ontology Interaction
- Informal - None
- Low - View Only
- Medium - Static
- High - Dynamic

- Decidable - View and Edit

- Non-decidable - Refine Only

- Full

Ontology Domain Ontology Presentation
- Real World Ontology- - None
- Users and Roles Enhanced - Lists
- IT Systems User - Graphical

- Hardware Interfaces - Verbalized

- Software - Source Code

Ontology Usage Time
- Design Time
- Run Time

Figure 2.18.: Characterization of Ontology-Enhanced User Interfaces, from [PP10, p. 5]

Please note that the authors of this survey do not distinguish between concepts and
individuals, and base their characterization scheme solely on the concepts, i.e., the TBox
(see Section 2.1.2). Even if the user is able to change ABox data, he is neither able to
alter, nor to see the TBox, which is why we classify our approach as “no presentation”
and “no interaction”.

2.5. Related Work

As described by Paulheim and Probst in the survey [PP10] presented in Section 2.4.5,
little work has been done to investigate the employment of ontologies in the area of
user interfaces. Supported by a thorough literature review, specifically in the field of
ontology-enhanced user interfaces and ontology-based data access, and discussions with
developers of such systems, like Mariano Rodriguez-Muro from the -ontop- project at
the University of Bolzano, we come to the conclusion that there have not been any
attempts so far to use ontology-based data access to separate the presentation from the
application logic.

Nevertheless, there have been approaches that are related to our research topic, such as
ontology-based integration of applications into a single user interface [Paull], as well as
approaches on separating presentation from application logic by using ontologies [TP10].

38

2. Background 2.5. Related Work

2.5.1. Paulheim et al.

The former describes a system which uses ontologies to integrate different existing ap-
plications into a single user interface. The ontologies developed for that purpose contain
formalized knowledge about user interface components as well as the data they process.
In this case, the applications and their respective user interfaces remain one unit, only
the user interface capabilities are semantically annotated in order to allow an integrated
and uniform presentation, as well as event processing between formerly independent ap-
plications. As Paulheim et al. integrate applications solely on the user interface level,
they only have to exchange events via the ontology-based part of the architecture. The
data exchange between application and presentation logic takes place within the single
applications and is therefore of no relevance for the authors.

2.5.2. Tilly et al.

The latter, Tilly et al., propose a system following a service oriented approach, which
separates user interface components and application logic®® by using static documents,
which they call Semantic User Interface (SUI) Documents, and domain ontologies. The
SUI Documents contain descriptions about how event- and data sources are associated
to pieces of application logic. Their aim is corresponding with this work’s vision, namely
to achieve a stronger separation of the different application parts. They describe an ap-
plication design scenario, in which there are three actors: domain analysts, user interface
designers and component (i.e., application logic) developers. They state that

in theory they do not have to directly communicate with each others, since
every relevant pieces of information is stored in domain ontologies, which they
can read, thus all can do his own part without knowing about the parts of
the others.

The domain ontologies in this case contain the knowledge necessary to build and use
the Semantic User Interface Documents. It is not described on how the data is actually
transferred between the execution layers and the user interfaces, but [TP10, p. 6, Fig.
3] shows that Tilly et al. adhere to Model View Controller and the semantic separation
takes place between the Model on the one, and View and Controller on the other side.

2.5.3. Summary

The above described approaches do cover the issue of semantic separation, but rely
on prototypic heavyweight frameworks. As a consequence, applications which want to
employ these results usually need to be rebuilt from the ground up. It is not possible
to apply these techniques on already existing software systems. As many of these could
profit from a semantically separated user interface (see Section 2.4.3 Degree of Separation
for advantages), we will present an approach, which can easily be implemented into
existing applications.

30Tilly et al. also use the terms execution layers or underlying system infrastructure.

39

2. Background 2.6. SmartPilot View

2.6. SmartPilot View

SmartPilot View (SPV) is a software application by Dréiger, which supports anesthetists
in making decisions during surgery. For this purpose, it displays the current, past, and
predicted depth of anesthesia by performing calculations based on widely accepted phar-
macodynamic and pharmacokinetic patient models. An anesthesia comprises the dis-
pensation of a combination of hypnotics to induce sleep, and opioids to reduce pain. By
processing the data obtained automatically by connected syringe pumps or manual user
input, SmartPilot View is able to compute and display the effect-site concentrations3!
(Ce) of active ingredients of drugs, and derive, among others, the Noxious Stimulation
Response Index (NSRI). The NSRI is an index, which represents the anesthetic depth
on a range from 100 to 0. Before actually applying a drug to the patient, the anesthetist
can provide the information to the SmartPilot View application, which in turn displays
a dashed “What if...” curve. This is called a presetting.

The interested reader is referred to [LSV'10] for further information on the NSRI
and to the Drager SmartPilot View Brochure®? for further information on the software
capabilities. A screenshot of SmartPilot View in simulator mode can be seen in Figure
2.19.

*Age [years]. 40 Nt ~r
" *Height [fem]: 175 17:54:02 Not intended for clinical use.

*“Weight [*kg] 75 = 5
*Adult *Gender *Male 'Simulation mode

SmartPilot View - SemAd version 1.00.00_d *NSRI *Show events

*Show history

*Diagram
seftings...

*Patient/
Drugs...

m *Propaolol *Rate['mLih] *Ce[*pgimL] *Ce "pgimL *Sereen
00. 10.0 layout.

“Export
screenshot

3.0
. ‘Speed +

*Sufentanil

5 10
*Remifentanil equivalent [*ngimL]

*Symbois
@mow otomn

[T X *Cursor
*Events:

*Standby

*Case
[hh:mm:ss]
WG ER

Figure 2.19.: SmartPilot View, Screenshot

31The effect-site is the immediate milieu where the drug acts upon the body, which is usually not the
application site, e.g., the blood plasma for intravenous administration.

32nttp://wuw.draeger.de/sites/assets/PublishingImages/Products/ane_smartpilot_view/
Attachments/smartpilot_view_br_9066336_de.pdf

40

http://www.draeger.de/sites/assets/PublishingImages/Products/ane_smartpilot_view/Attachments/smartpilot_view_br_9066336_de.pdf
http://www.draeger.de/sites/assets/PublishingImages/Products/ane_smartpilot_view/Attachments/smartpilot_view_br_9066336_de.pdf

2. Background 2.6. SmartPilot View

2.6.1. Problems

This application will be the basis for the prototypic implementation of the OBDA se-
mantic separation techniques. It uses Model View Controller (see Section 2.4.1) as
application architecture to a certain extend, and thereby suffers most of the limitations
described in Section 2.4.3 Limitations of Current Approaches.

Degree of Separation, Distributed Systems

The SmartPilot View application was initially designed to operate on a single hardware
configuration of a medical device. While the source code of the application and the user
interface is separated (cf. modular separation, Section 2.4.3 Degree of Separation), no
further separation can be achieved with the current architecture.

As requirements change, it is now desired to be able to access the user interface of SPV
from a physically different machine, whereby the application would become a distributed
system, and the MVC architecture reaches its limits.

Cardinality

Being a plain 1-to-1 relationship between SPV’s application and the user interface, it
is on the one hand desired to be able to connect multiple different presentations to the
SmartPilot View application logic. On the other hand, SPV already displays information
of other medical devices and applications, like the heart rate of the patient. With the
current architecture, this integration will always be the task of the application logic, as
it is not possible to connect multiple applications to a single user interface.

Application Logic Centered Design

Data like the heart rate or the blood pressure are of no importance to the SmartPilot
Views calculations. The data is only passed through the application logic to be displayed
on the user interface. The problem is that the application is the central point of the
architecture, and lies between the data and the presentation (see Figures 2.16, 2.17).

Redundant Data Handling

The SPV application also stores the computed data to a log file on the disk. At the
same time, this data is sent to the user interface to be displayed. This redundancy of
data output can be avoided by using a data centered design.

41

3. Concept

3.1. Overview

The intention behind ontology-based data access (OBDA) (see Section 2.3) is to enhance
existing relational data with a TBox (see Section 2.1.2). Thereby the relational data
is accessible through an inference system and the advantages of semantic storage, like
deduction of implicit knowledge (see Sections 2.1, 2.2), can be exploited. In the pre-
sented approach, this technology will be applied to create an intermediate layer between
applications and user interfaces and thereby fully separate these two parts of a software
system.

There exist different approaches for semantically separating graphical user interfaces
from applications. As summarized in Section 2.5, it is hard to apply these approaches to
existing applications. But as many software systems already exist with tightly coupled
user interfaces, and the need for a higher degree of separation might arise only later, a
solution for these systems would be desirable.

By performing this separation through an OBDA system, it will be possible to extend
existing software systems with this technology, without having to consider such a user
interface in early design phases. This is an important point, because many applications
require a higher degree of separation only later, when the system evolves.

—> Dependency 7 Sa

O component // Abstract AN
Application _ // Data Model N
Data Model (_) cCore , (ER Model) \

Application Database

Schema

Ontology
(TBox)

Application
Data Model

User Interface

Figure 3.1.: Dependencies Before (left) and After (right)

42

3. Concept 3.1. Overview

The semantic separation will enable to clearly partition responsibilities of the different
developers, which we will call domain exerts. To employ our approach the needed experts
are application logic experts, optional database experts, OBDA experts, and user interface
experts. These developers only need to have profound know-how in their respective
domain, with no, or very little expertise in the adjacent domains.

The separation will be achieved by cutting the direct dependency between the user
interface and the application, as depicted in the Before part of Figure 3.1. The right side
shows the dependencies between the different components after employing the OBDA
system. Therein, no dependency between the user interface and the application can be
found. Both depend on the abstract data model, which is the basis for the database
schema and the ontology, as well as the mapping rules between them. As the application
still depends on its own data model, an adapter has to be developed, as described in
Section 3.4.1.

2 ~
/ AN
/ \
! \
' I
) /
\ /
\
N . 4

OBDA System 2]: T ‘IZ User Interface
+ Mapping Rules

Y v

— — 3
Application ‘<]—_—_':‘__

Figure 3.2.: Conceptual System Overview

Figure 3.2 shows an overview of the proposed system at a high level of abstraction.
The application logic and the user interface are two entirely separated systems which
do not share any code among each other. There exists a clear separation, even in terms
of data access. While the application logic is only communicating with the relational
database, the user interface accesses the data solely through the ontology. The OBDA
system acts as an intermediate layer and connects the two parts. This will lead to a
data centric design, as depicted in Figure 2.17, which avoids the shortcomings explained
in Section 2.4.3.

Both Figure 3.1 and Figure 3.2 are partial views on the system. Appendix D shows the
designed system as a whole, including the adaption of the SmartPilot View application,
which will be described in Chapter 4 Implementation.

The presented approach is divided into seven layers, which are ordered in the following
list by the data flow from the application to the user interface. The topics important
for each layer are outlined.

43

3. Concept 3.2. Data Flow

Application The application, which is to be enhanced with a fully separated user inter-
face.

Application-Database The connection between the application and the relational data-
base, an inverse object relational mapping

Database The relational database itself, the requirements regarding functionality and
performance, as well as the designed database schema

Database-Ontology The mapping rules, which are needed to provide access to the data
stored in the database

Ontology The classes, including their interrelationships, their hierarchy, object- and
datatype properties

Ontology-User Interface The Quest reasoner and the OWLAPI 3 interface
User Interface The actual presentation of the data

We will propose a generally applicable procedure for designing the core and connect-
ing applications and user interfaces to it, which will then be applied to the presented
SmartPilot View (see Section 2.6) software system in Chapter 4.

In the first part of this chapter, Section 3.2, we will examine the aforementioned data
flow between the application and the user interface. It will be discussed what technology
is necessary for the presented approach, what technology is already existing, and how it
can be applied. The second part in Section 3.3 will elaborate, how the core is designed,
which comprises the key components database (3.3.2), ontology (3.3.3) and mapping
rules (3.3.4). Finally, we will show how applications (3.4.1) and user interfaces (3.4.2)
can be connected to this core.

3.2. Data Flow

This section will describe, how the data is passed between applications and user inter-
faces. It will give an overview on how the proposed system is intended, designed and
what design decisions were made for the prototype implementation, which will be further
described in Chapter 4. It will be shown, how the distinct types of data, introduced in
2.4.4 User Interface Data, are handled by the system. Examples for those types of data
are taken from the SmartPilot View application.

3.2.1. Application to User Interface
Quasi Static and Dynamic Data

Quasi static data, like the age or the weight of a patient, as well as dynamic data, like
the patients heart rate or the applied drugs, need to be displayed by the user interface.
If such data is generated or modified within the application, these changes need to be

44

3. Concept 3.2. Data Flow

propagated to the it. Therefore, the data is emitted by the application, and stored in a
relational database. This is done by an object relational mapping, further described in
Section 3.4.1. The user interface, in turn, can access this data through an OBDA system
(see Section 2.3). Thereby the database as actual storage point is hidden, as the only
access point is the ontology. But how does the user interface know that data is emitted
by the application?

Basically, there exist two commonly known principles: polling versus pushing. Polling,
in this case, means that the user interface is responsible to check on a regular basis if
new data is available, while pushing means that the user interface receives either the
new data itself, or a notification that it is available by the application or the OBDA
layer. Although a pushing solution would be desirable for a productive system, it is not
realizable yet, as further described in Section 3.2.3. Furthermore, polling is sufficient
for the prototype presented in this work, as the data on the screen can be updated, for
instance, once per second. If the load caused by naive polling leads to intolerable run
time behaviour, the data in the ontology can be extended by metadata as the expected
update frequency of values. This could be used to reduce unnecessary polls.

Continuous Data

Data like the NSRI and the computed effect site concentrations (see Section 2.6) need
to be displayed as graphs over time. The latest value of each such graph is calcu-
lated by the SmartPilot View (see Section 2.6) application every second. There exist
approaches, which are purpose tailored for accessing streaming data through ontolo-
gies, wherefore extensions to SPARQL (see Section 2.2.3), like C-SPARQL [BBCG10]
or streamingSPARQL [BGJO08] have been proposed. To access data streams, which are
stored in a relational database in OBDA environments, Calbimonte et al. developed
SPARQLstream along with the mapping language SoO [CCG10]. Calbimonte’s approach
is based on the ODEMapster! OBDA environment, and is thus not immediately com-
patible to the presented approach, which uses the -ontop- environment. But besides that
issue, all proposed SPARQL extensions do not cover the requirements of the continuous
data of SmartPilot View.

To display a data stream, instead of querying a sequence of single values it is desired to
directly query for a window of data. Both C-SPARQL and streamingSPARQL provide
such window operators, but fix the upper bound of this window to the query execution
time [CCG10, p. 14]. In other words, it is only possible to retrieve the latest n values.
This problem has been considered in SPARQLstream, Which also allows to freely set the
upper bound, and thus retrieve data sets from the past. This is valuable, as use cases
exist, where the user of SmartPilot View is interested in such values from the past, but
it is still not enough. SmartPilot View also makes a prediction of future values, but the
proposed query language extensions do not provide operators to query for them.

In addition to that, there exist typical use cases that cause data values from the past
to be recalculated. For example in SmartPilot View, when the anesthetist applies a drug

http://neon-toolkit.org/wiki/ODEMapster

45

http://neon-toolkit.org/wiki/ODEMapster

3. Concept 3.2. Data Flow

manually, but inserts the information into the system not until some minutes later, all
graph data of those minutes from the past have to be recalculated. This violates the
definition of streaming data, as therein data in the past is fixed and the only allowed
operation is appending new data.

We propose to exploit the capabilities of the PostgreSQL relational database, which
can work efficiently with arrays?. The entire data stream, including the prediction values
is stored within an array. As SmartPilot View uses a relative time value, the case time,
which is an integer counting the seconds from the beginning of a case (see Section 2.6),
the array index can be used to access individual values or entire ranges. With purpose
tailored classes in the ontology (see Section 4.3) and the corresponding mappings (see
Section 4.4) it is possible to access this continuous data without just plain SPARQL.

3.2.2. User Interface to Application

Not only in the specific case of SmartPilot View, but also in most other software systems,
a user interface emits mostly quasi static and transient data. Therefore, dynamic and
continuous data do not need to be considered in this data flow direction. Transient data
is described separately in Section 3.2.3, therefore the following concentrates on quasi
static data.

If the user changes patient data or adds information about a recently applied drug
via the user interface, this information needs to be propagated to the application. As
described in Section 2.2.3, SPARQL is a pure query language, without operators for
inserting, updating or deleting data in an ontology. But also in this case, there exists an
extension, which is called SPARQL/Update, and a current Working Draft of the W3C
[GS12].

To use SPARQL/Update together with OBDA systems, Hert et al. published ON-
TOACCESS [HRG10], an approach comprising the update aware mapping language R3M
together with algorithms to translate SPARQL/Update queries into SQL queries. As this
is an isolated solution, which has no interfaces to any OBDA framework or environment,
Eisenberg et al. recently proposed a different solution [EK12], which extends the D2RQ
platform (see Section 2.3.5) and the D2RQ mapping language with D2RQ/Update, and
thereby also translate SPARQL/Update to SQL statements.

Both proposed systems are not compatible with the -ontop- framework, which is used
for the developed prototype. As Eisenberg’s approach is based on the D2R(Q mapping
language, which is announced to be supported by the -ontop- framework in the near
future (see Section 2.3.5), we assume that the data flow from the user interface to
the application will not be an issue in the future. According to the developers of -
ontop-, plans for SPARQL/Update support exist and are scheduled by the end of 2013.
Nevertheless, working systems exist, and it is already possible to use them parallel to the
-ontop- framework, as depicted in Figure 3.3. For the proof of concept implementation
in Chapter 4, which is highly dependent on the performance of access to continuous
data, we will focus on the data flow direction from the application to the user interface.

Zhttp://www.postgresql.org/docs/9.2/static/arrays.html

46

http://www.postgresql.org/docs/9.2/static/arrays.html

3. Concept 3.2. Data Flow

7 N\
A— S— / \ Y —
[- \
Application ::::* Database l’ | 2 User Interface
N \
N / 4
N 7
N 7z
~] D2RQ/Update X

Figure 3.3.: Data Flow with Parallel OBDA Systems

3.2.3. Eventing Mechanisms

As described in Section 2.4, all information between the software system and the user is
passed through the user interface. On the one hand, the user interface is a representation
of the data generated and stored by the application. On the other hand it allows the
user to interact with the application by adding new data or triggering actions. To
enable this functionality, a mechanism is necessary, which allows the application and
the user interface to notify each other. The application must notify the user interface,
for example, if data has changed, to keep the displayed data up to date, and the user
interface must notify the application if, for example, the user triggered a calculation.
These mechanisms are often referred to as eventing or notification mechanisms and are
usually realized using the publish / subscribe pattern.

The ideal solution for the presented approach would be that no system besides the
used OBDA system is needed. But with existing technology these notifications are
only realizable in one direction, as depicted in Figure 3.4. FirebirdSQL events® or the
Database Change Notifications of Oracle DB* allow applications to be notified, when
the result of an SQL query changes. This, in conjunction with SPARQL/Update (see
Section 3.2.2), can provide the needed functionality for updates to be sent from the
user interface to the application. Currently there exists an approach called sparqlPuSH
[PM10], which is based on the PubSubHubbub® protocol. sparqlPuSH can be plugged
onto a SPARQL endpoint and enables to register a SPARQL query. If the result to this
query changes, sparqlPuSH notifies all interested parties. As this approach relies on the
data to be updated via SPARQL/Update at the same endpoint, it is not possible to use
it in conjunction with an OBDA system, because the design intends the application to
be unaware of the ontology. Therefore it can only update the data via the relational
database and not via the SPARQL endpoint, which is why sparqlPuSH would not be
able to notify the user interface.

Therefore, the only possibility to realize notifications with the currently available

3http://www.firebirdsql.org/file/documentation/papers_presentations/Power_Firebird_
events.pdf

“http://docs.oracle.com/cd/E14072_01/java.112/e10589/dbchgnf . htm

Shttp://code.google.com/p/pubsubhubbub/

47

http://www.firebirdsql.org/file/documentation/papers_presentations/Power_Firebird_events.pdf
http://www.firebirdsql.org/file/documentation/papers_presentations/Power_Firebird_events.pdf
http://docs.oracle.com/cd/E14072_01/java.112/e10589/dbchgnf.htm
http://code.google.com/p/pubsubhubbub/

3. Concept 3.3. Key Components

TN
DB change AN e N
notifications pd AN
7 AT T T~ N
| // 7 N N
I - / N AN
A R [
- ! \ 2\
Application ::;: 75 Database l’ ®§®\® | User Interface '
\ N \ ! .
\\ \ // //
7 N ~-~—=-" 4 N
’ AN e N
~J D2RQ/Update
SQLB[Q/Up SPARQL/Update%

Figure 3.4.: Notifications through OBDA

technology is to use a separate system solely for that purpose. An example for such a
system is the open source Distributed Publish/Subscribe Event SystemS©.

As an implementation with such a workaround would not benefit the research of this
work, we decided for a different solution. SmartPilot View is an existing fully functional
application, therefore a user interface is already existing. This has not been replaced by
the semantically separated user interface, but for testing the critical continuous data,
these two Uls run in parallel. Thereby, the old interface is reused for the interaction
between the user and the application, while the new one accesses the data.

3.3. Key Components

As depicted in Figure 3.2, the core of the suggested architecture comprises three key
components, which are the database, the ontology and the mapping rules. The mapping
rules are, besides the data source definition, part of the OBDA model, as described in
Section 2.3.3 (see Figure 2.11).

3.3.1. Data Model

In the presented approach, the foundation for the core is laid by an entity relationship
model. This model contains all the data that has to be passed between the applications
and the user interfaces and how this data is interrelated. This model is supposed to be an
abstraction of the data and should be created without considering the implementation
of the application, which contains the data. As the data model has a direct influence on
the ontology, which will be the only interface of the data that is visible to the consumer
(the user interface), it must be free of implementation details of the application. The
adapter used to overcome this gab will be described in Section 3.4.1.

In Section 3.3.2 we will show, how the database schema can be created according to
the model. Then the procedure of deriving an OWL 2 QL compliant TBox from the

Shttp://pubsub.codeplex.com/

48

http://pubsub.codeplex.com/

3. Concept 3.3. Key Components

model will be presented in Section 3.3.3. To link the ontology to the database, a pattern
for creating a complete set of mapping rules will be proposed in Section 3.3.4.

The in Figure 3.5 presented example entity relationship model consists of two sample
entities, Case and Patient, which are related by a one-to-many relationship, such that
a Patient can have zero or more Cases. Entity names consist of words starting with
capital letters and separated by spaces.

«Entity» «Entity» «Enumeration»
Case Patient Sex

Case Time " «Re(l:ationosfhlp» Sex Male
0.. isCaseOf» 1 Female

«hasCase

Figure 3.5.: Concept Entity Relationship Model

3.3.2. Database

The presented approach requires all data relevant to the user interface to be stored in a
relational database. For one thing, this technology has been chosen for its performance
and robustness (see Section 2.3.2), but also because of its high prevalence. This preva-
lence ensures, on the one hand that many application developers are already familiar
with the topic of mapping application data to relational data stores. On the other hand,
there exist a huge variety of database APIs and relational mapping frameworks in most,
if not all common programming languages. Thereby it is easy for the experts of the
application logic, which are already working on the software product, to implement the
necessary changes.

Some applications already use a relational database to record computed values, e.g.,
as log or protocol for later reference. The schema of such databases is often tightly
coupled to the single application. But as in the presented approach the database is part
of the core, which can be seen as an abstraction layer between applications and user
interfaces, it is not recommended to reuse those existing databases.

In common software systems, the data exchanged between the application and the user
interface is volatile, if the application does not provide any additional means of storing
it. As in the presented approach a database system is used for the exchange, this opens
the opportunity to maintain a complete history of the past cases for free. To uniquely
identify a case and the related objects, like graphs or used drugs, the database tables
contain columns for primary and foreign keys. The key generation can be handled either
by the application or the database itself. To guarantee a consistent database, we strongly
suggest to use the features provided by the database system, to add an automatically
incremented primary key to inserted rows.

49

3. Concept 3.3. Key Components

thb_cases tb_patients
case_id : integer {PK} sex : character(1)
patient_id : integer {FK}
case_time : integer

«Relationship»
0..* isCaseOf» 1
<«hasCase

Figure 3.6.: Concept Database Schema

Datatypes

The various components used in this work, namely the application, database, ontology
and user interface do all have their own representation of datatypes. The mapping
between them has to be done carefully, but is usually straightforward. An example is a
decimal value, like the height of a person. The representation in the application might be
a C# Double, in the database it is a double precision, the OWL 2 QL representation
is a xsd:decimal, which is, at the end of the journey, a Java double. The problems
that might arise with this are not part of this work, but the interested reader is referred
to [MSS05].

The data may contain entries, which are limited to certain values. An example, to be
seen in Figure 3.5 is the sex of the patient. In programming languages such restrictions
are usually represented by enumerations, but for the database a string representation
has been chosen. These strings need to be consistent between the application and the
mapping rules of the OBDA model, but will be transparent to the consumer of the data,
the user interface. This will be described in Section 3.3.3.

Creating the Schema

We now propose a pattern, to derive the database schema from the entity relationship
model. This pattern consists of four steps.

1. Create one table per Entity.
prefix: tb_
name: lowercase plural of the entity name, underscores for whitespaces
example: Case — tb_cases

2. Create an auto generated primary key column for each table with outgoing “many”
relationships. These need to be referenced later as foreign keys of other tables.
name: lowercase singular of the entity name, with underscores for whitespaces
postfix: _id
example: Case — case_id

3. Create a foreign key column for each outgoing “one” relationship of a table.
name: the referenced primary key example: Case — patient_id

50

3. Concept 3.3. Key Components

)

4. Mark all foreign key columns of tables, which only have incoming “many” rela-
tionships, as composite primary key.

example: see tb_used_drugs as an example in Figure 4.2

3.3.3. Ontology

The developed TBox is the access point to the data for the user interface and makes the
information of the entity relationship model usable at runtime. For the reasoning process
the ontology has to comply with the OWL 2 QL (see Section 2.3.4) recommendation.

Datatypes

As described in Section 2.2.5, there exist different classifications of ontologies. With
regard to Guarino’s distinction, the created TBox will be a representative of a application
ontology. Such an application ontology by itself can only be used in a closed environment,
as the contained concepts lack context. An example would be the sex of a patient. While
this concept is understood within such an environment, where all using parties agreed
upon constraints (like, f for female and m for male representing the sex), the concept
must not necessarily be understood outside this environment. In a different environment,
the same concept might be called gender. Therefore domain ontologies exist. When two
application ontologies in two different environments link their classes to the classes of a
common domain ontology, it can be derived that gender and sex are equivalent in the
two environments. Although it is possible to link the datatype properties to a domain
ontology, this is not possible for each allowed value, as for example the string ’f’ can’t
be linked to a concept “Female” of the domain ontology. Therefore, in contrast to the
database representation, the in Section 3.3.2 described enumerations are represented as
classes, with each allowed value being a subclass thereof.

Creating the Ontology

There do exist approaches to automatically generate OWL Lite ontologies from entity
relationship models, as for example [Fah08]. But these approaches are exceeding the
expressivity allowed by OWL 2 QL, e.g., with cardinality constraints. Therefore, anal-
ogous to the database schema creation, we now propose a new pattern to derive the
ontology from the entity relation model. Nevertheless, this pattern is leaned on [Fah08,
pp. 327], and results, for the presented example, in the ontology of Figure 3.7.

1. Create one class per Entity.
name: the entity name, in CamelCase, omitting whitespaces
example: Used Drug — :UsedDrug

2. Create one class per Enumeration.
prefix: Enum name: the enumeration name, in CamelCase, omitting whitespaces

3. Create one class per enumeration value
name: the enumeration value, in CamelCase, omitting whitespaces

o1

3. Concept 3.3. Key Components

1 :Sex rdf:type owl:0bjectProperty ;
rdfs:domain :Patient ;
rdfs:range :EnumSex

Listing 3.1: Example: Enumeration Property

4. Create subclass relationships between all enumeration value classes and their re-
spective name classes.
example: :Female rdfs:subClassOf :Sex .

5. Make all enumeration value classes of the same enumeration disjoint with each
other.
example: :Female owl:disjointWith :Male .

6. Create object properties for each entity attribute that is an enumeration
name: the enumeration class name without the prefix
example: :Patient :Sex :EnumSex’

7. Create datatype properties for each entity attribute, according to the required
type.
name: the same as the attribute, in CamelCase, omitting whitespaces
example: :Case :CaseTime xsd:nonNegativeInteger

8. Create two object properties for each relation of two entities, one per direction
From the one to the many entity
prefix: has
name: the many class name
example: :Patient :hasCase :Case
From the many to the one entity
prefix: is
name: the many class name
postfix: 0f
example: :Case :isCase0f :Patient

Please note that for one-to-one relationships the naming procedure will be the same as
described above, but depending on the context the direction can be chosen arbitrarily. As
many-to-many relationships can always be avoided by transforming them into two one-
to-many relationships with an intermediate entity, we don’t consider them separately.

"Please note: the notation used is no valid OWL construct, but for better readability we use the
following format for property examples: :DomainClass :Property :RangeClass . See Listing 3.1
for the valid OWL construct.

92

3. Concept 3.3. Key Components

:hasCase

Class

%

7/
:Ca§9Time {ex - Datatype
Y24
P T —> subClassOf
14 i
xsd:integer) @
___g// —> objectProperty

-—> datatypeProperty

Figure 3.7.: Concept Ontology

3.3.4. Mapping Rules

To enable access via SPARQL to the data in the database, mapping rules according to
the -ontop- mapping language have to be defined, which link between the ontology and
the database entries, as illustrated in Section 2.3.5. These mapping rules need to be
created carefully, as missing or incorrect mappings lead to unexpected empty or false
results of SPARQL queries.

1. Choose a base URI and use it as default prefix.
name: arbitrarily
example: Qprefix : <http://www.draeger.com/ontologies/spv#>

2. Create the URI template for each entity.
name: the base URI plus the entity name, in CamelCase, omitting whitespaces
separator: -
name: the primary key of the respective database table
example: <"&:;Case-{$case_id}">
note: concatenated by dash for composite keys
example: <"&: ;UsedDrug-{$drug_id}-{$case_id}">

3. Create one rule per entity, containing three parts: one rdf:type mapping the
entity to the class, one owl:datatypeProperty for each attribute except enu-
merations, and one owl:objectProperty for each outgoing one relation, i.e. the
isEntity0f relationship.
name: the entity name
example:

1 name: Case
target: <"&:;Case-{$case_id}"> a :Case;
:CaseTime $case_time;
:isCase0f <"&:;Patient-{$patient_idl}">
5 source: select case_id,patient_id,case_time from tb_case

33

3. Concept 3.4. Connections to the Core

4. Create one rule per entity per enumeration value.
name: the entity name, the enumeration name and the enumeration value, con-
catenated by blanks
example:
1 name: Patient Sex Female

target: <"&:;Patient-{$patient_id}"> :Sex :Female
source: select patient_id from tb_patient where sex=’f’

3.4. Connections to the Core

Once the core has been set up, it is possible to connect applications as data producers
and user interfaces as consumers to it. Applications connect to the database, and store
all Ul relevant data. This process will be described in Section 3.4.1, while the procedure
to connect user interfaces to the core will be shown in Section 3.4.2.

3.4.1. Connecting the Application

To connect an object oriented application to the core, the data of the application has
to be written to the database. In object-oriented environments the process of keeping
the instances of an application synchronized with the data of a database is called object
relational mapping (ORM). There exists a variety of mechanisms to achieve an ORM,
ranging from architecture patters, as described by Fowler [Fow03], to entire frameworks,
which handle the desired synchronization, like ADO.NET® for C#, or Hibernate for
Java®. The intention of such frameworks is, to hide the database access from the appli-
cation developer, who just uses classes, which are extended by methods to synchronize
the data they contain automatically with the respective database entries.

Inverse Object Relational Mapping

In the way, ORM frameworks are generally used, the starting point is the application and
its classes, which then have a strong influence on the database structure and therefore the
entity relationship diagram. In the presented use case this would violate the constraints
that we want to imposed on the system. As described in Section 3.3.1, every component
depends, directly or indirectly, on the created data model, namely the entity relationship
diagram. By applying ORM in the traditional way, this dependency would be reversed,
such that the data model depends on the database schema, which in turn depends
on the application implementation. This would lead to two major drawbacks. First,
thereby the ontology and thus the user interface would depend on the application, which
would contradict the objective of this work, to fully separate the user interface from the
application. And further, as the database is based on one application, it would hinder

8http://msdn.microsoft.com/en-us/library/h43ks021 (v=vs.100) .aspx
http://www.hibernate.org/

o4

http://msdn.microsoft.com/en-us/library/h43ks021(v=vs.100).aspx
http://www.hibernate.org/

3. Concept 3.4. Connections to the Core

1 public class tb_casesObject : DbObjectBase

{
protected DbObjectValue<System.Int32> p_case_id =
new DbObjectValue<System.Int32>();
5 protected DbObjectValue<System.Int327> p_case_time =
new DbObjectValue<System.Int327>();
protected DbObjectValue<System.Int327> p_patient_id =
new DbObjectValue<System.Int327>();
//
10}

Listing 3.2: Class Representation of Case in CSharp

other applications in a similar context but with different implementations to efficiently
use this data structure (see Section 2.6.1 Cardinality.

Therefore we present a basic idea, which we call inverse object relational mapping.
Therein, the existing database schema is used to generate classes. How exactly these
classes look like highly depends on the programming language, the developers flavor or
the used tools. Basically, each table maps to a class, with each column being represented
as a class attribute, as depicted in Listing 3.2. This set of classes is depicted in Figure
3.8 as tORM Classes.

Adapter

Now we have a library or package, which can be used to tap and transform the actual
data from the application, which depends solely on the abstract data model of the core.
The data, which is contained in the application needs to be tapped and transformed
from the application data model to the abstract data model. Therefore, an adapter, as
depicted in Figure 3.8 has to be developed. As this part is very application specific,
further details can be seen in the Chapter 4 Implementation in Section 4.5.

e - N ~
e N
7 Abstract N

/ Data Model \

! o~ (ER Model) \
Application 1 Database |
Data Model

DN NP4

s

\ Schema /

e —> Dependency
O Component

-
N _> Core (Subset)

_ Producer
~=~| (Application)

’ Application ‘ ’iORM Classes‘
2 <]

Figure 3.8.: Connecting the Application: Components and Dependencies

95

3. Concept 3.4. Connections to the Core

3.4.2. Connecting the User Interface

The last part necessary for a running system is the user interface itself. With the
presented Java interface to the Quest reasoner via OWLAPI 3 (see Section 2.3.6) it is
possible to develop a user interface directly in the Java programming language. But
it would also be possible to create a web service in Java, which provides a SPARQL
endpoint according to the SPARQL Protocol for RDF recommendation [CTF08]. In
this way it is not only possible to create user interfaces in other programming languages,
but to provide access to the application data over HT'TP, and thereby over network.

The focus of this work, nevertheless, lies on the core, described in Section 3.3. There-
fore, in Section 4.6, we will only briefly show that it is possible to retrieve the data.
That this is also performant will be proved in Chapter 5.

56

4. Implementation

This chapter will show the application of the patterns proposed in Chapter 3 Concept.
The structure will be according to the structure of the concept. This means, we will
first show the implementation of the core, comprising the data model in Section 4.1, the
database in Section 4.2, the ontology in Section 4.3, and the mapping rules in Section
4.4. Thereafter, we will show how applications (Section 4.5) and user interfaces (Section
4.6) can be connected to the core.

Each part contains an overview over the result of the applied patterns, e.g., the data-
base schema or the ontology, as well as some details specific to the SmartPilot View
application, e.g., retaining unit/value pairs or how to efficiently represent frequently
changing graph data.

4.1. Data Model

«Entity»
Patient
«Entity» «Relationship» «Relationship» Sex
NSRI Curve 1 isNsriCurveOf» isCaseOf» 1 Age
Data Values <hasNsriCurve <hasCase Weight
Height
1 0].*
«Entity» «Entity» «Entity»
Ce Curve «Relationship» Case «Relationship» Used Drug
Data Values 0..* isCeCurveOf» 1 | Case Time 1 <isUsedDrugOf 0..* | Concentration
<hasCeCurve hasUsedDrug»
0[.* of.*
«Entity»
| h DIud | h
«Relationship» - ' «Relationship»
- Active Ingredient -
isCeCurveOf» 1 Agent Ty%e 1 <isUsedDrugOf
<isDrugOf Route Of Administration hasUsedDrug»

Figure 4.1.: SmartPilot View - Data Model

The central entity in the data model of SmartPilot View is the Case. It represents
one single anesthesia. The Patient is the person, which undergoes it. The patient can

be anesthetized in multiple cases. This Patient’s depth of anesthesia in this Case is
displayed by an NSRI Curve.

57

4. Implementation 4.2. Database

A Drug is characterized mainly by its active ingredient, but also by its agent type,
namely hypnotic, opioid or relaxant, and the route of administration, e.g., intravenous
or inhaled. There may be different compounds for the same active ingredient, differing
by concentration (e.g., 10 mg of Propofol per mL Diprivan®). Therefore, specializations
of a drug, the Used Drugs, are used during a Case. Nevertheless, the graphs for the
effect site concentrations Ce Curve are computed combined per Drug, i.e., if two Used
Drugs are of the same Drug, they are displayed in one Ce Curve.

As it can be seen on the screenshot in Figure 2.19, there exists some other data like
the two-dimensional graph on the upper left side, the event timeline at the bottom of
the figure, or additional rate and presetting graphs (see Section 2.6) included in the Ce
Curves. This additional data can be ignored for the prototype implementation, as the
chosen subset of the data is sufficient. That is, because all three displayable data types
distinguished in Section 2.4.4 are covered by it. The patient data is an example for quasi
static data, the case time for dynamic data, and the NSRI and effect site concentration
curves are continuous data. Adding the application rate of a drug, or the presetting
values of any curve is trivial, as it can be derived from the implemented NSRI curve.
As described in Section 3.2.3, no transient data needs to be handled by the prototype.

Table C.1 in Appendix C gives an overview and short descriptions of this important
fragment of the data SmartPilot View (see Section 2.6) is using and generating for the
user interface. From the textual description above and in Table C.1, the data model in
Figure 4.1 has been created. As described in Section 3.3.1, this will be the basis for the
following implementations.

4.2. Database

According to the pattern described in Section 3.3.2, the database schema has been
derived from the data model. But apart from applying the pattern, several data specific
design decision have been made. The resulting database schema can be found in Figure
4.2.

4.2.1. Autogenerated Primary Keys

In common software systems, the data exchanged between the application and the user
interface is volatile, if the application does not provide any additional means of storing
it. As in the presented approach a database system is used for the exchange, this opens
the opportunity to maintain a complete history of the past cases for free. When a new
case is started, instead of losing all data of the past

4.2.2. Representation of Graph Data

The database system needs to be chosen according to the specific needs of the data
that is to be displayed. While quasi static and dynamic data (see Section 2.4.4) can

28

4. Implementation 4.2. Database

tb_patients
patient_id : integer {PK}
age_value : double
age_unit : varchar(20)

tb_nsri_curves height_value : double
case_id : integer {FK} {PK} height_unit : varchar(20)
nsri_data_array : double[] 1 1 | weight_value : double

weight_unit : varchar(20)
sex : character(1)

L 0|.*
tb_ce curves tb_cases tb _used drugs
case_id : integer {FK} {PK} case_id : integer {PK} drug_id : integer {FK} {PK}
drug_id : integer {FK} {PK} 0..* 1 | patient_id : integer {FK} 1 0..* |case_id: integer {FK} {PK}
drug_data_array : double][] case_time : integer concentration_value : double
concentration_unit : varchar(20)
0y.* tb_drugs 0f.*
drug_id : integer {PK}
application : varchar(5)
1 type : varchar(20) 1
name : varchar(50)

Figure 4.2.: SmartPilot View - Database Schema

be stored trivially in any database, particular attention has to be paid to continuous
and transient data, in the present case this specifically means the graph data. As the
amount of data is constantly increasing, and the values may change frequently, these
kinds of data need efficient data structures and update mechanisms to enable the high
performance needed for fluent display on user interfaces. In the early design phases it
was discussed to represent each single data point as one row in the database, and to
handle efficient retrieval by means of database functionality. As the user interface needs
to retrieve not single data points, but a sequence of such, for displaying a graph, we
tried to use clustering!. Thereby, when such data points were written to the database,
the database management system (DBMS) made sure that subsequent data was actually
stored subsequently to the physical disk. In terms of the NSRI curve this meant, that
a relevant sequence of NSRI data points could be read with high efficiency, as they
could be read by the DBMS with only one read access to the physical disk. While this
indeed decreased the access time, it imposes a new issue. Clustering in PostgreSQL,
for example, is a one time operation, which means that new data stored to the table
is not clustered until the clustering operation is manually executed again. As for the
graph data usually the most recent data is read, this is also the data which is actually
not clustered. Therefore, clustering does not solve the performance issues, which is, for
example, explicitly stated in Microsoft’s SQL Server documentation: “Clustered indexes
are not a good choice for columns that undergo frequent changes”?.

We solved this issue by using arrays® as datatype for the graph data. These provide

‘http://www.postgresql.org/docs/9.2/static/sql-cluster.html
’http://msdn.microsoft.com/en-us/library/aa933131 (v=sql.80) .aspx
3http://www.postgresql.org/docs/9.2/static/arrays.html

29

http://www.postgresql.org/docs/9.2/static/sql-cluster.html
http://msdn.microsoft.com/en-us/library/aa933131(v=sql.80).aspx
http://www.postgresql.org/docs/9.2/static/arrays.html

4. Implementation 4.3. Ontology

efficient read and write access of either the whole array, ranges or even single entries,
while the issues of physical storage is dedicated to the DBMS entirely. In Section 5.3 we
will prove that this solution provides the performance needed for fluent user interfaces.

4.2.3. Units of Measure

Type safety is a critical point of most software systems. But sometimes using compatible
datatypes is not enough. Some data of the SmartPilot View application represents values
that have a unit, e.g., the age, the concentration, or the Ce values. Basically, there exist
two ways to handle units in a software system. Either units are omitted, and some design
documents specify them outside the application, or the units are stored together with
the value within the system. As the core of the proposed system provides an interface
to the data, accessible by arbitrary applications and user interfaces, it was critical to
provide a possibility to handle such units.

To store unit value pairs in the database, we decided to create one column for the unit,
which is a string with at most 20 characters (varchar(20)), and a value of arbitrary
data type. We constrained the unit string to be compliant to the Regenstrief Unified
Code for Units of Measure UCUM, which is a code system for ASCII representations of
“all units of measures being contemporarily used in international science, engineering,

and business”?.

4.3. Ontology

isNsriCurveOf» isCaseOf»
<hasNsriCurve <hasCase

NsriCurve Patient

<hasCeCurve Case hasUsedDrug» UsedDrug

@ isCeCurveOf » «isUsedDrugOf /D

isCeCurveOf» /—\ <«isUsedDrugOf

«isDrugOf Drug hasUsedDrug»r

Figure 4.3.: SmartPilot View: Ontology

‘http://unitsofmeasure.org/

60

http://unitsofmeasure.org/

4. Implementation 4.3. Ontology

The main classes of the ontology directly derived from the data model (see Section
4.1) according to the pattern (see Section 3.3.3) can be seen in Figure 4.3. For the sake
of clarity, the complete ontology has been split into smaller pieces, according to these
main classes, and can be found in the Appendix B.

4.3.1. Enumerations

There are two possibilities to represent enumerations in the ontology. The one is, to
use a datatype property and restrict it to specific values, as it can be seen in Listing
4.1. Although this would have been the straightforward way, we decided to use class -
subclass constructs to represent such enumerations. This provides the possibility to link
the developed application ontology to a widely accepted domain ontology (see Figure
2.5 in Section 2.2.5), which enables other applications and developers to understand the
meaning of the classes used in the created non-reusable application ontology.

The structure of the drug attributes, for example, was taken from the OpenGALEN®
medical ontology.

1 DataPropertyRange (
:ActiveIngredient DataOneOf (
"Propofol"""xsd:string
"Enflurane"”~“xsd:string
5 "Fentanyl"~"xsd:string

"Rocuronium"”~“xsd:string

Listing 4.1: Active Ingredients as Enumeration in OWL Functional Syntax

4.3.2. Representation of Graph Data

For the access to the graph data we provide two types of classes in the ontology. The one,
called PointCurve represents the entire graph, giving access to the entire data array as
PlainLiteral, or a subset of this data array as PlainLiteral, while the other, called Point
provides access to single data points. An excerpt of the entire ontology, containing the
mentioned classes, can be found in the Appendix B, Figure B.6. More information of
this will be given in Section 4.4.

4.3.3. Units of Measure

To represent unit / value pairs, we enhanced the ontology by Struct classes, instead
of adding two datatype properties. For example, instead of adding a datatype property
ConcentrationValue, and one ConcentrationUnit, we found it to be more clearly

Shttp://www.opengalen.org/

61

http://www.opengalen.org/

4. Implementation 4.4. Mapping Rules

to create such a struct class. This class would be called StructConcentration and
contains itself the datatype properties Unit and Value, while the class that possesses
this attribute is linked to the struct class via an object property, called Concentration
in this case. Examples of this can be seen in the Appendix B in Figure B.3 or B.5. As
with the graph data, Section 4.4 will give more insight on this.

4.4. Mapping Rules

4.4.1. Representation of Graph Data
Accessing the Array

Listing 4.2 shows exemplary the mapping of curve data by means of the NSRI curve.
Therein, the entire data array is mapped to the :DataArray datatype attribute. Variable
access to arbitrary ranges of the array by the user interface is not yet possible through
the ontology, due to the lack of suitable SPARQL extensions, as described in Section
3.2.1. But by extending the PointCurve class by a datatype attribute, which hard
codes a window of, e.g., 60 minutes, we could show that access to such ranges is indeed
possible with the mapping rules. In the present case of SmartPilot View, we know
that the application produces prediction values for 20 minutes into the future, and we
know that the user interface is going to display a history of 40 minutes and a prediction
of 20 minutes. Thus, as the source for the attribute :DataArrayWindow40to20, the
array has to be queried for 60 minutes, which are 3600 values, at the end of the array
(array_upper(...)).

Although we do induce a dependency of the ontology and the mapping rules to both,
application and user interface, we found it to be a suitable intermediate solution.

1 # Target
<"&:;NsriPointCurve -{$case_id}"> a :NsriPointCurve ;
:DataArray $nsri_data_array ;
:DataArrayWindow40to20 $nda_window ;
5 :isNsriCurveOf <"&:;Case-{$case_id}">

Source
select
case_id,
10 nsri_data_array,
nsri_data_array[array_upper (nsri_data_array ,1)-3600:
array_upper (nsri_data_array ,1)] as nda_window
from tb_nsri_data

Listing 4.2: Mapping Curve Data

62

4. Implementation 4.4. Mapping Rules

Accessing the Points

To show that the ontology representation is indeed independent of the database rep-
resentation, we implement access to single data points through the ontology. There-
fore, we already added the required classes in Section 4.3, and are now able to use the
unnest (. ..) function of PostgreSQL’s arrays® to display one data row for each element
of the array. As these points need to be uniquely identified, we added a column with the
index of the array element, which also corresponds to the respective case time of the data
point (see Section 3.2.1). This column can be automatically generated by PostgreSQL
with the function generate_subscript(...)7", and in conjunction with the respective
case_id works as a unique identifier for the data point.

Thereby, it is actually possible to retrieve a specific range of the graph by executing
the respective SPARQL queries on the single points, using FILTER(...) to specify the
range. Although being possible, our performance tests in Section 5.4 showed that the
execution times for such queries are not tolerable, yet.

1 # Target
<"&:;NsriPoint -{$case_id}-{$point_id}"> a :NsriPoint ;
:Value $value ;
:Timestamp $point_id ;
5 :isPoint0f <"&:;NsriPointCurve-{$case_id}">

Source
select
case_id,
10 unnest (nsri_data_array) as value,
generate_subscripts(nsri_data_array,1) as point_id
from tb_nsri_data

Listing 4.3: Mapping Point Data

4.4.2. Units of Measure

In addition to the mapping rules created with the pattern described in Section 3.3.4, we
create one mapping for each struct class (see Section 4.3.3). Listing 4.4 shows, how the
value and the unit of a patient’s age is mapped to the respective tables in the database.
The StructAge class is related to the Patient by an ObjectProperty called Age.

To access these values with SPARQL from the user interface, an intermediate variable
is needed for the struct, which can be used in a triple to access the members, like unit
or value. An example of this can be seen in Appendix E, Listing E.5.

Shttp://www.postgresql.org/docs/9.2/static/functions-array.html
"http://www.postgresql.org/docs/9.2/static/functions-srf.html

63

http://www.postgresql.org/docs/9.2/static/functions-array.html
http://www.postgresql.org/docs/9.2/static/functions-srf.html

4. Implementation 4.5. Connecting the Application

1 # Target
<"&:;Age-{$patient_idl}"> a :Structhge;
:Value $age_value;
:Unit $age_unit

Source
select patient_id, age_value, age_unit from tb_patient

Listing 4.4: Mapping Unit Value Pairs

4.5. Connecting the Application

As described in Section 3.4.1, an inverse object relational mapping and an Adapter are
necessary to fill the database with the application data, and thus connect the application
to the core.

4.5.1. Inverse Object Relational Mapping

For the inverse object relational mapping we were able to apply the open source C#
code generator pgorm®. It works exactly in the proposed direction, as it connects to
an existing PostgreSQL database and generates a triad of classes for each database
table. The naming convention is according to the following description, with table
being replaced by the actual table name, like tb_cases.

tableObject An instance of this class is the representative of a database entry, con-
taining each column as attribute. See Figure 3.2 for an example.

tableFactory This class wraps the operations that can be executed on the database
for the respective table, e.g., UpdateBy_case_id(...), DeleteBy_case_id(...),
or GetBy_case_id(...).

tableRecordSet A RecordSet is filled by the GetA11() Fuctory method and then con-
tains all Objects of the database table.

4.5.2. Adapter

To tap the data of the application, which is necessary for the user interface, we were
especially looking for a way, which does not need much of the existing application code
to be touched. Therefore we examined the architecture of SmartPilot View and found
that all data which is to be displayed by the user interface is part of some events. Figure
4.4 can be divided into two parts. The upper part shows the data flow within the
SmartPilot View application. This part is taken from the architecture documentation of
SPV. All user interface relevant data is passed via event mechanisms from the business
process to the user interface. Figure 4.5 shows a part the class diagram of SmartPilot

8http://code.google.com/p/pgorm/

64

http://code.google.com/p/pgorm/

4. Implementation 4.5. Connecting the Application

ViewlInputinterface

InputManager

BusinessProcess /

v 1|

ModellingProcess

\

. |
View I
I

Database

Figure 4.4.: SPV Adapter: Tapping Point

View. The Business Process from Figure 4.4 is represented as BpState, while the View
is represented as ViewControlState. The states of the implemented state machine are
Operate and Standby. As the interesting data is displayed while the system operates,
we added the adapter as specialization of the ViewControlOperate state. This enables
the adapter to register to the respective events to collect the necessary data, and at the
same time keep the existing user interface running in parallel, as intended in Section
3.2.3.

In this way, we were able to limit the number of lines of existing source code that have
to be modified to write the adapter to one, namely StateMachine.cs:277:

1 ViewControlState = new SemAdViewControlOperate(ViewControl);

There, the state ViewControlOperate was replaced by SemAdViewControlOperate. All
adaptions then happen by overriding the respective event handlers, and depending on the
event extract the data, like the age of a patient, pass it to a helper class (dbFunctions in
Listing 4.6), which in turn writes the data to the aforementioned tableObject classes.

4.5.3. Automatically Generated Primary Key

As described in Section 3.3.2, we suggest to leave the generation of the primary keys
to the database. The following listing shows that the application first creates a new
instance of the case, then sets the attributes, and finally saves it to the database. The
return value of the Save(...) method is the instance, also containing the automatically
generated primary key case_id, which can then be used in foreign key attributes of
other entities, like the NSRI curve.

65

4. Implementation 4.5. Connecting the Application

> SpEvents <
SpScreen
BpState ViewControl ViewControlState
BPOperate BPStandby VCOperate VCStandby

R

Figure 4.5.: SmartPilot View: Class Diagram (Subset)

1 private void initializeCase () {
currentCase = new tb_casesObject ();
currentCase.case_time = 0;
currentCase = tb_casesFactory.Save(currentCase) ;

5

private void initializeNsriCurve () {

nsriCurve = new tb_nsri_curvesObject ();
nsriCurve.case_id = (int?) currentCase.case_id;
tb_nsri_curvesFactory.Save(nsriCurve);

Listing 4.5: Using the Generated Primary Key

4.5.4. Representation of Graph Data

Although pgorm was able to handle basic datatypes, no support for arrays was imple-
mented by the authors. The library npgsql, which is responsible for the connection to
the database, is in turn capable of handling arrays. We were thus able to manually
add support for arrays, currently limited to the element types int and double. The
necessary change, shown in Listing 4.7, takes place in the table independent part of
pgorm, the DataAccess class. Thereby, the automatically generated classes are able to
use arrays, as shown in Listing 4.8. Please see the user manual of npgsql® for additional
information on the topic.

NSRI and effect site concentration (Ce) curves are very similar, both in the represen-
tation of the data and in their change frequency. Therefore, we only implemented the
NSRI curves on the application side, as all conclusions drawn from them can directly be
applied to the Ce curves as well.

http://npgsql.projects.postgresql.org/docs/manual/UserManual . html

66

http://npgsql.projects.postgresql.org/docs/manual/UserManual.html

4. Implementation 4.6. Connecting the User Interface

1 public override void HandleIncomingModelSetting
(ModelSettingEventArgs args) {
base.HandleIncomingModelSetting (args) ;
if (isValidPatientModellingData(args))

5 HandleIncomingPatientData (args);

X

/7

private void HandleIncomingPatientData
(ModelSettingEventArgs args)

10 {

switch (args.Id) {
case ModelSettingld.AgeSetting:

dbFunctions.updatePatientData (

(UnitValue)args.Data,
15 UnitValue.Zero,

UnitValue.Zero,
Gender .Unknown) ;

break;

20 T

Listing 4.6: SemAdViewControlOperate.cs: Overriding Event Handlers

4.5.5. Units of Measure

In the SmartPilot View application, the UnitValue class handles values, units and con-
versions between them. The adapter contains a simple method to convert from the unit
of SmartPilot View’s UnitValue class to the respective UCUM string, an excerpt can
be seen in Listing 4.9.

4.6. Connecting the User Interface

The connection of the user interface to the core can be grouped into two parts. The
first part comprises the access to the Quest inference system (see Section 2.3.3), and the
second part consists of the SPARQL queries (see Section 2.2.3) to the knowledge base,
i.e., the OBDA system. The main difference between those parts is that the interface to
quest is bound to the Java programming language, while the SPARQL queries themselves
are the language independent part.

4.6.1. Java: Accessing Quest

The access to the Quest reasoner is described in detail and with helpful examples in the
-ontop- framework documentation!®. As this has no impact on the presented work, it
won’t be presented further.

Ohttps://babbage.inf.unibz.it/trac/obdapublic/wiki

67

https://babbage.inf.unibz.it/trac/obdapublic/wiki

4. Implementation 4.6. Connecting the User Interface

208 public static DbParameter NewParameter (string name, object val)

{

210 NpgsqlParameter pm;
if (val.GetType ().IsArray)
{
Type t = val.GetType().GetElementType () ;
if (t == typeof (double)) A{
215 pm = new NpgsqlParameter (name,
NpgsqlDbType.Array | NpgsqlDbType.Double);
} else if (t == typeof (int)) {
pm = new NpgsqlParameter (name,

NpgsqlDbType.Array | NpgsqlDbType.Integer);
220 } else {
// mno further types supported, yet
return null;

X
pm.Value = val;
225 } else {
pm = new NpgsqlParameter (name, val);

3

return pm;

Listing 4.7: DataAccess.cs: Adding Support for Arrays with pgorm

4.6.2. SPARQL: Accessing the Data

To retrieve the data from the application, we presented a system which makes it acces-
sible via the SPARQL query language. In the following we will show some example on
how the data can be retrieved by the user interface.

If a new case is started, it is added to the database, and automatically receives a unique
primary key. But as the data of the preceding cases is still present in the database, the
user interface needs to know what data set to access. As the primary key is automatically
generated by the database system and is thus strictly increasing, the user interface must
first query for the largest value, to make sure that the displayed data is the one of the
currently active case. This problem is not present in common software systems, where
the user interface is connected directly to the application.

1 PREFIX : <http://www.draeger.com/ontologies/spv#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>

select 7curCaseNumber where

{
5 7case rdf:type :Case ;
:CaseNumber 7?curCaseNumber
} order by desc(?curCaseNumber) limit 1

Due to the constraint that the key is constantly increasing, the current case is always the
one with the maximum key. The above listing shows one possible way to retrieve this
value. Please note that aggregate functions, such as max(...) are not yet supported by
Quest, although it is already part of the roadmap.

68

4. Implementation 4.6. Connecting the User Interface

1 public class tb_nsri_curvesObject : DbObjectBase
{
//
protected DbObjectValue<System.Int327?> p_case_id =
5 new DbObjectValue<System.Int327>();
protected DbObjectValue<double[]> p_nsri_data_array =
new DbObjectValue<double []1>();

Listing 4.8: tb_nsri_curvesObject.cs: Using Arrays with pgorm

1 private string getUcumFromSpvUnit (UnitId unit_id)

{
switch (unit_id)
{
5 //
case UnitId.Cm:
return "cm";
case UnitId.MilligramPerMilliliter:
return "mg/mL";
10 //
}
return "UNIT_UNKNOWN";
}

Listing 4.9: SemAdEnhancedDbFunc.cs: Generating UCUM Strings

4.6.3. Representation of Graph Data

Assuming that the current case has the ID 135, the Query in Listing 4.10 will return
the data array of the respective NSRI curve, as shown in Listing 4.11. In the Java
application the PlainLiteral data array arrives as string. This string has the format
"{valuel,value2,value3,...}" and has to be parsed into the desired Java represen-
tation of such data structure, as for example a List<double>.

Special attention has to be paid on the data beyond the current case time. The
SmartPilot View application does not compute a prediction value for each second, but
only for every eighth. The seven values in between are not set, and thus returned as NaN
in the array.

In Chapter 5 Evaluation, we will provide more examples of SPARQL queries and
compare them by their execution time.

69

4. Implementation 4.6. Connecting the User Interface

1 PREFIX : <http://www.draeger.com/ontologies/spv#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
select 7case 7caseTime 7nsriCurve 7array where
{
5 7case :CaseNumber 135 ;
:CaseTime 7caseTime
?nsriCurve :isNsriCurveOf 7case ;
:DataArray 7array

}
Listing 4.10: SPARQL Query for Data Array of Case 135

1 <http://www.draeger.com/ontologies/spv#Case-135>,
"2373"""xsd:integer,
<http://www.draeger.com/ontologies/spv#NsriPointCurve -135>,
"{100,100,...,99.999984741210895,99.999855041503906,...,100%}"

Listing 4.11: SPARQL Query Result for Data Array of Case 135

70

5. Evaluation

By applying the patterns from Chapter 3, we were able to implement a system, which al-
lows user interfaces and applications to connect to it, with those being entirely separated
among each other. By accessing the data in Section 4.6 Connecting the User Interface
through the implemented system, we were able to show that it is possible, but neither
that the retrieved data is correct, nor that the whole system is performant enough.

In Section 2.4.4 we presented a possible distinction of user interface data. With
reference to this distinction, we expect the continuous data to be the critical part of
the application. The data arrays for the curves are extended by 3,600 data points per
hour per graph. Displaying 5 graphs at the same time, which is the current limitation
of the original SmartPilot View application, 18,000 new data points per hour would
be generated. Regarding this immense amount of data, we assume the access of the
comparably small amount of quasi static and dynamic data to be also accessible in
tolerable time, if we can show that the continuous data is performant enough.

As one new data point is added to the graph every second, the time for the datum
to be passed from the application via the adapter to the database, and then to the user
interface via Quest, should be considerably smaller than 1/n seconds, with n being the
number of displayed graphs.

5.1. Correct Result

100 1

80 1

60

NSRI Value

40 7

20 1

2% % < 2 2 2 2
% % % 2 % % %2

% 3
Q %
2 % £4

Case Time in seconds

Figure 5.1.: Plot of the Retrieved NSRI Data at Case Time 1954s (00:32:34)

71

5. Evaluation 5.2. Mapping Rules Completeness

o *Age rsl. 20

m *Height [*cm] 192

n “Weight [kg]. 89
*Adult =Gender: *Male

SmariPilot View - SemAd version 1.00.00_d *Show events

*Show history

*Diagram
settings.

Desflurane *patient!

Drugs...

@ *Screen
) layout...

*Export
screenshot

W *Propaoiol h *Ce*ugimL

*Speed +

0.3 =

& 10 5 *Speed -
*Remifentanil equivalent [*ngimL] = *Remifentanil mL]

1.0

*Case time ‘Standby

Figure 5.2.: Screenshot of SmartPilot View at Case Time 1954s (00:32:34)

To prove that the data transmitted through the system stays correct, we did a black
box test. This means that we queried the data from the Java application (i.e., the
connected user interface, see Section 4.6), and compared it to the data sent by the
application. As the existing user interface of SmartPilot View is running in parallel (see
Section 3.2.3), it was easily possible to compare the data. Being identified as the most
critical type of data, Figure 5.1 shows the NSRI curve on the user interface side, while
the screenshot in Figure 5.2 shows the expected NSRI curve. A brief comparison of the
figures, as well as a thorough comparison of the data values shows, that the result is
indeed correct. All other values, e.g., the age of the patient, are trivial to compare, and
have been checked with the presented queries in Section 5.2.

5.2. Mapping Rules Completeness

While the mapping process is usually straightforward, no best practices or even (semi-
) automated tools exist, yet. Furthermore, there exist no tools to check whether the
created mappings are sound and complete. And although they are checked for syntax
errors by the -ontop- plugin, as they otherwise couldn’t be parsed, they can’t be checked
for semantic errors. The biggest problem of such semantic errors is that they are very
hard to detect. When the result set of a query is empty it can be for two indistinguishable
reasons: Either there exist no corresponding entries in the database, in which case the
empty result is correct, or there do exist entries, but the mappings are incorrect, in

72

5. Evaluation 5.3. Write Performance

which case the empty result indicates an error.

To check, whether the created mappings fully capture the information present in the
database and listed in the data model, we created a test bench in Protégé, consisting
of one SPARQL query per Class. These queries were created according to the following
pattern.

1. Create one SPARQL query per main Class.

2. Create one triple stating the rdf:type, add the variable to the select clause.
select: 7case
where{}: 7case rdf:type :Case .

3. Create one triple for each attribute, except structs, but including enumerations.
select: 7caseTime
where{}: 7case :CaseTime 7caseTime .

4. Create one triple for each relation, i.e., object property
select: ?patient 7nsriCurve ?usedDrug
where{}: 7case :isCase0f ?7patient;
:hasNsriCurve ?nsriCurve ;
:hasUsedDrug 7usedDrug .

5. Create triples with intermediate variables to access struct values.
select: 7age_v 7age_u
where{}: 7patient :Age 7age .
7age :Value 7age_v ;
:Unit 7age_u .

The thereof created queries and the respective result sets can be found in Appendix
E. The results of the queries show that indeed all data in the database is accessible
via the provided SPARQL interface, and therefore the mapping creation pattern from
Section 3.3.4 results in a complete set of mappings. Please note that the pattern does
not include struct classes, which needed to be included in the query test bench to check
for the correctness of the results (see Section 5.1).

5.3. Write Performance

To check, whether the implemented solution is performant enough to display continous
data, we implemented a test which measured the time to write the array data to the
database from the C# application, as shown in the following listing.
1 DateTime timeBefore = DateTime.UtcNow;
// update local objects and write to database

double nsri2dbTime_ms =
(DateTime .UtcNow - timeBefore).TotalMilliseconds;

73

5. Evaluation 5.4. Read Performance

1000 100000

900 90000

800 80000

~
=)
S

70000

@
=}
S

60000

50000

Write Time in Milliseconds
@
S
S
Number of Data Points

I
=)
S

40000

w
o
S

30000

~
=3
S

20000

N
o
S

10000

o

Case Time in Hours

Figure 5.3.: NSRI Write Performance

Due to the current naive implementation, where the array stored as local object is always
written completely to the database. Thus, we expected the time necessary for the write
process to increase linearly with the size of the array. The test ran over 17 hours, starting
with write times around 15 to 30ms for 2000 data points, and increasing to about 500ms
for nearly 65000 data points. As PostgreSQL also offers data manipulation on specific
array ranges, we expect it to be possible to reduce the write times drastically, once the
classes for the inverse object relational mapping (see Section 4.5) are extended by the
functionality of updating only the differing ranges in the array. Thereafter the write
time will be independent of the size of the array, and we can expect constant write times
below 30ms, as each second only one data point needs to be changed in the array. For a
recalculation (see Section 3.2.1) a range of 1200 prediction values plus the values from
the past, up to the point in time where the data is entered into the system needs to be
updated. Therefore the data updates stay below 2000 data points, and for recalculations
we can expect the time to be below 30ms, as well.

5.4. Read Performance

According to the test of the write performance, we measured the time of the query
execution in the Java application. The time span does not include any further operations
on the data, like generating a List<double> representation of the array. This is just
the retrieval time of the plain string.

74

5. Evaluation 5.4. Read Performance

200 7 80000

175 70000

150 > 60000

y L d
-
P
g 125 - 50000
3 - g
g Pie 2
] e s
H - B
3 - 3
< 100 - 40000 &
s - 5
] Cd =
g - 5
£ - 2
L - £
] - 5
1 L d z
& 75 - o - 30000
-
-~
-
-
& - Max
50 s’ , 20000
- Min
-
L
r 4 — AVE
-
o @= @= Number of Val
25 & umber of Values 10000
-
-
U
(d
0 0
2, 2, S, 6, 2,
% ‘g @ % Ko % % % % % 2]{'00]e'oo < » % » % » “ » 2 »
Case Time in Hours
Figure 5.4.: NSRI Read Performance
1 long timeBefore = System.nanoTime ();

// execute query
long onto2nsriTime_ms =
(System.nanoTime () - timeBefore) / 1000 / 1000;

As Figure 5.4 depicts, the time to retrieve the data values from the system is much less
affected by the number of data points compared to the write performance, even though
we retrieve the whole data array. The average reading times are increasing from around
10ms to only 15ms for the 65000 data points. Although there exist some outliers, with
read times of around 300ms, they are very rare (16 outliers in 17 hours run time), and
can thus be ignored.

The implemented prototype supports three different ways of accessing the data array.
The first is, to retrieve the whole data array, as depicted in Figure 5.4; the second is
described in Section 4.4.1, namely the hard coded access to the 60 minute range via
the datatype property:DataArrayWindow40to20. The third and last is presented in the
same Section, which is to access the curve data as single data points. A comparison of
the access times is shown in Figure 5.5.

Access to single data points is, as expected, infeasible, as the retrieval time increases
to over 8 seconds for not even 5000 data points in the array, depicted by the nearly
vertical gray line in the graph. We did further investigation on this, and were able to
track down the reason for this to disadvantageous query unfolding. The execution of the
following query for all points of all cases takes around 450ms to complete.

75

5. Evaluation

5.4. Read Performance

50

100000

45

90000

40

80000

35

70000

w
S

& 60000

Number of Data Values

Read Time in Milliseconds
~
&

rd
] -~ 50000
| -
| td
-
20 3 - 40000
1 -
15 /\ - [30000
N~
sz
P —— N —
10 - \/ ~——" ~— g 20000
1 //\/ Pl = Complete
-
] Ld e Single Point
5 1 Pr o 10000
Py @ @ Number of Values
-
-
o e =" f— 0
o, 2, 2, 2 %, 3, s, > e, 9, % 2 2 2 2 e % 2 %
% % % % % % % > % % %, “, % Y% "% %, %, % “%

Case Time in Hours

Figure 5.5.: NSRI Read Performance Comparison

1 select distinct 7case 7time 7val where {
?nsri rdf:type :NsriPoint;

:Timestamp 7time;

:Value 7val;

:isPoint0f ?curve
:isNsriCurveOf 7case

[

?curve

}

But as soon as we add the triple below to retrieve only the points of a specific case,
the unfolded query requires the database to execute a five times nested loop, which
causes the execution time to explode (6.5 seconds for Case 131, which contains 3392
data points).

1 ?case :CaselNumber 131

The access to the 60 minute fragment tends to be slightly slower than the access to
the whole array, which is mainly caused by the additional computations necessary for
the database to extract the desired range.

In the presented implementation, all systems are running on the physically same
machine. If the data is to be accessed over a network, we expect the retrieval time
to increase, especially for the whole array, as the returned string representation of the
65000-element array has a size of 1.17 MB, which is infeasible to be transported over
network frequently. Therefore we consider fragment-wise access to the data to be most
suitable in terms of read performance.

76

5. Evaluation 5.5. Summary

5.5. Summary

We could show that the system works correctly, as both the data provided by the appli-
cation is accessible by the user interface, and the data sent by the application coincides
with the data received by the user interface.

Currently the performance of the system is mostly determined by the inefficient way
to write the continuous data to the database. With the measurements presented in
this chapter and the suggested modifications to the data writing procedure, we can
reasonably expect an average transmission time of data from the application to the user
interface below 50ms. This is a tolerable value and provides enough buffer for further
computations on the user interface side.

Finally, the user interface does indeed not share any code with the application logic.
The user interface developer does not need to know anything about the implementation
of the application. In fact, it could be replaced entirely without the user interface even
noticing, as the only access point to the data is on the conceptual level through the
ontology.

77

6. Conclusion and Future Work

6.1. Conclusion

In this work we introduced a system based on the techniques of ontology based data
access, which enables user interfaces to be separated from the user interface on a high,
semantic level.

We therefore analyzed Model View Controller, its original intention, as well as its
misuse as architecture pattern, which, against the intention, causes the application and
the user interface to be tightly coupled, and thus often be developed as a monolithic
unit. In Section 2.4.3, we presented the detected limitations of such MVC approaches,
namely the lack of support for distributed systems, the low degree of separation, the
incapability for interconnecting an arbitrary number of applications and user interfaces,
as well as the redundant processing of data by the application for both the presentation
and the data source layer.

Ontologies are predestined to be used as intermediate layer between the user interface
and the application, and thereby lead to an increased degree of semantic separation.
As current reasoning systems are not yet able to handle the high amount of data inter-
changed between those two software system layers, we suggested to apply the techniques
of ontology based data access. This technology is able to translate SPARQL ontology
queries to SQL database queries, including the derived TBox knowledge. Thereby, all
query execution is delegated to the relational database system, which is highly capable
of handling very large amounts of frequently changing data.

The interchanged data has been split up into the four types of quasi static, dynamic,
continuous, and transient data. As ontology based data access is a fairly recent research
topic, it was necessary to perform a thorough literature research, which enabled us to
acquire the required technology. Although various research prototypes are existing, and
are able to handle all but one of the required data flows, they all are developed across
heterogeneous OBDA environments. Thus, it is not yet possible to develop an event
based user interface with only one system. We figured out that the -ontop- framework
from the University of Bolzano is, in terms of performance, ongoing research and de-
velopment, as well as provided functionality, meeting most of the requirements for the
presented approach.

The thereby generated results made it possible to introduce a concept with according
patterns to create the database schema, the ontology and the mapping rules from a
formal entity relationship model of the interchanged data.

Based on an existing medical decision support system, which is implemented using the
aforementioned Model View Controller system architecture, we were able to prove the

78

6. Conclusion and Future Work 6.2. Future Work

feasibility of our approach. While the existing user interface was tightly coupled with
the application logic, the derived ontology now provides a semantically annotated access
point to the data for the user interface and thereby drastically increases the degree of
separation. Using the PostgreSQL relational database system, the performance of the
system has been proved as being sufficient for the requirements of frequently changing
continuous user interface data.

The developed core is also capable by design to integrate the data of multiple applica-
tions, and thereby saves the application the duty to loopthrough such data. On the other
hand, multiple user interfaces can be connected to the core, which can be designed and
developed by developers that need no insight on the implementation of the application
itself, neither on the internal data representation, nor on the programming language.

By measuring the time the data needs to pass through the system, and showing that
this is below 50ms, we could prove that the implemented solution is performant enough
to display large amounts of frequently changing user interface data.

6.2. Future Work

Usually, OBDA systems are developed on top of an existing database. We introduced
an approach, where an entire OBDA system, including ontology, database schema and
mapping rules could be designed from scratch. The therefore introduced patterns in
Section 3.3 are generally applicable for designing entire OBDA systems, not only in the
context of separating user interfaces from applications. We expect that the generation
process of the key components can most likely be automated. With some additional
research on the soundness and completeness of the generated mappings, it can thus be
possible to derive a fully functional and complete OBDA system automatically from just
the specification of an entity relationship data model.

Despite the fact that ontology based data access is a comparably young field in computer
science, several publications exist that extend the functionality of basic query transla-
tion to also handle data manipulation via SPARQL/Update or ontology based access to
streaming data sources. But although the research is supported by various prototypic
implementations, they all rely on different frameworks, mapping languages, and reason-
ers, which makes them incompatible with each other. Additional research needs to be
done on how these ideas can be integrated into a single system.

While the Quest reasoner is accessible from the Java programming language, which is
at least platform independent, access to the ontology could be desired from different
programming languages as well. It is possible to develop a so called SPARQL endpoint
as Java application to allow access to the data via HTTP, but additional research is
needed to prove that this approach is performant enough to handle user interface data,
or if there are other possibilities to access the data from various programming languages.

By using OBDA as intermediate system between the user interface and the application,
it is possible to distribute the different parts of it. The three parts are the application,

79

6. Conclusion and Future Work 6.2. Future Work

the core and the user interface. While easily possible to cut off the application and
access the database over network, whereby these components can easily be deployed
on physically different machines, the current implementation is not yet able to split up
the user interface from the reasoning system. But it is desired not to impose the client
running the user interface with the duty of performing the reasoning. This computation
intensive task should be executed on a therefore dedicated server. This is another reason
why the previously suggested research on the feasibility of providing a SPARQL endpoint
is needed, as it could solve this problem as well.

Especially in medical systems, provable correctness is a necessary requirement. Up
to now there exist no debugging environments for the design, development and use of
OBDA systems. We especially identified the problems of empty result sets for false or
incomplete mappings in Section 3.3.4 as a problem. Thereby the user is not able to
determine whether the empty result set means that there are no results, or that an error
occurred. We think that this might be an issue for the productive use of such system in
safety critical environments, as for example in medicine or aviation.

Additionally, although datatypes are supported by programming languages, database
systems and the ontology language OWL, the internal representation of such datatypes
can vary greatly between the different systems, and at the end, Quest returns basically
a string to Java, leaving the transformation into the correct datatype to the Java ap-
plication. As these numerous transformations into various internal representations can
endanger the type safety, we suggest additional research on this topic, especially for
safety critical systems.

80

List of Figures

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9

2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.

Example Knowledge Base with TBox (2.1) and ABox (2.2) 12
The Semantic Web Stack [BLO9] 16
The Protégé Ontology Editor 21
Classification of ontologies, according to Happel and Seedorf [HS06] . . . 22
Classification of ontologies, according to Guarino [Gua97] 23
Data Model Comparison 25
Example Database 26
Example Entity Relationship Diagram 26
Ordinary ABox 27
Virtual ABox 27
Quest System Overview, from [RMC12] 27
MVC model, adapted from [Reell] 31
MVC Dependencieso 31
Degrees of Separation 33
User Interface to Application Logic Cardinality 35
Application Centered 36
Data Centered 36
Characterization of Ontology-Enhanced User Interfaces, from [PP10, p. 5] 38
SmartPilot View, Screenshot L. 40
Dependencies Before (left) and After (right) 42
Conceptual System Overview 43
Data Flow with Parallel OBDA Systems 47
Notifications through OBDA 48
Concept Entity Relationship Model 49
Concept Database Schema 50
Concept Ontology 53
Connecting the Application: Components and Dependencies 55
SmartPilot View - Data Model Y
SmartPilot View - Database Schema 59
SmartPilot View: Ontology 60
SPV Adapter: Tapping Point 65
SmartPilot View: Class Diagram (Subset) 66
Plot of the Retrieved NSRI Data at Case Time 1954s (00:32:34) 71
Screenshot of SmartPilot View at Case Time 1954s (00:32:34) 72

82

5.3.
5.4.

5.5.

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.

D.1.

NSRI Write Performance 74
NSRI Read Performance 75
NSRI Read Performance Comparison 76
SmartPilot View: Ontology - Key 96
SmartPilot View: Ontology - Case 96
SmartPilot View: Ontology - Patient 97
SmartPilot View: Ontology - Drug 97
SmartPilot View: Ontology - Used Drug 98
SmartPilot View: Ontology - Curves and Points 98
SPV with OBDA: Complete Overview 100

List of Tables

2.1. Description Logics: Languages and semantics. 11
C.1. SmartPilot View, Relevant Data Subset 99
E.1. Cases. 102
E.2. Drugs 103
E.3. NSRI Curves 104
EA4. Patient oL 105
E.5. Used Drug o 106

84

Listings

2.1. RDE/XML syntax 17
2.2, Turtle syntax 17
2.3. All Men are Humans in Turtle Syntax 18
2.4. Example ontology in turtle syntax 19
2.5. Querying for all Humans 20
2.6. OBDA Mapping e 29
3.1. Example: Enumeration Property 52
3.2. Class Representation of Case in CSharp. 55
4.1. Active Ingredients as Enumeration in OWL Functional Syntax 61
4.2. Mapping Curve Data 62
4.3. Mapping Point Data 63
4.4. Mapping Unit Value Pairs 64
4.5. Using the Generated Primary Key 66
4.6. SemAdViewControlOperate.cs: Overriding Event Handlers 67
4.7. DataAccess.cs: Adding Support for Arrays with pgorm 68
4.8. tb_nsri_curvesObject.cs: Using Arrays with pgorm 69
4.9. SemAdEnhancedDbFunc.cs: Generating UCUM Strings 69
4.10. SPARQL Query for Data Array of Case 135 70
4.11. SPARQL Query Result for Data Array of Case 135 70

85

Bibliography

[BBCG10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Gross-

[BBLOS]

[Bec04]

[Bec12]

[BGJOS]

[BHS07]

[Biz04]

[BLOT]

[BLOY]

[BLC11]

niklaus. An execution environment for c-sparql queries. In Proceedings of the
13th International Conference on Extending Database Technology, EDBT "10,
pages 441-452, New York, NY, USA, 2010. ACM.

Franz Baader, Sebastian Brand, and Carsten Lutz. Pushing the EL. Envelope.
In In Proc. of IJCAI 2005, pages 364-369. Morgan-Kaufmann Publishers,
2005.

Dave Beckett. RDF/XML Syntax Specification (Revised). W3C recom-
mendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

David Beckett. Turtle - Terse RDF Triple Language. W3C working draft,
W3C, July 2012. http://www.w3.org/TR/2012/WD-turtle-20120710/.

Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming sparql ex-
tending sparql to process data streams. In Proceedings of the 5th European
semantic web conference on The semantic web: research and applications,
ESWC’08, pages 448-462, Berlin, Heidelberg, 2008. Springer-Verlag.

F. Buschmann, K. Henney, and D.C. Schmidt. Pattern Oriented Software
Architecture: On Patterns and Pattern Languages. Wiley Series in Software
Design Patterns. John Wiley & Sons, 2007.

Christian Bizer. D2rq - treating non-rdf databases as virtual rdf graphs. In In
Proceedings of the 3rd International Semantic Web Conference (ISWC2004),
2004.

Franz Baader and Carsten Lutz. 13 Description Logic. In Patrick Blackburn,
Johan Van Benthem, and Frank Wolter, editors, Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning, pages 757-819. Elsevier,
2007.

Tim Berner-Lee. Semantic Web and Linked Data. World Wide Web Consor-
tium, 2009. http://www.w3.0rg/2009/Talks/0120-campus-party-tbl.

Tim Berners Lee and Dan Conolly. Notation3 (N3): A readable RDF
syntax. W3C teamsubmission, W3C, March 2011. http://www.w3.org/
TeamSubmission/2011/SUBM-n3-20110328/.

86

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2012/WD-turtle-20120710/
http://www.w3.org/2009/Talks/0120-campus-party-tbl
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/

[BLEMO5]

[BLHLO1]

[Bor96]

[BPM08§]

[Bra97]

[BS01]

[Buc09]

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. Standards track, IETF, January 2005. http://www.
ietf.org/rfc/rfc3986.txt.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, 284(5):34-43, May 2001.

Alex Borgida. On the Relative Expressiveness of Description Logics and
Predicate Logics. Artificial Intelligence, 82:353-367, 1996.

Tim Bray, Jean Paoli, Eve Maler, Frangois Yergeau, and C. M. Sperberg-
McQueen. Extensible markup language (XML) 1.0 (fifth edition). W3C rec-
ommendation, W3C, November 2008. http://www.w3.org/TR/2008/REC-
xml1-20081126/.

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. Best
current practice, IETF, March 1997. http://www.ietf.org/rfc/rfc2119.
txt.

Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69:5-40, 2001.

James Bucanek. Learn Objective-C for Java Developers. Learn Series. Apress,
2009.

[BOCGp04] Jestis Barrasa, Oscar Corcho, and Asuncién Gémez-pérez. R20, an ex-

[Car(7]

[CCG10]

[CDGLOS]

tensible and semantically based database-to-ontology mapping language.
In In Proceedings of the 2nd Workshop on Semantic Web and Databases
(SWDB2004), pages 1069-1070. Springer, 2004.

Jorge Cardoso. The semantic web vision: Where are we? [EEE Intelligent
Systems, 22(5):84-88, September 2007.

Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J. G. Gray. Enabling
ontology-based access to streaming data sources. In Proceedings of the 9th
international semantic web conference on The semantic web - Volume Part

I, ISWC’10, pages 96-111, Berlin, Heidelberg, 2010. Springer-Verlag.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the
decidability of query containment under constraints. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, PODS 98, pages 149-158, New York, NY, USA, 1998.
ACM.

[CDGL'07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-

erini, and Riccardo Rosati. Tractable reasoning and efficient query answering
in description logics: The dl-lite family. Journal of Automated Reasoning,
39:385-429, 2007.

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

[Cod70]

[Cou87]

[CTFO0S]

[DEFS98]

[DSC12

[EK12]

[Fah08]

[Fin01]

[Fow03]

[Fow06]

(GBO4]

[GGY5)

E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377-387, June 1970.

Joelle Coutaz. PAC: An object oriented model for implementing user inter-
faces. SIGCHI Bull., 19(2):37-41, October 1987.

Kendall Grant Clark, Elias Torres, and Lee Feigenbaum. SPARQL
protocol for RDF. W3C recommendation, W3C, January 2008.
http://www.w3.org/TR/2008 /REC-rdf-sparql-protocol-20080115/.

Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer. Ontobro-
ker: Ontology based Access to Distributed and Semi-Structured Information.

In Database Semantics: Semantic Issues in Multimedia Systems, pages 351—
369. Kluwer Academic Publisher, 1998.

Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to
RDF Mapping Language. W3C proposed recommendation, W3C, August
2012. http://www.w3.org/TR/2012/PR-r2rm1-20120814/.

Vadim Eisenberg and Yaron Kanza. D2rq/update: updating relational data
via virtual rdf. In Proceedings of the 21st international conference companion
on World Wide Web, WWW ’12 Companion, pages 497-498, New York, NY,
USA, 2012. ACM.

Muhammad Fahad. Er2owl: Generating owl ontology from er diagram. In
Intelligent Information Processing IV, volume 288 of IFIP Advances in In-
formation and Communication Technology, pages 28-37. Springer Boston,
2008.

Tim Finin. Re: NAME: SWOL versus WOL. Web Ontology Working Group
Public Mailing List, 2001. http://lists.w3.org/Archives/Public/www-
webont-wg/2001Dec/0169 . html.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

Martin Fowler. Patterns of Enterprise Application Architecture - Develop-
ment Version. http://martinfowler.com/eaaDev/uiArchs.html, 2006.

Ramanathan V. Guha and Dan Brickley. RDF vocabulary description lan-
guage 1.0: RDF schema. W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

N. Guarino and P. Giaretta. Ontologies and Knowledge Bases: Towards a
Terminological Clarification. In N. J. I. Mars, editor, Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge Sharing, pages 25-32.
I0S Press, Amsterdam, 1995.

http://www.w3.org/TR/2012/PR-r2rml-20120814/
http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html
http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html
http://martinfowler.com/eaaDev/uiArchs.html
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[GHIV94]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1994.

[GHVDO03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-

[GMF+03]

[GNS7]

[Gru93]

[GS12]

[Gua97]

[HDG06]

[HLSEO0S)]

[HMO1]

[Hol99]

scription logic programs: combining logic programs with description logic. In
Proceedings of the 12th international conference on World Wide Web, WWW
‘03, pages 48-57, New York, NY, USA, 2003. ACM.

John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso,
Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and Samson W. Tu. The
evolution of Protégé: an environment for knowledge-based systems develop-
ment. Int. J. Hum.-Comput. Stud., 58(1):89-123, January 2003.

M.R. Genesereth and N.J. Nilsson. Logical foundations of artificial intelli-
gence. Morgan Kaufmann, 1987.

Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. In International Journal of Human-Computer Studies,
pages 907-928. Kluwer Academic Publishers, 1993.

Paul Gearon and Simon Schenk. SPARQL 1.1 update. W3C working draft,
W3C, October 2012. http://www.w3.org/TR/2012/WD-sparqlll-update-
20120105/.

Nicola Guarino. Semantic Matching: Formal Ontological Distinctions for In-
formation Organization, Extraction, and Integration. In Information Tech-
nology, International Summer School, SCIE-97, pages 139-170. Springer Ver-
lag, 1997.

Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert
Stevens, and Hai Wang. The manchester owl syntax. In Bernardo Cuenca
Grau, Pascal Hitzler, Conor Shankey, and Evan Wallace, editors, OWLED,
volume 216 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

Peter Haase, Holger Lewen, Rudi Studer, and Michael Erdmann. The
NeOn Ontology Engineering Toolkit, 2008. http://watson.kmi.open.ac.
uk/Downloads’%20and’,20Publications_files/neon-toolkit.pdf.

V. Haarslev and R. Moller. RACER System Description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, Siena, Italy, pages 701-705.
Springer-Verlag, 2001.

Allen Holub. Building user interfaces for object-oriented systems, part 1.
JavaWorld, January 1999. http://www. javaworld.com/javaworld/jw-07-
1999/ jw-07-toolbox.html?page=4.

http://www.w3.org/TR/2012/WD-sparql11-update-20120105/
http://www.w3.org/TR/2012/WD-sparql11-update-20120105/
http://watson.kmi.open.ac.uk/Downloads%20and%20Publications_files/neon-toolkit.pdf
http://watson.kmi.open.ac.uk/Downloads%20and%20Publications_files/neon-toolkit.pdf
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-toolbox.html?page=4
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-toolbox.html?page=4

[Hor05)

[HPSHO3]

[HRG10]

[HRG11]

[HSO06]

[IEE90]

[KGO3]

[KPS88]

[KSPHO04]

[Lai08]

[LRO1]

Ian Horrocks. Owl: a description logic based ontology language for the seman-
tic web, 2005. http://www.cs.ox.ac.uk/ian.horrocks/Publications/
download/2005/Horr05c. pdf.

Ian Horrocks, Peter F. Patel-Schneider, and Frank Van Harmelen. From
SHIQ and RDF to OWL: The Making of a Web Ontology Language. Journal
of Web Semantics, 1:7-26, 2003.

Matthias Hert, Gerald Reif, and Harald C. Gall. Updating relational data via
sparql/update. In Proceedings of the 2010 EDBT/ICDT Workshops, EDBT
10, New York, NY, USA, 2010. ACM.

Matthias Hert, Gerald Reif, and Harald C. Gall. A comparison of rdb-to-rdf
mapping languages. In Proceedings of the 7th International Conference on
Semantic Systems, I-Semantics '11, pages 25-32, New York, NY, USA, 2011.
ACM.

Hans-Jorg Happel and Stefan Seedorf. Applications of Ontologies in Soft-
ware Engineering. In 2nd International Workshop on Semantic Web Enabled
Software Engineering (SWESE 2006), held at the 5th International Semantic
Web Conference (ISWC 2006), 2006.

[EEE Std 610.12-1990:IEEE Standard Glossary of Software Engineering Ter-
minology, 1990.

Alexander Kleshchev and Valeriya Gribova. From an Ontology-Oriented Ap-
proach Conception to User Interface Development. International Journal of
Information Theories and Applications, 10, 2003.

Glenn E. Krasner and Stephen T. Pope. A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 System. Technical
note, ParcPlace Systems, 1988.

Aditya Kalyanpur, Evren Sirin, Bijan Parsia, and James Hendler. Hyper-
media inspired ontology engineering environment: SWOOP. In In: Proc.
International Semantic Web Conference (ISWC) (2004, pages 7-11, 2004.

Eric Lai. Size matters: Yahoo claims 2-petabyte database is world’s biggest,
busiest. Computerworld, May 2008. http://www.computerworld.com/s/
article/9087918.

Avraham Leff and James T. Rayfield. Web-application development using
the model /view/controller design pattern. In Proceedings of the 5th IEEE In-
ternational Conference on Enterprise Distributed Object Computing, EDOC
‘01, pages 118-127, Washington, DC, USA, 2001. IEEE Computer Society.

http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2005/Horr05c.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2005/Horr05c.pdf
http://www.computerworld.com/s/article/9087918
http://www.computerworld.com/s/article/9087918

[LSV+10]

[McGO4]

[MFH*09]

IMMO04]

[MPPS09]

[MR92]

[MS05]

[MSHO9)]

[MSS05]

[MvHO04]

IM&108]

Martin Luginbuehl, Peter Schumacher, Pascal Vuilleumier, Hugo Vereecke,
Bjoern Heyse, Thomas Bouillon, and Michel Struys. Noxious Stimulation
Response Index : a Novel Anesthetic State Index Based on Hypnotic-Opioid
Interaction. Anesthesiology, 112(4):872-880, 2010.

James McGovern. A Practical Guide to Enterprise Architecture. Coad Series.
Prentice Hall PTR, 2004.

Boris Motik, Achille Fokoue, Ian Horrocks, Zhe Wu, Carsten Lutz, and
Bernardo Cuenca Grau. OWL 2 web ontology language profiles. W3C recom-
mendation, W3C, October 2009. http://www.w3.org/TR/2009/REC-owl2-
profiles-20091027/.

Eric Miller and Frank Manola. RDF primer. W3C recommendation,
W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/.

Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL 2 web on-
tology language structural specification and functional-style syntax. W3C
recommendation, W3C, October 2009. http://www.w3.org/TR/2009/REC-
owl2-syntax-20091027/.

Brad A. Myers and Mary Beth Rosson. Survey on user interface program-
ming. In Proceedings of the SIGCHI conference on Human factors in com-
puting systems, CHI '92, pages 195202, New York, NY, USA, 1992. ACM.

Boris Motik and R. Studer. KAON2 — A scalable reasoning tool for the
semantic web. Proceedings of the 2nd FEuropean Semantic Web Conference
(ESWC,05), Heraklion, Greece, 2005.

Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for
Description Logics. Journal of Artificial Intelligence Research, 36:165—-228,
2009.

Nick Mitchell, Gary Sevitsky, and Harini Srivivasan. The Diary of a Da-
tum: An Approach to Modeling Runtime Complexity in Framework-Based
Applications. Technical report, IBM Research Report, 2005. RC23703.

Deborah L. McGuinness and Frank van Harmelen. OWL web ontology
language overview. W3C recommendation, W3C, February 2004. http:
//www.w3.org/TR/2004/REC-owl-features-20040210/.

Ralf Moller. Reasoning for Ontology Engineering and Usage, Part 1 - Intro-
duction to Standard Reasoning. In Tutorial at 7th International Semantic
Web Conference ISWC 2008. Presented at the 7th International Semantic
Web Conference ISWC 2008, Karlsruhe, Germany, October 2008.

http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

[Opel0]

[Paull]
[PLCT08]

[PM10]

[Pot96]

[PP10]

[PPSMO9]

[PSO08]

[Qui63]

[ReeT9al

[Ree79b]

[Reell]

[RLCOS]|

OpenLink. RDF Views of SQL Data (SQL Schema to RDF On-
tology Mapping). Technical report, OpenLink Software, 2010.
http://virtuoso.openlinksw.com/whitepapers/relational’20rdf
20views’%20mapping.html.

Heiko Paulheim. Ontology-Based Application Integration. Springer, 2011.

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. In
Stefano Spaccapietra, editor, Journal on data semantics X, pages 133—-173.
Springer-Verlag, Berlin, Heidelberg, 2008.

Alexandre Passant and Pablo Mendes. sparqlPuSH: Proactive notification
of data updates in RDF stores using PubSubHubbub. In Proceedings of
6th Workshop on Scripting and Development for the Semantic Web, CEUR
Workshop Proceedings, Aachen, Germany, 2010. CEUR.

Mike Potel. MVP: Model-View-Presenter, 1996. http://www.wildcrest.
com/Potel/Portfolio/mvp.pdf.

Heiko Paulheim and Florian Probst. Ontology-Enhanced User Interfaces: A
Survey. International Journal on Semantic Web and Information Systems

(IJSWIS), 6, 2010.

Bijan Parsia, Peter F. Patel-Schneider, and Boris Motik. OWL 2 web on-
tology language XML serialization. W3C recommendation, W3C, October
2009. http://www.w3.org/TR/2009/REC-owl2-xml-serialization-20091027/.

Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.
W3C recommendation, W3C, January 2008. http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/.

R. Quillan. A notation for representing conceptual information: an appli-
cation to semantics and mechanical English paraphrasing. Systems Develop-
ment Corporation, 1963.

Trygve Reenskaug. Models-Views-Controllers. Technical note, Xeroz PARC,
December 1979.

Trygve Reenskaug. Thing-Model-View-Editor. Technical note, Xerox PARC,
May 1979.

Trygve Reenskaug. MVC, XEROX Parc 1978-79, 2011. http://heim.ifi.
uio.no/~trygver/themes/mvc/mvc-index.html.

Mariano Rodriguez-Muro, Lina Lubyte, and Diego Calvanese. Realizing on-
tology based data access: A plug-in for protégé. In Information Integration
Methods, Architectures and Systems 2008, pages 286289, April 2008.

http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[RMC12]

[RNO2]

[Rod12a]

[Rod12b]

[SBIS5]

[Sha96|

[S106]

[Sim63]

[SPG+07]

SSS91]

[THO3)

[THOG6]

Mariano Rodriguez-Muro and Diego Calvanese. Quest, an owl 2 ql reasoner
for ontology-based data access. In Proceedings of the 9th Int. Workshop on
OWL: Experiences and Directions (OWLED 2012), volume 849 of CEUR
Electronic Workshop Proceedings, http: // ceur-ws. org/, 2012,

Stuart Russell and Peter Norvig. Artificial Intelligence : A Modern Approach,
page 333. Prentice Hall, Upper Saddle River, 2 edition, 2002.

Mariano Rodriguez. New build is now available. The -ontop- framework
blog, August 2012. http://obdalib.blogspot.de/2012/08/new-build-
is-now-available.html.

Mariano Rodriguez. [Obdalib-announcements] QuestOWL is now
available. The Obdalib-announcements Mailing List, August 2012.
https://mail.inf.unibz.it/pipermail/obdalib-announcements/2012-
August/000008 . html.

James G. Schmolze, Bolt Beranek, and Newman Inc. An overview of the
KL-ONE knowledge representation system. Cognitive Science, 9:171-216,
1985.

Alec Sharp. Smalltalk by Example: The Developer’s Guide. McGraw-Hill,
Inc., New York, NY, USA, 1 edition, 1996.

Xiaomeng Su and Lars Ilebrekke. A Comparative Study of Ontology Lan-
guages and Tools. In Anne Pidduck, M. Ozsu, John Mylopoulos, and Carson
Woo, editors, Advanced Information Systems Engineering, volume 2348 of
Lecture Notes in Computer Science, pages 761-765. Springer Berlin / Heidel-
berg, 2006.

R.F. Simmons. Synthetic Language Behavior. System Development Corpo-
ration, 1963.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5(2):51 — 53, 2007.

Manfred Schmidt-SchaubfSand Gert Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1-26, February 1991.

Dmitry Tsarkov and Ian Horrocks. DI reasoner vs. first-order prover. In
In Proc. of the 2003 Description Logic Workshop (DL 2003), volume 81 of
CEUR (http: // ceur-ws. org, pages 152-159, 2003.

Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner:
System Description. In Ulrich Furbach and Natarajan Shankar, editors, Au-
tomated Reasoning, volume 4130 of Lecture Notes in Computer Science, pages
292-297. Springer Berlin / Heidelberg, 2006.

http://ceur-ws.org/
http://obdalib.blogspot.de/2012/08/new-build-is-now-available.html
http://obdalib.blogspot.de/2012/08/new-build-is-now-available.html
https://mail.inf.unibz.it/pipermail/obdalib-announcements/2012-August/000008.html
https://mail.inf.unibz.it/pipermail/obdalib-announcements/2012-August/000008.html

[TP10]

[Tur10]

[UGO6]

[W3C04]

[W3C09a)

[W3C09b)

Kéroly Tilly and Zoltan Porkoldb. Semantic User Interfaces. International
Journal of Enterprise Information Systems, 6(1):29-43, September 2010.

Anni-Yasmin Turhan. Reasoning and explanation in EL and in expressive
description logics. In Proceedings of the 6th international conference on Se-
mantic technologies for software engineering, ReasoningWeb’10, pages 1-27,
Berlin, Heidelberg, 2010. Springer-Verlag.

Mike Uschold and Michael Gruninger. Ontologies: Principles, methods and
applications. Knowledge Engineering Review, 11:93-136, 1996.

W3C. Xml schema part 2: Datatypes second edition. W3C recommenda-
tion, W3C, October 2004. http://www.w3.org/TR/2004/REC-xmlschema-
2-20041028/.

W3C. OWL 2 web ontology language primer. W3C recommendation,
W3C, October 2009. http://www.w3.org/TR/2009/REC-owl2-primer-
20091027/.

W3C OWL Working Group. OWL 2 web ontology language document
overview. W3C recommendation, W3C, October 2009. http://www.w3.
org/TR/2009/REC-owl2-overview-20091027/.

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

A. Overview: Description Logics

A.1. Basic Languages

AL Attributive language allows:
- Atomic negation
- Concept intersection
- Universal restrictions
- Limited existential quantification

FL Frame based description language allows:
- Concept intersection
- Universal restrictions
- Limited existential quantification
- Role restriction

EL allows:
- Concept intersection
- Existential restrictions

A.2. Extension Operators

F Functional properties O Nominals

& Full existential qualification)
T Inverse properties

U Concept union

C Complex concept negation N Cardinality restrictions

H Role hierarchy Q Qualified cardinality restrictions

R Limited complex role inclusion axioms;
reflexivity and irreflexivity; role dis- Datatype properties, data values or
jointness data types

(D)

A.3. Abbreviations

S is the abbreviation for ALC with R, transitive roles.

95

B. SmartPilot View: Ontology

Each class in Figure 4.3 has attributes or further relationships. These can be seen in
the following detailed figures. The key is given in Figure B.1.

—_— —_—

«_ Xxsd:string Datatype

~ ——_ — -

> subClassOf

isCaseOf»
<hasCase

ObjectProperty Pair

Age

DatatypeProperty

Figure B.1.: SmartPilot View: Ontology - Key

CaseTime -~ T
Case \ xsd:nonNegativelnteger~

Figure B.2.: SmartPilot View: Ontology - Case

96

Height oot
@ d StructHeight —@
. Unit
Weight
| —Lvalue _

Age

Figure B.3.: SmartPilot View: Ontology - Patient

e — — — —

===

e — — — —

===

e — — — —

= ==

Ingredient

Activelngredient %ED

RouteOfAdministration EnumRouteOf
dministratio
/Y\
AgentType EnumAgentType

Y'Y\

Opioid

ebéé

Relaxant

0

Figure B.4.: SmartPilot View: Ontology - Drug

UsedDrug StructConcentration J—]

—_—— —

Unit (// ~

Value ,~

«_ Xxsd:string

—

—_——_—— = -

- ~
« Xsd:decimal)
~

~

—_——_—— = -

Figure B.5.: SmartPilot View: Ontology - Used Drug

isPointOf »
<hasPoint

DataArray

— ~

DataArrayWindow40to20 ,~

// . . ~
Xxsd:PlainLiteral/

— —

TimestampArray

. . ~
:PIaanergI/

I

s

%

Value

(

—~——_—— = -

-7 T ~
« Xsd:decimal /
~ -

—

—~——_—— = -

Crom D>—
. - A
% Timestamp /\ xsd:integer _/

Figure B.6.: SmartPilot View: Ontology - Curves and Points

—~——_—— = -

C. SmartPilot View: Ul Data Subset

Table C.1.: SmartPilot View, Relevant Data Subset

Data Description
Case A single anesthesia for one patient is called a case
Case Time The case time starts with 0 at the beginning of a case
Patient undergoes anesthesia in the current case
Sex
Age'z The displayed patient data
Weight
Height
Drug having certain properties
Active Ingredients The active ingredients known by SmartPilot View
Propofol Fluid hypnotic
Desflourane)
Enflourane
Halothane Volatile hypnotics
Isoflourane
Sevoflourane)
Alfentanil)
Fentanyl : .
Fluid d
Remifentanil e oprotds
Sufentanil)
P i)
ancuror.uum } Fluid muscle relaxants
Rocuronium
Used Drugs used in a certain case with the respective concentration
Concentration how the used drug is diluted
NSRI Graph Noxious Stimulation Response Index, see Section 2.6
Graph Data contains points of NSRI over time
Ce Graphs Effect Site Concentrations (Ce), One graph for each active
ingredient used in the current case, see Section 2.6
Graph Data contains points of Ce over time

99

D. System Overview

ViewlInputinterface

InputManager

BusinessProcess

v]

ModellingProcess

Data Model

User Interface

View
\ /
\
\
\ /
\ /
//
~N 7
~ ~ _ -
|
|
|
|
| TBox (0]
| n
t
|
| o
| |
| | Virtual ABox o
| | g
[y
I A
SPARQL D
/7
/ .
(O

Figure D.1.: SPV with OBDA: Complete Overview

100

E.

Evaluation Results

E.1. Mapping Completeness

This Appendix shows the results of the SPARQL queries described in Section 5.2. For
better readability the following adaptions were made.

1.
2.

d.

Arrays are shortened to show only the first two and the last element.

Decimal values are cut off at the third fractional digit. Thereby 12 digits are
omitted.

Short: 99.835

Original: 99.835731506347699

Datatypes are provided in the column head
Short: "213"
Original: "213"""xsd:integer

URIs are shortened by their prefix.
Short: :Case-113
Original: <http://www.draeger.com/ontologies/spv#Case-113>

Only the first 30 results are shown.

Please note that the Ce Curve class and its respective properties can be ignored for
the tests and the evaluation, as described in Section 4.5.4.

101

E.2. Case

PREFIX <http://www.draeger.com/ontologies/spv#>
select 7case 7caseTime 7patient 7?nsriCurve 7usedDrug where
{
7?case a :Case ;

:CaseTime 7caseTime ;

:isCase0f 7patient ;

:hasNsriCurve 7?nsriCurve ;

:hasUsedDrug 7usedDrug
3

Table E.1.: Cases
case caseTime patient nsriCurve usedDrug
xsd:integer

:Case-113 "213" :Patient-85 :NsriPointCurve-113 :UsedDrug-11-113
:Case-113 "213" :Patient-85 :NsriPointCurve-113 :UsedDrug-7-113
:Case-114 "59" :Patient-86 :NsriPointCurve-114 :UsedDrug-11-114
:Case-114 "59" :Patient-86 :NsriPointCurve-114 :UsedDrug-7-114
:Case-115 "428" :Patient-87 :NsriPointCurve-115 :UsedDrug-11-115
:Case-115 "428" :Patient-87 :NsriPointCurve-115 :UsedDrug-7-115
:Case-116 "13" :Patient-88 :NsriPointCurve-116 :UsedDrug-11-116
:Case-116 "13" :Patient-88 :NsriPointCurve-116 :UsedDrug-7-116
:Case-117 "127" :Patient-89 :NsriPointCurve-117 :UsedDrug-11-117
:Case-117 "127" :Patient-89 :NsriPointCurve-117 :UsedDrug-7-117
:Case-118 "16" :Patient-90 :NsriPointCurve-118 :UsedDrug-11-118
:Case-118 "16" :Patient-90 :NsriPointCurve-118 :UsedDrug-7-118
:Case-119 "371" :Patient-91 :NsriPointCurve-119 :UsedDrug-11-119
:Case-119 "371" :Patient-91 :NsriPointCurve-119 :UsedDrug-7-119
:Case-122 "482" :Patient-94 :NsriPointCurve-122 :UsedDrug-11-122
:Case-122 "482" :Patient-94 :NsriPointCurve-122 :UsedDrug-7-122
:Case-123 "179" :Patient-95 :NsriPointCurve-123 :UsedDrug-11-123
:Case-123 "179" :Patient-95 :NsriPointCurve-123 :UsedDrug-7-123
:Case-124 "192" :Patient-96 :NsriPointCurve-124 :UsedDrug-11-124
:Case-124 "192" :Patient-96 :NsriPointCurve-124 :UsedDrug-7-124
:Case-125 "161" :Patient-97 :NsriPointCurve-125 :UsedDrug-11-125
:Case-125 "161" :Patient-97 :NsriPointCurve-125 :UsedDrug-7-125
:Case-126 "8" :Patient-98 :NsriPointCurve-126 :UsedDrug-11-126
:Case-126 "8" :Patient-98 :NsriPointCurve-126 :UsedDrug-7-126
:Case-127 "10" :Patient-99 :NsriPointCurve-127 :UsedDrug-11-127
:Case-127 "10" :Patient-99 :NsriPointCurve-127 :UsedDrug-7-127
:Case-128 "112" :Patient-100 :NsriPointCurve-128 :UsedDrug-11-128
:Case-128 "112" :Patient-100 :NsriPointCurve-128 :UsedDrug-7-128
:Case-129 "29" :Patient-101 :NsriPointCurve-129 :UsedDrug-11-129
:Case-129 "29" :Patient-101 :NsriPointCurve-129 :UsedDrug-7-129

E.3. Drugs

1

ot

PREFIX
{

?drug a :Drug ;
:ActivelIngredient 7activelng
:AgentType 7agentType ;
:RouteOfAdministration 7route
:hasUsedDrug 7usedDrug

3

]

)

Table E.2.: Drugs

<http://www.draeger.com/ontologies/spv#>
select 7drug 7activelng 7agentType 7route 7?usedDrug where

drug activelng agentType route

:Drug-10 :Sufentanil :Opioid :Intravenous
:Drug-2 :Enflurane :Hypnotic :Inhalation
:Drug-9 :Alfentanil :Opioid :Intravenous
:Drug-12 :Rocuronium :Relaxant :Intravenous
:Drug-8 :Fentanyl :Opioid :Intravenous
:Drug-3 :Isoflurane :Hypnotic :Inhalation
:Drug-4 :Sevoflurane :Hypnotic :Inhalation
:Drug-7 :Remifentanil :0pioid :Intravenous
:Drug-13 :Pancuronium :Relaxant :Intravenous
:Drug-5 :Desflurane :Hypnotic :Inhalation
:Drug-1 :Halothane :Hypnotic :Inhalation
:Drug-11 :Propofol :Hypnotic :Intravenous

E.4. NSRI Curves

1 PREFIX : <http://www.draeger.com/ontologies/spv#>
select 7nsriCurve 7dataArray 7dataWindow where
{
?nsriCurve a :NsriPointCurve ;
5 :DataArray 7?dataArray ;
:DataArrayWindow40to20 7?dataWindow

}
Table E.3.: NSRI Curves

nsriCurve dataArray dataWindow case

:NsriPointCurve-116 "{100,100,...,100}" "{100,100,...,100}" :Case-116
:NsriPointCurve-114 "{100,100,...,100}" "{100,100,...,100}" :Case-114
:NsriPointCurve-123 "{100,100,...,99.835}"! {100,100, ...,99.835}" :Case-123
:NsriPointCurve-125 "{100,100,...,99.902}" "{100,100,...,99.902}" :Case-125
:NsriPointCurve-126 "{100,100,...,99.446}" "{100,100,...,99.446}" :Case-126
:NsriPointCurve-127 "{100,100,...,NaN}" "{100,100,...,NaN}" :Case-127
:NsriPointCurve-128 "{100,100,...,99.805}" "{100,100,...,99.805}" :Case-128
:NsriPointCurve-132 "{100,100,...,NaN}" "{100,100,...,NaN}" :Case-132
:NsriPointCurve-129 "{100,100,...,NaN}" {100,100, ...,NaN}" :Case-129
:NsriPointCurve-130 "{100,100,...,99.768}" "{100,100,...,99.768}" :Case-130
:NsriPointCurve-117 "{100,100,...,100}" "{100,100,...,100}" :Case-117
:NsriPointCurve-118 "{100,100,...,99.723}" "{100,100,...,99.723}" :Case-118
:NsriPointCurve-115 "{100,100,...,100}" "{100,100,...,100}" :Case-115
:NsriPointCurve-135 "{100,100,...,NaN}" "{78.275,78.863,...,NaN}" :Case-135

:NsriPointCurve-122 "{100,100,...,99.778}" "{100,100,...,99.778}" :Case-122

E.5. Patient

1

10

PREFIX

<http://www.draeger.com/ontologies/spv#>

select 7patient 7sex 7age_v 7age_u ?weight_v 7weight_u
?height_v 7height_u 7case where

{
?patient a :Patient
:Sex 7sex ; e 7age ; :Wei ‘weil ; :Hei ?hei ;
S ? Age 7ag Weight 7 ght Height 7height
:hasCase 7case
7age :Value 7age_v
:Unit 7age_u
?weight :Value ?weight_v ;
:Unit ?weight_u
?height :Value 7height_v ;
:Unit 7height_u
}
Table E.4.: Patient
patient sex age_v age_u weight_v weight_u height_v height_u case
decimal string decimal string decimal string
:Patient-3 :Female "39.0" "a" "74.0" "kg" "174.0" "cm" :Case-3
:Patient-8 :Female "19.0" "a" "52.0" "kg" "188.0" "cm" :Case-8
:Patient-32 :Female "30.0" "a" "48.0" "kg" "150.0" "cm" :Case-40
:Patient-29 :Female "40.0" "a" "40.0" "kg" "200.0" "cm" :Case-37
:Patient-2 :Male "36.0" "a" "76.0" "kg" "176.0" "cm" :Case-2
:Patient-17 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-25
:Patient-45 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-54
:Patient-30 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-38
:Patient-10 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-14
:Patient-4 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-4
:Patient-7 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-7
:Patient-18 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-26
:Patient-28 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-36
:Patient-37 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-46
:Patient-5 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-5
:Patient-19 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-27
:Patient-46 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-55
:Patient-20 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-28
:Patient-6 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-6
:Patient-48 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-57
:Patient-21 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-29
:Patient-12 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-20
:Patient-13 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-21
:Patient-38 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-47
:Patient-14 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-22
:Patient-15 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-23
:Patient-35 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-43
:Patient-23 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-31
:Patient-42 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-51
:Patient-31 :Male "40.0" "a" "75.0" "kg" "175.0" "cm" :Case-39

E.6. Used Drugs

1 PREFIX : <http://www.draeger.com/ontologies/spv#>
select 7usedDrug 7conc_v 7conc_u 7caseordrug where
{
7?usedDrug a :UsedDrug ;
5 :Concentration 7conc ;
:isUsedDrug0Of 7caseordrug
?conc :Value ?7conc_v ;
:Unit %conc_u

Table E.5.: Used Drug

usedDrug conc_v conc_u caseordrug
xsd:decimal xsd:string

:UsedDrug-11-89 "10.0" "mg/mL" :Case—-89
:UsedDrug-9-89 "0.7" "mg/mL" :Case-89
:UsedDrug-7-89 "40.0" "ug/mL" :Case-89
:UsedDrug-11-89 "10.0" "mg/mL" :Drug-11
:UsedDrug-9-89 "0.7" "mg/mL" :Drug-9
:UsedDrug-7-89 "40.0" "ug/mL" :Drug-7
:UsedDrug-11-90 "10.0" "mg/mL" :Case-90
:UsedDrug-7-90 "40.0" "ug/mL" :Case-90
:UsedDrug-11-90 "10.0" "mg/mL" :Drug-11
:UsedDrug-7-90 "40.0" "ug/mL" :Drug-7
:UsedDrug-11-91 "10.0" "mg/mL" :Case-91
:UsedDrug-7-91 "40.0" "ug/mL" :Case-91
:UsedDrug-11-91 "10.0" "mg/mL" :Drug-11
:UsedDrug-7-91 "40.0" "ug/mL" :Drug-7
:UsedDrug-11-92 "10.0" "mg/mL" :Case-92
:UsedDrug-7-92 "40.0" "ug/mL" :Case-92
:UsedDrug-11-92 "10.0" "mg/mL" :Drug-11
:UsedDrug-7-92 "40.0" "ug/mL" :Drug-7
:UsedDrug-11-93 "10.0" "mg/mL" :Case-93
:UsedDrug-7-93 "40.0" "ug/mL" :Case-93
:UsedDrug-11-93 "10.0" "mg/mL" :Drug-11
:UsedDrug-7-93 "40.0" "ug/mL" :Drug-7
:UsedDrug-11-94 "10.0" "mg/mL" :Case-94
:UsedDrug-7-94 "40.0" "ug/mL" :Case-94
:UsedDrug-11-94 "10.0" "mg/mL" :Drug-11
:UsedDrug-7-94 "40.0" "ug/mL" :Drug-7
:UsedDrug-11-95 "10.0" "mg/mL" :Case-95
:UsedDrug-7-95 "40.0" "ug/mL" :Case-95
:UsedDrug-11-95 "10.0" "mg/mL" :Drug-11

:UsedDrug-7-95 "40.0" "ug/mL" :Drug-7

	Introduction
	Motivation
	Objectives
	Contributions

	Background
	Description Logics
	Languages
	Terminological and Assertional Descriptions
	Reasoning
	The DL-Lite Family

	Ontologies
	Definitions
	Languages and Syntaxes
	Querying Ontologies
	Ontology Editors
	Applications and Types of Ontologies

	Ontology Based Data Access
	Conventional RDF Stores
	Relational Data vs. Graph Data
	Quest Reasoner
	OWL 2 QL
	Mappings
	The -ontop- framework

	User Interface Architecture
	Reenskaug's Models-Views-Controllers
	Separated Presentation
	Limitations of Current Approaches
	User Interface Data
	Ontology-Enhanced User Interfaces

	Related Work
	Paulheim et al.
	Tilly et al.
	Summary

	SmartPilot View
	Problems

	Concept
	Overview
	Data Flow
	Application to User Interface
	User Interface to Application
	Eventing Mechanisms

	Key Components
	Data Model
	Database
	Ontology
	Mapping Rules

	Connections to the Core
	Connecting the Application
	Connecting the User Interface

	Implementation
	Data Model
	Database
	Autogenerated Primary Keys
	Representation of Graph Data
	Units of Measure

	Ontology
	Enumerations
	Representation of Graph Data
	Units of Measure

	Mapping Rules
	Representation of Graph Data
	Units of Measure

	Connecting the Application
	Inverse Object Relational Mapping
	Adapter
	Automatically Generated Primary Key
	Representation of Graph Data
	Units of Measure

	Connecting the User Interface
	Java: Accessing Quest
	SPARQL: Accessing the Data
	Representation of Graph Data

	Evaluation
	Correct Result
	Mapping Rules Completeness
	Write Performance
	Read Performance
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Overview: Description Logics
	Basic Languages
	Extension Operators
	Abbreviations

	SmartPilot View: Ontology
	SmartPilot View: UI Data Subset
	System Overview
	Evaluation Results
	Mapping Completeness
	Case
	Drugs
	NSRI Curves
	Patient
	Used Drugs

