
Institute for Software Systems

Realization of a UAV simulation
environment for USARSim-UDK

Diploma Thesis

Author:
Paul-David Piotrowski

Supervisors:
Prof. Dr. Ralf Möller

Prof. Dr. Herbert Werner

July 16, 2012

Declaration

I, Paul-David Piotrowski, solemnly declare that I have written this diploma thesis independently,
and that I have not made use of any aid other than those acknowledged in this diploma thesis.
Neither this diploma thesis, nor any other similar work, has been previously submitted to any
examination board.

Paul-David Piotrowski

Contents

1 Introduction 2

2 Fundamentals 6
2.1 Quadrocopters . 6

2.1.1 Coordinate Systems . 7
2.1.2 Quadrocopter Movement . 8
2.1.3 Sensors . 11
2.1.4 Example: AirRobot AR 100-B 12
2.1.5 Example: Microdrones md4-1000 14

2.2 Simulation . 15
2.2.1 Unreal Engine . 15
2.2.2 USARSim . 18

3 UAV Scenarios 20
3.1 Search . 20
3.2 Providing Communication Services 23
3.3 Tracking . 27
3.4 Payload delivery . 29

4 Implementation 31
4.1 UAV Model . 31

4.1.1 Quadrocopter Model . 31
4.1.2 Sensor Models . 32
4.1.3 Newly implemented sensors 34
4.1.4 Base Equippment of the quadrocopter 36

4.2 Control Program . 36
4.2.1 Overview . 36
4.2.2 Architecture . 37
4.2.3 Implemented Classes . 38
4.2.4 A waypoint following agent 47

5 Tests 53
5.1 Waypoint following . 53
5.2 Repeating Experiments . 54
5.3 Scalability . 54

1

Contents

6 Usage 58
6.1 Installation of the Simulation Environment 58

6.1.1 Unreal Development Kit . 58
6.1.2 USARSim . 58
6.1.3 UAV Control Center . 59

6.2 Control program usage . 60
6.2.1 The main window . 60

6.3 How to create new Agent classes . 62
6.3.1 Deriving a new Agent class . 63
6.3.2 Make the class appear in the UI 63
6.3.3 Adapt uccController . 63

7 Conclusion and future work 64

2

List of Figures

1.1 Predicted trends in UAV autonomy, courtesy of [4] 3

2.1 Apollo quadrocopter, Hamburg University of Technology, courtesy of
[7] . 6

2.2 A quadrocopter oriented in + Mode (left) and x Mode (right) 7
2.3 Inertial and local coordinate system 7
2.4 Six degrees of freedom, curtesy of [12] 8
2.5 Horizontal movement of a quadrocopter 9
2.6 Rotor arrangement . 10
2.7 AirRobot AR 100-B [13] . 13
2.8 Microdrones md4-1000 [15] . 14
2.9 FPS Client-Server Architecture . 16
2.10 A quadrocopter mesh in the UDK editor 17
2.11 USARSim architecture . 19

3.1 Di↵erent search patterns . 21
3.2 Di↵erent lane orientation . 22
3.3 Partitioning of a search area considering distance to base station . . . 23
3.4 UAV acting as a router for two communication endpoints 24
3.5 Covering an area with a wireless network 25
3.6 Rotating group of quadrocopters . 26
3.7 A group of quadrocopters connecting two endpoints 26
3.8 A single quadrocopter tracking a fire 27
3.9 Multiple quadrocopters tracking a fire 28
3.10 Multiple quadrocopters with MANET tracking a fire 29

4.1 Screenshot of the USARSim AirRobot model 32
4.2 AirRobot with a sonar sensor (traces visualized), courtesy of [18] . . . 33
4.3 Gimbaled Inertial Platform [27] . 34
4.4 USARSim class design for sensors, actuators and decoration 35
4.5 Quadrocopter with sonar (blue) and laser (red) sensors 37
4.6 Control program architecture overview 38
4.7 The control program’s user interface 39
4.8 Coordinate Class . 40
4.9 Mission Class . 41
4.10 USARClient Class . 42
4.11 UAV Class . 44
4.12 Agent Class . 45

3

List of Figures

4.13 uccController Class . 46
4.14 BaseAgent Class . 48
4.15 Control in the x/y-plane . 49
4.16 Cosine and sine with marked areas 49
4.17 Altitude control . 50

5.1 UAV following waypoints . 53
5.2 UAV following waypoints, overlaid paths 54

6.1 The main window and its elements 60
6.2 AddMission dialog window . 61
6.3 CreateUAV dialog window . 62

4

List of Tables

2.1 AR 100-B properties [13] . 13
2.2 Microdrone md-1000 properties [15] 14

4.1 Coordinate class properties . 40
4.2 Mission class properties . 41
4.3 Events generated in USARClient . 43

5.1 Testsystems’ specifications . 55
5.2 Multi UAV test results on MacBook 55
5.3 Multi UAV test results on single desktop PC 56
5.4 Multi UAV test results with network setup 56

5

Abstract

In this diploma thesis a control program for quadrocopters is implemented based on
the new Unreal Development Kit version of USARSim in order to create a simulation
environment for UAVs. The purpose of the implemented software is to be helpful in
research, development and testing of control algorithms for quadrocopters operating
in a three dimensional environment as well as in research of learning algorithms for
autonomous quadrocopter behavior. The control program is supposed to act as a
framework and a foundation which can easily be extended with new algorithms that
can then be tested for functionality in the simulated environment without any risk for
actual hardware. Furthermore the implemented software should allow users to focus
on the implementation of their algorithms, releasing them of the task to create whole
new control programs and deal with low level programming of underlying software
layers every time a new algorithm is to be evaluated.

Chapter 1

Introduction

Robotics have been a field of enormous academic interest in which a lot of research
has been conducted in the last few decades. Especially smaller robots, so called
micro robots, are an interesting tool for research in the academic world for they
allow to do research in several disciplines at a relatively low cost when compared to
the robots that are available for big commercial companies or institutes. While a
lot of this research was focused primarily on wheeled robots, flying robots, so called
unmanned air vehicles (UAVs), have gained more and more attention in recent years.

UAVs in contrast to ground based, wheeled robots which operate in an environ-
ment that can be mapped into two dimensional space, operate in three dimensional
space from which a new layer of di�culties and problems arises. Just like ground
based, wheeled robots UAVs can be equipped with a battery of sensors like cam-
eras, gyroscopes, laser scanners or GPS navigation receivers in order to allow for
autonomous behavior. Autonomous behavior in wheeled robots has been researched
for some time already and has made a lot of progress in the recent decade as could be
witnessed in events like the DARPA Grand Challenge in 2005 where autonomously
driving cars have managed to complete the task of driving a 132,2 mile long course
trough open terrain in the desert within the given time limit of ten hours without hu-
man guidance [1] or the DARPA Urban Challenge in 2007 in which six autonomous
vehicles managed to absolve a city course of 60 miles in under six hours in which
they had to interact with other autonomous vehicles and human drivers among other
di�cult tasks [2]. While autonomous behavior for wheeled ground vehicles has seen
a lot of research and has progressed in huge steps in the recent years autonomous
behavior for unmanned aerial vehicles is still a relatively young field of research
and high academical interest o↵ering a lot of opportunity for scientific work. Many
of the algorithms used for autonomous robot navigation on the ground need to be
adapted to either operate in three dimensional space or to work su�ciently fast in
order to allow for real time control of flying devices. While ground based robots can
usually just stop to evaluate their environment and wait until they are done with
their calculations and ready to proceed this is usually not possible for air vehicles
for which such a behavior surely would result in a crash.

UAVs provide an opportunity for cost reduction in several fields. The U.S. De-
partment of Defense for example calculated that 70% of their non-combat aircraft
losses are attributed to human errors, and a large percentage of the remaining losses

2

Chapter 1. Introduction

have this as a contributing factor. Even though aircraft are modified, training em-
phasized, and procedures changed as a result of these accidents, the percentage at-
tributed to the operator remains fairly unchanged. UAVs are expected to reduce this
percentage significantly for three main reasons. First, UAVs, like for example the
Global Hawk, have demonstrated the ability to operate completely autonomously
from take-o↵ through rollout after landing. Software based performance, unlike
its human counterpart, is guaranteed to be repeatable when circumstances are re-
peated. Second, the need to conduct training and proficiency sorties with unmanned
aircraft actually flying could be reduced in the near term with high fidelity simula-
tors. Third, with such simulators, the level of actual flying done by UAVs can be
reduced, resulting in fewer aircraft losses and lower attrition expenditures. The U.S.
Department of Defense expects that although some level of actual UAV flying will
be required to train manned aircraft crews in executing cooperative missions with
UAVs, a substantial reduction in peacetime UAV attrition losses can probably be
achieved. [3]

Figure 1.1: Predicted trends in UAV autonomy, courtesy of [4]

Another economic case to be made for UAVs is their typically reduced size com-
pared to manned aircraft. For example in a local surveillance scenario where the
task would otherwise be carried out by a light aircraft with one or two aircrew. The
removal of aircrew has a great simplifying e↵ect in the design and the reduction of
cost of the aircraft. To accommodate two aircrew and their equipment, like seats,
controls and instruments typically about 1.2 m

3 are required resulting in a frontal
area of about 1.5m2. A UAV to carry out the same task would only require 0.015m3

for housing an automatic flight control system with sensors and computer, a stabi-

3

Chapter 1. Introduction

lized high-resolution color TV camera and radio communication links. The frontal
area would be merely 0.04m2. The masses required to be carried by the manned
aircraft, together with the structure, windscreen, doors, frames, and glazing, would
total at least 230kg. The equivalent for the UAV would be about 10kg. Compared
to the UAV the light aircraft has to carry a 220 kg heavier payload and has about
35 times the frontal area. On the assumption that the disposable load fraction of
a light aircraft is about 40% and of this 10% is fuel, then its gross mass will be
typically of order 750 kg. For the UAV, on the same basis, its gross mass will be
of order 35 kg. The reduced size of the aircraft results in lower fuel costs as well as
lower hangarage cost while the simpler design of the unmanned aircraft allows for
cheaper first costs and lower maintenance costs. [5]

Autonomous UAVs are usually controlled by computer programs. These com-
puter programs can, given enough processing power, be run on board the UAV itself
or otherwise on a remote computer system connected to the UAV via a wireless com-
munication link which provides enough bandwidth for all sensory information to be
transmitted su�ciently fast to the controlling ground station and control commands
to be transmitted back to the UAV. Although on-board processing and decision mak-
ing is the more autonomous approach and therefore more desirable, todays UAVs
are usually not capable of processing all their sensory data by means of on-board
computers and programs and making di�cult decisions in critical situations based
only on such calculations [4]. Today usually a hybrid approach is used, letting the
UAV do the easy processing and decision making tasks with its on-board capabilities
while heavy computational tasks like processing and evaluation of high resolution
video footage is usually done in a ground station, which receives the data over a
powerful enough downlink [4].

UAVs can be equipped with additional communication capabilities allowing them
to communicate among each other and thus making it possible for them to group
and create swarms of UAVs. As can be seen in figure 1.1 fully autonomous self
coordinating swarms of UAVs are treated as one of the highest and most advanced
levels in UAV autonomy which has not been reached yet and is one of the future
goals of the U.S. Department of Defense.

As stated before simulation can be very helpful in the task of training personnel
for UAV missions but simulation is not restricted to human training alone. It has a
long-standing tradition in robotics as a useful tool for testing ideas on virtual robots
in virtual settings before trying them out on real robots [6]. Due to the increase in
the computational power of computers, which made it possible to run computation-
ally intensive algorithms on personal computers instead of special purpose hardware,
and the increased e↵ort of the game industry to create realistic virtual environments
in computer games, it has been getting even more attention in the last decade [6].
Since the goals targeted by the game industry and the requirements for robot sim-
ulation lie so close together, game engines and game technology is used for robot
simulation more often, recently.

Taking into consideration the costs for the actual hardware needed to carry out

4

Chapter 1. Introduction

experiments with UAVs and repairs due to crashes, the time spent constructing ex-
periments and the restrictions imposed by the number of functional UAVs available,
possibly forcing research sta↵ to work on available hardware in a schedule like man-
ner, the idea to have a simulation environment for UAVs becomes very enticing. In
a simulation experiments can be carried out repeatedly in the exact same manner,
failed experiments and crashes do not result in expensive repairs and loss of time,
while, given powerful enough computers, several experiments can be done in parallel
and virtual hardware and environments can be replicated as often as necessary to
provide everyone willing with material to work with. While humans can be trained
in a simulation environment to control UAVs, so can computers utilizing machine
learning algorithms. The simulation’s task is to provide an environment which is
close enough to reality that learning and testing of di↵erent control algorithms in
the simulation leads to comparable results as would have been achieved in a real
world environment. While high fidelity simulations have been vastly expensive and
not widely available in the past this has changed in recent years with the advent
of the modularized game engines, mentioned earlier. These are highly popular for
game development and are capable of generating high fidelity graphics and doing
highly accurate physical calculations on consumer hardware computers. Due to
their popularity these game engines come at a much more a↵ordable price and in
some cases even for free, providing a cost e�cient alternative for robot simulation,
further increasing the financial advantage of simulating robots over having to work
exclusively with real hardware.

In the course of this diploma thesis a UAV simulation environment will be pre-
sented based on a simulation of urban search and rescue robots and environments
which again itself is based on a popular 3D game engine. The UAV simulation
environment is supposed to act as a framework to enable an easy implementation
of UAV control algorithms and learning algorithms which can then be tested and
evaluated in the simulated environment.

5

Chapter 2

Fundamentals

2.1 Quadrocopters

The kind of UAVs this diploma thesis focuses on are small quadrocopters which due
to their little size are often categorized as micro unmanned air vehicles (MUAVs).
Quadrocopters are aircrafts with four propellers mounted on a frame construction
which have flying capabilities that are comparable to that of helicopters.

Figure 2.1: Apollo quadrocopter, Hamburg University of Technology, courtesy of [7]

The basic structure of a quadrocopter is depicted in figure 2.1. They are capable
of vertical take-o↵, hovering in midair and fast maneuvers like flips or loopings. In
addition to their flying capabilities come their, compared to a helicopter, much sim-
pler and therefore massively less sensitive mechanics [8]. These capabilities together
with their usually small size and relatively low costs make these aircrafts attractive
for researchers in the academic field. Scientists have been doing research in machine
learning [9], autonomous navigation of UAVs [10], swarm behavior [11] and other
fields with this kind of devices. Aside from the scientific field quadrocopters are
also used in the military for surveillance, in the civil area for cartography, tra�c
monitoring, observation of big crowds on popular events and by hobbyists around
the world for aerobatics, to name just a few applications.

6

Chapter 2. Fundamentals

A quadrocopter can be configured to fly in one of two orientations. The first one
is the so called x mode where two rotors are placed at the front of the quadrocopter
and two at the rear, the second one is the so called + mode in which one rotor
is positioned in forward, one in backward direction and one in each right and left
direction. The two modes are depicted in figure 2.2. In the following description we
will assume the quadrocopter to fly in x mode.

Figure 2.2: A quadrocopter oriented in + Mode (left) and x Mode (right)

2.1.1 Coordinate Systems

As depicted in figure 2.3 a quadrocopter can either be looked at from an inertial
coordinate system or from the vehicle’s local coordinate system. Any vector can
be converted between the two coordinate systems by the help of rotation matrices
R�, R✓, R which can be applied separately for the rotation around each angle or
combined into one rotation matrix ROV rotating the vector around all angles at

Figure 2.3: Inertial and local coordinate system

7

Chapter 2. Fundamentals

once. The conversation from the inertial coordinate system to the local coordinate
system can be done by the combined matrix ROV given below.

ROV = R�R✓R =

2

4
cos✓cos sin�sin✓cos � cos�sin cos�sin✓cos + sin�sin

cos✓sin sin�sin✓sin + cos�cos cos�sin✓sin � sin�cos

�sin✓ sin�cos✓ cos�cos✓

3

5

Since these matrices are rotation matrices the back conversion of a vector from
the vehicle’s coordinate system to the inertial system can be done by the help of the
transposed of the matrix used before so that

RV O = R

�1
OV = R

T
OV

2.1.2 Quadrocopter Movement

A quadrocopter being an air vehicle has six degrees of freedom. It can carry out
translational movements which is moving up/down, left/right and forward/backward
and it can carry out rotational movements as well, which would be roll, pitch and
yaw as is depicted in figure 2.4. The four rotors each create a force and a torque on
the quadrocopter’s frame and are the only means by which the quadrocopter is able
to move.

Figure 2.4: Six degrees of freedom, curtesy of [12]

In the following overview of quadrocopter movement we will assume that the
quadrocopter’s center of mass lies in the middle of the quadrocopter when viewed
from top and in the same plane as the four rotors and we will not take into con-
sideration any aerodynamic or other e↵ects that might in reality have an additional
impact on the quadrocopter.

8

Chapter 2. Fundamentals

Vertical Movement

The four rotors create a collective thrust in negative direction of zv. As long as the
quadrocopter’s coordinate system’s z-axis is oriented along the inertial coordinate
system’s z-axis and the the speeds of all four rotors are the same, upward and
downward movement is easily accomplished by increasing or decreasing the rotor
speed of all four rotors simultaneously by the same amount. If the sum of the forces
generated by the rotors exceeds the gravitational force mg the quadrocopter moves
upward, if it falls below the force mg the vehicle moves downward. If the four forces
sum up to match mg exactly the quadrocopter will hover in the air. As long as the
forces Fi are all of the same size the moments generated by them will neutralize
each other since they are working against each other which results in a rotational
acceleration of 0.

Horizontal Movement

In order to accomplish horizontal movements the quadrocopter needs to be tilted
into the appropriate direction first, so that as a result the four forces created by
the rotors are also tilted and can be decomposed into a horizontal and a vertical
component. While the vertical component needs to compensate the force created
by the quadrocopter’s weight and thus keeps the quadrocopter from falling down
the horizontal component results in a horizontal movement in the direction of the
quadrocopter’s tilt as can be seen in figure 2.5.

Figure 2.5: Horizontal movement of a quadrocopter

Pitch and Roll

To get the quadrocopter to pitch both front rotors need to create an equal amount
of thrust while both rotors at the back also need to create an equal amount of thrust

9

Chapter 2. Fundamentals

which needs to be di↵erent from the thrust of the front rotors though.

Ffront = F1 = F2,

Fback = F3 = F4,

Ffront 6= Fback

As a result the moments in roll direction will sum up to zero while the moments in
pitch direction will be nonzero and the quadrocopter will begin to pitch. Analogous
to this the quadrocopter can be made to roll by letting the rotors on the right each
generate the same thrust and the ones on the left side generate an equal thrust that
is di↵erent from the thrust generated by the right rotors.

Fright = F2 = F3,

Fleft = F1 = F4,

Fleft 6= Fright

This time the moments in pitch direction will sum up to zero while the sum of
moments in roll direction will be nonzero resulting in the quadrocopter beginning
to roll.

Yaw Movement

Yaw movement is created in a di↵erent way. In order to compensate the torque
resulting from the rotors’ rotation two of the rotors are rotating clockwise while the
two remaining ones rotate in the opposite direction. Usually rotors rotating in the
same direction lay opposite to one another as is depicted in figure 2.6. Assuming an

Figure 2.6: Rotor arrangement

10

Chapter 2. Fundamentals

arrangement of rotors as depicted in 2.6 the overall torque sums up to

Mtotal =
4X

i=1

Mi = (M1 +M3)� (M2 +M4)

As long as Mtotal equals zero there will be no yaw movement. But as soon as Mtotal

is nonzero yaw movement is generated.

Stabilization

Since a human being would not be able to easily stabilize and fly a quadrocopter
without additional sensor support quadrocopters usually have an on-board controller
taking care of stabilizing the vehicle [8]. To achieve this a quadrocopter is usually
equipped with a controller board that contains sensors like gyroscopes and accel-
eration sensors. The controller board usually implements a PD or PID controller
which generates appropriate control signals for the four rotor engines to stabilize
the quadrocopters flight. A human with a remote control usually only tells the
quadrocopter to roll, pitch or yaw and to increase or decrease overall thrust gener-
ated by the four rotors. He is not supposed to control the quadrocopter’s four rotors
directly. The on-board controller will then translate the operator’s commands into
appropriate rotor speeds.

2.1.3 Sensors

Quadrocopters can be equipped with a lot of di↵erent sensors which serve di↵erent
purposes. In order to make flight stabilization possible gyroscopes and acceleration
sensors are commonly used which usually are relatively cheap and lightweight. Given
these sensors a quadrocopter can determine its attitude as well as acceleration and
take measures to achieve a stable position.

Sensors like di↵erent kinds of cameras or measurement instruments like Geiger
counters, thermometers or humidity sensors which are not needed for the quadro-
copter’s functionality itself can be added to a quadrocopter to make it possible to
fulfill certain mission goals like providing live video streams or measured data from
a certain destination area the quadrocopter is supposed to operate in. Cameras can
also be used to remotely operate a quadrocopter independent of the fact if the UAV
is in sight of the operator or not, increasing the quadrocopter’s range of operability
and flexibility [13].

Aside from sensors for flight stabilization and information gathering quadro-
copters can also be equipped with sensors that enable them to perceive their envi-
ronment in order to allow for autonomous behavior. Laser scanners have been used
to allow quadrocopters to perceive obstacles and draw maps of their environments
[10], ultrasonic sensors can be used to implement autonomous obstacle evasion be-
havior while wireless communication devices can be used for communication between
quadrocopters and the internal organization of a swarm of quadrocopters [11]. In
order to allow a quadrocopter to to sense its position a GPS receiver or some other

11

Chapter 2. Fundamentals

kind of positioning system hardware can be carried by the quadrocopter.

With all the di↵erent kinds of sensors available it is necessary to remember that
a quadrocopter can only carry a limited amount of payload and in order to not
overload it, it might be necessary to consider the advantages and disadvantages of
di↵erent sensor combinations in respect to each other and the necessity of each sensor
taken into consideration. Further on more payload results in a greater mass which
has to be lifted into the air by the quadrocopter. This will require a higher thrust
generated by the quadrocopter’s rotors which in turn means that a quadrocopter
needs to consume more energy and therefore will drain its batteries more quickly,
eventually decreasing its employment radius.

2.1.4 Example: AirRobot AR 100-B

The AirRobot AR 100-B is an unmanned aerial vehicle with autonomous flight and
navigation capabilities produced by the company AirRobot. Its primary applications
are reconnaissance, surveillance, search and rescue missions, intelligence, documen-
tation and inspection [13]. It is capable of autonomously holding its position and
hovering over a place either via GPS or optical position lock while the optical po-
sitioning system can keep the UAV in place even in areas where a GPS signal is
not accessible [13]. Stabilization is achieved with the help of gyroscopic, barometric
and magnetic sensors [13]. The AirRobot AR 100-B can be controlled remotely via
a life video feed which makes it unnecessary for the vehicle to be in direct sight of
the operator, the operator can remotely operate and fly the UAV from a computer
seeing through the camera as if sitting in the cockpit [13].

12

Chapter 2. Fundamentals

Figure 2.7: AirRobot AR 100-B [13]

The payloads available for the AR 100-B are build in a modular fashion to allow
for a fast change of equipment. At the moment AirRobot provides a daylight video
camera, a low light black and white camera, a 10 MP still camera and an infrared
camera for their vehicle. All cameras can be tilted up to 100 degrees and can also
look straight down.

The German army tested the AirRobot AR 100-B in Australia for its capabili-
ties in desert environments and is now using it in Afghanistan as a reconnaissance
device [14]. The AR 100-B has also been used in forest fire detection, mine evic-
tion and gas leak detection among other applications [14]. Also autonomous UAV
swarms have been created based on AR 100-B quadrocopters which were modified to
carry a smart camera, that controlled the UAV via its serial interface and provided
basic autonomous capabilities like take-o↵, landing and GPS waypoint following [11].

The numbers in the following table are taken from the manufacturer’s specifica-
tions and describe some of the vehicle’s key features.

Max. Ceiling 1000m
Endurance <30 min
Max. Payload 200g
Deployable Radius 500m limited by analogue video signal

1500m limited by digital video signal
Max. Wind Load 8 m/s
Max Airspeed 50 km/h
Gross Weight 1kg
Diameter 1m

Table 2.1: AR 100-B properties [13]

13

Chapter 2. Fundamentals

2.1.5 Example: Microdrones md4-1000

Another example for a mature quadrocopter system being available on the free mar-
ket is the md4-1000 quadrocopter manufactured by the Microdrones GmbH. It has
been designed for tasks in the field of documentation, coordination, exploration,
surveying, communication, inspection and observation [15]. Just as the AirRobot
AR100-B it has a GPS receiver integrated, provides modularized payloads, which
are basically the same as for the AR100-B, and can be remotely operated either via
line of sight or a live video feed coming from the quadrocopter’s camera. On top of
these capabilities it provides a system to autonomously navigate between waypoints
which can be set by the operator of the vehicle so that its operational range is not
limited by the range of its communication interfaces [15].

Figure 2.8: Microdrones md4-1000 [15]

Max. Ceiling 1000m
Endurance <70 min
Max. Payload 1200g
Deployable Radius 500m controlled remotely

up to 40km when following waypoints
Max. Wind Load 12 m/s
Max Airspeed 54 km/h
Gross Weight 2.65kg
Diameter 1.03m

Table 2.2: Microdrone md-1000 properties [15]

As table 2.2 shows, although the md-1000 has almost the same dimensions as the
AR 100-B it has a higher weight, can carry heavier loads, has a higher deployable ra-
dius and can stay in the air for a longer time. Since the md-1000 can carry relatively
heavy camera equipment it is also used for panorama and landscape photography
as well as aerial filming for cinematic purposes and special e↵ects [15].

14

Chapter 2. Fundamentals

2.2 Simulation

Simulation makes it possible to test control algorithms and system behaviors of
machines without the need for a lot of expenses for the actual hardware that is
simulated. While a real system does only exist once, a system in a simulation can be
reproduced several times if needed, allowing for economies in otherwise particularly
expensive areas such as multi-robot control. Furthermore a lot of simulations can
be run in parallel if the needed processing power is available, possibly speeding up
research and development processes. On top of this simulated hardware does not
need to be repaired, maintained or stored. A crash of a prototype system in real
life could mean hours of repairs during which the system is unavailable for further
tests and development, resulting in high costs. A crash in a simulation though needs
only a hand full of mouse clicks and the simulation can be started anew. This can
be especially advantageous in the case of machine learning where new algorithms
might not always act as expected or where they are expected to produce crashes
in the beginning before converting more or less slowly to a desired behavior. In a
simulation a machine can learn the basics of how to behave and to get along well
within its environment. After that the algorithms developed in the simulation can
be applied to a real machine letting it learn the remaining details in the real world.
In some simulations it is also possible to adjust the speed of time and thus let a
system learn much faster than it ever could in a real situation.

2.2.1 Unreal Engine

Typically real-time 3D simulations have always been di�cult, time consuming and
expensive to build and require specialized hardware and personnel [16]. The cost
of developing ever more realistic simulations has grown so huge that even game
developers can no longer rely on recouping their entire investment from a single
game [16]. This has led to the emergence of game engines - modular simulation code
- written for a specific game but general enough to be used for a family of similar
games [16]. The Unreal Engine is such a game engine developed by Epic Games.
Its first version was released in 1998 with the popular first person shooter Unreal
Tournament. Since then many games have been developed based on this game engine
like Bioshock, Deus Ex and a host of other major titles, and the engine itself has
been ported to several di↵erent platforms. It is now available for Windows, Linux,
Mac OS X, iOS and other operating systems. The engine is capable of creating
high quality 3D environments and makes use of nVidia’s PhysX engine in order to
calculate physical e↵ects. At the moment of writing the Unreal Engine is available
in version 3 while version 4 is still under development and has not yet been o�cially
released. The Unreal Engine’s core is written in the C++ programming language
but a lot of content is also written in the engines own object oriented scripting
language, namely Unreal Script, which also allows for users to create additional
content and game-play items on their own.

15

Chapter 2. Fundamentals

Figure 2.9: FPS Client-Server Architecture

Multi-player first person shooter games like Unreal Tournament use a client
server architecture in which each player takes the role of a client. The fast rendering
of graphics is usually done on the client-side while the server is responsible for
coordinating the di↵erent players and environmental interactions as is depicted in
figure 2.9.

Unreal Development Kit

In 2009 Epic Games released the first beta version of the Unreal Development Kit
which is a free version of their engine that is available to the general public. It
contains the Unreal Editor and other utilities which can be used to create new
content like maps, models or entire new games for the engine and comes with a huge
collection of art and sound assets including textures, 3D models and animations. If
the contents or games built with the UDK are not commercial ones then the UDK
can be used free of charge. Recently new beta versions of the Unreal Development
Kit have been released on a monthly schedule and , according to Epic Games, have
been downloaded more than 1.5 million times as of June 2012.

16

Chapter 2. Fundamentals

Figure 2.10: A quadrocopter mesh in the UDK editor

Unreal Script

Unreal Script is the scripting language of the unreal engine, which allows for con-
tent creation and modification of game logic. It was created to provide the Unreal
development team and third party Unreal developers with a powerful, built-in pro-
gramming language that maps naturally onto the needs and nuances of game pro-
gramming. Its original design was based entirely on the Java programming language,
therefore its syntax strongly resembles Java and C++. Unreal Script is an object
oriented programming language which supports inheritance, interfaces and operator
overloading and provides a pointerless environment with automatic garbage collec-
tion. [17]

Time critical and low level functions in the Unreal Engine are usually written
in the C++ programming language, for compiled C++ code runs much faster than
Unreal Script code. Other, higher level and more abstract functionality is often
implemented in Unreal Script only. The use of C++ functions from within Unreal
Script is allowed though. These functions are referred to as native code then.[17]

In order to manage time in the simulation, Unreal divides each second of game-

17

Chapter 2. Fundamentals

play into so-called ”ticks”. A tick is the smallest unit in which all actors in a level
are updated and typically takes between 1/10th and 1/100th of a second. The tick
time is limited only by CPU and GPU power. The faster the machine the lower
the tick duration is. Unreal Script classes which can be added to the simulation
contain a tick-function which is executed every tick. All motion controlling code
of such classes needs to be placed inside the tick-function. While all Unreal scripts
are executed independently of each other and each actor in a level seems to have
its own thread, internally Unreal does not use Windows threads for e�ciency rea-
sons. Instead threads are simulated by Unreal Script which is transparent for Unreal
Script code but becomes apparent when writing C++ code that interacts with Un-
real Script. [17]

2.2.2 USARSim

USARSim is an acronym for Unified System for Automation and Robot Simula-
tion [18] or also Urban Search And Rescue Simulation [18]. It was designed as
an open source high-fidelity simulation of robots and environments based on the
Unreal Tournament game engine. It’s intended as a general purpose research tool
with applications ranging from human computer interfaces to behavior generation
for groups of heterogeneous robots. In addition to research applications, USARSim
is the basis for the RoboCup rescue virtual robot competition as well as the IEEE
Virtual Manufacturing Automation Competition (VMAC). [18]

USARSim loads o↵ the most di�cult parts of simulation to the Unreal game
engine, so that the developers behind the project and users can concentrate more
on the robot-specific tasks of modeling platforms, control systems, sensors, inter-
face tools and environments [18]. The 3D rendering and physics calculations are all
handed by the underlying Unreal Engine. USARSim itself provides several legged
and wheeled robots, aerial robots and even submarine robots, as well as a battery
of sensors and actuators and virtual environments, i.e. maps, that the robots can
be placed in.

The sensors provided by USARSim can be generally divided into three cate-
gories. First there are proprioceptive sensors, including battery state and headlight
state, second position estimation sensors, including location, rotation, and velocity
sensors and third there are perception sensors, including sonar, laser, sound, and
pan-tilt-zoom cameras [18]. USARSim defines a hierarchical architecture for sensor
models as well as for robot models. A sensor class defines a type of sensor and every
sensor is defined by a set of attributes stored in a configuration file. Perception
sensors, for example, are commonly specified by range, resolution, and field of view.
Beyond that USARSim provides users with the capability to build their own sensors
and robots.

USARSim is available in an older version for Unreal Tournament 2004, in an Un-
real Tournament 3 version and is right now in the process of being ported from the
Unreal Tournament 3 system to the newer free Unreal Development Kit. Since this

18

Chapter 2. Fundamentals

process is not finished yet and the UT3 version of USARSim is not compatible with
the UDK version, the UDK version of USARSim does not yet support all Robots,
Maps and Sensors the previous versions of USARSim supported and models, maps
and sensors from the previous version of USARSim are usually not usable with the
new UDK version.

USARSim provides a socket based interface which is based on Gamebots [19], a
modification for Unreal Tournament, through which it is possible to communicate
with the simulated robots directly, bypassing the Unreal Client. This also enables
controller applications to reside on di↵erent computers than the Unreal Engine thus
allowing to control a virtual robot over a network connection. A sketch of this
architecture can be seen in figure 2.11. A brief overview of Gamebots is provided
in [20]. The communication protocol implemented by USARSim is based on simple
text messages being sent between the controller application and USARSim. All this
enables users to develop and test their own control programs and user interfaces
without limitations in programming language and operating system.

Figure 2.11: USARSim architecture

USARSim is an open source project licensed under the Gnu Public Licence and
is freely available on the internet.

19

Chapter 3

UAV Scenarios

In this chapter some possible applications for UAVs in general and for quadrocopters
in particular will be presented. General applications for single UAVs will be dis-
cussed, showing the versatile possibilities for quadrocopter applications, and where
possible and useful extended to multi UAV scenarios. Any of the presented scenarios
in this chapter can be implemented in the simulation environment developed in this
diploma thesis if proper agents are provided for quadrocopter control and if any
additionally needed sensors are attached to the quadrocopter model.

3.1 Search

A common scenario for robots and UAVs is the search scenario in which the robot
or the UAV is supposed to search for a certain object in a given area. If the object
has been found the UAV is either supposed to report to the base station where the
object has been found and then hover over the object’s position or return right away
to the base station. As with other robot scenarios a UAV needs tor return to its base
station regularly in order to refuel or exchange its batteries. This is an important
limiting factor for the UAV, for it can possibly not reach every location in the search
area in one visit and still return safely. Furthermore it will be able to only search
smaller parts of the search area in one visit if these are further away from the base
station since reaching them will already consume some part of the UAVs available
energy resources.

A UAV can in general take two approaches towards searching a given area. First,
it can move in the search area in a random pattern. Given enough time the whole
search area will be searched by the UAV eventually. This approach has some dis-
advantages, though. Assuming that the random search will be interrupted by a
battery event when the UAV needs to return to the base to recharge, it becomes
less likely for the UAV to visit the areas which are farther away from its starting
point, because every time when recharged the UAV will begin its random search
at the part of the search area which is closest to its base station, possibly taking a
turn before reaching a more distant part, thus depleting its batteries before having
reached the more distant areas after several turns. Another disadvantage of this
approach is that while more distant parts of the search area are harder to reach
other parts of the search area are overflown multiple times where a UAV crisscrosses

20

Chapter 3. UAV Scenarios

its own path.

Figure 3.1: Di↵erent search patterns

A better approach towards searching in an area is to search the area systemati-
cally. This could for example be done in a lane by lane fashion where the UAV flies
the search area up and down in lanes which are displaced a little bit every time so
that eventually the whole area has been covered. A snail like pattern is thinkable
too, so that the UAV flies around the perimeter of the search area and after every
completed round decreases its distance to the area’s center a little. These system-
atical approaches have the advantage that less area is covered multiple times and
more distant areas will be reached in a predefined time, not depending on random
decisions. When searching an area in a lane by lane fashion as stated by [21] the time
needed to cover the entire search area consists of the time needed to travel along the
rows plus the time needed to turn around at the end of the rows. Although di↵erent
sweep directions result in rows of approximately the same total length there can be
a large di↵erence in turns required [21] as illustrated in figure 3.2. Helicopter and
quadrocopter turns take a significant amount of time [21], so in order to decrease
search time a lane pattern should be chosen that yields a relatively small number of
turns.

In order to increase e�ciency even more the ways covered by the UAV in order
to return to its base-station and refuel can be taken into consideration, too, when
planning the route the UAV is to take in the search area. One could prevent the UAV
from overflying the same areas multiple times when returning to the base-station or
flying to the place where the last search was interrupted.

While ground based robots can only operate in a more or less two dimensional
area, UAVs can operate in three dimensions providing for other opportunities than
for ground vehicles. If for example a UAV was to search a given area with the
help of a video or infrared camera, it could increase its cruising altitude in order to
cover a bigger part of the search area in one sweep thus trading image resolution for
amount of area searched, or in other words quality for quantity. This could speed
up search drastically. A UAV could fly so high it may not immediately recognize
the object it is looking for as what it is but low enough to not accidentally miss it.

21

Chapter 3. UAV Scenarios

Figure 3.2: Di↵erent lane orientation

Has it discovered some suspected object it can decrease its flying altitude and take a
closer look at the object to decide whether its the object that it has been looking for.

A search scenario can also be executed by several UAVs simultaneously. Al-
though each of the UAVs could behave independently the way described above,
either searching in some random or systematical pattern, in order to reduce search
time and increase search e�ciency a coordinated approach is to be preferred. The
coordination of the UAVs could take di↵erent forms.

The search area could be split up into several parts, one for each of the UAVs
participating in the search. This would allow for independent search to be carried
out by all participating UAVs without the drawback of the same area being un-
knowingly searched multiple times by di↵erent UAVs. The size of the parts could
be weighted depending on the distance of the respective part from the base-station.
More distant parts could be made smaller than parts closer to the base-station in
order to compensate the distance covered by the UAVs to get to their parts, allow-
ing for all UAVs to fly the same total distance in the end, and finish their search
simultaneously.

UAVs could also search the area in a schedule like fashion. They could form
pairs or bigger units if needed so that if one member of the unit needs to return to
recharge another one can take up its colleaques search, thus allowing for a defined
constant number of UAVs permanently present in the search area.

One more way of performing a search in a group of UAVs would be to fly in a
formation. In order to cover as much of the area at a time as possible the UAVs
would be supposed to fly side by side, possibly in a displaced fashion, this way over-
seeing n times the area of a single UAV in one sweep, where n is the number of
UAVs participating in the formation.

22

Chapter 3. UAV Scenarios

Figure 3.3: Partitioning of a search area considering distance to base station

The principles of the search scenario can be applied to a couple of other scenarios,
too. Area coverage scenarios for example make use of the same considerations as
just presented for the search scenario. While in a search scenario the search ends
if the object searched is found, or is at least interrupted, in many area coverage
scenarios like for example crop spraying or unmanned aerial mapping there is no
such interruption. The UAV is supposed to cover the entire area once to either
spray all plants in the field with a given pesticide or in order to take photos of
every part of the area so that they can later be stitched together providing a high
resolution map of the ground.

3.2 Providing Communication Services

Another application scenario for UAVs and quadrocopters is the provision of com-
munication services. For example as proposed in [22] UAVs could be used to pro-
vide satellite coverage in urban areas with shadowing reducing visibility time or in
disaster areas where terrestrial communication infrastructure is unavailable or in-
terrupted. The UAV would be equipped with a link to a satellite on the one side
and on the other provide for example a wireless network access point and act as a
proxy for connected devices [22]. In a similar fashion a UAV could also provide a
local communication service acting as a router, bridging the distance between more
distant communication partners as depicted in figure 3.4.

23

Chapter 3. UAV Scenarios

Figure 3.4: UAV acting as a router for two communication endpoints

UAVs could also act as airborne GPS pseudo satellites to provide a stronger and
possibly more accurate GPS signal which is harder to jam than satellite based GPS
as proposed in [3].

While this appears as a simple task for a single UAV, for it only needs to place
itself in an advantageous position between the two participating communication
parties things get more interesting when considering multiple UAVs which are to
provide an entire area with a communication infrastructure. The UAVs could be
equipped with small wireless network devices like for example the IRIS node manu-
factured by the company Crossbow Technology [23]. This network node is so small
and lightweight it could be easily carried by a quadrocopter like the AR 100-B. The
sensor nodes could then be utilizing a routing protocol like Dynamic Source Rout-
ing (DSR) [24] to create a mobile ad hoc network and provide a wireless commu-
nication network to a certain area without any preexisting infrastructure required.
DSR allows the created network to be completely self-organizing and self-configuring
without the need for administration [24]. The number of UAVs needed to cover a
certain area would depend on the area size and the range of the communication
devices placed on-board the UAVs. Assuming a communication range of 300 meters
a group of 9 quadrocopters would easily be able to completely cover an area of one
square kilometer with a wireless network as depicted in figure 3.5.

24

Chapter 3. UAV Scenarios

Figure 3.5: Covering an area with a wireless network

As in the search scenario the UAVs would need to return to their base station
from time to time to recharge their batteries. In order for the MANET to maintain
full coverage of the desired area additional UAVs are required to take the place of
their colleagues returning to the base station. Due to the self-configuring capabil-
ities of DSR this change of network nodes would have no negative e↵ect on the
communication service provided. While single nodes can leave and join the network
without di�culties the UAVs participating in the network setup can also move and
change their relative positions. This could be used for example to move the nodes
in the formation in some kind of pattern in order to allow for a constant rotation
of nodes. This way quadrocopters which participated in the formation for a longer
period of time and whose batteries are almost depleted will slowly come into a po-
sition from where they can quickly return to the base station. At the same time
a new quadrocopter coming from the base-station can immediately take the place
left by its predecessor minimizing the time each of the quadrocopters is in the air
without participating in the network thus maximizing the quadrocopter’s e�ciency.

25

Chapter 3. UAV Scenarios

Figure 3.6: Rotating group of quadrocopters

Groups of quadrocopters could also be used to connect two communication end-
points which are too far apart for a single quadrocopter to bridge the distance
between the two. Therefore a long formation of quadrocopters would be necessary.
A di�culty with this approach though is that replacement quadrocopters do always
have to join the formation before any quadrocopter with depleted batteries leave for
the base station in order to prevent an interruption of the communication between
the two endpoints.

Figure 3.7: A group of quadrocopters connecting two endpoints

Furthermore the quadrocopters participating in the creation of the MANET
can not only move in respect to each other but also the entire formation could
move and thus provide communication services for moving entities, like for example
rescue forces in disaster areas. In such a case the UAVs could also conduct other
tasks at the same time like providing video footage of the surrounding area or

26

Chapter 3. UAV Scenarios

measure radioactivity in the case of a nuclear disaster in order to warn rescue forces
should radioactivity increase to dangerous levels. The approach of UAVs providing
a MANET and following a given entity could also be combined with the idea of
a line of UAVs connecting two endpoints. If two entities followed by UAVs move
closer together a small number of UAVs from the MANETs of both entities could
fan out and create a communication link between the two MANETs thus creating a
single network allowing for communication of all participants of the two networks.

3.3 Tracking

Tracking is another possible application for quadrocopters. In a police scenario for
example a car or a pedestrian could be tracked by a quadrocopter equipped with
a camera to allow for unobtrusive observation. In an aircraft crash scenario over
the sea or when a ship has sunk in the ocean quadrocopters equipped with infrared
cameras could be sent out to find survivors and when having found someone hover
over the victims and following them should strong currents drift them o↵, acting as
a beacon to draw helpers to the survivor’s position. Furthermore as proposed in [25]
quadrocopters could be used to track forest fires or bush fires in order to provide as
accurate data of the fire’s spread, its spreading velocity and direction as possible.

Since a single quadrocopter would probably be not able to observe the whole
area of the forest fire from one position, in order to track a forest fire’s spread it
would be required to fly around the fire’s perimeter [25]. Furthermore in order to
make the information about the fire available to ground crew as quickly as possible
under the assumption that the UAV does only have a limited communication range
and cannot communicate with its base-station all the time it would be required to
regularly return close enough to the base-station to deliver the newly collected data
as depicted in figure 3.8.

Figure 3.8: A single quadrocopter tracking a fire

When assigning multiple UAVs the task of tracking the fire, data about the fire’s
spread can be delivered more frequently as with a single quadrocopter. Assuming

27

Chapter 3. UAV Scenarios

the quadrocopters fly around the fire’s perimeter in uniform distances to each other
the time between updates of the fire’s state would decrease with the number of
UAVs. Let tr be the time one quadrocopter needs to fly from within communication
range of its base-station around the fire once and return into communication range
of the base station. The time between updates about the fire’s state tu when using
n quadrocopters then equals

tu = tr/n. (3.1)

Figure 3.9: Multiple quadrocopters tracking a fire

As can be seen in equation 3.1 the update time decreases with increasing numbers
of quadrocopters. If a su�cient number ob UAVs is available the update time can
be decreased to any arbitrary value. The data arriving at the base station following
this approach does still come with a certain delay. While the data about the fire’s
perimeter at the end of a quadrocopter’s round is relatively fresh the data about
the fire gathered at beginning of the quadrocopter’s round is still about tr old even
though it arrives at a frequency of 1/tu.

This disadvantage can be mitigated taking into consideration the possibilities
considered in the previous section about quadrocopters used to build communica-
tion networks. Instead of relying on the single quadrocopters to fly around the fire’s
perimeter as quickly as possible in order to deliver the most up to date information
about the fire a number of quadrocopters could fly around the fire and create a
communication network after the fashion presented in the previous section. The
number of UAVs would only depend on communication range and the fire’s perime-
ter size. Data could be propagated through the network quickly to the base-station
with some UAVs possibly providing a communication connection between the UAVs
circling the fire and the base station as depicted in figure 3.10.

The e�ciency could be further increased by applying the rotation approach pre-
sented in the previous section. The UAVs could circle the fire in a little less time
than would result in their batteries depleted. This way every UAV would make

28

Chapter 3. UAV Scenarios

Figure 3.10: Multiple quadrocopters with MANET tracking a fire

exactly one round around the fire’s perimeter and would be required to travel only
a minimum distance from the fire’s perimeter back to the base station in order
to recharge. This would also make complicated scheduling of UAVs that need to
recharge, planning of their paths from far-o↵ locations to the base-station and any
concerns about communication gaps arising from UAVs leaving the formation un-
necessary while at the same time saving energy due to the UAVs’ lower cruising
speed and possibly also increase information quality.

Should the size of the perimeter of the fire increase this can be countered by
a higher number of UAVs used and increased overall cruising speed while in the
opposite case less UAVs would be required to track the fires perimeter and cruising
speed could be decreased.

3.4 Payload delivery

One more application for quadrocopters or UAVs in general is the delivery of a pay-
load to a certain location. An autonomous UAV supposed to accomplish this task
would need to possess some kind of waypoint following capability in order to reach
the destination where the payload is to be placed, as well as autonomous take-o↵ and
landing capabilities if the payload is not to be dropped from mid-air. Furthermore
the quadrocopter would need some kind of obstacle evasion algorithms implemented
when flying at lower altitudes before landing and after take-o↵ and possibly indoor
navigation capabilities, too, if required to deliver something into buildings.

The scenarios for payload delivery are numerous. For example quadrocopters
could be used for delivery of documents between o�ces in a building, or in crowded
metropolitan regions like Tokyo between o�ces situated in very high floors of op-
posing skyscrapers. This way documents could be flown directly from one tower
to the other through a window making it unnecessary for a person to climb down
to the ground floor of the first building and then climb up the second one only to

29

Chapter 3. UAV Scenarios

repeat this procedure after delivering the documents in order to return to its o�ce.
Considering the preconditions required for this scenario, like reliable autonomous
indoor navigation capabilities in order not to harm any persons, this application is
rather unlikely to be seen anytime soon and is more an outlook on what is a think-
able use for quadrocopters in a more distant future.

Another scenario for payload delivery could be to let a quadrocopter build up
a MANET by placing network nodes at di↵erent locations. In contrast to the
MANETs with network nodes being carried by a group of quadrocopters presented
earlier this approach to building a MANET would require only one single quadro-
copter that would carry a number of network nodes, delivering them one at a time
to their destined positions. While the mobility of the MANET is decreased to zero
once it is in place this approach allows for minimized costs because only one single
UAV is needed to create the MANET. Further on network nodes could be stored in
places that are hard to reach by a human like roofs of buildings, lantern posts and
others. The costs saved due to the lower number of UAVs in use could be invested
into network nodes, thus allowing for coverage of a greater area by the MANET
being deployed. If the UAV can also take up a network node autonomously this
would allow for easy maintenance of MANETs, the UAV replacing nodes of which
the batteries are depleted with new ones making it unnecessary for humans to climb
on roofs or other dangerous locations.

30

Chapter 4

Implementation

In this chapter first the quadrocopter model used in USARSim and the sensor con-
figuration it has been equipped with will be presented after which the implemented
control program for the quadrocopter is discussed. The control program itself is
entirely written in C++ for Microsoft’s .Net platform while the USARSim depen-
dent parts, like sensors, are written in the UnrealScript language. The goal of the
program is to provide a basis on which control algorithms and learning algorithms
for autonomous quadrocopters in USARSim can be implemented without the need
to care for all the underlying aspects of the simulation environment and to rid devel-
opers of the laborious task of implementing a complete control program themselves.
Ideally a developer should be able to use the control program and the provided
quadrocopter and sensor configuration as is, and to concentrate solely on his control
algorithms. These should be implemented it in a C++ class that is derived from
an agent base class, which is provided in the control program and discussed later in
this chapter, to get the algorithms to work in the control program and test it in the
simulation environment.

4.1 UAV Model

This section will provide an overview of the UAV model and sensors used in the
simulation. The specific properties of both can be adapted in the UDKUSAR.ini
file which holds the configurations of most USARSim robots, sensors and actors.

4.1.1 Quadrocopter Model

Although USARSim comes with several robots ready to use the transition to the
UDK version of USARSim is not finished yet. At the moment of writing only one
quadrocopter model has been ported from the old USARSim to the UDK version
and is available for use. The quadrocopter model provided by USARSim is a model
of the AirRobot AR 100-B presented in chapter 2.1.4. The control possibilities for
the AirRobot model in USARSim are the same as for a human operator who is con-
trolling the AirRobot through a remote control which means the AirRobot can move
in direction of the x, y and z-axis and turn around the yaw. Direct control of the
four rotors’ rotation speed is not available at the moment but can be implemented
if desired by changing the quadrocopter model itself and its properties in the UDK

31

Chapter 4. Implementation

Figure 4.1: Screenshot of the USARSim AirRobot model

Editor and editing the quadrocopter’s UnrealScript implementation file. Since flight
stabilization usually takes place within a quadrocopter itself though and the above
way of quadrocopter control resembles a stabilized quadrocopter it is completely
su�cient for the purposes of this diploma thesis.

4.1.2 Sensor Models

Since sensors are important to robot control USARSim simulates proprioceptive
sensors like battery or headlight state sensors, position estimation sensors provid-
ing information about location, rotation and velocity and perception sensors which
include, lasers, sonar and touch sensors among others. In USARSim every sensor is
an instance of a sensor class, which specifies a sensor type. The class hierarchy of
USARSim sensors is depicted in figure 4.4. Almost all sensors in USARSim can add
noise and apply distortion to their data in order to provide a more realistic sensor
behavior and the quality of sensor data can be adapted via parameters. Several of
the sensors provided by USARSim can be used together with the AirRobot, some
of which will be described here briefly.

Sonar Sensor

The sonar sensor implemented in USARSim, in order to mimic a real sonar sensor,
sends out a number of traces which in combination form a cone.

The size of the cone and the number of traces can be specified in the sensor’s
configuration section in the UDKUSAR.ini file. For the traces inside the cone the
distance from the sensor and any surface within the sensor’s range is measured and
the smallest distance measured is returned by the sensor if this distance lies within
the minimum and maximum range of the sensor. If an object is detected to be
closer than the minimum detection distance then the minimum detection distance is
returned by the sensor, if an object is further away than the maximum distance the
sensor can detect the sensor will return the maximum distance. Anything outside

32

Chapter 4. Implementation

Figure 4.2: AirRobot with a sonar sensor (traces visualized), courtesy of [18]

the sensor’s cone is assumed to not throw an echo back to the sensor and therefore
is treated as undetectable by the sensor.

Laserscanner HOKUYO URG-04LX

One of the laser-scanners coming with USARSim is a model of the HOKUYO URG-
04LX. It’s only 5cm wide and long and 7cm high with a weight of only 160g. Al-
though it is a very small and light laser-scanner it provides high quality scans of its
environment with a resolution of about 1cm in range and 0.36 degrees in angle. It
has a maximum range of 4m and has a field of view of 240 degrees. The HOKUYO
URG-04LX is mentioned here because with its 160 g of weight it does not exceed
the AirRobot maximum payload limit and thus could be mounted to the quadro-
copter even in reality. Laser-scanners comparable to this one have been used for
autonomous quadrocopter navigation in indoor environments by A. Bachrach and
al. in [26] and [10] among others. The SICK-LMS200 laser-scanner is also available
as a model in USARSim but with its 4.5 kg of mass, though, it is much to heavy
to be loaded on a quadrocopter like the AirRobot. The USARSim model of the
HOKUYO URG-04LX can be adapted in the USARUDK.ini configuration file.

Inertial measurement unit (IMU)

USARSim also implements an IMU sensor model. Real IMUs are in principle based
on three accelerometers of which the axes are aligned orthogonally to one another
and which are mounted on three gyro stabilized gimbals in order to maintain the
instruments orientation during maneuvers [27]. The accelerometers each measure
the acceleration in the direction of their orientation thus providing a representation
of the overall acceleration applied to the device in three dimensional space. One time
integration of an accelerometer’s output yields velocity while a second integration
yields a change of position along the accelerometer’s orientation [27]. The gyros used
for stabilization measure the angular acceleration, which by one time integration
yields the angular velocity and by a second integration yields an angle by which the
device was rotated around the gyroscopes measuring axis.

33

Chapter 4. Implementation

Figure 4.3: Gimbaled Inertial Platform [27]

The IMU sensor model available in USARSim provides information on accelera-
tion in direction of the x, y and z-axis, as well as pitch, roll and yaw accelerations
and angles.

4.1.3 Newly implemented sensors

As stated before USARSim allows for the creation of new sensors and sensor types.
Sensors in USARSim are derived from the Sensor class, which itself is a subclass
of the Item class. The Item class also serves as a base class for the Actuator and
Decoration classes, as is depicted in figure 4.4. The Decoration class as the name
implies is used merely as decoration on a robot, like for example battery packs or
motor boxes whereas actuators are parts for robots which cannot exist on their own
and can be made to perform actions, like for example a tiltable camera or a robot
arm. In order to create a new sensor, a new class has to be derived either from the
sensor class or one of its subclasses.

Position sensor

Although a GPS sensor is provided with USARSim it seems much easier and more
intuitive to use coordinates in a three dimensional inertial system with an x, y
and z-component instead of altitude, latitude and longitude values measured in
degrees, minutes and seconds as is done with a GPS system. When implementing
a control algorithm it may be a little bit of an overhead to implement a function
understanding GPS coordinates and using these to derive quadrocopter motion,
especially if the quadrocopter is to be used in an application where there is no real
need for utilization of a GPS signal. This is for example the case in indoor scenarios
or when the quadrocopter is to operate in a very limited area or over short distances
where GPS coordinates may not even be of high enough resolution. In order to
simplify handling of the quadrocopter’s position data a new position sensor has
been implemented. If, for some reason, coordinates in a GPS format are required,
the GPS sensor of USARSim can of course still be attached to the quadrocopter
model and used. The new position sensor class is named stsPositionSensor. It is

34

Chapter 4. Implementation

Figure 4.4: USARSim class design for sensors, actuators and decoration

directly derived from the Sensor class and provides Cartesian coordinates based on
the coordinate system of the simulated environment in meters.

Velocity sensor

While USARSim comes with sensors like a tachometer which allow to determine a
wheel based ground robot’s velocity it does not provide a sensor which accomplishes
the same for an air vehicle like the used quadrocopter model. In order to compensate
for this a new velocity sensor has been implemented. The new sensor provides
velocity information as well from the view of an inertial coordinate system, as would
be measured by a spectator from the ground watching the quadrocopter fly, as
velocity information from the quadrocopter’s local coordinate system. The former
is of interest for example for movement in a global frame like navigating on a map
making it possible to see how fast the UAV is going towards which position the latter
is interesting if the quadrocopter is to fly maneuvers and needs to plan its movement
in the local frame. The new velocity sensor class is named stsVelocitySensor and
like the previous sensor is directly derived from the Sensor class. All values coming
from this sensor are given in meters per second.

35

Chapter 4. Implementation

4.1.4 Base Equippment of the quadrocopter

In order not to create any conflicts with other USARSim based applications a new
instance of the AirRobot model available in USARSim has been created and named
stsAirRobot. To allow for autonomous behavior the sensor configuration of the orig-
inal AirRobot coming with USARSim has been extended in the stsAirRobot model.
The stsAirRobot is equipped with the newly implemented velocity sensor mentioned
before providing the UAV with information about its absolute and relative velocities
as well as the newly implemented position sensor. Also an IMU sensor allowing the
UAV to sense its current linear and angular accelerations as well as orientation and
angular velocity has been added to the quadrocopter model. Furthermore the st-
sAirRobot is equipped with a battery sensor allowing it to check its current battery
state. In addition to sensing its location, orientation, velocity and battery state a
quadrocopter that is supposed to act autonomously also needs to perceive its envi-
ronment. In order to recognize and evade obstacles a number of sonar sensors have
been attached to the quadrocopter model. Eight sonar sensors monitor the hori-
zontal plane of the quadrocopter around the perimeter while two sonar sensors are
monitoring the vertical directions. One of them is oriented straight down the other
straight up from the quadrocopter, so that it is capable of perceiving objects above
or below it. In addition to the sonar sensors a model of the Hokuyo URG-04LX
laser scanner has been attached to the stsAirRobot in order to allow for a more
precise measurement of its environment than it is possible with sonar sensors only.
The laser scanner covers 240 degrees of the frontal area of the quadrocopter with
228 laser beams. With such a fine angular resolution the laser scanner can also be
used to generate maps of the environment to allow the quadrocopter to memorize
obstacles and find e�cient ways of moving within its environment. The arrangement
of sonar sensors and the laser scanner on the vehicle can be seen in figure 4.5.

The sensor equipment provided with the stsAirRobot model should be enough
to allow for the implementation of algorithms which enable the quadrocopter to
autonomously fulfill a number of basic tasks. Should any di↵erent or additional
sensors be needed they can easily be attached to the quadrocopter model by editing
a handful of configuration files.

4.2 Control Program

4.2.1 Overview

The control program is generally responsible for steering a quadrocopter in the three
dimensional simulation environment created by the Unreal Engine and made acces-
sible via USARSim. The program first requires the user to enter some basic data
considering the server properties, used quadrocopter model and missions for the
UAV to accomplish. The program will create a connection to the communication
socket of USARSim via which the control program will communicate with the UAV
in the simulation. The UAV will send its sensor data and status data over the link
created to the control program which then based on this data will decide what ac-
tion the UAV is supposed to take and sends the appropriate commands over the

36

Chapter 4. Implementation

Figure 4.5: Quadrocopter with sonar (blue) and laser (red) sensors

communication link back to the UAV.

Because the control program is based on a client-server architecture it is not
restricted to controlling simulated quadrocopters only. Given a real quadrocopter
implemented the USARSim communication protocol the presented control program
could receive sensor readings from and send commands to the quadrocopter and thus
control the quadrocopter in a real environment. Further on, since the underlying
Unreal Engine allows for multiple connections at the same time, it is possible to
simultaneously have several quadrocopters in the same simulated environment, each
of which is controlled by another instance of the control program. This allows for
multi-UAV scenarios to be tested and evaluated.

4.2.2 Architecture

As stated before the whole simulation environment is based on the Unreal Engine
which is responsible for generating the graphics and calculating the physics of the
three dimensional virtual environment. On top of this builds USARSim which pro-
vides models of robots as well as sensors and their functionalities, a number of
standardized environments and a communication interface to use for robot control.
The control program then is built on top of this basis, as can be seen in figure 2.11
and takes responsibility for the interaction between user and simulation environment
and robot control.

To provide an easy to understand and easy to modify structure the control pro-
gram is divided into several modules. Each of this modules has its own functionality
and purpose. The modules can be categorized into three main parts in a model-
view-controller like fashion. First there is the interface to the user which contains

37

Chapter 4. Implementation

Figure 4.6: Control program architecture overview

the main window and any dialog windows appearing in the program. These are re-
sponsible for gathering needed information, reacting to user requests and providing
the user with information about the UAV that is being controlled. Second there is
the part that is responsible for the program’s functionality and models the di↵erent
aspects of it. This part contains components like for example a client which handles
the communication link between control program and USARSim or a UAV compo-
nent encapsulating all the di↵erent aspects of a UAV’s functionality and others. The
third part is a control layer responsible for coordinating the di↵erent components
among each other and with the user interface. The basic structure and communica-
tion between components can be seen in figure 4.6.

4.2.3 Implemented Classes

The components depicted in figure 4.6 and some additional classes will be described
in more detail in this section.

User Interface

The control program’s user interface is a collection of di↵erent windows contain-
ing several Windows forms objects which are to collect data needed for the proper
functionality of the control program, like the server name and portnumber, type of
agent to use for controlling the quadrocopter or the di↵erent missions the controlling
agent is supposed to execute. Furthermore the user interface provides information
to the user via a log window showing messages from the diferent components and
by displaying certain data like for example the quadrocopter’s position in the main

38

Chapter 4. Implementation

window or a map showing the traveled path of the UAV and its mission goal coor-
dinates. Every window is contained in an own class. Figure 4.7 gives an overview
of the control program’s main windows. Beside these there are a couple of smaller
dialog windows which are used in data aquisition from the user.

Figure 4.7: The control program’s user interface

The three windows depicted in figure 4.7 are the main window which provides
the user with several possibilities for input of data, the log window which prints out
all log events raised in the program to the screen and the map window, which shows
a trail of the path taken by the quadrocopter and its mission coordinates. The main
window, its controls and functionality will be thoroughly explaned in section 6.2.

Coordinate Class

A program that is to control a quadrocopter in a three dimensional environment
can be expected to make heavy use of coordinates. Coordinates in a Cartesian
coordinate system for three dimensional space consist of three components. This
would usually require to either create three separate variables for each coordinate
or creation of an array with three elements, each of which has to be accesses via an
index in between 0 and 2. Although the processing of coordinates can be done this
way it tends to complicate and bloat the source code of a program. In order to allow
for easy and uncomplicated handling of coordinates within the source code of the
control program a wrapper class has been implemented which encapsulates an array
and makes the elements accessible as .net class properties via their familiar names,
meaning if there is a coordinate object named coord then the x, y and z component

39

Chapter 4. Implementation

of that coordinate are accessible via coord->x, coord->y and coord->z.

As can be seen in the UML class diagram depicted in figure 4.8 an object of this
class can be instantiated via its constructors, which as parameters take either three
floating point numbers, one for each coordinate component, or an array of three
floating point numbers in order x, y and z.

Figure 4.8: Coordinate Class

The .net properties of the Coordinate class which are not shown in the class
diagram in figure 4.8 are listed in table 4.1.

Property Description
x Gets or sets a float value for the x component
y Gets or sets a float value for the y component
z Gets or sets a float value for the z component

Table 4.1: Coordinate class properties

Mission Class

The task of the quadrocopter which is to be controlled in its environment by the
control program is to fulfill some mission goals. Although these missions can be
hard-coded inside the quadrocopter’s control algorithm this would make any control
program terribly inflexible and require the recompilation of the program for every
new mission goal or type of mission the quadrocopter is to accomplish. In order to
allow for a more flexible handling of missions a Mission class has been implemented.

Most kinds of missions are somehow related to coordinates. Be it following a
number of waypoints, patrolling between two positions or operating in a certain area.
All these examples have one thing in common. They need coordinates to describe
the place where a mission has to be accomplished. While coordinates are needed to
describe the location for a mission another distinction between missions has to be
made if there are to be more than just one kind of mission. An agent controlling
a quadrocopter not only needs to know where to accomplish its mission but also
what kind of mission it is to accomplish. In order to distinguish between di↵erent
kinds of missions and to determine what has to be done at or with the mission’s
coordinates, in addition to the coordinates the Mission class has a type attribute.
This way an agent that is given a number of missions can easily determine what to

40

Chapter 4. Implementation

Figure 4.9: Mission Class

do in each mission by the mission’s type attribute and new mission types can eas-
ily be implemented by just defining a new type number for the new kind of mission
and implementing a special behavior for that kind of mission in the controlling agent.

The constructors for the Mission class take either just an integer representing the
type of mission or an integer for the type and an array of coordinates for the mission.
The addCoordinate() method allows to add coordinates to an already instantiated
Mission object.

Property Description
type Gets an integer value for type of mission
coordinates Returns an array with the mission’s coordinates

Table 4.2: Mission class properties

As with the Coordinate class .net properties have been defined to allow for easier
access to the class’ variables. The properties are listed in table 4.2 and allow read
only access to the mission’s attributes.

USARClient Class

The USARClient class is responsible for setting up a communication channel to the
USARSim server, receiving, parsing and passing on incoming messages from the
server and the robot in the virtual environment as well as sending messages to the
server and to the simulated robot.

The constructor of the USARClient class does not take any parameters. The
setHost() command takes a host name and a port number as a parameter and sets
up the host to use for communication. The connect() and disconnect() commands
are self-explanatory. They connect the client to or disconnect it from the server.
When invoking the receive() method message reception is started. Message recep-
tion is handled by a new thread which is created by the USARClient object. This
reception thread is constantly running and listening for incoming messages. If a
message is received it is parsed and an event is raised by the USARClient object.

41

Chapter 4. Implementation

Figure 4.10: USARClient Class

These events are then received by the controller object which will be discussed in
section 4.2.3 but could also be received by other objects if they registered for it.
Di↵erent kinds of messages result in di↵erent kinds of events which trigger a dif-
ferent behavior in the controller object. In order to send command messages to
the server the USARClient class provides a send() command which takes a message
string containing the command as a parameter.

The class’ attributes are almost all self-explanatory. hostName, hostIP and port-
Number are needed to describe the USARServer end of the communication link,
usarSocket is an object representing the socket used for communication. receiver-
Thread is the thread object for reception of incoming messages, while receiveBu↵er
is needed for message bu↵ering upon reception. The firstBatteryValue variable is a
helper variable which is needed to determine what value of battery charge is to be
interpreted as a fully charged battery and last but not least the stopReceiveThread
variable indicates whether the receiver thread is to be stopped.

The events that are generated by the USARClient class are listed in table 4.3

42

Chapter 4. Implementation

Event Description
UAVPositionEvent new position data received
UAVBatteryEvent new battery data received
UAVVelocityEvent new velocity datareceived
UAVLinearAccelerationEvent new linear acceleration data received
UAVAngularVelocityEvent new angular velocity data received
UAVAngularAccelerationEvent new angular acceleration data received
UAVOrientationEvent new orientation data received
UAVSonarTopEvent new data from the top sonar received
UAVSonarBottomEvent new data from the bottom sonar received
UAVLaserScannerEvent new data from laser scanner received
LogEvent there is something to log
UAVSonarHorizontalEvent new data from horizontal sonar sensors received

Table 4.3: Events generated in USARClient

UAV Class

This class is supposed to encapsulate the properties of the quadrocopter or any
given UAV, which is the current state and position of the vehicle and all its recent
sensor readings. Further on it is supposed to provide the interface to the UAV for
any control algorithm that is to interact with the air vehicle. A UML class diagram
showing the UAV class’ attributes and methods is depicted in figure 4.11.

The most recent values of all the quadrocopter’s sensor readings are stored via
setter methods, which all begin with the update prefix, in internal variables inside
this class and are made accessible via getter methods. These two make up the bulk
of the UAV class’ methods. Instead of getter methods the internal variable values
could have been made accessible via class properties, giving them more convenient
names and allowing for easier use. It would be less obvious then, though, that this
results in a function call every time the property is used which in a method where
the UAV object’s internal variables are heavily used could lead to a noticeable degra-
dation of performance. On top of that the implementation of new sensors would
require the additional overhead of providing any new internal variables of the UAV
class as property values to remain consistent with the current implementation and
thus increase the amount of code to be written. Aside from getter and setter meth-
ods there are only two more methods available in the UAV class. First, the UAV
class’ constructor which takes no further arguments. Second, the sendSpeedCom-
mand() which sends a control command to the quadrocopter model in the virtual
environment when invoked, telling it the desired velocities in direction of the three
axes and around the yaw. These velocities are all integers in the range from -100 to
+100 indicating the percentage of the maximum possible speed in the desired direc-
tion. The sendSpeedCommand() command is supposed to be used by agent objects
to control the UAV in the simulation. All agent interaction with the quadrocopter
model happens through a UAV object.

43

Chapter 4. Implementation

Figure 4.11: UAV Class

44

Chapter 4. Implementation

UAV objects, just like objects of USARClient can raise a LogEvent which is
useful for checking certain sensor values when debugging an algorithm.

Agent Class

The Agent class is intended as a base class for agents which control the quadrocopter
model in the virtual environment.

Figure 4.12: Agent Class

As can be seen in figure 4.12 it has three attributes. First, it has a pointer to
the UAV object which represents the quadrocopter in the simulation it is to control.
Second, it contains an array which holds all the missions the agent is supposed to
execute and third, it has an integer which is used as an index to the mission in the
missions array which is currently being executed. Furthermore it implements three
methods beside its constructor which takes a pointer to the controlled UAV object.
The start() method is supposed to start the execution of the agent and let it send
control commands to the quadrocopter, while the stop() command is supposed to
stop the agent and quadrocopter control. The third method is the addMission()
method which is supposed to insert additional entries to the list of missions the
agent is supposed to execute. These three methods are declared virtual in order to
generate polymorphism in subclasses, so that every class inherited from the Agent
class can implement its own start(), stop() and addMission() methods, containing
its own routines and logic while at the same time allowing these methods to be
called from the controller class via a simple pointer to the base class of all agents
which lies at the top of the inheritance tree.

Objects of the Agent class can raise two di↵erent event types. The first event,
LogEvent, results in a log message in the log window containing the provided string
argument. The second event is the AllMissionsDoneEvent which signals that the
agent has finished executing its missions, allowing for appropriate actions.

The Agent class itself does not provide any useful functionality concerning the
control of a quadrocopter, yet. This has to be implemented by subclasses of the
Agent class.

45

Chapter 4. Implementation

uccController Class

The uccController class is responsible for setting up all components from the model
layer presented earlier, according to the data provided by the program’s user in the
user interface section, as well as coordinating all these components in respect to
each other.

Figure 4.13: uccController Class

All objects of the underlying model layer are created and controlled by the uc-
cController class. The procedure basicly goes like this. The uccController creates
a USARClient object which upon command by the user connects to USARSim and
begins to receive messages sent by the server. Then it creates a UAV object as well
as an Agent and the Agent object is associated with the UAV object it is supposed to
operate on. When the user presses the respective buttons, the quadrocopter model
is spawned in its virtual environment, the Agent object is handed over the missions
it is to accomplish, and then begins to read sensor values from the quadrocopter
and generate control commands for it to achieve its missions.

The uccController object is also responsible for receiving all events and messages
sent by the underlying objects and forward them to the right destination or take the
right actions. These events can be of di↵erent kinds. Each component in the model

46

Chapter 4. Implementation

layer can for example issue a log event. The controller object upon reception of such
an event takes care of printing the log message received in the user interface’s log
window. If new sensor readings are received by the USARClient object, these result
in an event, too, upon which the uccController object updates the UAV object’s
internal variables according to the new values. All in all there are fourteen methods
handling di↵erent kinds of events defined in the uccController class. They all follow
the naming convention onXYZEvent where XYZ is replaced by the event name.

The constructor of the uccController class takes three delegate methods as argu-
ments so it can set up the functionality for writing log messages to the log window
and printing position and battery information in the main window. Which meth-
ods to call is stored in the log, setUIPosition and setUIBattery attributes of the
class. The agent, uav and client attributes are needed for the model layer ob-
jects. The missionLoop attribute defines if missions should be executed in a loop
or only once. startPosition, startRotationRoll, startRotationPitch and startRota-
tionYaw are needed to save the quadrocopter model’s start position and attitude
to always respawn the model at the same position when missions are executed in
a loop. The remaining methods do what their names imply. createUAV() initial-
izes the uav and agent attributes, setHost() provides the USARClient object with
information about the server, connect() makes the USARClient object establish a
connection to the server, spawn() places the quadrocopter at the given position in
the simulation and startMissions() starts the execution of the agent. Missions are
added to an agent by calling the addMissions method and stop() stops the agent
and the client and their threads.

4.2.4 A waypoint following agent

As stated in the previous section about the Agent class the class is designed as a a
base class for agents to be derived from and does not implement any useful behav-
ior itself. Control algorithms are supposed to be implemented in subclasses of the
Agent class and because of the polymorphy achieved by declaring the base class’
start(), stop() and addMission() methods as virtual methods should work without
any bigger code modification in the rest of the program. Any code that called one
of the base class’ three methods should be able to use the methods provided by the
subclass right away. In order to verify the functionality of the concept a sub-classing
the Agent class a new agent will be implemented in this section.

One very basic capability of autonomous UAVs is the ability to autonomously
follow a given number of waypoints and reach a target destination. In order for
the new agent to do something more useful the task for the new Agent subclass
will be exactly that. It will take control of the quadrocopter in the simulation, use
its position and orientation sensors and, using a simple but e↵ective algorithm, will
generate control commands for the quadrocopter to provide a basic waypoint follow-
ing functionality. The new class has been named BaseAgent and its class diagram
can be seen in figure 4.14.

47

Chapter 4. Implementation

Figure 4.14: BaseAgent Class

Control Algorithm

In order to follow a number of waypoints an agent has to be able to reach a single
destination position first. When it is capable of that it can be commanded to fly to a
sequence of given positions thus producing the desired waypoint following capability.
The algorithm used for the BaseAgent class to generate control commands for the
quadrocopter will be presented here. As already explained earlier the quadrocopter
model in USARSim can be commanded to move in three directions and to turn
around the yaw. The algorithm presented here will only generate control outputs
for the quadrocopter’s linear velocity, its altitude velocity and its yaw rotation. The
lateral velocity output generated by the algorithm will always be zero. An approach
with this restriction may not make use of a quadrocopters full maneuvering capa-
bilities but this does not prohibit the quadrocopter’s ability of following a sequence
of waypoints.

The control algorithm divides the control problem into two parts. One is control
of the quadrocopter in the x/y-plane while the other is the altitude control of the
quadrocopter. Control of the quadrocopter in the plane will be discussed first.

Flight control in the plane: Lets assume we have a quadrocopter in its local
frame as depicted in figure 4.15 with the x axis extending in forward direction and
the y axis extending to the right. Let the point P be the destination coordinate the
quadrocopter is to reach and ↵ the angle between the y-axis and the direction vector
of the destination. The problem of generating control outputs for the quadrocopter
in the plane can be boiled down to the generation of a velocity value for movement in
direction of x and an angular velocity for yaw movement. Taking a look at the sine
and cosine functions depicted in figure 4.16 the following coherence of the distance
to the destination P, the angle ↵, and the linear velocity can be observed. If the
destination point is situated in front of the quadrocopter the angle ↵ lies between
0 and 180 degrees, if it is behind the quadrocopter the angle lies somewhere in the
range from 180 to 360 degrees. This means that the sine function of the angle ↵
will be equal 1 if the destination is situated directly forward from the quadrocopter,
-1 if it is situated directly behind and 0 if it is exactly to the left or right of the
quadrocopter. Since the commands for the quadrocopters velocities take values be-
tween -100 and +100, which are to be understood as a percentage of the maximum

48

Chapter 4. Implementation

Figure 4.15: Control in the x/y-plane

possible speed at which the quadrocopter is capable of flying, the sine function pro-
vides a pretty comfortable way of manipulating the quadrocopters linear velocity.
The control algorithm’s output for the linear velocity is generated with the formula
shown in equation 4.1

Figure 4.16: Cosine and sine with marked areas

vx =

(
100sin(↵), if 0 ↵ 180

0, else
(4.1)

As a result the quadrocopter will move forward faster if the destination point is
right in front of it and increasingly slowly the further the destination point lies to
the side of the quadrocopter. If the destination point lies behind the quadrocopter
there will be no forward movement at all.

The second component for the quadrocopters movement in the x/y-plane is the
yaw velocity. For its value again a trigonometric function is used, this time the co-
sine function. Considering the plot of the cosine function depicted in figure 4.16 and
our quadrocopter’s coordinate system one can see that if the destination point lies
at the left side of the quadrocopter the angle ↵ lies in the range between 90 and 270

49

Chapter 4. Implementation

degrees which results in a value of the cosine function of ↵ in between 0 and -1 and
if the destination point lies on the right side of the quadrocopter ↵ lies in between
270 and 90 degrees resulting in a cosine of ↵ in the range of 0 and +1. Accordingly
the cosine function of ↵ is a good indicator for the angular velocity around the yaw.
Again the allowed control values for the rotational velocity are from -100 to +100 so
that the control algorithm’s yaw velocity is calculated by the formula in equation 4.2.

vyaw = 100cos(↵) (4.2)

As a result of the control values generated by equation 4.1 and 4.2 the quadro-
copter’s flight behaviour in the x/y-plane is as follows. The more directly it is
heading into the direction of its destination the faster it will fly and the lower its
yaw velocity will be. On the other hand the more the direction the quadrocopter
is heading in is deviating from the direction of its destination the slower it will fly
and the faster it will turn into the desired direction. Should the destination even lie
behind the quadrocopter it will come to a full stop and turn until the destination
enters the front side of the quadrocopter.

Altitude control Since the quadrocopter is not to fly in a two but in a three
dimensional environment the agent in control of the quadrocopter also needs to
generate control values for the UAV’s velocity in direction of the z-axis. Let’s assume
that the quadrocopter lies in the z/x-plane as depicted in figure 4.17 where the x-
axis again increases to the front of the quadrocopter while the z-axis points from
the quadrocopter up.

Figure 4.17: Altitude control

Let P again be the destination coordinate and � the angle between the x-axis and
the direction vector of P. This is basicly the same problem as with the quadrocopter’s
linear velocity. This time if the destination point P lies above the quadrocopter we
want it to rise with speed increasing the more � approaches a value of 90 degrees

50

Chapter 4. Implementation

and otherwise we want it to decrease its height also with increasing speed the more
� approaches a value of 270 degrees. Thus the agent’s velocity output in direction
of z is calculated with the formula in equation 4.3.

vz = 100sin(�) (4.3)

Implementation

Before a waypoint following agent could be implemented a new kind of mission for
this purpose had to be defined. This has been done in the Mission.h file by adding
a line defining a constant named MISSION GOTO XYZ. Missions of this type are
supposed to contain one coordinate, which to reach is the mission goal. In order
for the new Agent subclass to be able to add the new kind of mission to its mission
array the addMission() method of the BaseAgent is redefined. Any missions of type
MISSION GOTO XYZ passed to that method are added to the array of missions
inside the agent. All other missions are dropped with a LogEvent announcing that
an attempt was made to pass an unknown mission type to the agent object.

In addition to the methods and attributes provided by the base class two new
protected methods and two new protected attributes have been added to the sub-
class. The first new attribute is a thread object named agentThread, the second one
a helper variable of boolean type indicating whether the thread should be stopped
or not. The threadLoop() method implements a small loop which first checks if the
stopAgentThread variable is true or false. If it is true, the loop will stop immediately.
If it is false the missionPlanner() method will be executed, after which the thread
is paused for a predefined period of time before the loop begins anew.

The missionPlanner() method is responsible for generating the control com-
mands for the simulated quadrocopter and implements the previously described
algorithm. The missionPlanner() method will guide the quadrocopter to the target
coordinate of the next mission in the missions array. It does this by constantly
getting the most recent position and orientation data from the UAV and evaluating
equations 4.1, 4.2 and 4.3. After having calculated the appropriate values for the
quadrocopter’s velocities it sends a control command to the quadrocopter via the
sendSpeedCommand() method of the UAV object. If a waypoint has been reached
the next waypoint will be targeted by the missionPlanner() method until all mis-
sions in the missions array have been executed upon which the loop will be quit and
an AllMissionsDoneEvent will be raised.

The start() and stop() methods have also been changed in the new subclass. The
start() method now resets the mission index to zero in order to point at the first
waypoint mission and then initializes the thread object to execute the threadLoop()
method which will then be started in a new thread. The stop() method will simply

51

Chapter 4. Implementation

set the stopAgentThread variable to true and return after the thread was stopped.

By the relative minor additions of two new variables and methods the new
BaseAgent class is in fact capable of following a series of waypoints implement-
ing an important base capability for an autonomous air vehicle as will be shown in
a series of exemplary tests in chapter 5.1. Furthermore this shows the ability of the
provided framework to allow for an iterative extension of an agent’s capabilities by
sub-classing an existing Agent class and adding new features to it.

52

Chapter 5

Tests

5.1 Waypoint following

The BaseAgent class presented in chapter 4.2.4 was implemented to provide the
capability of following a given number of waypoints. In order to test whether the
new agent type can follow a series of waypoints su�ciently well a coulple of exem-
plary testruns have been conducted. In each test run the agent was given a couple
of waypoits it had to visit before returning to its starting point. The screen-shots
depicted in figure 5.1 show two exemplary paths taken by the quadrocopter to reach
the waypoints depicted in red squares on the map in the specified order.

Figure 5.1: UAV following waypoints

As can be seen the agent moves from one waypoint to the next as it is supposed
to do. Figure 5.2 shows two screen-shots of maps depicting five consecutive runs of
the same experiment in a row.

53

Chapter 5. Tests

Figure 5.2: UAV following waypoints, overlaid paths

As can be seen in the overlaid experiment maps in figure 5.2 the paths created by
the algorithm are almost identical in each run. This shows first, that the algorithm
creates reproducible results and second, that the simulation environment allows for
almost identical execution of the same experiment for any given number of times.

5.2 Repeating Experiments

The simulation environment and the control program provided in this diploma thesis
were also supposed to be usable for the case of machine learning algorithms. As
previously mentioned many learning algorithms need to perform numerous iterations
of a given experiment optimally every time under the exact same conditions in order
for noticeable learning to take place. The control program provides the possibility
to execute a once set up experiment in exactly the same way in a loop, over and over
again, as could be seen in the overlaid maps of the waypoint following tests. In order
to test the stability and reliability of the control program an exemplary experiment
has been executed in a loop for a time period of three hours. In the experiment
the simulated quadrocopter had to follow a course of three waypoints after which it
was to return to its starting position. In the course of this test the experiment was
repeated 237 times without problems or crashes showing that the program can be
used for a high number of iterations of experiments over a long period of time and
can be of use in the testing of learning algorithms.

5.3 Scalability

For the simulation environment to be useful for the creation of groups or even
swarms of UAVs the system has to be scalable. In order to test the scalability of
the simulation environment, tests have been conducted with an increasing number
of UAVs being placed in the simulation environment and the CPU usage of the

54

Chapter 5. Tests

used PCs and the displayed frames per second in the client window being measured.
The tests have been conducted with two di↵erent PCs, one being an older MacBook
the other an also older desktop PC. The systems’ specifications are listed in table 5.1.

MacBook Desktop PC
CPU type Intel Core2 Duo P8600 AMD Athlon64x2 5200+
CPU speed 2.4 GHz 2.6 GHz
Memory 8GB 8GB
Graphics adapter nVidia GeForce 9400M nVidia GeForce 8600 GT
OS Windows 7 Professional Windows 7 Professional
Network speed 1000Mbps 1000Mbps

Table 5.1: Testsystems’ specifications

Because of the relatively poor hardware the Unreal Client has been executed in
window mode instead of full screen mode with a reduced resolution of 640x360 pixels
on both systems. First tests were done on the MacBook running the Unreal Server
as well as the Unreal Client and all the instances of the control program controlling
the di↵erent quadrocopter models in the simulation. The simulation environment
was started with no quadrocopters being placed inside the virtual environment, after
which successively one quadrocopter after the other has been added to the virtual
environment. The results of this test are listed in table 5.2.

No. of UAVs FPS CPU usage (%)
0 61.96 35.94
1 61.83 52.09
2 59.64 58.52
3 56.6 70.03
4 52.33 72.55
5 45.7 75.11
6 18.13 70.93
7 3.87 71.25

Table 5.2: Multi UAV test results on MacBook

As can be seen from the test results in table 5.2 the frame rate in the client win-
dow drops below 20 frames per second if more than five quadrocopters have been
placed in the simulation. Frame rates below 20 are impractical for simulation since
the rendering of movement becomes choppy to the naked eye and the long lags be-
tween two successive frames keep the controlling agent from reacting to any events
in the simulated environment in a reasonable time. A frame rate below 4 frames per
second as is observed with 7 quadrocopters is totally unacceptable because sensor
data will be updated only about four times a second and the agent will react to any
sensor readings with a delay of at least 0.25 seconds.

55

Chapter 5. Tests

The second test was conducted with all software running on the desktop PC,
following the same procedure as described for the MacBook. The test’s results are
listed in table 5.3

No. of UAVs FPS CPU usage (%)
0 62 24.18
1 62 34.8
2 61.99 38.75
3 61.6 42.39
4 61 46.83
5 59.5 49.97
6 58.4 58.92
7 57 61.93
8 53.5 64.55
9 51.2 67.24
10 44.2 69

Table 5.3: Multi UAV test results on single desktop PC

The test data for the desktop PC yields better results than on the MacBook
before. While on the MacBook values got into a critical range for more than five
simulated quadrocopters, on the desktop PC even with ten quadrocopters being sim-
ulated at the same time the measured values remain in an acceptable range. This
is probably due to the much more powerful graphics adapter found in the desktop
PC.

Since the simulation environment is based on a client-server architecture and
two PCs were available for testing purposes one more test has been conducted, this
time with the Unreal Engine and Unreal Client running on the desktop PC while the
control programs controlling the simulated quadrocopters were run on the MacBook.
Both computers were connected via a 1000 Mbit ethernet network. Results from
that test are shown in table 5.4.

No. of UAVs CPU usage MB(%) CPU usage DT(%) FPS
0 0.9 26.63 61.84
1 2.44 30.42 61.99
2 2.8 34 61.86
3 2.48 40.17 61.99
4 5.41 44 60.82
5 5.7 48.67 60.64
6 5.92 49.47 60.54
7 7.64 52.07 59.04
8 8.52 53.11 55.7
9 9.03 55.41 57.71
10 9.57 58.1 53.84

Table 5.4: Multi UAV test results with network setup

56

Chapter 5. Tests

As could be expected the number of frames displayed per second in the Unreal
Client window were noticeably higher and also the CPU usage on the desktop PC
was noticeably lower than in the second experiment conducted. The measured val-
ues also show that the much more resource consuming component of the simulation
environment is the Unreal Engine and the Unreal Client, doing graphics rendering
and physics calculations, while the control program itself makes only moderate use
of CPU resources.

It can be concluded from the test results that the provided simulation environ-
ment is capable of simulating at least moderately sized groups of quadrocopters on
the hardware used, proving the system to be scalable to a certain degree. Further-
more it can be assumed that group size and scalability can be greatly increased if
more up to date hardware like a decent graphics adapter and more powerful multi
core CPU were used to run the simulation environment.

57

Chapter 6

Usage

6.1 Installation of the Simulation Environment

6.1.1 Unreal Development Kit

The latest released version of the Unreal Developer Kit can be found and downloaded
from http://www.unrealengine.com/udk/. The size of the installation file at the
moment of writing has grown to more than 1.7 GB, so that it can take a little
while to download. The installer when started will suggest to install the UDK in
a directory like C:/UDK/UDK-YYYY-MM where YYYY stands for the year and
MM for the month of the UDK’s release. The suggested installation directory is
a good choice and can be kept as is since USARSim sometimes fails to install if
the UDK is installed into a directory with special characters. In the following it
will be assumed that the UDK has been installed in the directory suggested by the
installer. If that is not the case paths in the following instructions concerning the
UDK installation directory have to be adapted to the path actually chosen during
installation.

6.1.2 USARSim

In order to install USARSim a working version of the Git source code management
system needs to be installed on the computer used. A new directory should be cre-
ated and a console window opened. The working directory of the console window
needs to be changed to the just created directory and there the following command
has to be issued to download all USARSim files from the USARSim Git repository.

git clone git://usarsim.git.sourceforge.net/gitroot/usarsim/usarsim

Once the download is finished all the files in the subdirectory usarsim have to
be copied into the UDK installation directory. If a dialog pops up and asks whether
existing files are supposed to be overwritten by the new files this has to be answered
with yes. After copying of files has completed, the batch program make.bat has
to be executed to compile USARSim on the machine. If the compilation has been
successfully finished the installation of USARSim is completed.

58

Chapter 6. Usage

6.1.3 UAV Control Center

In order to make the modifications applied to USARSim in the course of this diploma
thesis available the usarsim folder on the CD-Rom coming with this work has to be
copied into the installation directory of USARSim. If Windows asks whether already
existing files should be overwritten by new files with the same name this has to be
answered with yes again. Once the files have been copied the USARSim installation
needs to be recompiled, which is done by invoking the make clean.bat batch pro-
gram lying in the UDK installation directory. After the compilation has finished all
modifications needed for the control program should have been successfully applied.

The control program can then either be copied from the debug directory in the
Visual Studio project folder to any desired directory on the PC and executed, or di-
rectly started from the CD-Rom. In order to start the Unreal Server and USARSim
and load a virtual environment one of the map files in the directory C:/UDK-YYYY-
MM/USARRunMaps needs to be double-clicked. Once the virtual environment has
been started the control program can be used to spawn a quadrocopter assign mis-
sions and control the UAV.

In order for the program to run the Microsoft Visual C++ 2010 Redistributable
libraries coming with Visual Studio 2010 or separately downloadable from the Mi-
crosoft website need to be installed on the system.

59

Chapter 6. Usage

6.2 Control program usage

In this section a description of the main window and its elements will be given
followed by a basic introduction into the program’s usage.

6.2.1 The main window

The main window of the control program with its controls is depicted in figure 6.1.
Its content can be divided into the six di↵erent parts shown in figure 6.1 of which
each one has a di↵erent purpose. In the following these will be briefly presented.

Figure 6.1: The main window and its elements

Area 1: This area takes the coordinates at which a quadrocopter model is to be
spawned in the virtual environment as well as its orientation. The coordinates are
measured in meters from the origin of the coordinate system of the map being in
use when spawning the robot. The orientation angles are measured in degrees.

Area 2: This area is used to add missions to the agent being in control of the
quadrocopter. The ’+’ button will open the dialog window depicted in figure 6.2 in
which the mission type can be selected from a drop-down list and the coordinates
can be added to or deleted from the mission with the ’+’ and ’-’ button respectively.
Any missions added to the agent will be displayed with coordinates in the white
text box. In order to remove a mission from the text box it has to be highlighted
by clicking on it and then the ’-’ button has to be pressed. The Loop check-box in-
dicates whether the missions are to be restarted again once they have been finished.
If the check-box is checked the missions will be executed over and over again until

60

Chapter 6. Usage

either the check-box is unchecked or the program is ended.

Figure 6.2: AddMission dialog window

Area 3: The controls in this area are used to define the logging behaviour of the
control program. The Map overlay checkbox defines whether the map drawn in each
run of an experiment is to be reset with the start of the next run or if all tests should
be drawn onto the same map. If the Map autosave and Log autosave check-boxes
are checked then after every finished experiment the contents of the log window and
the map window will be saved to disk and afterwards reset, unless the Map overlay
checkbox is checked in which case the map will not be reset. The Log path text-box
allows to define a path under which the files are to be saved and the Log file prefix
field allows to define a prefix for all files created during the experiment. All files
will then be created in the specified directory with the provided prefix and a trailing
number indicating the number of iteration of the experiment. The maps created
will be saved as bitmap files, while the log files are saved in the rich text format. If
the check-boxes for autosave are unchecked no files will be created and the log will
be written continuously to.

Area 4: This area provides the main functionality of the program. The Create...
button opens the dialog window depicted in figure 6.3 which allows to select one
of the UAV models that are known to the application and one of the agent types
that have been implemented in order to control the UAV. Furthermore server con-
figuration data has to be provided in this dialog to setup the Unreal Server that
the controller program is to connect to. The Connect... button will then connect
the control program to the server after which message reception is turned on. After
the connection to the server has been established the quadrocopter model can be
spawned in the virtual environment with the Spawn button at the location speci-
fied before in the start position area. If missions have been specified then the Start

61

Chapter 6. Usage

Figure 6.3: CreateUAV dialog window

Mission button will start the agent which will then begin to execute its missions.
The Hide log button can be used to hide the log window in case its output is of no
interest and the Save Log button can be used to save the current content of the log
window to an arbitrary file. The Quit button will disconnect the control program
from the server, stop all running threads and end program execution.

Area 5: This area provides information about the quadrocopter’s status by dis-
playing its current position and battery charge level. This information is constantly
updated as soon as new sensor data from the UAV model is available.

Area 6: The last area in the main window is found in the title bar which displays
the type of UAV model that is being controlled in the simulation environment as
well as the type of agent that is controlling it.

6.3 How to create new Agent classes

In order to implement any control algorithms in the framework provided it is nec-
essary to create a new agent class which is derived from the Agent base class. This
is basicly a three step process. First of all the new class needs to be implemented,
then the class has to be made available in the user interface so that the user can
select it as the controlling instance for the quadrocopter and then the uccController
class needs to be adapted so it knows when to create an object of the new class. The
detailed procedure of adding a new agent is presented below in this section. After
performing the steps described here the new agent type is selectable in the user
interface and can take control over the quadrocopter in the simulated environment.

62

Chapter 6. Usage

6.3.1 Deriving a new Agent class

A new Agent is basicly implemented by creating a subclass of the Agent class.
The uccController class calls the start() method of all Agent subclasses to start
the agent’s execution and the stop() method to stop it. So in order for the new
deviated agent class to do something useful it is necessary to overwrite the these two
functions which are defined as virtual in the base class and have no real functionality
implemented. It is probably a good idea to have the start() method start a thread
reading sensor values from the UAV object and generating control commands for
it. The stop() method is then supposed to end any running threads when called.
Furthermore the addMission() method needs to be overwritten. Any new subclass of
an agent class can possibly execute di↵erent types of missions and therefore needs a
di↵erent implementation of this method. On top of overwriting these three methods
any number of new methods and attributes can be added to a new agent subclass.

6.3.2 Make the class appear in the UI

In order to make the new agent type selectable in the user interface the Create UAV
Dialog has to be opened in the Visual Studio Designer and an entry has to be added
to the ComboBox found under the Agent Type label. Any appropriate name not
already taken can be chosen here.

6.3.3 Adapt uccController

To adapt the controller the uccController.cpp file needs to be edited. First of all the
header for the newly implemented Agent class has to be included at the top of the
file. Then at the bottom of the createUAV() method there is a series of if-statements
that check for the agent name provided by the ComboBox just edited in the user in-
terface. A new if-branch has to be added there resembling the old ones but this time
checking if the aiType variable equals the name just entered for the agent in the user
interface. In the if statement itself the agent variable gas to be assigned an object of
the new created Agent subclass as can be seen the listing below. The code depicted
here adds a new Agent subclass of type BetterAgent to the series of if statements and
the name of the exemplary agent selected in the user interface is ”My Better Agent”.

// Check f o r known Agent types
i f (aiType==”Base Agent ”) {

agent = gcnew BaseAgent (uav) ;
}
i f (aiType==”Base Agent 2”) {

agent = gcnew BaseAgent2 (uav) ;
}
.
i f (aiType==”My Better Agent ”) {

agent = gcnew BetterAgent (uav) ;
}

63

Chapter 7

Conclusion and future work

The control program implemented in this work, the provided quadrocopter con-
figuration and sensors together with USARSim and the underlying Unreal Engine
constitute a flexible, easy to use and easily expandable simulation environment for
UAVs. The modular design of the agent in the program’s architecture and the ap-
plied principle of polymorphism allow for development of new agents completely
independent from the other parts of the control program. This way the remaining
parts of the control program can serve as a basis and a foundation for the develop-
ment of new agents which implement new behaviors, control algorithms and learning
algorithms. The programmer creating the new agents does not need to handle any
code except the code needed for the algorithms implemented in the agent. In par-
ticular does he not have to deal with any programming of network communication,
message parsing or user interfaces as this has already been taken care of in the con-
trol program.

The sensor configuration provided with the quadrocopter model coming with the
control program is broad enough to allow for many di↵erent behavior implementa-
tions without the need for any modifications to the quadrocopter model or sensors
thus introducing numerous opportunities for further development. With the pos-
sibility to build new sensors in USARSim the provided quadrocopter configuration
can be extended and virtually any scenario can be implemented, considering certain
adjustments. Given the control program’s capability to run a set up scenario vir-
tually any given number of times in the exact same way the program can also be
used for the training and evaluation of learning algorithms before they are applied
to real hardware.

With the Unreal Development Kit being still in its beta phase and USARSim for
UDK still standing at the beginning of its transition from the older UT3 to the new
UDK a lot of further progress in the development of USARSim can be expected and
the simulation environment should not be outdated any time soon. Although the
simulation already produces visually highly appealing graphics and highly realistic
physical behavior these can be expected to further increase with new upcoming
versions of the two software packages. Furthermore it is needless to say that with
Epic Games allowing the use of the Unreal Development Kit for absolutely free if
used for noncommercial purposes and USARSim being also free and open source the
simulation environment realized in this thesis comes at no costs whatsoever.

64

Bibliography

[1] M. Buehler, K. Iagnemma, and S. Singh. The 2005 Darpa Grand Challenge:
The Great Robot Race. Springer Tracts in Advanced Robotics. Springer, 2007.

[2] M. Buehler, K. Iagnemma, and S. Singh. The Darpa Urban Challenge: Au-
tonomous Vehicles in City Tra�c. Springer Tracts in Advanced Robotics.
Springer, 2009.

[3] United States. Dept. of Defense. O�ce of the Secretary of Defense. Unmanned
Aerial Vehicles Roadmap, 2000-2025. Department of Defense, O�ce of the
Secretary of Defense, 2001.

[4] United States. Dept. of Defense. O�ce of the Secretary of Defense. Unmanned
Aircraft Systems Roadmap, 2005-2030. Department of Defense, O�ce of the
Secretary of Defense, 2005.

[5] R. Austin. Unmanned Aircraft Systems: UAVs Design, Development and De-
ployment. Aerospace Series. John Wiley & Sons, 2010.

[6] Michael Reckhaus, Nico Hochgeschwender, Jan Paulus, Azamat Shakhimardov,
and Gerhard K. Kraetzschmar. An overview about simulation and emulation
in robotics. Proceedings of SIMPAR 2010 Workshops, Intl. Conf. on SIMULA-
TION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS,
pages 365–374, nov 2010.

[7] Robert Kesten. Data fusion of accelerometric, gyroscopic, magnetometric and
barometric information for attitude and altitude estimation of an unmanned
quadrocopter.

[8] R. Büchi. Fascination Quadrocopter. Books on Demand GmbH, 2011.

[9] Swiss Federal Institute of Technology Zurich. Flying machine arena.
http://www.idsc.ethz.ch/Research DAndrea/FMA/. [Online; 2012].

[10] Abraham Bachrach, Rujijie He, and Nicholas Roy. Autonomous flight in un-
known indoor environments. International Journal of Micro Air Vehicles,
1(4):217–228, dec 2009.

[11] Axel Bürkle, Florian Segor, and Matthias Kollmann. Towards autonomous
micro uav swarms. J. Intell. Robotics Syst., 61(1-4):339–353, January 2011.

[12] Horia Ionescu. Wikimedia commons. http://commons.wikimedia.org/wiki/File:6DOF en.jpg.
[Online; 2012].

65

Bibliography

[13] AirRobot Australasia Pty Ltd. AirRobot - Micro Unmanned Aerial Vehicle
With Autonomous Flight and Navigation Capabilities and Modular Payloads,
2007.

[14] AirRobot GmbH & Co KG. Airrobot homepage. http://www.airrobot.de/.
[Online; 2012].

[15] Microdrones GmbH. Microdrones homepage. http://www.microdrones.com/.
[Online; 2012].

[16] Michael Lewis and Je↵rey Jacobson. Game engines in scientific research. Com-
mun. ACM, pages 27–31, 2002.

[17] Epic Games. Unreal script reference. http://udn.epicgames.com/Three/UnrealScriptReference.html.
[Online; 2012].

[18] Usarsim project homepage. http://sourceforge.net/apps/mediawiki/usarsim/.
[Online; 2012].

[19] Andrew N. Marshall. Gamebots project homepage.
http://gamebots.sourceforge.net/. [Online; 2012].

[20] Gal A. Kaminka, Manuela M. Veloso, Steve Scha↵er, Chris Sollitto, Rogelio
Adobbati, Andrew N. Marshall, Andrew Scholer, and Sheila Tejada. Gamebots:
a flexible test bed for multiagent team research. Commun. ACM, 45(1):43–45,
January 2002.

[21] I. Maza and A. Ollero. Multiple UAV cooperative searching operation using
polygon area decomposition and e�cient coverage algorithms. In Proceedings of
the 7th International Symposium on Distributed Autonomous Robotic Systems,
pages 211–220, Toulouse, France, 2004.

[22] C. E. Palazzi, C. Roseti, M. Luglio, M. Gerla, M. Y. Sanadidi, and J. Stepanek.
Satellite coverage in urban areas using unmanned airborne vehicles (uavs). Ve-
hicular Technology Conference, 5:2886–2890, may 2004.

[23] Crossbow Technology. Crossbow homepage.
http://www.xbow.com/index.html. [Online; 2012].

[24] D. Johnson, Y. Hu, and D. Maltz. The dynamic source routing protocol (dsr)
for mobile ad hoc networks for ipv4. RFC 4728, 2007.

[25] Gerry Siegemund. Auris - autonomous robot interaction simulation.

[26] Markus Achtelik, Abraham Bachrach, Rujijie He, Samuel Prentice, and
Nicholas Roy. Autonomous navigation and exploration of a quadrotor heli-
copter in gps-denied indoor environments. In 2009 First Symposium on Indoor
Flight Issues, jul 2009.

[27] A. D. King. Inertial navigation: Forty years of evolution. GEC review, pages
140–149, January 1998.

66

