
!"!
!#$%&'()

")*+,#-#./

!/0%)10

Diploma thesis

Enhancing UPPAAL’s Explanatory Power
using Static Zeno Run Analysis

Jonas Rinast

23. April 2012

1. Examiner: Prof. Dr. Sibylle Schupp
2. Examiner: Prof. Dr. Dieter Gollmann

Declaration

I, Jonas Rinast, solemnly declare that I have written this di-
ploma thesis independently, and that I have not made use of
any aid other than those acknowledged in this diploma thesis.
Neither this diploma thesis nor any other similar work has been
previously submitted to any examination board.

Hamburg, 23. April 2012

Jonas Rinast

II

Acknowledgments

I would like to thank my advisor Prof. Dr. Sibylle Schupp for the opportunity to
work with her on an advanced research topic. I also thank her for her valuable input
concerning my research and generally good supervision of my thesis development.

I am also very thankful for the support of my parents throughout my studies and for
them enabling me to study at an university.

III

Abstract

This thesis discusses Zeno runs and their detection in timed automata networks. Specif-
ically, we explore Zeno runs in the context of model checking with the tool UPPAAL.
Zeno runs are transition sequences in the system that can execute arbitrarily fast, which
conflicts with the real world experience where execution always takes time. Accordingly,
most of the time the presence of Zeno runs in a model is unintentional. Also, Zeno runs
can influence the model behavior in a negative way, for example timelocks, an analogy
to deadlocks regarding time, may occur due to them, and therefore their detection is a
desirable goal.
Gómez applied and extended Tripakis’ strong non-Zenoness property concept to detect

Zeno runs in timed automata systems. In this thesis we enhance Gómez’ method by
eliminating false positives that the approach yields in some circumstances. For this
purpose we modify the way synchronization in the system is exploited by not only
ensuring that valid synchronization partners exist but also that their amount is correct.
Additionally, we incorporate two data variable heuristics because in most models certain
Zeno runs can not occur due to constraints on data variables.
We implemented Gómez’ algorithm and our extensions in an analysis tool named

ZenoTool to validate the theoretical improvements in the detection accuracy due to
our enhancements and also measured its run-time performance. We applied our tool to
several real world case studies and the experiments show that the static analysis approach
generally performs well. Positive evidence was found for our theoretical assumptions on
the accuracy improvements and the tool’s run time appears to be no issue. Thus, we
conclude that static Zeno run detection can effectively contribute to ensure safety of
timed automata network specifications and therefore enhances the explanatory power of
model checkers like UPPAAL.

IV

Contents

Abstract IV

1. Introduction 1

2. UPPAAL 4
2.1. Timed Automata . 5

2.1.1. Additional Modeling Features . 6
2.1.2. Modeling Syntax and Semantics 7
2.1.3. Verifying the System . 12

2.2. Time in Detail . 15
2.2.1. Invariants and Guards . 15
2.2.2. Urgency . 17

2.3. Timelocks and Zeno Runs . 19
2.3.1. Pure-actionlock . 20
2.3.2. Time-actionlock . 20
2.3.3. Zeno-timelock (Pure-timelock) . 21
2.3.4. Property Concealment . 21

3. Ensuring Time Divergence 23
3.1. Strong Non-Zenoness and Loop Safety . 24
3.2. Safety Propagation . 28

3.2.1. Synchronization Groups . 30
3.2.2. Synchronization Matrix . 31

3.2.2.1. Loop Modeling . 32
3.2.2.2. Synchronization Matrix Construction 34
3.2.2.3. Synchronization Scenario Calculation 36
3.2.2.4. Accuracy Improvement 37

3.3. Data Variable Heuristics . 40
3.3.1. Safe Variable Dependencies . 40
3.3.2. Conflicting Guards Elimination . 41

4. ZenoTool 43
4.1. Usage . 43

4.1.1. Command-line Parameters . 43
4.1.2. Limitations and Workarounds . 45

4.2. Implementation Details . 47
4.2.1. The Parsing Subsystem . 47

V

4.2.2. Algorithms . 51
4.2.2.1. Cycle Detection . 51
4.2.2.2. Strong Non-Zenoness and Loop Safety 52
4.2.2.3. Synchronization Methods 53
4.2.2.4. Data Variable Heuristics 54

4.2.3. Libraries . 56
4.3. Validation . 57
4.4. Experiments . 59

4.4.1. Models . 60
4.4.2. Accuracy . 64
4.4.3. Performance . 65
4.4.4. Conclusion . 67

5. Conclusions and Future Work 68

Bibliography 70

List of Figures 74

Appendices 75

A. Test Examples 77
A.1. Loop Classification and Safety Propagation 77
A.2. Template Parameter Binding and Safety Invalidation 78
A.3. Transitivity of Safely Dependent Loops . 78
A.4. Conflicting Guards Combination Coverage 79

B. Case Study Models 80
B.1. CSMA/CD Protocol . 80

B.1.1. Declarations . 80
B.1.2. Model File (csmacd2.xml) . 80

B.2. Fischer Protocol . 86
B.2.1. Declarations . 86
B.2.2. Model File (fischer6.xml) . 87

B.3. Biphase Mark Protocol . 88
B.3.1. Declarations . 88
B.3.2. Model File (bmp.xml) . 88

VI

1. Introduction

Timed automata [3] are commonly used to model systems that need to adhere to timing
constraints. They provide an easy-to-use, graphical way to specify components of the
system. Several model checking tools are publicly available and can be used to verify
the behavior of the system specification automatically. Concrete tools available are
UPPAAL [5], which this thesis focuses on, Kronos [13], Red [37], and Profounder [35].

However, the specification of a timed automata system is not trivial and might incor-
porate flaws. One class of flaws are so called timelocks. They are extensions of deadlocks
known from automata theory and are induced by the introduction of time, because the
progress of the system might block due to timing constraints. Timelocks involving Zeno
runs (Zeno-timelocks) can not be detected using simple deadlock detection algorithms.
Zeno runs are paths in the timed automata system that execute infinitely many action
transitions in finite time. Most of the time, such Zeno runs are not intentional and en-
suring their absence is a desirable goal, because real systems can not execute arbitrarily
fast. Model-checking tools like UPPAAL can verify liveness properties for this problem.
However, the verification process needs to explore the whole state space of the timed
automata system, which might render the verification of complex systems infeasible.
This thesis therefore explores static analysis techniques to broaden the class of systems
that can be proved safe in regards to Zeno runs. Together with deadlock freedom, the
absence of Zeno runs then implies timelock freedom for the specification.

Tripakis presented a property for loops in a timed automata system called strong
non-Zenoness (SNZ) [34], which characterizes the loop’s possibility to add to a Zeno
run. Based on this property, static and dynamic methods for dead- and timelock detec-
tion are proposed in the same paper. The SNZ property was then made applicable to
a wider class of loops by Bowman and Gómez [12, 17]. They additionally proposed a
check using invariants in the timed automata system that prevent Zeno-timelocks. In
the case that those static analysis techniques are inconclusive, a hybrid method can be
employed: using a set of reachability formulae derived from the specification, a sufficient-
and-necessary condition for timelock absence can be constructed and verified by a model
checker. Yet, Gómez applies his approach only to Zeno runs and not to Zeno-timelocks
[22]. He proposes a method to construct an abstraction of the original specification that
only contains loops prone to Zeno runs. This may reduce the state space of the timed
automata system to a degree where liveness verification by a model checker might be-
come feasible. Prevention of timelocks, in contrast to their detection, is also analyzed
in the literature. For example, process algebras with asap [30] prevent timelocks due
to mismatched blocking synchronization by limiting the use of urgency. Other propos-
als that also remove this class of timelocks by construction are Timed I/O Automata

1

[15], Discrete Timed Automata [20, 21], and Timed Automata with Deadlines (TAD)
[7, 9, 8, 10]. Although UPPAAL cannot process Timed Automata with Deadlines di-
rectly, a transformation from a Timed Automata with Deadlines specification to a timed
automata system for UPPAAL has been published by Gómez [18, 19] to complement
their proposal.

This thesis improves the accuracy of a modern static Zeno run detection technique by
refining the used synchronization exploitation. In addition, two heuristics are introduced
that enhance the method by considering data variable valuations. The analysis presented
in this thesis is largely based on the paper on Zeno run detection by Gómez [22]. At
first, all simple loops in the timed automata system are extracted using a cycle detection
algorithm. Existing algorithms [31, 32, 33] need to be adapted to process multiple edges
between two states correctly as this is allowed in UPPAAL specifications but normal
cycle detection algorithms assume at most one edge. Then the loops are checked for
their strong non-Zenoness property by inspecting all the updates to clock variables and
all the clock constraints on edges. Next, loops are declared safe or unsafe based on
the SNZ property evaluation while taking into account that variables may be declared
global in UPPAAL specifications and thus external updates to them may occur and
invalidate the SNZ property. At this point, safe loops may be discarded because they
can not contribute to any Zeno run in the timed automata system. The next step
exploits the fact that the SNZ property is a compositional property: It is sufficient that
only one of two synchronizing loops is strongly non-Zeno for the resulting loop in the
product automaton to also be strongly non-Zeno. Gómez proposes the construction of
a synchronization group to accommodate this fact. He finds the maximal set of unsafe
loops such that all loops may synchronize on their respective channels with a partner
also member of the set. In this thesis we propose another synchronization analysis,
which yields more accurate results. Gómez’ method may contain loops that cannot
contribute to Zeno runs in practice as the maximal set approach overapproximates the
synchronization scenario. We introduce a synchronization matrix, which assigns vectors
to every unsafe loop depending on the channels the loop synchronizes on. By solving
a linear (in)equation system for every loop we can then determine if there is a valid
synchronization scenario involving the loop and thus dismiss loops without one. Gómez’
last step reduces the initial UPPAAL specification to the set of unsafe loops found.
This state space reduction may render feasible the verification of time divergence in the
reduced specification using a model checker. This step is not included in this thesis,
but could be incorporated at a later point in time as the step does not depend on the
previous analysis steps. Concerning the data variable heuristics the first one extends
the safety propagation to data variables such that loops depending on data variable
valuations that can only be obtained from safe loop iterations are also safe. The second
one eliminates loops that can not iterate at run time because of conflicting constraints
that require different variable valuations.

We have implemented a tool called ZenoTool, which executes the analysis. Several
models from different case studies were analyzed and the results of our method compared
to the results obtained by Gómez’ approach. The empirical results show that a static

2

analysis of an UPPAAL specification can efficiently ensure safety of a timed automata
system regarding Zeno behavior. The experiments also validate the expectation that the
new synchronization matrix approach improves the accuracy of the analysis, possibly
lowering the load on subsequent analysis steps. Quantitatively, of the thirteen models
analyzed three analysis results are more accurate than the results obtained by Gómez.
One model profits from the enhanced safety propagation approach with synchronization
matrices and the other two improvements are achieved by the data variable heuristics.

This thesis is divided into five chapters. Chapter 2 introduces the model checker UP-
PAAL and formally establishes the timed automata model used. Special characteristics
of UPPAAL specifications are shown and UPPAAL’s time model is depicted giving spe-
cial attention to Zeno behavior. Chapter 3 presents methods to prove the absence of
Zeno runs focusing on a static UPPAAL model analysis. Gómez’ initial Zeno run de-
tection algorithm is illustrated; based on it, the synchronization matrix construction is
explained along with additional heuristics to eliminate false positives. Chapter 4 deals
with the implementation of the presented analysis using C++. The underlying algo-
rithms are given in more detail, the models and benchmarks, which were analyzed, are
presented, and the analysis results are compared. Also, we point out supported features
and limitations of the program. At last, chapter 5 reviews the contributions of this thesis
and suggests further research topics related to the analysis presented.

3

2. UPPAAL

In 1995, the first version of UPPAAL, a toolbox for modeling and verifying timed sys-
tems, was released as a joint project of Uppsala University and Aalborg University [27].
It is based on the theory of timed automata [2] and allows verification of system prop-
erties using a subset of TCTL (timed computational tree logic) [1, 25]. Systems are
modeled as a network of communicating finite state machines, which are subject to
timing constraints. Up to today, steadily improvements are made to UPPAAL’s ver-
ification engine. Some of the more recent additions in UPPAAL version 4.0 [6] are
symmetry reduction [24], zone-based abstraction techniques [4], and user-defined func-
tions. Several case studies used UPPAAL to successfully prove (or disprove) properties
of, for example, communication protocols [11, 23, 28, 29] showing UPPAAL’s relevance
as a model-checker. For academic purposes UPPAAL is available free of charge at
http://www.uppaal.org.

UPPAAL is divided into two separate applications: a graphical user interface (GUI)
written in Java and the verification engine developed in C++. The verification engine
can be used in a stand-alone fashion, but also interfaces with the GUI to allow easy
access. The graphical user interface is split into three main parts. The editor allows
the construction of timed automata systems. It provides a graphical representation of
the finite state machines in the system, which can be edited easily. A C-like language is
used for the declaration of variables, which can be used to annotate the automaton with
constraints or to model data. The simulator then allows the user to execute transitions in
the constructed system to test its functionality. However, the true power of the simulator
lies within its feature to load error traces of the verification engine to provide diagnostic
information to the user. In the verifier component of the GUI the user may specify
properties for verification. These can then be checked directly from the component;
upon failure, an error trace may be loaded into the simulator.

This chapter is structured in the following manner: Section 2.1 formally introduces
a simplified timed automata model in UPPAAL. More elaborate modeling features not
part of the formal model are presented as well. We also take a closer look at property
verification using UPPAAL’s query language. Section 2.2 revises UPPAAL’s time model
to clarify effects of timing constraint features. Special attention is given to features deal-
ing with urgency. At last, section 2.3 introduces Zeno runs and related blocking states
and gives formal definitions for them. Examples are provided to help the understanding
of the concepts.

4

http://www.uppaal.org

2.1. Timed Automata
The timed automata model used by UPPAAL is an extended model of the one proposed
by Alur and Dill [3]. A system may consist of multiple, possibly concurrent components
and every component is modeled as a finite state machine: a set of locations and edges
with an initial location forming a directed graph. Communication between concurrent
components is achieved by synchronization on self-defined channels and shared, bounded
data variables. Timing constraints are realized by special clock variables, which take
values in the positive reals: All clock variables advance simultaneously at the same rate
but can be reset individually upon firing of an edge. Edges represent action transitions
of the system. Basic annotations on edges are updates to variables including clocks
(resets) and guards, i.e., basic boolean expressions on (time) variables. These define
whether or not an edge may be fired at a certain state. Synchronization annotations are
also possible. They declare that an edge may only be fired if a matching synchronizing
second edge is available for firing. Time transitions are only possible in locations and
are not represented by edges in the graph. This is why locations can be annotated with
invariants. A state of the system may only stay in a certain location while the clock
invariant is satisfied.

OpenClosed

close!

open!

(a) Door model

Ringing
t <= 600

DoorOpen

Silent
open?
t = 0

t == 600

t >= 600
close?

t < 600
close?

open?
t = 0

(b) Alarm device model

Figure 2.1.: Emergency door example model

Figure 2.1 shows an example UPPAAL model of an emergency door secured by an
alarm system. As soon as the door is opened an alert signal will start to sound. The
sound should stop if the door is closed and at least ten minutes have passed since its last
opening. The model is divided into two parts. The door model (figure 2.1a) represents
the physical door and has two locations for the open and closed states. Initially, the door
is closed, which is shown by a second circle. Two edges model the open and close actions.
They are annotated with synchronization labels open! and close!. The exclamation
marks indicate that, when the edges are fired, a signal will be send on the channel with
the same name and the alarm device will receive those to react accordingly. The alarm
device model (figure 2.1b) is more complex: Initially it is in the Silent state and the
only outgoing edge needs a matching open! signal for its receiving synchronization label
open?. When the edge is fired the update t = 0 is executed. Here, t is a clock variable
that is used to measure the time passed since the door was last opened. The model then
considers two cases when the door is closed again (synchronization of close!/close?).
Either 600 time units have already elapsed (t >= 600) or they have not yet. If they
have, the model just returns to the initial state and waits for the next opening of the

5

door. Otherwise the alarm sound needs to continue for the remaining time. The state
Ringing models this behavior. The invariant t <= 600 ensures that the alarm can not
sound longer than ten minutes if the door was closed and the guard on the edge to the
Silent state, t == 600, prevents an early switch off. Additionally, an edge is added to
accommodate to the fact that of course the door can be opened again while the alarm
is still ringing.

2.1.1. Additional Modeling Features
UPPAAL has a rich set of special constructs to enable users to specify more involved
systems. In the following those will be presented in more detail.

Urgent locations, committed locations. In addition to simple locations one can
declare locations to be urgent or committed. Both add implicit timing effects to the
locations. In urgent locations, time is not allowed to pass. An enabled outgoing edge
needs to be fired without delay. An urgent location is equivalent to a normal location
that has an invariant using a new clock variable new <= 0. Additionally to the invariant,
the new clock variable needs to be reset to zero on every incoming edge to the location.
Committed locations are extended urgent locations. Time is again not allowed to

pass, but also the next action transition must involve a committed location. Other
components may not fire non-committed action transitions until the system state no
longer includes any committed location. Committed locations are useful for modeling
atomic actions over multiple edges. For example, synchronization on multiple channels
can only be achieved by using one edge per channel.

Broadcast channels, urgent channels. Binary synchronization channels, which
match one outgoing signal (channel!) with one incoming signal (channel?), allow
two different components’ edges to fire simultaneously. In contrast, broadcast channels
provide the user with a one-to-many synchronization construct. An edge annotated with
a sending instruction on a broadcast channel (broadcast!) need not synchronize with
any receivers. Sending on broadcast channels is always possible. However, if there are
one or multiple components that have an enabled edge with a receiving action on the
same channel (broadcast?), they will synchronize together and those edges will fire as
well.
Urgent channels are used to force a synchronization as soon as it is possible. When a

synchronization pair on an urgent channel becomes enabled it will fire without further
delay. A limitation in UPPAAL regarding these features is that edges that synchronize
on broadcast or urgent channels may not be annotated with timing constraints (using
guards).

Data variables. UPPAAL provides its users with several types of variables, which
may be part of the system state. Constant values may also be defined. Variables include
simple bounded integers and booleans in the simplest case. They are updated like clock
variables on edges. Guards also may involve data variables to decide if an edge is enabled.
Standard arithmetic operations can be used to form complex expressions. A special
case of variables are scalar sets. When using a scalar set, for example as a template

6

parameter, UPPAAL automatically applies symmetry reduction to the state space. A
common scenario for variable usage is communication between different components of
a system. To communicate, one component sets a variable and sends a synchronization
signal. The second component then receives the signal and reads the variable to retrieve
the value.

Arrays, records, custom types. Keeping the specification readable can easily be
achieved by using UPPAAL’s structuring features. Arrays of variables and record types
over variables can be declared to aggregate related variables. Also custom types can be
derived from existing ones in a C-like fashion. Such a custom type may be useful when,
for example, declaring bounded integers (int[0,5] var;) as the upper and lower bound
parameters are then encapsulated in the data type (typedef int[0,5] bounded_t;).
When using scalar sets a declaration of a custom scalar set type is even mandatory for
UPPAAL to apply symmetry reduction correctly.

Templates, parameters, system instantiation. In UPPAAL, system components
are finite state machine templates, which may have parameters. Those parameters can
be used to create multiple instances of the same automaton with different variable val-
ues or variable references. A special feature concerning these parameters is automatic
parameter binding: When UPPAAL is instructed to instantiate a template and a param-
eter of that template was not bound to a concrete value beforehand, it will create one
instance for every possible variable value. This behavior can for example be used to au-
tomatically create a desired amount of, e.g., sensor nodes by parameterizing a template
with an identification number using the bounded integer type.
UPPAAL also allows partial parameter binding: One can derive a new template from a

present one by binding some parameters to concrete values, furthering generic template
construction. Concrete values in this sense may not only be variable values but also
references to variables. This call-by-reference behavior enables the modeling of templates
that, for example, synchronize on channels that are supplied by their parameters.

Selections, functions. In version 4.0 of UPPAAL two new features were introduced.
Users may now define custom, C-like functions, which may be used in annotations of
components. Updates and guard annotations of edges can refer to these functions and
thus introduce more dynamic constraints. Also, a new convenient way to specify non-
deterministic selection was added. Selection statements are annotations on edges. They
are of the form name : type. A selection statement creates a variable name local to
the edge, which is non-deterministically assigned a value from the range of type. This
variable can then be used in guard, update, and synchronization expressions on the edge.
An example usage is the non-deterministic selection of a specific channel from an array
of channels to synchronize on. An equivalent specification can be obtained by adding
individual, concrete edges for every possible valuation of type.

2.1.2. Modeling Syntax and Semantics
In the following, a simplified formalization of UPPAAL’s timed automata model is given,
which was also used by Gómez [22]. The formalization will neither incorporate ar-

7

ray, scalar, or record types nor functions, templates, or selection statements. However,
bounded data variables (integers and booleans), all kinds of synchronization channels,
and all location types are considered.

Basic definitions. Let C denote the set representing clock variables, I the set of
bounded integer variables, and B the set of boolean variables. We denote the set of all
variables V := C ∪ I ∪ B. Let V(V) be the set of all valuations of the variables in V.
Furthermore, we define the variable valuation function v ∈ V(V), which maps a variable
to its current value. More specifically, the function maps clock variables to the positive
reals, bounded integer variables to the integers, which can be represented with n bits1,
and booleans to the discrete values 0 and 1.

v :

C ⊆ V → R+0

I ⊆ V → Z \ 2nZ
B ⊆ V → {0, 1}

Assuming standard arithmetic, boolean and relational operators we then define E(V) to
be the set of expressions involving the variables in V. Furthermore, let eval : E(V) →
R+0 ∪Z \ 2nZ∪ {0, 1} be the expression evaluation function, which maps an expression,
possibly containing variables, to its actual value by using the current variable valuation
function. Lastly, we define the set of channel variables Ch := BCh ∪ UCh ∪ BiCh con-
sisting of broadcast channels BCh, urgent channels UCh, and standard binary channels
BiCh.

Edge annotation syntax. Using the previous definitions we define UPPAAL’s edge
labels: At first, clock constraints are simple relational terms comparing a single clock
or differences of clocks with an integer expression. Allowed relational operators vary by
case and thus a generic set of relational operators R is assumed to define the set of clock
constraints C(R) involving one or two clocks x, y and an expression e:

C(R) := { x ∼ e, x− y ∼ e | x, y ∈ C, ∼∈ R, e ∈ E(V), eval(e) ∈ I }

Guards are conjunctions of clock constraints C(R) and boolean expressions without
clocks. They allow any kind of relational operator on the clock constraints. Following
this we define RG := {<,>,=,≥,≤} and the set of guards G(V) involving variables in
the variable set V.

G(V) := {
∧
i

ei ∧
∧
j

ej | ei ∈ C(RG), ej ∈ E(V \ C), eval(ej) ∈ B }

The syntax of invariants is similar to that of guards but lower bounds on clocks are
disallowed. UsingRI := {<,=,≤} we define the set of invariants I(V) involving variables
in the variable set V.

I(V) := {
∧
i

ei ∧
∧
j

ej | ei ∈ C(RI), ej ∈ E(V \ C), eval(ej) ∈ B }

1UPPAAL uses 16-bit integers by default.

8

Note that in UPPAAL the conjunction operator is denoted by the symbol sequence &&
or the keyword and. Next, Update annotations U(V) in UPPAAL are comma-separated
lists of individual assignments, which update the current variable valuation function.
For clock variables, UPPAAL only allows assignments of non-negative integer values.

A(V) := var = e

{
var ∈ V \ C, e ∈ E(V)
var ∈ C, e ∈ E(V), eval(e) ∈ I ≥ 0

Lastly, we define the set of possible synchronization labels.

S(Ch) := { a?, a! | a ∈ Ch } ∪ { ε }

Labels with a question mark indicate receiving actions and exclamation marks respec-
tively indicate sending actions. The ε action is used for internal actions, which do not
need synchronization. Note that UPPAAL does not allow one to annotate with clock
constraints edges that synchronize on an urgent channel.

Timed automaton. A timed automaton is a tuple A = (L, l0,Lab, E, I,V). L =
ULocs ∪ CLocs ∪ NULocs denotes the set of locations with the respective subsets of
urgent locations ULocs, committed locations CLocs, and non-urgent locations NULocs;
l0 ∈ L is the initial location of the timed automaton and Lab ⊆ S(Ch) the set of
synchronization labels used by the automaton. E ⊆ L × Lab × G(V) × U(V) × L
is the set of edges and I : NULocs → I(V) a mapping function, which may assign an
invariant to non-urgent locations. The last entry V is the set of variables the timed
automaton uses. In this thesis, edges (l, a, g, u, l′) ∈ E will also be written in the format
l
a,g,u−−−→ l′, where a is the synchronization label, g the guard, and u the update.

Networks of timed automata. A network of timed automata is an aggregation
of n single automata |A = |〈A1, . . . , An〉, where Ai = (Li, l0,i,Labi, Ei, Ii,Vi). Variables
with the same name used by multiple automata are global variables. Their set is given
by

⋃
1≤i 6=j≤n(Vi ∩ Vj). Other variables are considered local to their components. A

location in the network is represented by the location vector containing the positions
in the individual components l̄ = 〈l1, . . . , ln〉, li ∈ Li. The notation used to indicate
change of component locations is introduced next. The expression l̄[l′i/li] refers to the
location vector l̄ that has its location li replaced by l′i. Synchronous change to multiple
components’ locations uses a set notation l̄[(l′j/lj)j∈J]. This denotes the location vector
l̄, which results from replacing lj by l′j for every index j ∈ J . In analogy to the timed
automaton definition, we also define V =

⋃n
i=1 Vi, the set of all variables used by the

network, and I =
∧n
i=1 Ii, the invariant function for the network, which connects the

invariants of the individual network components by conjunction, such that the function
is applicable to the location vector. Lastly, CLocs =

⋃n
i=1 CLocsi, where CLocsi ⊆ Li

are local committed locations, refers to the set of committed locations in the network.
The set of committed locations a certain location vector contains is denoted by CLocs(l̄).
In analogy, we define ULocs to refer to the set of urgent locations of the network and
ULocs(l̄) for the set of urgent locations in l̄.

9

Variable semantics. Concerning updates to variable valuations we first formalize
the update process on edges. If u ∈ U(V) is an update sequence of the form var1 =
e1, . . . , varm = em and vk ∈ V(V) indicates the current variable valuation function, we
define the resulting valuation functions, vk+i ∈ V(V), where 1 ≤ i ≤ m:

vk+i(x) =
{
eval(ei) x = vari
vk+i−1(x) ∀x ∈ V \ {vari}

The definition iteratively updates a single variable at a time by evaluating the cor-
responding expression using the current variable valuation function. Other variables
remain constant. Using the intermediate variable valuation functions we define the final
resulting variable valuation function u(vk) = vk+m.
Next, time progress regarding variable valuations is considered. Time delays are ex-

pressed by the operator + : V(V) × R+ → V(V), which updates a variable valuation
function v with a time delay δ.

(v, δ) 7→ v′, v′(x) =
{
v(x) + δ ∀x ∈ C
v(x) ∀x ∈ I ∪ B

Data variables are kept constant for any delay and all clock variables advance syn-
chronously.

Automata network semantics. Using the symbol |= to denote constraint satis-
fiability regarding variable valuations, the semantics of |A can be given by a timed
transition system (S, s0, {ε}∪R+, T), where S ⊆ L×V(V) is the set of reachable states.
We use s = 〈l̄, v〉 to refer to individual states and s0 = 〈l̄0, v0〉, with l̄0 = 〈l1,0, . . . , ln,0〉,
and v0(x) = 0, ∀x ∈ V, as the initial state. T ⊆ S × {ε} ∪ R+ × S is the transition
relation linking the source and destination states with a transition action. We consider
two kinds of transitions: Action transitions are annotated with ε indicating that no time
delay occurs. Delay transitions are annotated with δ ∈ R+ referring to the occurring
delay. Regarding the notation, we will use s ε=⇒ s′ for action and s δ=⇒ s′ for delay
transitions, and s ε=⇒ for any action transition from s. In the following the five rules
for transition computation are given:

1. Internal action transition (no synchronization)

〈l̄, v〉 ε=⇒ 〈l̄[l′i/li], ui(v)〉

Applicable for any transition li
ε,gi,ui−−−−→ l′i ∈ Ei such that v |= gi, ui(v) |= I(l̄[l′i/li]),

and li ∈ CLocsi or CLocs(l̄) = ∅.
This rule defines a single transition in a single component without any synchro-
nization.

2. Internal delay transition
〈l̄, v〉 δ=⇒ 〈l̄, v + δ〉

10

Applicable for any δ ∈ R+ such that (v + δ) |= I(l̄), and CLocs(l̄) ∪ ULocs(l̄) = ∅.
Additionally no transition computation 〈l̄, v + δ′〉 ε=⇒ by using synchronization
on urgent channels (see following rules) may be possible such that δ′ < δ.
This rule defines a global delay transition. All clocks will advance by δ. How-
ever, time may not advance past a time where an urgent channel synchronization
becomes available, as such a transition must be processed first.

3. Action transition using binary synchronization channel

〈l̄, v〉 ε=⇒ 〈l̄[l′i/li, l′j/lj], uj(ui(v))〉

Applicable for any transitions li
a!,gi,ui−−−−→ l′i ∈ Ei and lj

a?,gj ,uj−−−−−→ l′j ∈ Ej (i 6= j) such
that a /∈ BCh, v |= gi ∧ gj , uj(ui(v)) |= I(l̄[l′i/li, l′j/lj]), and {li, lj} ∩ CLocs(l̄) 6= ∅
or CLocs(l̄) = ∅.
This rules defines a binary synchronization transition. Two edges annotated with
matching synchronization labels (a!/a?) in different components may be fired at
once.

4. Action transition using broadcast synchronization channel (no receiver)

〈l̄, v〉 ε=⇒ 〈l̄[l′i/li], ui(v)〉

Applicable for any transition li
b!,gi,ui−−−−→ l′i ∈ Ei such that b ∈ BCh, v |= gi, ui |=

I(l̄[l′i/li]) and there is no transition lj
b?,gj ,uj−−−−−→ l′j ∈ Ej (i 6= j) such that v |= gj ,

and li ∈ CLocsi or CLocs(l̄) = ∅.
This rule defines a broadcast synchronization transition without any receiver. An
edge sending on a broadcast channel may also fire, if there is no matching partner
receiving on the channel. If there are receivers, the next rule applies.

5. Action transition using broadcast synchronization channel (with receiver(s))

〈l̄, v〉 ε=⇒ 〈l̄[l′i/li, (l′j/lj)j∈J], uJ(ui(v))〉

Applicable for any transition li
b!,gi,ui−−−−→ l′i ∈ Ei such that b ∈ BCh and J ⊆

[1..n]\{i} is the maximal set of indices such that for any j ∈ J there is a transition
lj

b?,gj ,uj−−−−−→ l′j ∈ Ej , where v |= gi ∧
∧
j gj , uJ(ui(v)) |= I(l̄[l′i/li, (l′j/lj)j∈J]), and

({li} ∪ { lj | j ∈ J }) ∩ CLocs(l̄) 6= ∅ or CLocs(l̄) = ∅.
Note: Here uJ denotes the sequential execution of the updates uj0 , . . . , ujm where
J = {j0, . . . , jm} and j0 < j1 < · · · < jm. The order of update execution needs
to be well-defined, because the expression evaluation in updates depends on the
current variable valuation function, which changes after each individual update.
This rule defines a broadcast synchronization transition with receiver(s). If an
edge sending on a broadcast channel is fired it will synchronize with all available
receiving edges.

11

2.1.3. Verifying the System
Verification of properties of timed automata systems is the main goal of model-checkers
like UPPAAL. Such properties need to be expressed in a formal way for the model-checker
to process them. Several timed logics have been proposed in the literature. UPPAAL
uses a simplified version of TCTL (timed computational tree logic) for its reasoning.
Timed computational tree logic is an extension to computational tree logic (CTL),

which was introduced by Emerson and Clarke [14]. CTL is a specification language
aimed at finite-state systems and originally allows formulae like ∃©φ, ∃φ1Uφ2 or ∀φ1Uφ2
where φ can either be a formula of this kind or an atomic proposition. The formulae
enable the specifier to relate different states in regards to a proposition: for example
the first formula ∃© φ expresses that there exists a direct successor state in some state
that satisfies φ. The other formulae express that either there exists a sequence of states,
in which the property φ1 holds in all states of the sequence except the last one, which
instead satisfies φ2, or all state sequences fulfill this requirement. Often the base set of
formulae is extended with more convenient expressions: e.g. commonly ∃3φ expresses
that a property φ will become true eventually (equivalent to ∃ true Uφ). However,
considering such a formula, in CTL it is not possible to put a bound on when φ will
become true. TCTL solves this problem by introducing time bounds on the operators.
One can for example write ∃3<5φ to express that φ will be satisfied within five time
units in TCTL.
Two kinds of basic formulae are available in UPPAAL: state formulae and path formu-

lae. In contrast to computational tree logic, path formulae may not be nested though.
Path formulae can be further classified into three groups of formulae: reachability for-
mulae, safety formulae, and liveness formulae. A more in-depth description of the classes
is given in the following. Figure 2.2 gives an overview of UPPAAL’s path formulae.
State formulae. A state formula is an expression that can be evaluated for a certain

state without knowledge of the system behavior. For example, data variables could be
checked to fulfill a certain property like count < 5, which would only be satisfied if the
count variable is smaller than five. State formulae generally follow the syntax of guards,
however, disjunctions are also possible. One can also check whether or not φ holds at
a certain location l by using a formula of the form P.l =⇒ φ. If one extends such a
formula with path formulae, one can specify invariants that need to only hold in certain
locations (see following paragraphs).
In UPPAAL, a special state formula for the detection of deadlocks is available, al-

though technically it is not a state formula. The simple keyword deadlock represents
this formula, which is satisfied in all deadlock states. A deadlock, according to UP-
PAAL, occurs if no outgoing edge is enabled in the current location and if no possible
time delay will enable any of those edges ever again. In such a state leaving the location
is impossible for all times. For technical reasons UPPAAL, currently only supports the
usage of deadlock in simple safety and reachability formulae.
Reachability formulae. Reachability formulae are used to express whether or not

a certain property φ can possibly become true in a reachable state. Most of the time,

12

reachability formulae are used for sanity checks. A model might contain a certain error
state and, using a reachability formula, one can prove that the specification is sound,
in that it will never transition to that error state. Basic model behavior can be tested
as well. For example, one can check if sending a packet in a communication protocol is
possible at all. Distinguishing between reachability and liveness is important, as only
sending a packet does not imply it will be received later on. An example of a satisfied
reachability formula can be seen in figure 2.2a. From the initial state at the top, there
is a path to a state where φ is satisfied. In UPPAAL a reachability formula E3 φ is
expressed by E<> φ.

Safety formulae. Safety formulae are used to express whether or not a certain
property φ is invariantly true. Most of the time global properties of the system are
ensured by them. For example, in a model of a nuclear power plant a reasonable safety
formulae would restrict the nuclear reaction rate to a certain threshold at all times to
ensure nuclear meltdown can not occur, whatever happens. A variation of the invariant
nature of safety properties checks whether or not only a path in the reachable state
space exists, where a certain property φ is satisfied in all states. The variation can
be used to ensure at least one safe path exists. For example, in the case the model
of the nuclear power plant can not invariantly guarantee a low reaction rate, because
by improper control by a user the rate rises beyond all limits, one can at least verify
that safe operation is possible by construction. Figure 2.2b and 2.2c respectively show
possible state space models of satisfied safety properties. In figure 2.2b all states satisfy
φ, in figure 2.2c one path satisfying φ exists. In UPPAAL the invariant safety properties
A2 φ and the potentially always safety property E2 φ are expressed by A[] φ and E[]
φ respectively.

Liveness formulae. Liveness formulae are used to express whether or not a cer-
tain property φ will eventually become satisfied. A communication protocol might use
liveness formulae to verify that packages sent eventually reach their destination. Also,
the nuclear power plant model could ensure that the power plant eventually successfully
powers down during an emergency. Two kinds of liveness formulae are available in UP-
PAAL: The simple one is the path formula A3 φ, which checks that the state formula
φ will become true on all paths at least once. This can be used to show a model will
eventually reach its goal from its initial state. The second formula is ψ φ, which
is equivalent to A2 (ψ =⇒ A3 φ). It is satisfied if whenever ψ becomes satisfied,
eventually φ will also become satisfied somewhere later along the path. Thus, one can
verify timed reactions by using liveness formulae. Returning to the nuclear power plant,
satisfaction of the formula emergency powerdown will show that the power plant is
safe regarding emergencies: It will power down when an emergency occurs, no matter
what. Figure 2.2d and figure 2.2e respectively show state space models of satisfied live-
ness formulae. In the first one the formula φ is satisfied eventually along all paths. In
the second one φ only becomes satisfied after ψ was satisfied. UPPAAL uses A<> φ and
ψ –-> φ to express the liveness formulae.

13

φ

(a) Reachability formula: E3 φ

φ φ φ φ

φ φ φ

φ φ

φ

(b) Safety formula: A2 φ

φ

φ

φ

φ

(c) Safety formulae: E2 φ

φ φ

φ φ

φ

(d) Liveness formula: A3 φ

φ φ

φ φ

ψ

(e) Liveness formula: ψ φ

Figure 2.2.: Path formulae in UPPAAL, annotated nodes indicate satisfied properties

14

2.2. Time in Detail
To get a better understanding of UPPAAL’s time model, this section revises the emer-
gency door example given in section 2.1. A closer look at invariant and guard annotations
together with satisfiable properties shows possible problems that may occur in specifi-
cations. Also, we present the semantics of urgency in more depth by extending the
emergency door example.

2.2.1. Invariants and Guards
Distinguishing the influence of guards and invariants on the specification is important
to obtain correct models. Invariants are used to impose upper bounds on clock variables
in locations. Such invariants prohibit time to advance any further if the upper bound
is reached. Time can only continue to progress if the clock is reset to a value less than
the upper bound or the location is left to an unconstrained (or less constraint) location.
In contrast to the must-behavior invariants exhibit, guards only impose a may-behavior.
An edge is enabled if the current valuation of variables (including clocks) satisfies the
guard. The edge, however, need not be fired. This behavior may lead to edges that,
although they are enabled at one time, become disabled later on due to an upper time
bound. False interpretation of the guard semantics may therefore lead to deadlock states
or wrong model behavior.

OpenClosed

close!

open!

(a) Door model

Ringing

DoorOpen

Silent
open?
t = 0

t == 600

t >= 600
close?

t < 600
close?

open?
t = 0

(b) Alarm device model

Figure 2.3.: Modified emergency door model (no invariant)

By way of example, figure 2.3 shows a modified emergency door model. The invariant
t <= 600 in the state Alarm.Ringing was removed. Yet, the guard on the edge from
Alarm.Ringing to Alarm.Silent still is only enabled after exactly 600 time units have
elapsed. Closer examination of the state space using the verification engine yields that
it now is possible for the alarm to sound even after 600 time units have passed; in
difference to the unmodified model, the TCTL expression A[] Alarm.Ringing imply
Alarm.t <= 600 is no longer satisfied. In fact, if the transition to the Alarm.Silent
location is not taken at 600 time units, the system will remain in the Alarm.Ringing
location until the door is opened again. The alarm sound will not stop after 600 time
units. A possible time run is given in figure 2.4. Correct behavior would transition to
the Silent transition as soon as the value of Alarm.t hits the threshold of 600 time
units.

15

Silent
open!

DoorOpen
close!

Silent
open!

DoorOpen
close!

Ringing
open!

Alarm.t

Global time

600

Figure 2.4.: A timing run of the emergency model without an invariant

OpenClosed

close!

open!

(a) Door model

Ringing
t <= 600

DoorOpen

Silent
open?
t = 0

t == 600

t == 600
close?

t < 600
close?

open?
t = 0

(b) Alarm device model

Figure 2.5.: Modified emergency door model (invalid time space partitioning)

Another common mistake occurs because of false partitioning of time. Figure 2.5 shows
the emergency model with another small modification. This time, the guard on the edge
from the Alarm.DoorOpen to the Alarm.Silent location has been modified from t >=
600 to t == 600. Now, the outgoing edges do not partition the reachable time space
in the Alarm.DoorOpen location anymore. As time is unconstrained in the location and
all ingoing edges reset Alarm.t to zero, the reachable time space is R+0. However, the
outgoing edges do not cover R+0. The covered time C = { t | t = 600 } ∪ { t | t <
600 } = { t | t ≤ 600 } is a subset of R+0 obtained by imposing an upper bound. Correct
models do not need to cover the whole time space with outgoing edges in all locations.
For example, a model might enable outgoing edges only after some time has passed. A
partitioning case with an unenforced upper bound, though, introduces deadlock states
to the model. Such deadlock states should be resolved by either enforcing the upper
bound using an invariant or by employing a proper time space partition. In fact, for the
modified emergency model (figure 2.5) the verifier fails to prove the TCTL expression A[]
not deadlock, which implies a deadlock state. A possible path to reach the deadlock is
visualized in figure 2.6, where after one successful iteration, the door is not closed early
enough and a deadlock occurs. The initial example model given in 2.1 does not contain
deadlock states.

16

Silent
open!

DoorOpen
close!

Ringing Silent
open!

DoorOpen

Alarm.t

Global time

600

Figure 2.6.: A timing run of the emergency model with false time space partitioning

2.2.2. Urgency
UPPAAL features several mechanisms to specify urgent behavior. Urgency in this case
means that a certain action may not be delayed any further and needs to be executed
immediately. Using urgency correctly can be necessary to create models abiding to a
certain specification. However, there are also specifications that do not need urgency,
but benefit of its usage because the state space of the model might be reduced improving
verification time.

OpenClosed

close!

open!

(a) Door model

Closing

Ringing
t <= 600

DoorOpen

Silent

close?
open?
t = 0

t == 600

t >= 600 t < 600

open?
t = 0

(b) Alarm device model

Off

t <= 1

On

t <= 1

Idle
close?

close?

t == 1
t = 0

t == 1
t = 0

open?
t = 0

(c) Emergency light model

Figure 2.7.: Modified emergency door model

Returning to the emergency model example we change the specification to create a
more complex model: in addition to the alarm sound, an emergency light shall blink
while the door is open. Figure 2.7 shows the components of the new model. As now two
components need to receive the open! and close! signals of the door, the corresponding
channels were changed to broadcast channels. UPPAAL does not allow guards on edges
that synchronize on broadcast channels. Therefore the alarming device specification
(figure 2.7b) needs to be modified: the edges from Alarm.DoorOpen to Alarm.Silent
and Alarm.Ringing have been replaced by two consecutive edges and the new interme-

17

diate location was marked as committed. In fact, only marking it urgent would have
resulted in the same correct behavior. However, the usage of committed locations in
contrast to urgent locations is superior because the state space of the model is then
smaller as committed locations disallow interleaving with other system components be-
fore the committed state is left. The emergency light model depicted in figure 2.7c is
straight-forward: Upon opening of the door, the system switches to the Light.On lo-
cation. After one time unit imposed by an invariant and a guard it will transition to
the Light.Off location. The same constraints apply here allowing the model to cycle
between Light.On and Light.Off indefinitely many time units. Both states return to
the Light.Idle location when the door closing signal (close!) is received. Figure 2.8
shows a timing run of the extended emergency model where the Alarm.Closing location
is neither committed nor urgent. The resulting run does not comply with the specifi-
cation: Although the door was closed after 600 time units the alarm device does not
transition to the Alarm.Silent location immediately, resulting in a sound longer than
intended. In fact, it is possible for the system to remain in the Alarm.Closing location
forever. It follows that the door may never be opened again in that state.

Silent
open!

DoorOpen
close!

Closing Silent
open!

DoorOpen
close!

Alarm.t

Global time

600

Figure 2.8.: A timing run of the extended emergency model without urgent behavior

At last we will demonstrate the use of urgent channels. Figure 2.9 shows again an
extended modified model of the emergency door. This time, the alarm device model has
been changed with regards to the timing constraints: The location Alarm.Ringing has
no invariant anymore and the edge to the Alarm.Silent location is no longer guarded
but now receives a synchronizing signal (timer?) on the urgent timer channel. As
the transition to the Alarm.Silent location should happen exactly 600 time units after
the door has been opened, a new Timer component (figure 2.9c) has been introduced to
provide the urgent channel signal. Initially, the Timer component is idle and waits for the
door to be opened. A local variable then makes the system wait in the Timer.Waiting
state for 600 time units. An invariant (t <= 600) and a matching guard (t == 600)
realize the waiting behavior. When the timeout is fired, the Timer component reaches
the Timer.Timeout location. Here an edge with the urgent channel timer is present.
Therefore whenever a matching synchronization partner becomes available they will

18

synchronize without further delay. By examination of the alarm device model one can
now see that, if after 600 time units, the alarm device is not in the Alarm.Ringing
location and thus capable of synchronizing, the door must not yet have been closed. This
means the behavior of the whole system is correct, if one also considers that the door can
be opened at any time by providing reset edges in all locations of the Timer component
to initialize the timer again. Verification of the TCTL expression A[] Alarm.Ringing
imply Alarm.t <= 600 confirms that it is impossible to reach a state where the alarm
sounds longer than 600 time units if the door was closed early.

OpenClosed

close!

open!

(a) Door model

Closing

Ringing

DoorOpen

Silent

close?
open?
t = 0

timer?

t >= 600 t < 600

open?
t = 0

(b) Alarm device model

Timeout
Waiting
t <= 600

Idle

open?
t = 0

open?
t = 0

timer!

t == 600

open?
t = 0

(c) Timer model

Figure 2.9.: Extended emergency door model with urgent channel

2.3. Timelocks and Zeno Runs
As seen in section 2.2 specifications of timed automata system models may incorporate
flaws resulting from wrong usage of synchronization, false time constraints, or invalid
application of urgency. One category of effects that can result from these flaws, are
dead- and timelocks. This section will present and classify the different kinds of blocking
states. In contrast to untimed systems, blocking can not only occur due to the inability
to perform action transitions but also because time transitions may be unavailable.
Basic definitions. At first we define a run to be a path in the timed transition

system established in section 2.1.2.

ρ := s1
γ1=⇒ s2

γ2=⇒ . . . , si ∈ S, γi ∈ {ε} ∪ R+

A path ρ may be finite, ending in a state sn ∈ S, or infinite. We use Runs(s) to denote
the set of runs starting at the state s. Furthermore, FiniteRuns(s) (FiniteRuns(s) ⊆
Runs(s)) denotes the set of finite runs starting in s and we write ρ ⊆ ρ′ to denote that ρ′
starts with the same state sequence as ρ. Next, we define the time divergence property
of a run. A run ρ is time-divergent if the sum of all delays occurring in ρ is infinite.

ρ time-divergent :⇐⇒
{∑∞

i=0 γi =∞, ρ infinite
false, ρ finite

Special attention needs to be given to so-called Zeno runs. A run ρ starting in state s is
a Zeno run if

¬ (ρ time-divergent) ∧ ρ ∈ Runs(s) \ FiniteRuns(s)

19

The definition characterizes an infinite path in the transition system where time con-
verges. At a certain point, the path thus only consists of action transitions that are
executed without delay between them. Infinite actions are executed in finite time. Obvi-
ously, Zeno runs are impossible in real systems and need to be closely analyzed to verify
whether using a Zeno run approximation is acceptable or not. Absence of Zeno runs in
a model is a good property for the model: deadlock freedom provided, timelock freedom
is implied. An example of a Zeno run can be seen in the initial emergency door example
(figure 2.1). The model allows opening and closing of the door without any delay. Thus,
in theory, one could open and close the door infinitely often as at the same time the
necessary synchronization is always possible. We use ZenoRuns(s), which is a subset of
Runs(s), to denote the set of Zeno runs starting in state s.
Action- and timelocks. An actionlock is a state where no action transition can be

performed even if an arbitrary number of delay transitions is taken. Formally, a state
s ∈ S is an actionlock if

∀d ∈ R+0[(s+ d) ∈ S =⇒ @t ∈ T [(s+ d) ε=⇒]]

where s + d = 〈l̄, v + d〉 if s = 〈l̄, v〉. In analogy, a timelock is a state in the timed
transition system where all paths starting in the state are not time-divergent. In other
words, as soon as the timelock state is reached, it is no longer possible for time to advance
indefinitely, because the time is constrained by an upper bound on all possible paths.
Formally, a state s ∈ S is a timelock if

∀ρ ∈ Runs(s)[¬ (ρ time-divergent)]

As time advances globally in UPPAAL’s time model, a single clock entering a timelock
will prevent time progress for the whole system thus blocking it completely. In the
following, the different kinds of action- and timelocks are examined in more detail.

2.3.1. Pure-actionlock
Pure-actionlocks are equivalent to normal deadlocks in untimed transition systems. A
state s ∈ S is a pure-actionlock if

∀d ∈ R+0[(s+ d) ∈ S ∧ @t ∈ T [(s+ d) ε=⇒]]

An example of a pure-actionlock is given in figure 2.10. From the initial location, progress
is only possible if the clock variable t takes a value greater than zero. Then, however,
t is required to be zero for the other transition, which is not satisfiable. Time still can
progress, though, and thus the system has reached a pure-actionlock.

2.3.2. Time-actionlock
Time-actionlocks do not only prevent actions from being executed but also time from
progressing indefinitely. A state s ∈ S is a time-actionlock if

@t ∈ T [s γ=⇒ , γ ∈ { ε } ∪ R+0]

20

Pure-actionlockInitial

t == 0

t > 0

Figure 2.10.: A model with a pure-actionlock

An example of a time-actionlock resulting from invalid synchronization is given in figure
2.11. The sender component (figure 2.11a) synchronizes on the synch channel. However,
time can at most be delayed until five time units have passed because of the invariant t
<= 5. The receiver component (figure 2.11b) on the other hand can only synchronize on
the synch channel after at least five time units have elapsed. Thus, the synchronization
is never possible and both components remain in their initial states. Time can only be
delayed for five time units, then the synchronization becomes urgent. Neither an action
nor a delay transition is available, therefore a time-actionlock has been reached.

Initial

t <= 5 synch!

(a) Sender model

Initial

t > 5
synch?

(b) Receiver model

Figure 2.11.: A model with a time-actionlock

2.3.3. Zeno-timelock (Pure-timelock)
Zeno-timelocks or pure-timelocks only prevent time from progressing. Action transitions
are still possible. A state s ∈ S is a Zeno-timelock if

∀ρ ∈ Runs(s)[¬ (ρ time-divergent) ∧ ∀ρ′ ∈ FiniteRuns(s)[∃ρ′′ ∈ ZenoRuns(s)[ρ′ ⊆ ρ′′]]]

All runs starting in s need to not be time-divergent. Also all finite runs need to be
extensible to form a Zeno run, i.e. there needs to be a Zeno run that starts with the
same state sequence of the finite run. This is necessary as a finite run that is not
extensible leads to a time-actionlock instead of a Zeno-timelock, because the last state
of the run has no action successor.
An example of a Zeno-timelock is given in figure 2.12. The only edge in the system

can always be taken, thus action transitions are always possible. However, the invariant
t <= 5 prevents time from advancing beyond five time units. As soon as t reaches five
time units, time can not progress any further but actions can be executed infinitely: a
Zeno-timelock is present.

2.3.4. Property Concealment
As previously seen, the occurrence of Zeno runs may lead to Zeno-timelocks. Those
themselves already pose a threat to the safety of the specification. However, Zeno

21

Initial

t <= 5

Figure 2.12.: A model with a Zeno-timelock

Timelock

t <= 10

(a) Timelock model
DeadlockInitial

t <= 7

t = 0

t >= 6

(b) Deadlock model

Figure 2.13.: A model that conceals a deadlock

runs may also exert influence on the specification in a different way: it is possible
for Zeno runs to invalidate verification results. This happens because Zeno runs are
always executable and thus deadlocks may always be circumvented by using the Zeno
run transition. Also, Zeno-timelocks may restrict the reachable state space to a subspace
that satisfies a certain property. However, in the complete state space the property may
not be satisfied. As Zeno-timelocks can not occur in the real world the whole state space
is reachable in reality. Such restriction of the state space is therefore unwanted, as it
does not comply with the real world system. Liveness and deadlock properties are the
most common properties to suffer from concealment.

Figure 2.13 shows a model that contains a concealed deadlock: If the time pro-
gresses further than t = 7, after the initial transition from Concealed.Initial to
Concealed.Deadlock, a deadlock state has been reached. The guard t <= 7 is dis-
abled and there is no outgoing transition anymore. The whole system, however, may
still fire the edge of the Timelock component and thus the property A[] not deadlock
is satisfied. For emphasis: although the absence of deadlocks was confirmed, there still
is an erroneous deadlock state in the model. This fact can be verified by removing the
Timelock component and then rerunning the deadlock check. The deadlock freedom
property will then be falsified.

22

3. Ensuring Time Divergence

Because of the negative influence Zeno runs exert on specifications, ensuring the di-
vergence of time and thus the absence of Zeno runs in a specification is necessary to
guarantee safety. In UPPAAL time divergence can not be verified directly, but indi-
rectly: by using a test automaton, absence of Zeno timelocks (and Zeno runs) can be
ensured. The test automaton consists of a single location with a single edge looping
to itself. It uses a local clock and an invariant on the location together with a guard
to ensure the only edge becomes urgent once every time unit. A loop that will iterate
exactly once every time unit is the result. Now one can define a liveness property us-
ing the leads-to operator –->, which guarantees time divergence: λU := Test.t == 0
–-> Test.t == 1. The formula λU checks if every iteration of the test automaton will
eventually be followed by another iteration. Such an execution path only exists if no
Zeno run (or Zeno-timelock) can occur. Figure 3.1 shows the concealed deadlock model
from section 2.3.4 extended with the presented test automaton. The verification of the
liveness formula λU indeed fails in this model.

Timelock

t <= 10

(a) Timelock model
DeadlockInitial

t <= 7

t = 0

t >= 6

(b) Deadlock model

Test

t <= 1

t == 1

t = 0

(c) Test automaton

Figure 3.1.: Concealed deadlock model with test automaton

Using λU , time divergence can be verified simply and robustly. But there are several
disadvantages to the method as well. At first, liveness verification is computationally
expensive and thus may not always be feasible depending on the complexity of the spec-
ification model. Verification of the formula λU is especially computationally expensive
as the leads-to operator suffers from several limitations: the whole state space needs to
be explored to guarantee absence of Zeno runs and thus on-the-fly verification is not
possible. Also, symmetry reduction is not available for leads-to formulae eliminating an
optimization method that can have a huge impact on verification speed.
Another disadvantage becomes obvious when examining the formula A[] Test.t ==

0 imply (A<> Test.t == 1), which is equivalent to λU . The equivalent formula shows
that the verification of λU yields a conservative result: All paths following t = 0 need to
satisfy t = 1 eventually. However, for ensuring absence of timelocks it is only necessary
to find a single path that allows time to continue to progress. A[] Test.t == 0 imply
(E<> Test.t == 1) would be the formula to verify the correct property. Unfortunately,

23

a matching formula is not expressible in UPPAAL and thus can not be verified.

Considering the disadvantages of indirect verification using UPPAAL, different ap-
proaches to ensure time divergence need to be developed to prove a wider class of speci-
fications safe and to give more accurate results. Static analysis of the model specification
can achieve these goals: the computational complexity of static analysis is low in contrast
to dynamic analysis as the transition system is not executed. Verification of complex
specifications may thus become feasible. Accuracy of the analysis is also increased by
fine tuning the analysis and introducing sophisticated special case handling.

In this chapter a static analysis method for UPPAAL’s timed automata model based
on Gómez’ results [22] is presented. Section 3.1 introduces the strong non-Zenoness
(SNZ) property and defines the safety of loops. Section 3.2 then deals with propagation
of the safety property by synchronization, broadening the set of safe loops. We will give
two different approaches to the synchronization exploitation: the synchronization group
method by Gómez (section 3.2.1) and a new method based on synchronization matrices
(section 3.2.2). At last, section 3.3 will present two ways to incorporate data variable
valuations into the analysis furthering the accuracy of the analysis.

3.1. Strong Non-Zenoness and Loop Safety
Strong non-Zenoness (SNZ) is a static property for loops1 in a timed transition system.
SNZ was introduced by Tripakis [34] to classify loops according to their ability to con-
tribute to Zeno runs. A loop is strongly non-Zeno if a clock variable t is bounded from
below by a guard (t ≥ n, n ≥ 1) and the same clock is reset in the same loop (t = 0).
This constellation ensures that time needs to pass when the loop is iterated. The guard
only becomes enabled after a sufficient amount of time has passed as the clock is reset
every iteration. If all loops in a network are strongly non-Zeno, the network is free
from Zeno runs because, regardless ot the particular loop executed, time is required to
advance. Such a network is also called strongly non-Zeno.
Bowman and Gómez modified the definition of strong non-Zenoness later on to allow

more loops (and networks) to be classified accurately [12]. They restricted the amount
of loops to analyze in the network to elementary cycles only. They also proposed the
exploitation of synchronization, such that not all loops in a network need to be strongly
non-Zeno to be free from Zeno runs.

Figure 3.2 shows some example loops and their classifications. In the loop in figure
3.2a the clock is reset to zero and bounded from below with a bound greater than zero.
Therefore the loop is strongly non-Zeno. Figure 3.2b and 3.2c show examples of not
strongly non-Zeno loops. The first loop misses a reset for its clock variable. Thus after
an initial delay due to the guard the edge will always be enabled and Zeno runs may
occur. The second NSNZ loop has a reset but the lower bound on the clock is not greater
than zero. As a result the edge does not become disabled when the reset is executed

1Loops are cycles of action transitions in the automaton graph.

24

SNZ
t > 0

t = 0

(a) SNZ model

NSNZ
t > 0

(b) NSNZ model #1

NSNZ
t >= 0

t = 0

(c) NSNZ model #2

Figure 3.2.: Strongly non-Zeno and not strongly non-Zeno loops

and is thus always enabled. Again, Zeno runs may occur. In conclusion, the network
consisting of all three loops is not strongly non-Zeno and may exhibit Zeno runs.

Unfortunately, the definition of strong non-Zenoness so far is not sound when taking
into account advanced modeling features of UPPAAL like non-zero clock updates. A
non-zero clock update refers to an update of the form t = k where t ∈ C and k > 0.
Such updates may render lower bounds on clocks meaningless when inferring strong
non-Zenoness. Even though a clock is bound from below and reset in a loop a Zeno run
may occur if the valuation of the clock still satisfies the guard that imposes the lower
bound after the reset has been executed. Another problem resulting from non-zero clock
updates is that loops with multiple updates to the same clock rely on the order of update
executions because later clock assignments may invalidate earlier ones.

NSNZ
t > 0

t = 1

(a) NSNZ model #1

t > 0

t = 0t = 1

(b) SNZ model

t > 0

t = 1t = 0

(c) NSNZ model #2

Figure 3.3.: (N)SNZ loops involving non-zero clock updates

Figure 3.3 visualizes the special cases involving non-zero clock updates. In analogy
to the previous examples (figure 3.2) the first example has a single loop. The clock is
bound from below (t > 0) and reset (t = 1). However, the guard is still satisfied after
execution of the update. Thus the loop is not strongly non-Zeno. Figure 3.3b and 3.3c
depict the order problem of update executions. Both examples have two resets of the
clock variable and one guard on it. The guard is satisfied if the clock variable is greater
than zero (t > 0). The resets assign the values zero and one to the clock. Now, in
the first example in figure 3.3b the reset to zero occurs last. Therefore the guard is not
satisfied immediately and the loop is strongly non-Zero. In contrast, in figure 3.3c the
reset to one is executed last. In this case the guard never disables the edge and Zeno
runs are possible. Therefore the loop is not strongly non-Zeno.

Gómez resolves the issues of non-zero clock updates by refining the SNZ property
even further [22].2 The strong non-Zenoness property specialized on UPPAAL models

2He also improves propagation by synchronization. This is the topic of section 3.2.

25

is formalized in the following.

Loops. Let A be a timed automaton according to section 2.1. A loop in A is a
transition sequence 〈l0

a1,g1,u1−−−−−→ l1 . . . ln−1
an,gn,un−−−−−→ ln〉, where l0 = ln and li 6= lj for all

0 ≤ i 6= j ≤ n. Such a sequence is also called an elementary cycle of A. We distinguish
two kinds of loops: observable loops and internal loops. Observable loops are loops that
synchronize on a channel and thus can be observed from the outside. Internal loops are
only composed of action transitions of the form li

ε,gi,ui−−−−→ li+1 and accordingly do not
synchronize in any way. Furthermore, a run covers a loop if all edges of the loop are
fired infinitely often in the run.

Strongly non-Zeno loops. Let Φ be a clock constraint and g a guard. Φ ∈ g then
denotes that the constraint Φ can be inferred from the guard g. Next, let x and y be
clocks, let m be a natural number including zero (m ∈ N ∪ {0}), and u be an update
annotation on an edge. We use x = m ∈ u to denote that the valuation of x is m after
all assignments in the update u have been executed. In addition, if e is an edge in a
loop lp annotated with a guard g and n is a natural number (n ∈ N), we define xwn ∈ g
to express that either x w n ∈ g (w∈ {=, >,≥}) or x − y w n ∈ g (w∈ {>,≥}). Using
those definitions we define xlb to be the lower bound for x in g if xwxlb

∈ g and there is
no x′lb > xlb such that xwx′

lb
∈ g. At last, we use U(p, q) to denote the set of updates

that occur on the edges on the path from p to q (〈p a1,g1,u1−−−−−→ e1 . . . en−1
an,gn,un−−−−−→ q〉).

A loop lp is strongly non-Zeno (SNZ) if there exists a clock x with lower bound xlb, an
edge eu with an update u, an edge eg with a guard g in lp, and natural numbers m,m′
that adhere to the following constraints.

x = m ∈ u clock reset
m < xlb valid reset
∀u ∈ U(eu, eg)[@x = m′ ∈ u[m′ ≥ xlb]] lower bound invalidation

The first constraint ensures the clock variable x is reset in the loop. The second constraint
assures time has to pass when iterating the loop by verifying the clock is reset to a value
lower than the corresponding lower bound. At last, the third constraint guarantees that
there is no update to the clock on the path from eu to eg, which invalidates the initial
clock reset by assigning a value greater than the lower bound to the clock. A clock x
that complies with those constraints is called an SNZ witness for the loop lp.

Unfortunately, in UPPAAL specifications a loop that is strongly non-Zeno is not
guaranteed to prevent Zeno runs that cover that loop. The cause are external updates
to non-local clock variables that may invalidate the assumption that time needs to pass
for iterations: if a clock variable was not declared locally to a component but globally to
all components, this clock may be an SNZ witness for a loop in a component. However,
invalidating updates to that clock may occur in different components. As component
actions may interleave to model concurrency it is possible for two components to interact
in such a way that one component always invalidates the SNZ witness’s clock reset and
thus a Zeno run can occur.

26

ResetCheck

t = 0

t > 0

(a) SNZ loop

t = 1

(b) Zeno update loop

x > 0

t = 1,
x = 0

(c) Non-Zeno update loop

Figure 3.4.: Influence on SNZ by external updates

Figure 3.4 depicts a constellation of loops where a strongly non-Zeno loop is not safe
with regards to Zeno loops. The loop in figure 3.4a is a simple, strongly non-Zeno loop:
the clock variable t is reset to zero, there is a guard ensuring a lower bound greater than
zero and no invalidating updates occur. However, if the clock variable t is not local to the
component another component can update the value externally. We now assume that t
is a global clock variable. Both figures 3.4b and 3.4c show loops that might occur in a
different component. The first one is not a strongly non-Zeno loop and may exhibit Zeno
runs. In addition, the global clock variable t is set to one every iteration. A possible
run, which covers the SNZ loop, but, in spite of the SNZ property, exhibits Zeno runs, is
any run that executes the loop in figure 3.4b first, then both edges of the SNZ loop and
then repeats the execution in the same order. In such a run, t will be set to one, checked
to be greater than zero and then set to zero again repeatedly. Thus, the run covers the
SNZ loop. However, no time needs to pass and therefore such a run has no delays and
it is a Zeno run. In contrast, the second loop in figure 3.4c also updates the global clock
variable t to one, but is strongly non-Zeno itself (the local clock x is an SNZ witness). In
this case time needs to pass, when the global clock is updated, and a Zeno run can not
occur. If we now consider the complete model, the first loop is strongly non-Zeno but
not safe from Zeno runs, as not all external updates to its SNZ witness clock t originate
from safe loops. The second loop is not strongly non-Zeno and thus also not safe. And
the third loop is strongly non-Zeno and also safe, because the loop possesses a local SNZ
witness.

Safe loops. A loop lp in an UPPAAL specification is considered safe from Zeno runs
if the following two conditions hold.3

1. lp is a strongly non-Zeno loop (SNZ)

2. lp has a local SNZ witness, or all external updates to an SNZ witness of lp originate
from safe loops

Following this definition a run that covers a safe loop will always be time-divergent and
thus the safe loop can not contribute to the occurrence of Zeno runs: a run that covers
a strongly non-Zeno loop is time-divergent by definition unless the SNZ witness clock is
externally updated infinitely often without delays. Such updates require the loops, the

3Note: Gómez’ definition does not require external updating loops to be safe, but to be SNZ with a
local witness. Requiring them to be safe makes the safety property transitive.

27

updates originate from, to be loops that exhibit Zeno runs themselves. Such updates are
impossible as a safe loop only receives updates from safe loops by definition and thus
safe loops are free from Zeno runs.

3.2. Safety Propagation
Exploitation of synchronization between different components of a timed automata sys-
tem may render it possible to deem a specification safe to Zeno runs even if unsafe loops
exist in the specification. In fact, we are not interested in the safety of the individ-
ual components but rather in the safety of the product automaton that combines the
individual components’ automata into one big automaton.4 The product automaton
merges two edges that are subject to binary synchronization to a single edge. In addi-
tion, all clock constraints and resets are preserved. If two loops synchronize together it
is therefore sufficient for one of both loops to be safe to obtain a safe loop in the product
automaton. Safe specifications can thus be obtained without requiring all loops to be
safe from Zeno runs.

Loc2Loc1

x = 0

x > 1

a?

(a) SNZ loop

Loc4
y <= 2

Loc3
y <= 2

y = 0

a!
y = 0

(b) NSNZ loop

<Loc1,Loc4>
y <= 2

<Loc2,Loc3>
y <= 2

<Loc2,Loc4>
y <= 2

<Loc1,Loc3>
y <= 2

y = 0 x = 0

x = 0 y = 0

x > 1
a

y = 0

(c) Product automaton

Figure 3.5.: Synchronization effects on (N)SNZ property

Figure 3.5 shows a system consisting of two concurrent loops that synchronize on a
binary channel and the resulting product automaton. The first loop, depicted in figure
3.5a, is a simple strongly non-Zeno loop with a local SNZ witness x. The second loop,
shown in figure 3.5b, is not a strongly non-Zeno loop. Invariants and clock resets on y
were just added to show the effects on the product automaton (figure 3.5c). Two loops are
present in the product automaton. They are created because the order of the transitions
after the initial synchronization is not deterministic and both interleaving possibilities
need to be represented: the loop via <Loc2,Loc3> is equivalent to a scenario where the
not strongly non-Zeno loop returns to its initial location first. In analogy, the other loop
is equivalent to the SNZ loop that transitions to its origin first. However, both loops
have updates to x and constraints on x, such that they are considered strongly non-Zeno.
Because the product automaton incorporates all concurrency of the original model no

4A formal definition of a product automaton can for example be found in Bowman’s article on timelock
detection [12].

28

external updates can occur and thus all SNZ loops are also safe loops. Therefore the
product automaton only contains safe loops and is thus safe from Zeno runs, although
it was constructed from partly unsafe components.

However, special attention needs to be given to synchronization on broadcast channels,
because sending on a broadcast channel is non-blocking. Receivers need not be available
for synchronization and still a sending loop can iterate. Thus, a synchronizing pair of a
strongly non-Zeno loop and a not strongly non-Zeno loop may exhibit Zeno runs if the
sending loop exhibits Zeno behavior. The problem is that in such a case synchronization
is optional and not necessary for iterations and therefore the behavior of the sending
loop is retained in the product automaton.

Loc2Loc1

x = 0

x > 1

a?

(a) SNZ loop

Loc4
y <= 2

Loc3
y <= 2

y = 0

a!
y = 0

(b) NSNZ loop

<Loc1,Loc4>
y <= 2

<Loc2,Loc3>
y <= 2

<Loc2,Loc4>
y <= 2

<Loc1,Loc3>
y <= 2

a y = 0

y = 0 x = 0

x = 0 y = 0

x > 1
a

y = 0

(c) Product automaton

Figure 3.6.: Broadcast channel influence on synchronization

Figure 3.6 shows the same example system as figure 3.5, however this time the syn-
chronization channel a is a broadcast channel. In this case the NSNZ loop may iterate
even though the clock variable x is not greater than one. A synchronization partner edge
is not necessary. The product automaton this constellation creates is given in figure 3.6c.
In contrast to the previous product automaton an additional edge is present, which con-
nects the locations <Loc2,Loc3> and <Loc2,Loc4>. This edge fulfills the case where
the NSNZ loop transitions without a receiver. As a result a third loop is introduced to
the product automaton, which just cycles between <Loc2,Loc3> and <Loc2,Loc4>. The
loop is not strongly non-Zeno, although the product automaton was created from an SNZ
loop and a NSNZ loop, conflicting with the result obtained from binary synchronization
channels. In conclusion, techniques that exploit the propagation of loop safety need
to treat binary and broadcast channels differently to accommodate the non-blocking
behavior of a sending action on broadcast channels.

In the following, two such methods are presented. The first one (section 3.2.1) was
proposed by Gómez [22] and yields a set of loops that may contribute to Zeno runs by
ensuring valid, not strongly non-Zeno synchronization partners are present for all mem-
bers of the set. The second method (section 3.2.2), which is a new proposal, also yields
such a set. However, the method makes use of an (in)equation system to improve the
accuracy of the analysis compared to Gómez’ approach by eliminating certain impossible
synchronization scenarios.

29

3.2.1. Synchronization Groups
The synchronization group approach finds a maximal set of unsafe loops, such that
every loop in the set can synchronize on all channels it uses with a partner that is also
member of the set. Groups of unsafe loops that can synchronize together are identified
and therefore Zeno runs may occur. Maximality in this context refers to the amount of
loops contained in the set. Thus all loops that fulfill the requirements need to be part
of the set, otherwise loops exhibiting Zeno runs may be missed, when the specification
is analyzed on the basis of the results of the synchronization group method. A formal
definition is given next.

Synchronization group. Given a network of timed automata |A, ULsync denotes
the set of all unsafe, observable loops of |A. A synchronization group is a maximal,
non-empty set S ⊆ ULsync, such that, for any lp ∈ S and any observable action in lp
that synchronizes on a binary channel or receives on a broadcast channel, there is a
matching action in some loop lp′ ∈ S.5 Synchronization groups will also be called sync
groups in the following.

x == 1

c?

x = 0
a!

(a) Loop #1

b!

a?

(b) Loop #2

c!

b?

(c) Loop #3

c?

b!

(d) Loop #4

c?

b!

(e) Loop #5

Figure 3.7.: Synchronization group calculation

To get a better understanding on synchronization groups, figure 3.7 shows a system of
timed automata that should be subject to the synchronization group analysis. All chan-
nels in the system are binary channels. Not considering strong non-Zenoness properties,
there are three sets of loops, which can successfully synchronize together.

1. Loop #1, Loop #2, and Loop #3 (syncs on a, b, c)

2. Loop #3 and Loop #4 (syncs on b, c)

3. Loop #3 and Loop #5 (syncs on b, c)

Of the given loops only loop #1 is strongly non-Zeno and safe. Now, when applying the
synchronization group analysis, only the unsafe loops are considered for grouping. Thus
the first synchronization scenario is not possible anymore. Loop #1 would be required
to be a member of the synchronization group so that Loop #3 has a synchronization
partner for channel c. The second and third scenarios remain possible, because they
consist entirely of unsafe loops. However, neither the set {Loop3, Loop4} nor the set

5Note: To our understanding Gómez’ definition [22] is wrong as emitting broadcast actions do not need
a synchronizing partner to successfully iterate, however receiving loops do.

30

{Loop3, Loop5} qualify as a synchronization group as the maximality criterion is not
satisfied. The final synchronization group needs to include all loops of valid scenarios,
therefore the synchronization group for the system is {Loop3, Loop4, Loop5}.

A problem regarding synchronization involves arrays of synchronization channels: if
a synchronization channel is an array element, cases may occur where the analysis can
only infer that synchronization should happen involving the array of channels, but the
exact channel to synchronize on can not be identified. Such a case may occur if a
synchronization label is of the form channelarray[e]!/? or an multidimensional variant
of it and the expression e can not be resolved to a constant value; for example e could
depend on data variables or selection statements, or involve function calls, whose values
can not be derived statically. In such a case, the synchronization can not simply be
omitted. Rather, one must ensure the synchronization that actually will happen will
also be considered by the analysis. As a result, if a channel array element can not be
identified, all elements of the channel array need to be considered valid partners for
synchronization. This operation is conservative as the correct synchronization scenario
will be captured, but impossible scenarios in the actual model may also be included.

channel[ZeroOrOne()]!

(a) Loop #1

t > 0
t = 0

channel[0]?

(b) Loop #2

t > 0
t = 0

channel[1]?

(c) Loop #3

channel[2]?

(d) Loop #4

Figure 3.8.: Non-deterministic channel synchronization

The loop constellation given in figure 3.8 shows a model that uses an array of three
synchronization channels. Imaging the function ZeroOrOne() to return zero or one non-
deterministically. Thus, possible synchronization scenarios are only {Loop1, Loop2} and
{Loop1, Loop3}. Both match an SNZ to a NSNZ loop on a binary channel. Therefore,
the model is free from Zeno runs, if analyzed correctly. The synchronization group anal-
ysis can not infer the value of ZeroOrOne() and needs to assume all channels of the array
may be used. This includes the actually impossible synchronization scenario {Loop1,
Loop4}, which would exhibit Zeno runs if it was allowed. As a result the synchronization
group constructed for the model is {Loop1, Loop4}, although such synchronization is
impossible and the system is free from Zeno runs. A conservative overapproximation of
the correct solution has been obtained.

3.2.2. Synchronization Matrix
The synchronization group analysis includes synchronizations that are impossible at run-
time. For example, the order of synchronizations is not considered and also the amount of
necessary matching partners is neglected. The model shown in figure 3.9 shows two such
loops that can not synchronize together. Loop #1 sends on channel a twice and receives

31

on channel b once. Loop #2 only sends and receives the corresponding channels once. At
run-time a deadlock will inevitably occur. In this case the synchronization group analysis
will falsely return {Loop1, Loop2} as the sync group, because all synchronizations have
matching partners.

b?

a!

a!

(a) Loop #1

b!a?

(b) Loop #2

Figure 3.9.: Impossible synchronization scenario

The synchronization matrix method improves the accuracy of the sync group analysis
by eliminating such wrongly identified cases. At first, the method assigns all unsafe loops
of the system a set of vectors representing the channels the loop synchronizes on. A set
of constraint equations might be needed to link the vectors to obtain correct behavior.
From the loop representation vectors a synchronization matrix is derived that models
the synchronization possibilities of every loop. Then, by solving a constrained equation
system valid synchronization scenarios involving certain loops can be found: a balance
of sending and receiving synchronization labels needs to be found. If a balance involving
a loop can be found the membership of a loop in the analysis result set can be implied.

At first we will focus on modeling the system correctly in section 3.2.2.1. Then, section
3.2.2.2 will present the synchronization matrix. Finding loops prone to Zeno runs by
constructing a valid synchronization scenario will be explained in section 3.2.2.3. And at
last, section 3.2.2.4 shows the improved accuracy of the method by applying the analysis
to the model in figure 3.9 and a more complex example.

3.2.2.1. Loop Modeling

Let ULsync refer to the set of observable, unsafe loops and let Sync(S) be the set of
synchronization channels used in the set of loops S. We denote the set of all synchro-
nization channels used in unsafe, observable loops L = Sync(ULsync). In addition, we
define Vec(lp) to be the set of vectors assigned to the loop lp. Vec(lp) is partitioned into
two parts: the base vectors Base(lp) and the broadcast vectors Broad(lp):

Vec(lp) = Base(lp) ∪ Broad(lp), Base(lp) ∩ Broad(lp) = ∅.

A vector v ∈ Vec(lp) has one component per used synchronization channel and those
components take values in the integral numbers (v ∈ Z|L|). We refer to individual
vector components by xchannel. The set of vectors assigned to a loop depends on the
synchronization channels the loop uses. Again, we need to handle unresolved channel
arrays in a special way. The argumentation for synchronization groups also applies in
our case. In total four different channel classes need to be considered:

32

1. Binary channel (e.g., chan channel)

2. Broadcast channel (e.g., broadcast chan channel)

3. Unresolved binary channel array (e.g, chan channel[2])

4. Unresolved broadcast channel array (e.g., broadcast chan channel[2])

Vectors are assigned to loops in the following way: Initially for every lp ∈ ULsync
the set Vec(lp) consists of a single zero vector, denoting no synchronization at all. The
initial vector is part of Base(lp). We then iterate all loops lp ∈ ULsync and for every
synchronization label lb of the form c!, c?, a[e]!, or a[e]? (e ∈ E(V)) used in the loop
lp the set Vec(lp) is modified by the matching rule:

1. Synchronization on binary channel or receiving broadcast channel

(c /∈ BCh) ∨ (lb = c?)

For every vector v ∈ Base(lp), increase xc by one, if lb is of the form c!, or decrease
xc by one, if lb is of the form c?.

2. Sending on broadcast channel

c ∈ BCh ∧ lb = c!

If not already in the set add a vector v to Broad(lp), where xc is set to one.

3. Synchronization on unresolved binary channel array or unresolved receiving broad-
cast channel array

((@c ∈ a[c ∈ BCh]) ∨ (lb = a[e]?)) ∧ e unresolved

For every channel c ∈ a, create a copy Copyc of Base(lp). Then, for every vector
v ∈ Copyc, increase xc by one, if lb is of the form a[e]!, or decrease xc by one,
if lb is of the form a[e]?. The resulting base vector set is the union of all copies:
Base(lp) =

⋃
cCopyc.

4. Sending on unresolved broadcast channel array

∀c ∈ a[c ∈ BCh] ∧ lb = a[e]!

For every channel c ∈ a if not already in the set add a vector v to Broad(lp), where
xc is set to one.

Figure 3.10 shows one loop per rule. Assume the following channel variables: a is a
binary channel, b is a broadcast channel, c is a binary channel array of size two, and d is
a broadcast channel array of size two. All loops are unsafe and observable. We use the
following form of vectors to represent the loops: v = (xa, xb, xc[0], xc[1], xd[0], xd[1])T .
The resulting loop models are:

33

a!

(a) Loop #1

b!

(b) Loop #2

c[e]!

(c) Loop #3

d[e]!

(d) Loop #4

Figure 3.10.: Synchronization cases for loop model generation

1. Loop: Vec(lp) = { (1, 0, 0, 0, 0, 0)T } ∪ ∅

2. Loop: Vec(lp) = { (0, 0, 0, 0, 0, 0)T } ∪ { (0, 1, 0, 0, 0, 0) }

3. Loop: Vec(lp) = { (0, 0, 1, 0, 0, 0)T , (0, 0, 0, 1, 0, 0)T } ∪ ∅

4. Loop: Vec(lp) = { (0, 0, 0, 0, 0, 0)T } ∪ { (0, 0, 0, 0, 1, 0)T , (0, 0, 0, 0, 0, 1)T }

Note that the first set refers to the base vector set Base(lp), while the second one is the
broadcast vector set Broad(lp).

3.2.2.2. Synchronization Matrix Construction

Based on the loop models we will now present the synchronization matrix, which will be
used to calculate valid synchronization scenarios. The matrix has the following form:

S =
(

M
C

)
=

M1 M2 . . . Mn
C1 0 . . . 0
0 C2 . . . 0
...

...
0 0 . . . Cn

Here Mi are model matrices for all unsafe, observable loops, and Ci are associated
constraint matrices. Note that the constraint matrices Ci may be empty and thus
blocks may be missing in a final synchronization matrix S. The matrices Mi can be
constructed from the loop’s model by filling in the model vectors:

Mi =
(
~v1 . . . ~vn ~b1 . . . ~bn ~b1 . . . ~bn

)
, ~vj ∈ Base(lpi), ~bj ∈ Broad(lpi)

The constraint matrices Ci are used to relate the broadcast vectors to the base vectors.
They are divided into three parts in the same way as the model matrices Mi. They are
of the form

Ci =
(

0 s · I −1 · I
~li . . . ~li Li 0

)
Here, 0 is the zero matrix, s is the total amount of synchronization labels6, I is the
identity matrix, ~li is the base link vector, and Li is the base link matrix. There are

6A smaller bound could be established here by only considering receiving labels for the correct channel.

34

two kinds of constraints that are modeled in Ci: broadcast link constraints and base
link constraints. The upper blocks are used for broadcast link constraints and the lower
blocks are used for base link constraints. Together the constraints model the one-to-
many synchronization behavior of broadcast channels correctly. For the construction of
the base link vector and matrix, we iterate through all synchronization labels lb in the
loop lpi and add values to ~li and rows to Li if one of the following rules applies:

1. Sending on a broadcast channel

lb = c! ∧ c ∈ BCh

Add the amount of sending synchronization labels of the form c! in the loop lpi
to ~li. Add a zero row to Li and set the value xp to minus one. The index p refers
to the position of the vector v ∈ Broad(lpi), where xc = 1. Note that we assume
the set Broad(lp) to be ordered in the same way as the vectors were added to the
matrices Mi.

2. Sending on unresolved broadcast channel array

lb = a[e]! ∧ a[0] ∈ BCh

Add the amount of sending synchronization labels of the form a[e]! in the loop
lpi to ~li. Add a zero row to Li and set the values xj , j ∈ P to minus one. The set
P of indices refers to the positions of the vectors vj ∈ Broad(lpi), where xc = 1
and c is a channel in the array a. Again a matching order of vectors in Broad(lp)
is assumed.

Equation 3.1 shows the synchronization matrix S for the example system shown in
figure 3.10. Vertical bars separate different loops and dashed vertical bars separate the
base vectors from the broadcast vectors. The horizontal double bar separates the model
matrices from the constraint matrices, the normal horizontal bars separate the loop
constraint matrices, and the dashed horizontal bars separate broadcast link constraints
from the base link constraints within one constraint matrix.

S =

1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1
0 0 4 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 −1 0
0 0 0 0 0 0 0 0 4 0 −1
0 0 0 0 0 0 1 −1 −1 0 0

(3.1)

35

The first column models loop #1 and thus only sends on the channel a and has no
associated constraints. The second loop is modeled by columns two to four. As it only
sends on a broadcast channel the base vector set is unmodified and the only broadcast
vector was duplicated. An associated broadcast link constraint links column three and
four with values four7 and minus one respectively. The base link constraint links the
zero base vector in column two to the first broadcast channel in column three. The third
loop that sends on an unresolved binary channel array with two elements is modeled in
columns five and six. No constraints are necessary but the loop can either synchronize
on c[0] or c[1] and thus two base vectors are created. The last loop sends only on
an unresolved broadcast channel array. Accordingly the zero base vector is kept and for
every channel in the array one broadcast vector were created and then duplicated. In
the constraint section one can see the broadcast link constraints binding the duplicates
together. The base link constraint in the last row models that per iteration of the loop
only either d[0] or d[1] may synchronize.

3.2.2.3. Synchronization Scenario Calculation

The synchronization matrix S can now be used to calculate valid synchronization sce-
narios involving any loop. Thus loops that have no valid synchronization scenario, can
be excluded from the list of loops that may cause Zeno runs. The (in)equation system
that needs to be solved is given in equation 3.2.

M~x∗M = ~0, C~x∗C ≥ ~0, S =
(
M
C

)
, ~x∗ =

(
~x∗M
~x∗C

)
(3.2)

The equation system is further constrained, such that the components of the solution
vector ~x∗ may only take values in the natural numbers including zero (~x∗ ∈ (N∪{0})n).
Upon successful solution calculation, the solution vector contains information about how
often every loop needs to iterate to provide a matching synchronization partner for every
synchronization label.

To decide whether or not a valid synchronization scenario exists for a certain loop
lp, we solve the (in)equation system once for every base vector for the loop. Each time
we require the component value of the solution vector ~x∗ of a different base vector of
lp to be greater than zero to ensure the solution will involve the loop. If any solution
can be calculated, the loop may contribute to Zeno runs, otherwise it is eliminated from
the result set of the analysis. The approach is correct as the synchronization matrix
represents ingoing and outgoing synchronizations of loops and tries to find a balance
by varying the amount of loop iterations. If no solution involving the loop lp can be
found, there is no constellation of loop iterations where every synchronization has a valid
synchronization partner. Thus, the system can not iterate when involving the loop lp
and therefore lp need not be considered for Zeno run contribution.

7There are four synchronization labels in the model.

36

3.2.2.4. Accuracy Improvement

b?

a!

a!

(a) Loop #1

b!a?

(b) Loop #2

Figure 3.11.: Impossible synchronization scenario

Recall the example model from the beginning of section 3.2.2 that displayed the over-
approximation of the synchronization group approach in figure 3.11. We now apply
the synchronization matrix method to prove absence of Zeno runs in the system. At
first, we model the two loops. Both loops are unsafe and observable. It follows that
ULsync = {Loop1, Loop2}, and L = {a, b}. A vector v in the set Vec(lp) will be of the
form (xa, xb)T . The loop in figure 3.11a sends twice on channel a and receives once on
channel b. The loop in figure 3.11b only sends once on channel b and receives once on
channel a. Because no broadcast channels are involved both loops are only assigned a
single base vector:

1. Loop: Vec(lp) = {(2,−1)T } ∪ ∅

2. Loop: Vec(lp) = {(−1, 1)T } ∪ ∅

The construction of the synchronization matrix S is also simple, as no constraints for
broadcast channels are created. The resulting equation system is(

2 −1
−1 1

)(
xa
xb

)
= ~0

We will solve the system once for every base vector for every loop. In this case, the
equation system will be solved twice. On the first iteration we require xa to be greater
than zero. In analogy, on the second solving attempt we require xb to be greater than
zero. Both systems have no solution and thus the system is free from Zeno runs.

A more complex system is given in figure 3.12. The channel broad is a broadcast chan-
nel, all other channels are binary channels. Again, all loops are unsafe and observable.
Thus, all loops are member of ULsync and the set of used channels L is { array[0],
array[1], array[2], a, b, c, broad }. The loop modeling process creates the following
sets if a modeling vector v is of the form (xarray[0], xarray[1], xarray[2], xa, xb, xc, xbroad)T :

1. Loop: Vec(lp) = {(1, 0, 0,−1, 0, 0, 0)T , (0, 1, 0,−1, 0, 0, 0)T , (0, 0, 1,−1, 0, 0, 0)T }∪∅

2. Loop: Vec(lp) = {(−1, 0, 0, 1, 0, 0, 0)T } ∪ ∅

3. Loop: Vec(lp) = {(0,−1, 0, 0, 0, 0, 0)T } ∪ ∅

37

a?
i : int[0,2]

array[i]!

(a) Loop #1

a!array[0]?

(b) Loop #2

array[1]?

(c) Loop #3

a!
c?

b?

broad!

array[2]?

(d) Loop #4

b!broad?

(e) Loop #5

c!broad?

(f) Loop #6

Figure 3.12.: Model involving complex synchronization

4. Loop: Vec(lp) = {(0, 0,−1, 1,−1,−1, 0)T } ∪ {(0, 0, 0, 0, 0, 0, 1)T }

5. Loop: Vec(lp) = {(0, 0, 0, 0, 1, 0,−1)T } ∪ ∅

6. Loop: Vec(lp) = {(0, 0, 0, 0, 0, 1,−1)T } ∪ ∅

The resulting synchronization matrix S is

S =

1 0 0 −1 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
−1 −1 −1 1 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 14 −1 0 0
0 0 0 0 0 1 −1 0 0 0

If we consider the solution vector ~x∗ to be of the form

(xLoop1,1, xLoop1,2, xLoop1,3, xLoop2, xLoop3, xLoop4, xBroad4,1, xBroad4,2, xLoop5, xLoop6)T

38

the equation system to solve is

1 0 0 −1 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
−1 −1 −1 1 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 1 1 −1 −1

xLoop1,1
xLoop1,2
xLoop1,3
xLoop2
xLoop3
xLoop4
xBroad4,1
xBroad4,2
xLoop5
xLoop6

= ~0

under the constraints

(
0 0 0 0 0 0 14 −1 0 0
0 0 0 0 0 1 −1 0 0 0

)

xLoop1,1
xLoop1,2
xLoop1,3
xLoop2
xLoop3
xLoop4
xBroad1
xBroad2
xLoop5
xLoop6

≥ ~0

Solving the system while always requiring one of the xLoop components to be greater
than one yields, for example, the following results:

1. xLoop1,1 > 0 : x∗ = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0)T

2. xLoop1,2 > 0 : No solution

3. xLoop1,3 > 0 : x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1)T

4. xLoop2 > 0 : x∗ = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0)T

5. xLoop3 > 0 : No solution

6. xLoop4 > 0 : x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1)T

7. xLoop5 > 0 : x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1)T

8. xLoop6 > 0 : x∗ = (0, 0, 1, 0, 0, 1, 1, 1, 1, 1)T

Evaluating these results, the third loop can be excluded from the list of loops that can
contribute to Zeno runs. All other loops have at least one valid synchronization scenario
involving them and thus may yield Zeno runs. The final result set the synchronization
matrix method creates is { Loop1, Loop2, Loop4, Loop5, Loop6 }. In contrast the
synchronization group approach yields { Loop1, Loop2, Loop3, Loop4, Loop5, Loop6 }.

39

3.3. Data Variable Heuristics
Data variables play a huge role during execution of a timed transition system in UPPAAL
but have not yet been analyzed regarding their influence on Zeno runs. They may,
for example, disable edges or dynamically provide upper and lower bounds for time
constraints and thus modify the behavior of a model significantly. Obviously, during
a static analysis exact values for data variables can not be inferred directly. However,
techniques using data flow analysis can restrict the set of possible valuations for a data
variable at certain states. Such restrictions may render possible the elimination of loops
that can not iterate due to data variable constraints and thus improving the accuracy
of the Zeno run analysis even further.

In this thesis we do not apply a fully-fledged data flow analysis to UPPAAL’s timed
automata system. Instead, we decided on an ad-hoc approach that evaluates loop con-
stellations and variable valuations on a case by case basis to eliminate impossible Zeno
runs. The next two subsections will present two such heuristics to remove false positives
from the result set of the synchronization matrix analysis. In section 3.3.1 we present a
method dealing with unsafe loops that have a data variable constraint that can only be
satisfied by executing safe loops. Thus, such a loop can also be considered safe. Section
3.3.2 then describes a heuristic that eliminates loops that have two or more guards that
require conflicting variable valuations for their satisfaction.

3.3.1. Safe Variable Dependencies
UPPAAL’s specifications may contain loops that are unsafe when only considering clock
variables but safe when also including data variable valuations. Using data variable
dependencies it is possible to remove loops, which were falsely deemed vulnerable to
Zeno runs.

wait

req
x<=k

A

cs

id== 0 x = 0

x<=k

x = 0,
id = pid id== 0

x = 0

x>k && id==pid

id = 0

Figure 3.13.: Fischer protocol automaton

Consider the timed automaton given in figure 3.13. The automaton consists of a
single component that models the Fischer synchronization protocol [26]. The component
uses two variables and two constants: x is a local clock variable, id is a global integer
variable, pid is a unique, constant integer value that is greater than zero to identify the
component, and k is a global, constant integer value greater than zero. The automaton
has two loops:

40

1. Loop: A → req → wait → cs → A

2. Loop: req → wait → req

The first loop is a safe loop as x is reset on the edge A → req (x = 0), x has a lower
bound on the edge wait → cs (x > k), and x is a local clock. The second loop is
neither safe nor strongly non-Zeno. However, the second loop has a safe data variable
dependency: the data variable id is required to be zero (id == 0) for the loop to iterate.
In addition, the loop itself sets the value of id to a value that does not satisfy the guard
(id = pid) and thus the loop can not iterate on its own indefinitely. Instead, the loop
depends on external influence on the data variable id. In this example, a valuation of
id that satisfies the guard is only reachable if the first, safe loop is executed. Therefore,
the second loop can also be considered safe because iterations of the second loop always
require a safe loop iteration of the first loop ensuring time divergence.

Safely dependent loops. Let lp be an loop in a network of timed automata |A. A
loop is safely dependent if there exists an edge eu with an update u and an edge eg with
a guard g in lp, such that ∀〈l̄, v〉 ∈ S[u(v) 2 g], and every reachable variable valuation v′
such that v′ |= g originates from an update u′ on an edge that is part of safe loops only.

Following this definition every run that covers a safely dependent loop lp is time-
divergent, because such a run needs to cover not only the loop lp but also at least
another loop lp′ that provides a variable valuation v′ to satisfy g. As all loops that
provide such a valuation are safe by definition, the run covers a safe loop and thus the
run is time-divergent.

3.3.2. Conflicting Guards Elimination
When specifying a model in UPPAAL the user may create loops in the system that can
not execute during model execution due to constraints. However, those loops are still
considered for Zeno run detection during a static analysis run. The conflicting guards
elimination approach removes a subset of such loops by finding guards in a loop that
require conflicting variable valuations to be satisfied.

One

Zero

RandomInitial x == 0x == 1

x == 1

x == 0

i : int[0,1] t > 0 t = 0, x = i

Figure 3.14.: Model with an impossible loop

The model in figure 3.14 shows a model with such an impossible loop. The model
uses two local variables; x is an integer variable and t is a clock variable. Five loops are
present in the system:

41

1. Loop: Initial → Random → Zero → Initial

2. Loop: Initial → Random → One → Initial

3. Loop: Initial → Random → Zero → One → Initial

4. Loop: Initial → Random → One → Zero → Initial

5. Loop: Zero → One → Zero

The first four loops are all safe from Zeno runs due to the local SNZ witness on the
edge Initial → Random. A closer look at the fifth loop shows that this loop can not
iterate because the two guards need conflicting valuations of x (x == 0, x == 1) and x
is a local variable and can thus not be modified from an external source. The system is
therefore free from Zeno runs. However, without analysis of the data variables the fifth
loop will be detected as a loop that exhibits Zeno runs.

Conflicting loops. Let lp be a loop in a network of timed automata |A. A loop
is conflicting if there exist two edges e1, e2 with respective guards g1, g2 involving local
variables, such that there is no variable valuation v such that v |= g1 and the variable
valuation v′ resulting from sequential execution of the updates on the path from e1 to
e2 satisfies g2.

@〈l̄, v〉 ∈ S[v |= g1 ∧ un−1(un−2(. . . u1(v) . . .)) |= g2]

A conflicting loop may safely be removed from the analysis result set as such a loop can
never iterate during system execution. By definition, there is no variable valuation that
satisfies the first guard and, after updates have been applied, also satisfies the second
guard of the loop. Accordingly, the execution of the loop is impossible at run-time and
thus can not contribute to Zeno runs.

42

4. ZenoTool

This chapter focuses on the implementation of the analyses given in chapter 3. The chap-
ter is organized as follows: Section 4.1 deals with the usage of the implemented tool.
It covers available options, limitations of the implementation and possible workarounds.
Section 4.2 presents implementation details of the tool, open-source libraries used, and
underlying algorithms. Section 4.3 deals with the software validation process by regres-
sion testing and the application of the run-time analysis tool Valgrind.1 At last, section
4.4 shows the results we obtained by analyzing several real world case study models with
ZenoTool carving out its strengths and weaknesses.

4.1. Usage
We implemented the analyses shown in chapter 3 in a stand-alone software called Zeno-
Tool. Apart from the use of a few libraries (see section 4.2.3) ZenoTool was created
from scratch and is written in the C++ programming language. C++ was our language
of choice as it is generally known to perform well and as the analysis might be time-
critical for complex models. ZenoTool is a command-line program reading UPPAAL
model specification files. Typically, one creates a model using the editor provided by
the UPPAAL graphical user interface. Note that ZenoTool only reads the more recently
implemented XML model files introduced in UPPAAL version 3.4. ZenoTool is called in
the following way:

ZenoTool [parameter, parameter, ...] <modelfile>

Available parameters are given in the following.

4.1.1. Command-line Parameters
ZenoTool provides several command-line options to specify the exact analysis to per-
form. By default, the tool uses the synchronization matrix method (see section 3.2.2) to
propagate the loop safety property. Elementary loops are detected by using a modified
version of Tarjan’s cycle detection algorithm [32] and no data variable heuristics are
applied. The following command-line options are available:

• -h or --help
Displays available command-line parameters and general usage information for
ZenoTool.

1http://valgrind.org/

43

http://valgrind.org/

• -v or --version
Displays the version of ZenoTool.

• -s or --simple
Changes the output format of the analysis. By default, loops are printed including
all the annotations on the edges. In complex models, loop annotations may be
confusing and thus the output may be difficult to read. This command-line option
prevents edge annotations from being printed.

• -t or --tiernan
Changes the cycle detection algorithm to use the one proposed by Tiernan [33].
The algorithm does not handle multiple edges between the same two locations
correctly and thus does not find all loops in such models. Also, generally the
algorithm runs slower. Usage of this deprecated cycle detection algorithm is not
recommended for those reasons.

• -g or --group
Changes the loop safety propagation method to use Gómez’ synchronization group
approach (see section 3.2.1). Generally the synchronization group method will
yield less accurate results at a faster processing speed when compared to the syn-
chronization matrix method. If the analysis’ run time is unsatisfactory switching
to Gómez’ method might improve performance.

• -d or --dependent
Enables the data variable heuristic that detects a subset of safely dependent loops
(see section 3.3.1). The analyzed model should be free from side effects to yield
correct results. Therefore, neither user-defined functions nor assignments with side
effects should be present in the model.

• -c or --conflict
Enables the data variable heuristic that detects a subset of conflicting loops (see
section 3.3.2). The analyzed model should be free from side effects to yield correct
results. Therefore, neither user-defined functions nor assignments with side effects
should be present in the model.

• -r or --regression
Enables the final run of regression tests. Note that this option is mainly used for
development and only makes sense in conjunction with the regression test model.

Note that multiple, enabled data variable heuristics will be applied in the order specified
at the command line and a loop that qualifies for removal due to multiple heuristics
will only be marked by the first matching heuristic. Enabling multiple heuristics at the
same time though can create synergies such that the first heuristic removes a loop and
because of this a second heuristic can be applied to remove even more loops. ZenoTool
takes care of such synergies automatically by repeatedly executing the heuristics until
no further improvements are possible.

44

4.1.2. Limitations and Workarounds
As presented in section 4.1 ZenoTool only reads UPPAAL XML model files introduced
in UPPAAL version 3.4. If one happens to have an old UPPAAL model file (ta-file) a
conversion needs to be done. The conversion process can be done by using the UPPAAL
GUI. However, opening the old file and then saving it in the XML format will not solve
the problem completely as the language specification also changed to accommodate minor
inconsistencies in it. One notable change is that formerly multiple guards on an edge
were separated by commas. However, the new format requires a conjunction operator
instead. During the conversion process one needs to correct such formal errors. Hitting
the key F7 will help the user and mark outdated language grammar in the specification.
Only models compliant to the language specification of UPPAAL version 4.0 in XML
format are guaranteed to be understood by ZenoTool correctly.

ZenoTool does not yet understand all language features provided by UPPAAL and
thus special attention needs to be given to the designated models. In particular one
needs to refrain from using the following language constructs without taking a closer
look at the results as certain constellations can lead to unsound analysis results and
thus invalidate the conservative nature2 of ZenoTool:

• User-defined functions
ZenoTool ignores user-defined functions and therefore can not infer loop safety
properties if guards or assignments are dependent on function calls and thus are
not explicit. If a model uses user-defined functions the tool may fail to find all safe
loops and yield a less accurate result set. The usage of data variable heuristics may
even yield wrong results because possible variable valuations can not be inferred
and thus loops may be removed due to seemingly missing variable valuations.
Therefore, if the designated model uses user-defined functions and heuristics are
enabled the analysis results need to be evaluated carefully as the analysis is then
unsound.

• Data records
Currently, ZenoTool does not parse data records. To ZenoTool, the usage of UP-
PAAL’s struct construct renders unavailable all data contained in the so defined
data record. References to such concealed data can not be evaluated by Zeno-
Tool and the result of the analysis is influenced in the same way as user-defined
functions influence it (see above).

• Scalar variables
Data variable heuristics do not support scalar variables and their usage may thus
decrease the accuracy of the heuristics because a loop that can be removed because
of the scalar variable may not be identified correctly. The analysis remains sound
though even when scalar variables are used.

2ZenoTool overapproximates the set of loops prone to Zeno runs.

45

• Complex expressions
Expressions in UPPAAL’s specification language are recursively defined and can
get complex very quickly. ZenoTool currently only supports a very limited subset
of the cases available. Expressions of the forms +e, -e, e[e], e + e, and e - e can
be correctly evaluated. Here, e denotes either an expression of the previously given
forms, a reference to a variable, a natural number, or one of the keywords true
or false. Note that assignments and boolean expressions are handled separately
and are therefore not included in this list. Notable forms of expressions that are
not understood and should be avoided are e++, e--, ++e, --e, binary operators
that are neither + nor -, and the case distinguishing construct e?e:e.

• Selection statements
Selection statements generally work correctly as long as the variable name does
not shadow any other template or global variable name. In such a case, the value
of the template or global variable is used instead of the selection variable value.
This behavior is not consistent with UPPAAL’s where the selection statement
variable hides other variables. The difference in shadowing treatment may render
the selection statement without influence and thus compromise the analysis result.
Ensuring uniqueness of selection statement variables prevents this problem and
keeps the analysis sound.

All other language features are supported by ZenoTool. This includes bounded integers,
booleans, clocks, channels, (multi-dimensional) arrays, custom type definitions, edge
annotations, template parameters, and (automatic) template instantiation according to
the system declaration.

When usage of ZenoTool is intended the user can assist the tool by providing a model
that plays to ZenoTool’s strengths. Such a model has the following properties, which
were mostly derived from the list of unsupported features above:

• Local clock variables are declared local to templates and not globally.

• User-defined functions are not used.

• UPPAAL’s struct construct is not used.

• Expressions are free from side effects (e.g., no use of ++).

• Selection statement variables have unique names.

• Expressions do not contain on-the-fly case inspection using the :? operator.

A model complying with these properties can effectively be analyzed by ZenoTool in-
cluding the currently implemented data variable heuristics.

46

4.2. Implementation Details
The implementation of the analysis is straight forward. At first the program config-
ures its operation environment. A special class processes the command-line input and,
depending on the specified options, classes implementing the according algorithms are
instantiated. Next, the provided UPPAAL XML model file is parsed: We use TinyXML3,
a lightweight, stand-alone XML parsing library (see section 4.2.3) to create the XML
data tree, which in turn is used to instantiate classes representing the timed automata
network. The remaining system consists of a parsing subsystem and the analysis objects.
The parsing subsystem is used during the automaton construction process to parse the
variable declarations and the system declaration.4 Individual classes are instantiated for
every declared variable and correct (automatic) template parameter binding is achieved.
Also, during the analysis step it is used to parse edge annotations.

After the initial phase finished the setup of the environment with the network of
timed automata and all the involved variables, the actual model analysis is performed.
At first, we extract all loops from the automata network. Then we determine the strong
non-Zenoness and the safety properties for the loops. Afterwards we perform a safety
propagation algorithm and at last we optionally apply data variable heuristics.

Figure 4.1 depicts the complete workflow of ZenoTool and its interaction with the
parsing subsystem. As one can see after the initial selection of the different algorithms
the tool works straight to the point calculating its analysis step by step while delegating
parsing tasks to the parsing subsystem.

4.2.1. The Parsing Subsystem
The parsing subsystem features several classes that can be combined to form complex
parsing structures. Basic string terminal parsing is achieved by instantiating one of the
base parsers:

1. CharParser
consumes a single specified character. (regular expression: c)

2. RangeParser
consumes a single character that is between two specified characters inclusively.
(regular expression: [c1-c2])

3. StringParser
consumes a single specified string. (regular expression: string)

4. WhiteSpaceParser
consumes any amount of white spaces. (regular expression: \s*)

3http://www.grinninglizard.com/tinyxml/
4The system declaration specifies how to instantiate automata templates to form a network.

47

http://www.grinninglizard.com/tinyxml/

Setup

Loop Detection

Loop Classification

Safety Propagation

Data Heuristics

Output

user input

timed automata network

loops

classified loops

unsafe loops

loop result set

Selected
Algorithms

Parsing subsystem

Declarations

Network

SNZ/Safety

Synchronization

Variables

Figure 4.1.: ZenoTool’s workflow

48

5. AnyExceptParser
consumes characters until a specified character is reached. (regular expression:
[ˆc]*)

6. UntilParser
consumes characters until a specified character is consumed. (regular expression:
[ˆc]*c)

All base parsers process the input string from left to right and consume characters
depending on their options. The remaining string is available for further processing
by a following parser object. Powerful parsers can be created by using the available
combination parsers:

1. ChoiceParser
The parser consists of any number of parsers and matches if any of the contained
parsers matches. (regular expression: p1|p2)

2. ConcatParser
The parser consists of any number of parsers and matches if all of the contained
parsers match the input string in the specified order. (regular expression: p1p2)

3. OptionalParser
The parser wraps another parser that thereby becomes optional. (regular expres-
sion: p?)

4. RepeatParser
The parser wraps another parser that thereby becomes optional and may be re-
peated. (regular expression: p*)

When defining a complex parser by combination, one can specify that the resulting
parser should be a reporting one. Reporting parsers are necessary for the semantic
analysis as just the syntactic analysis of the input string is insufficient. Therefore the user
may specify a ParserListener object that will supervise the parsing process. During
the parsing all reporting parsers that match a part of the input string will report to
the listener class for it to handle the semantics. The correct listener class varies by
the expectations on the input string type. For example, declaration strings need to be
treated differently from edge annotations. Therefore the ParserListener class provides
the user with an easy way to specify a state machine for the semantic analysis. Depending
on the reports of parsers to the listener, the state machine changes states and executes
necessary actions. Execution is achieved by enabling the user to link certain states to
action handler routines that will execute when the state is reached.

Figure 4.2 shows a simplified example application of the parsing subsystem. In figure
4.2a the hierarchy of a combined parser is given.5 The final DeclarationParser can be
used to parse simple variable declarations of the form given by the regular expression

5Input to ConcatParsers is ordered from left to right.

49

DeclarationParser
ConcatParser

TypeParser
ConcatParser

IdentifierParser
ConcatParser

CharParser

PrefixParser
OptionalParser

BaseTypeParser
ChoiceParser

RangeParser RepeatParser ;

StringParser StringParser StringParser a z ChoiceParser

const int bool RangeParser RangeParser

a z 0 9
(a) Declaration parser hierarchy

Initial
—

Prefix
markConst()

Type
saveType()

Finalize
createVariable()

PrefixParser

BaseTypeParser

BaseTypeParser

IdentifierParser

implicit reset
(b) Declaration semantics state machine

Figure 4.2.: Parsing system example

50

(const)? (int|bool) [a-z][a-z0-9]*;. Note that for brevity the handling of white
spaces was omitted. In the image, custom-made parser objects are shown in yellow and
red. Red parsers denote reporting parsers for the semantic analysis. Parsers marked
green are base parsers provided by the system and blue nodes show the parameters for
such base parsers. The DeclarationParser thus consists of three reporting parsers: one
to handle the optional const prefix, one for the variable type (either int or bool), and
one for the variable name that may start with any lower case letter and continue with
lower case letters or numbers. The semantic analysis of such simple variable declarations
could be achieved by a listener object implementing a state machine similar to the
one given in figure 4.2b. In the initial state the listener awaits a report of either the
PrefixParser or the BaseTypeParser. In the PrefixParser case an action handler is
fired that saves that the analysis currently deals with a constant value. It then waits
for the necessary BaseTypeParser report to obtain the variable type. In the Type
state again an action handler is fired to save the type of the declared variable as still
crucial information for the final variable instantiation is missing. The final report of
the IdentifierParser provides the name of the variable and therefore the variable
can then be instantiated using the information saved previously. Afterwards the state
machine returns to its initial state because no further transitions are available and thus
the parsing process is finished.

4.2.2. Algorithms
The algorithms involved during the analysis are presented in the following. Subsection
4.2.2.1 presents the algorithms used to find elementary loops in the timed automata net-
work. Subsection 4.2.2.2 shows the implemented algorithms for strong non-Zenoness and
safety property determination. Subsection 4.2.2.3 displays the safety propagation algo-
rithms involving synchronization groups and matrices. And at last, subsection 4.2.2.4
goes into detail on the algorithms for the data variable heuristics.

4.2.2.1. Cycle Detection

ZenoTool features two different cycle detection algorithms. Both are quite similar and
share the same general approach. They iterate over the locations of a directed graph in a
depth-first search and use a stack data structure6 to generate the elementary loops of the
graph. To prevent cycles from being reported multiple times both algorithms initially
establish an ordering of the locations dismissing duplicates by only allowing cycles whose
locations are strictly ordered. The main difference between the algorithms is the way
they determine which continuations of a path should be explored: Tiernan’s method
saves which continuations have already been taken for each location. Every time a path
is extended a check occurs to prevent exploring the same continuation multiple times.
Tarjan’s method uses a more sophisticated approach. The algorithm removes locations
from the graph under investigation as soon as a location can no longer contribute to the
construction of additional elementary loops. Consequently, Tarjan’s method generally

6A stack is a data buffer that organizes access in a last-in, first-out manner (LIFO).

51

is of lower computational complexity. For exact definitions of the algorithms we refer to
the corresponding papers [32, 33].

Without modifications both algorithms return their results as sequences of locations in
the directed graph. For our purposes this is insufficient because of the possible presence
of multiple edges between the same two locations. Thus, our implementation of Tarjan’s
algorithm is an enhanced one: As the algorithm extends its paths by iteration on the out-
going edges of a location, all edges, also multiple ones, are explored by the algorithm
already. Therefore, if multiple edges are present in the graph the result set already
contains the correct amount of loops and we only inspect every location sequence and
find matching edges between the locations. We then mark used edges and thus, on
the next report of a similar loop, the subsequent edge will be used instead, ultimately
covering all edges.

If at any time in the future the run time of the loop enumeration part of ZenoTool
needs to be improved an implementation of the cycle detection algorithm by Szwarcfiter
and Lauer [31] could accomplish such improvement as it usually performs even better
than Tarjan’s algorithm.

4.2.2.2. Strong Non-Zenoness and Loop Safety

ZenoTool’s algorithm to determine the strong non-Zenoness property of a loop uses the
previously discussed parsing subsystem. For every loop in the network we iterate over all
edges of the loop and parse the guard and the update annotations that may be present
on such edges by using a parser constructed for guards and updates. Both parsers report
to a special listener for the SNZ property. The state machine of the listener is straight-
forward: For guards the detected sequence is an expression followed by a comparison
string and another expression. For updates we only expect two expressions (with an
assignment operator in between that is not reported). Upon detection of such a sequence
an action handler is called for guards or updates respectively. The update handler first
checks if the left-hand side is a clock variable (in contrast to a data variable). Then, the
assignment value is resolved and added to the clock variable including the position of
the edge. The guard handler at first checks if the guard constrains a clock; if the guard
imposes a lower bound it saves the resolved lower bound for the clock variable. Again,
the position of the edge in the loop is saved along with the value. After the parsing of
all the edges of a loop has finished the clock variables the loop uses are retrieved from
the listener. Using those we calculate if any of the clocks is an SNZ witness: We iterate
over all lower bounds a clock possesses, retrieve the bound and the update that precedes
it, and check if the update value is smaller than the bound. In such a case the clock
variable is an SNZ witness for the loop and therefore the loop is strongly non-Zeno.

In a next step we determine if the strongly non-Zeno loops are also safe. To accomplish
that we again iterate over the set of loops of the network. This time we skip loops that
are not strongly non-Zeno, though. The main idea is to invalidate all SNZ witnesses of
the loop. We therefore retrieve the set of witness clocks of the loop and iterate over the
witnesses. If a clock is a local clock then the loop is safe and we can skip the clock.

52

Otherwise, we need to find an external update to the clock. By iteration on the loop
set (and skipping the loop we are processing) we check every loop for an update to our
witness. If we find an external update the SNZ witness clock is invalidated and thus
we remove it from the witness set. After the iteration over the witnesses is finished,
determination of the safety property is easy. If the SNZ witness set still contains any
witness, the loop is not only SNZ but also safe.

Until now we only determined safety by locality or by the absence of external updates.
However, loops are also safe, if all external updates originate from safe loops. Thus, an
additional step is necessary. Because during this step the safety property should become
transitive we use a fix point iteration approach. We again check all strongly non-Zeno
loops that are unsafe. This time we consider the safety property of the loops the external
updates originate from. A loop is marked safe if all external updates originate from safe
loops. As long as a loop can be marked safe the fix point iteration continues to ultimately
ensure transitivity of the safety property correctly.

4.2.2.3. Synchronization Methods

Both algorithms dealing with safety propagation, the synchronization group method and
the synchronization matrix method, use the parsing subsystem to initially extract the
synchronization data from the loops. Similarly to the SNZ property determination, the
set of loops is iterated over and for every loop all edges’ synchronization annotations
are parsed. The responsible listener validates the synchronization channel and then
assigns them to two groups for sending and receiving channels. After the parsing process
both algorithms retrieve the two constructed channel sets and assign the sets to the
corresponding loop. We thus establish bidirectional references for loops and channels: a
mapping from loops to channels and from channels to loops is created indicating usage
of the synchronization channels. These mappings are the base for both synchronization
algorithms.

We now present our implementation of Gómez’ synchronization group method [22].
Our implementation is divided in two parts and uses a fix point calculation approach.
The first phase is an initialization step, in which three data structures are prepared. At
first we create the initial synchronization group by adding all unsafe loops of the network
to the group. Secondly, two mappings that map synchronization channels to the natural
numbers, are created; one for sending channels and one for receiving channels. Those
mappings count how often a channel is used by all the loops in the synchronization
group for either sending or receiving actions. The mappings are later utilized to deter-
mine whether or not synchronization partners for a certain loop still exist within the
synchronization group. The second phase then calculates the fix point: until no loop can
be removed from the synchronization group anymore, loops are eliminated from the set.
We check for loop removal by iterating over the channels a loop uses and querying the
previously established mappings whether or not there is at least one matching synchro-
nization partner in the synchronization group. If a loop happens to miss a partner the
loop is removed from the synchronization group and the mappings are adjusted accord-

53

ingly by decreasing the synchronization count values of the respective channels. As soon
as the fix point is reached, all loops’ synchronization requirements are fulfilled and no
loop can be removed anymore. Because we start with a maximal set in the beginning the
analysis result is the maximal synchronization group regarding the amount of members.

For the newly proposed synchronization matrix method we refer to section 3.2.2 in the
previous chapter. There, the construction of the loop representation vectors is explained
in detail and it is shown how to obtain the (in)equation system. To solve the system we
used the GNU Linear Programming Kit (GLPK)7 (see section 4.2.3) and therefore the
interesting algorithmic questions are already covered previously as we did not implement
an equation solver by ourselves.

4.2.2.4. Data Variable Heuristics

Currently two data variable heuristics are implemented in ZenoTool: one that detects
safely dependent loops (see section 3.3.1) and one for conflicting loops (see section 3.3.2).
Both heuristics analyze whether or not guards of a loop can be satisfied using concrete
data variable valuations. We therefore created a shared object that represents such
guards and can be queried for satisfaction. For simplicity the object only considers
guards that compare a data variable with a constant; an analysis comparing two vari-
ables is currently not featured and thus only a subset of safely dependent or conflicting
loops is found. Alongside the guard representation object a matching parsing listener is
provided that collects variable valuations and creates the representations. When analyz-
ing update annotations the listener will try to resolve the data variable assignment and
store the concrete values. If the concrete value can not be determined any value must
be assumed, which generally results in a free data variable that can satisfy any guard.
When analyzing a guard annotation all components (data variable reference, comparator
string, and comparison constant) are checked for plausibility and accordingly a repre-
sentation object is created. For such representation objects the listener can be asked if
the currently contained variable valuation set satisfies the guard. Such queries are the
main functionality of the guard representation object and listener classes. One should
note that during the construction of the guard representations by the listener, guards
are not simplified and only atomic guards are correctly parsed. For example, although
a < b and ¬(a ≥ b) are semantically equivalent the equivalence is currently not taken
care of and the latter is not understood by ZenoTool.

We now present our algorithm that detects a subset of safely dependent loops. The
elimination of such loops is achieved by a two-step algorithm. In the first phase the
analysis parses all guard and update annotations for every loop in the main analysis
result set.8 The result is a set of guard representation objects for a certain loop and a
listener that contains all possible data variable valuations of the loop. The set of guard
representation objects is then reduced by querying the listener for variable valuations:

7http://www.gnu.org/software/glpk/
8Such a set only contains loops that may exhibit Zeno runs.

54

http://www.gnu.org/software/glpk/

a guard is removed if there is no valuation for its constrained variable or if there is an
assignment but it satisfies the guard. Such guards can not render loops safely dependent
as we need to reset a variable to a value that does not satisfy the guard. After this initial
phase we thus obtain a set of guard candidates for safely dependent loops. The actual
property now depends on external updates to the variables. Therefore in the second
phase we calculate unsafe updates to all data variables and remove safely dependent
loops accordingly. A fix point iteration is utilized: we iterate over all loops in the unsafe
loop set until no loop can be removed anymore. During an iteration we first parse all
loops’ update annotations. The parsing process yields a listener object containing all
data variable valuations that are reachable by the execution of the unsafe loops. We then
check all guard candidates for satisfaction. If a guard’s variable requirements can not
be fulfilled, the loop the guard object was constructed from can be removed and marked
safely dependent. Variable valuations that satisfy the guard can only be obtained by
execution of safe loops and thus the loop is safe at this point. Upon removal the fix
point iteration starts over as the reachable variable valuations change when loops are
removed.

The heuristic to detect conflicting loops is straight to the point. We check every loop
in the main analysis result set exactly once: At first we parse all update and guard
annotations of the loop to obtain the guard representation objects and the reachable
variable valuations in the loop. If we constructed two or more guards we compare all
pairs of guards. At first, it is checked whether or not two guards require a variable to
have conflicting data variable valuations. Two guards conflict if they constrain the same
variable and one of the following cases is present (we assume a to be the constrained
variable and c1 and c2 the constraining constants of the guards):

• First guard: c1 < a, Second guard: a < c2, Constraint: c2 ≤ c1

• First guard: c1 < a, Second guard: a ≤ c2, Constraint: c2 ≤ c1

• First guard: c1 < a, Second guard: a = c2, Constraint: c2 ≤ c1

• First guard: c1 ≤ a, Second guard: a < c2, Constraint: c2 ≤ c1

• First guard: c1 ≤ a, Second guard: a ≤ c2, Constraint: c2 < c1

• First guard: c1 ≤ a, Second guard: a = c2, Constraint: c2 < c1

• First guard: a < c1, Second guard: c2 < a, Constraint: c1 ≤ c2

• First guard: a < c1, Second guard: c2 ≤ a, Constraint: c1 ≤ c2

• First guard: a < c1, Second guard: a = c2, Constraint: c1 ≤ c2

• First guard: a ≤ c1, Second guard: c2 < a, Constraint: c1 ≤ c2

• First guard: a ≤ c1, Second guard: c2 ≤ a, Constraint: c1 < c2

• First guard: a ≤ c1, Second guard: a = c2, Constraint: c1 < c2

55

• First guard: a 6= c1, Second guard: a = c2, Constraint: c1 = c2

• First guard: a = c1, Second guard: a = c2, Constraint: c1 6= c2

• First guard: a = c1, Second guard: a < c2, Constraint: c2 ≤ c1

• First guard: a = c1, Second guard: a ≤ c2, Constraint: c2 < c1

• First guard: a = c1, Second guard: c2 < a, Constraint: c1 ≤ c2

• First guard: a = c1, Second guard: c2 ≤ a, Constraint: c1 < c2

• First guard: a = c1, Second guard: a 6= c2, Constraint: c1 = c2

If a conflicting pair of guards is found, we additionally check if there is a variable val-
uation such that the loop can satisfy any of the guards on its own. In such a case the
conflicting property does not hold, because one guard can be satisfied externally and
the second one by the guard itself possibly yielding a Zeno run. If the guards are not
satisfiable internally the loop is removed and marked conflicting.

4.2.3. Libraries
ZenoTool is not completely created from scratch. It utilizes three different libraries; two
are used directly and one indirectly. The used libraries are TinyXML9, a lightweight
library to read and write XML files, the GNU Linear Programming Kit (GLPK)10 , a
library for solving linear programs and related problems, and the GNUMultiple Precision
Arithmetic Library (GMP)11, a library for calculations with arbitrary precision. The
latter is used by the GLPK for performance reasons. The program would work without
it but then the GNU Linear Programming Kit would use its own, slower implementation
of arbitrary precision calculations. In the next paragraphs we briefly explain each of the
libraries.

TinyXML is an XML parsing library. It provides several classes to access various
aspects of an XML file. Initially, parsing of an XML document constructs the XML
Document Object Model (DOM). The DOM is a tree structure for the different parts in
the XML document. Using the DOM it is possible to search certain elements for their
attributes and contained data. We use TinyXML to parse UPPAAL’s model specification
files. The construction of the internal timed automata model is based on the extracted
XML DOM.

The GNU Linear Programming Kit (GLPK) is an advanced library for solving linear
programs and related problems. ZenoTool uses its features to solve the constrained
equation system that is obtained when calculating propagation of the safety property by
the synchronization matrix method. Specifically the mixed integer programming part
(MIP) of the GLPK comes in handy in particular because it allows one to restrict certain

9http://www.grinninglizard.com/tinyxml/
10http://www.gnu.org/software/glpk/
11http://gmplib.org/

56

http://www.grinninglizard.com/tinyxml/
http://www.gnu.org/software/glpk/
http://gmplib.org/

variables to integer values only. As the upper bound of loop iterations must be a natural
number such restrictions are necessary for correct results. The GLPK uses advanced
calculation methods such as presolving to relax the constrained equation system and
sparse matrix representation methods to save memory. For usage information we refer
to the excellent documentation provided with the library.

The GNU Multiple Precision Arithmetic Library (GMP) is used only indirectly by
ZenoTool. The GLPK uses its features during the equation system solving process for
performance reasons. The GMP provides its user with several features for computing
with arbitrary precision. Not only are integers of arbitrary length supported but also
rational numbers, which are represented using their nominator and denominator. Addi-
tionally, if the precision of the built-in double type of the C language is not high enough
also floating point operations can be done with GMP.

4.3. Validation
During the development of ZenoTool two approaches were employed to validate its be-
havior. On the one hand we used regression testing to monitor the results of the analysis
steps. On the other hand we used the open source tool Valgrind12 to analyze ZenoTool
for technical implementation faults like memory leaks.

The regression test suite covers all aspects of the main analysis and the two data
variable heuristics presented. All aspects in this context refer to all special cases that
may arise during the analysis steps including the invalidation of an SNZ property due to
the update ordering and unresolved access of an array of synchronization channels. Also,
the different language features of UPPAAL that ZenoTool supports are tested for their
functionality. In total the test suite consists of 72 tests. 39 of them deal with the correct
determination of strong non-Zenoness and safety using various language constructs. 18
test the synchronization propagation by evaluating the analysis result set and 15 evaluate
the data variable heuristics results. The corresponding test model features 40 templates
with a total of 165 loops to classify by ZenoTool. All loops’ properties were determined
by hand and the tests were generated accordingly such that the tests that validate
ZenoTool yield the same correct results.

The different aspects of the software, which test cases are existent for, are listed in
the following:

• Loop properties
– Safe/SNZ loop classification
– Unsafe/NSNZ loop classification
– Safe/SNZ loop due to order of clock updates
– Unsafe/NSNZ loop due to order of clock updates

12http://valgrind.org/

57

http://valgrind.org/

– Safe/SNZ loop in spite of external clock update (safe update)
– Unsafe/SNZ loop due to unsafe external clock update
– Unsafe/NSNZ loop due to invalid guard (no lower bound)
– SNZ/NSNZ loop classification due to multiple edges
– Detection of multiple SNZ witnesses for an SNZ loop

• Synchronization and propagation
– Sending on broadcast channels
– Receiving on broadcast channels
– Sending on binary channels
– Receiving on binary channels
– Transitivity of safety propagation

• Data variable heuristics
– Variable valuation collection (concrete values, ambiguous values)
– Guard evaluation using variable valuations
– Safely dependent loops
∗ Safely dependent loop using integers
∗ Not safely dependent loop using integers
∗ Safely dependent loop using booleans
∗ Not safely dependent loop using booleans
∗ Not safely dependent loop due to missing reset
∗ Transitivity of the safely dependent property

– Conflicting loops
∗ Conflicting loops (all combinations of two guards)
∗ Not conflicting loops (all combinations of two guards)
∗ Not conflicting loop due to internal guard satisfaction

– External heuristics influence (safely dependent loop due to conflicting one)

• Language features
– Declaration and usage of constant values
– Declaration and usage of custom types
– Declaration and usage of arrays
– Declaration and usage of multi-dimensional arrays
– Passing of call-by-value template parameters

58

– Passing of call-by-reference template parameters
– Automatic binding of free template parameters

• Parsing subsystem
– Parsing of declarations (variable instantiation and initialization)
– Parsing of guards (different relational operators, conjunctions)
– Parsing of updates (different assignment operators)
– Parsing of synchronization labels (valid channels, send/receive)

The test cases not only include tests for each of the tool aspects individually but also
tests that check multiple aspects. For example the test case classifying a loop with an
unsafe external update also makes use of arrays testing the array resolving functionality
as well. Overall ZenoTool fulfills all requirements imposed by the test suite and can
therefore be considered to behave correctly in the bounds of the covered testing space.
A few examples of test cases can be found in appendix A.

Implementation errors on the technical side were minimized by making ZenoTool sub-
ject to the run-time analysis of Valgrind. Valgrind’s default analysis tool is memcheck,
a tool that detects memory errors. Such errors include trying to access invalid memory
e.g. buffer overruns on heap blocks, accessing memory that has already been freed, usage
of uninitialized variables, incorrect memory freeing, and general memory leaks. We ap-
plied Valgrind 3.6.1 Debian’s memcheck tool to ZenoTool using the -leak-check=full
parameter to obtain a complete memory leak log. The analysis results show that no
memory leaks occur in our implementation. Also, no invalid write or reads to variables
are present indicating that neither uninitialized variables have influence on ZenoTool’s
analysis nor already disposed memory is used as input. Correct memory allocation and
freeing is asserted and therefore a consistent program state is achieved. Also, intru-
sion attacks against the software like double-free attacks are thus not possible. Stack
overflows could not be found either in ZenoTool. In total no technical mistakes de-
tectable by Valgrind were present in ZenoTool and thus ZenoTool’s implementation can
be considered free from such errors.

4.4. Experiments
To determine the accuracy and efficiency of ZenoTool’s analysis a wide variety of model
specifications was analyzed. Models include simple example models delivered with UP-
PAAL, benchmark models showing UPPAALs performance, and advanced models of
(communication) protocols that were developed by other scientific case studies. Our
selection of models covers a broad spectrum of use cases and thus allows determining
general qualities of ZenoTool.

To run the tests, we wrote two small driver programs. The test for accuracy runs
ZenoTool with the following configurations:

59

• Safety propagation method: Synchronization Groups
Data variable heuristics: No heuristic

• Safety propagation method: Synchronization Groups
Data variable heuristics: Safely dependent loops

• Safety propagation method: Synchronization Groups
Data variable heuristics: Conflicting loops

• Safety propagation method: Synchronization Groups
Data variable heuristics: Both heuristics

• Safety propagation method: Synchronization Matrix
Data variable heuristics: No heuristic

• Safety propagation method: Synchronization Matrix
Data variable heuristics: Safely dependent loops

• Safety propagation method: Synchronization Matrix
Data variable heuristics: Conflicting loops

• Safety propagation method: Synchronization Matrix
Data variable heuristics: Both heuristics

ZenoTool’s run time is determined by executing the analysis ten consecutive times
and saving the fastest, the slowest, and the average run times. Valgrind’s massif tool
was used to find the peak heap memory consumption of ZenoTool.13 All experiments
were done using an Intel Core 2 Duo CPU running at 3.33GHz with 8GB of RAM on
an Ubuntu 11.10 system.

Our test suite consists of 13 models. Three of them are example models distributed
with UPPAAL, namely the train-gate8 model, the fischer6 model and the bridge prob-
lem. Four of them, the csmacd2 and csmacd32 models, the fddi32 model, and the bocdp
model, are used to benchmark UPPAAL’s performance but also originate from scientific
case studies. The remaining models were explicitly derived from scientific case studies.
In total eight of the models are free from Zeno runs and the remaining five exhibit Zeno
runs in one or multiple ways.

We now discuss the models in detail, including their Zeno behavior; the results of the
analysis are summarized in table 4.1.

4.4.1. Models
Bridge model. The bridge model is a simple example model delivered with UPPAAL.
It models four soldiers that want to pass an unlit, damaged bridge and move at different

13Note that additionally to the heap memory some static memory will be used, which is not accounted
for here.

60

speeds. However, the soldiers only have a single torch that enables a maximum of two
soldiers to cross the bridge safely at a time. The system has two templates, one for
the torch and one for a soldier. The soldier template is parameterized to accommodate
multiple walking speeds. The model has two loops in the torch model and one loop per
soldier instance yielding a total of six loops. The soldier loops are strongly non-Zeno
and the torch loops are not. However, due to synchronization all loops of the torch
automaton also become safe; the model is free from Zeno runs. ZenoTool also finds this
result for all configuration combinations.

Lip Synchronization model. The lip synchronization model was extracted from a
case study by Bowman and Gómez [11]. Lip synchronization in this case refers to the
process of merging and synchronizing an audio and a video stream, which were obtained
separately. The transmission channel the data is received on has varying throughput
and thus synchronization of the audio and video needs to be paired up correctly. The
UPPAAL model for lip synchronization has a total of 12 templates and 13 loops. Six
of the loops are not strongly non-Zeno, but become safe by synchronization. Therefore,
the system is free from Zeno runs. The absence of Zeno runs is validated by ZenoTool
for all configuration combinations.

Train Gate model. The train gate model is an example model also delivered with
UPPAAL. It models the problem of multiple trains approaching and crossing a bridge
that can only be used by one train at a time. Because trains can not stop immediately
strict timing constrains apply. The system consists of two templates, one for the bridge
and one for a train. In our case eight trains were instantiated. In contrast to the three
loops in the bridge template all the two loops in the train template are strongly non-
Zeno and safe. Nevertheless the system is free from Zeno runs due to synchronization.
Because the bridge template involves a queue-like data structure modeled with user-
defined functions ZenoTool’s data heuristics were not applicable to the model, but even
without them ZenoTool correctly classifies the model safe with both synchronization
methods (synchronization groups, synchronization matrix).

Token Ring FDDI Protocol model. The token ring fiber distributed data inter-
face protocol model is a benchmark model for UPPAAL and can be obtained from the
corresponding website.14 It models a token distribution protocol in a local area network
composed of N symmetric stations organized in a ring. We analyzed a model with 32
stations. Two different templates need to be considered: the station template and the
ring template. The station template consists of four safe loops and the ring template
only has a single unsafe loop. Again, the model is free from Zeno runs because of safety
propagation. ZenoTool yields the same result for all configuration combinations.

Bang & Olufsen Collision Detection Protocol model. The Bang & Olufsen
collision detection protocol model was developed in a case study [23] but it is also used
as a benchmark for UPPAAL.15 The protocol exchanges control information between
different audio/video units in the company’s product line. The system models two units
14http://www.uppaal.org/benchmarks/
15http://www.uppaal.org/benchmarks/

61

http://www.uppaal.org/benchmarks/
http://www.uppaal.org/benchmarks/

represented by four templates and an additional template for the communication bus.
Of the templates only one template per unit is made up from safe loops. All other loops
are unsafe but become safe due to synchronization yielding a system that is free from
Zeno Runs. All configuration combinations for ZenoTool confirm this result.
TDMA Protocol Start-Up Mechanism model. The TDMA protocol start-up

mechanism model was derived from a case study [29]. It models the communication
protocol of the Dependable Architecture for Control of Applications with Periodic Op-
eration (DACAPO), which is intended for small distributed systems. For communication
each node is assigned a time slot, a so called TDMA slot. The start-up mechanism, i.e.,
the synchronization of the time slots of all participants, needs to be carefully crafted
and thus it is verified in the case study. The model consists of a template for the com-
munication bus, a template for the communication nodes, and a test automaton for
verification purposes. Due to strict timing constraints all loops in the station template
are safe from Zeno runs, however, the test automaton has a single unsafe loop and the
bus model has eight unsafe loops. All but two loops become safe by safety propagation.
Closer examination of the pair of unsafe loops shows that they can not contribute to
Zeno runs as one loop can only iterate in an erroneous state that is not reachable, which
can be shown by UPPAAL. Altogether, the model is thus free from Zeno runs. ZenoTool
for all configuration combinations, however, finds the pair of unsafe loops as it can not
recognize one loop is in unreachable state space. Though, ZenoTool’s result enables the
user to verify the absence of Zeno runs fast by hand.
Gearbox model. The model of a gearbox with the respective engine and controllers

was developed in a case study by Lindahl, Pettersson, and Yi [28]. Timing constraints of
gear change requests and corresponding torques in the engine are modeled and verified.
Five different templates form the system: a gear controller template, a gearbox tem-
plate, a clutch template, an engine template, and an interface template for gear changes.
Concerning safety, the clutch, the engine and the gearbox templates are free from Zeno
runs. The gear controller template has four unsafe loops and the interface template is
completely constructed from six unsafe loops. After considering safety propagation only
one loop of the gear controller remains unsafe and all interface loops still are unsafe and
can synchronize with the controller. Closer examination yields that Zeno runs can not
occur: for the loops to iterate the gear controller template requires two data variables
to be less than or equal to zero. The interface loops provide the variable valuations; but
none that would allow the controller loop to iterate is present. Thus, the system is free
from Zeno runs. ZenoTool’s analysis finds the seven unsafe loops using any of the con-
figurations. The data variable heuristics are not sufficient to eliminate these remaining
loops. However, proving the absence of Zeno runs given the analysis result by hand is
easy because of the simple synchronization scenarios involved and the small result set.
Carrier Sense, Multiple-Access with Collision Detection Protocol models.

The carrier sense, multiple-access with collision detection protocol manages the assign-
ment of a single communication bus to multiple competing stations. Collisions occur
when multiple stations send at the same time. Correct collision handling is also spec-
ified in the CSMA/CD protocol. We analyzed two different UPPAAL models for the

62

protocol. The first one is an UPPAAL benchmark model16 with a varying amount of
stations. We analyzed the model for two and 32 stations respectively. The second model
is derived from a case study by Bowman and Gómez [12] and was analyzed for two
stations only.
We first focus on the case study model by Bowman and Gómez. The model has three

templates, one for a station, one for a communication interface, and a last one for the
communication medium. The station and the interface templates are instantiated twice,
once for each station. Except for two loops in the station template all loops are unsafe.
Synchronization propagation reduces the amount of unsafe loops to four, two per station.
Investigation of the loops shows that the model indeed exhibits Zeno runs. ZenoTool
correctly finds the four responsible loops with all configuration combinations.
The model for benchmarking purposes is constructed differently. The system consists

of a single template for the communication bus and one template per station. Concerning
safety, the bus template consists of three unsafe loops and the station templates have
three safe and three unsafe loops. When considering 32 stations two of the bus template
loops become safe by safety propagation. In contrast all station loops remain unsafe
and indeed Zeno runs can occur due to them. The analysis result features 97 unsafe
loops in the model, three per station plus a single one for the bus. ZenoTool finds
those loops with both safety propagation methods. However, when considering only two
stations, ZenoTool yields an improvement over the expected seven unsafe loops. In this
case the synchronization matrix method only yields three loops, one per station and bus
template. Closer examination shows that the reduction to two stations eliminated some
synchronization possibilities rendering some loops unable to contribute to Zeno runs.
The more accurate results set of three loops attained by the synchronization matrix is
therefore correct and is an improvement over Gómez’ synchronization group method.

Fischer Protocol model. The Fischer protocol is a very basic protocol to guarantee
mutual exclusion. It was firstly described by Lamport [26]. The UPPAAL model is an
example delivered with UPPAAL. It consists of a single template that models a partici-
pant. In our case six participants were instantiated. The template has two loops, a safe
and an unsafe one. As the model uses no synchronization, unsafe loops remain unsafe.
By manual analysis, however, it becomes obvious that the model does not exhibit Zeno
runs: the unsafe loops can only iterate when they are paired with a safe loop. Accord-
ingly ZenoTool’s analysis proves the absence from Zeno runs if the safely dependent data
variable heuristic is enabled. Otherwise the six unsafe loops, one per participant, are
reported. For this model the data variable heuristic improves the accuracy of Gómez’
original method and our synchronization matrix approach.

Biphase Mark Protocol model. The biphase mark protocol is commonly used for
communication at the physical ISO/OSI layer to transmit reliably bit strings of arbitrary
lengths. Our model was obtained from a case study by Vaandrager and de Groot [36] that
determines clock tolerances in the biphase mark protocol of communicating partners.
The model is made up of an encoder and a decoder template, two clock templates, a

16http://www.uppaal.org/benchmarks/

63

http://www.uppaal.org/benchmarks/

wire template, a sampler template, and a test automaton. Only the two clock templates
and a single loop in the wire are directly safe from Zeno runs. As all but two loops
directly depend on the clock templates, safety propagation eliminates all but those two
unsafe loops from the result set. One can see that one of these loops can not advance
as it is linked to a clock template using data variables. The other loop, however, indeed
exhibits Zeno runs, though the Zeno run is intentional to model random bit flips on
the wire. ZenoTool’s results are as expected: when the safely dependent data variable
heuristic is enabled the single intentional Zeno run loop is returned; otherwise the result
set also contains the second, indirectly linked loop.

Zeroconf Protocol model. The zero configuration protocol specifies an algorithm
for nodes to obtain valid IP addresses while ensuring mutual exclusion, i.e., no duplicate
IP addresses in the system. In a case study by Gebremichael, Vaandrager, and Zhang [16]
the protocol was analyzed using UPPAAL. We derived our model from their case study.
The model features four different templates. Of the total of 22 loops, 8 are safe and by
safety propagation no additional loop can be deemed safe. The analysis shows that the
model is prone to Zeno runs. Considering ZenoTool, the model unfortunately makes use
of UPPAAL’s data record feature, which is currently not supported by ZenoTool. Also,
user-defined functions are present in the model and therefore ZenoTool’s data variable
heuristics are not applicable to the model. Still the base analysis of ZenoTool succeeds
to find the set of 14 unsafe loops that may contribute to Zeno runs.

A few examples of our analyzed case study models can be found in appendix B.

4.4.2. Accuracy
Our analysis succeeded to prove six of the eight models safe from Zeno runs. For the
remaining two Zeno run free models the analysis’ result set consisted of only a handful
of false positives. Because of the small result sets it was easy to infer the absence of
Zeno runs by hand, allowing our tool to classify all eight models correctly with little or
no manual work at all. Concerning the five models that can exhibit Zeno runs for all but
one model small sets of loops were correctly found to be responsible for the occurrence
of Zeno runs. These sets could in future be used by application developers to refine the
models to get rid of the Zeno runs or to help reason why the usage of Zeno runs is an
acceptable approximation.

Comparing our enhanced analysis to Gómez’ base method, our more powerful syn-
chronization matrix method for safety propagation yielded an improvement in accuracy
only for a single model. In these cases the conflicting loops data heuristic found not
a single conflicting loop indicating well thought-out models. However, the safely de-
pendent heuristic succeeded to eliminate in total eight loops in three different models
yielding a more accurate result. In one case the heuristic managed to prove the absence
of Zeno runs in the model, which Gómez’ method was not able to.

An overview of the obtained accuracy results can be seen in table 4.1.

64

Model Zeno Runs Sync Groups Sync Matrix
bridge.xml 3 0 0 0 0 0 0 0 0
lipsync.xml 3 0 0 0 0 0 0 0 0

train-gate8.xml 3 0 � � � 0 � � �
fddi32.xml 3 0 0 0 0 0 0 0 0
bocdp.xml 3 0 0 0 0 0 0 0 0
tdma.xml 3 2 2 2 2 2 2 2 2

gearbox.xml 3 7 7 7 7 7 7 7 7
csmacd.xml 7 4 4 4 4 4 4 4 4
csmacd2.xml 7 7 7 7 7 3 3 3 3
csmacd32.xml 7 97 97 97 97 97 97 97 97
fischer6.xml 3 6 0 6 0 6 0 6 0
bmp.xml 7 2 1 2 1 2 1 2 1

zeroconf.xml 7 14 � � � 14 � � �

Heuristics Used D C D D C D
C C

The Zeno run column indicates whether or not the model is free from Zeno runs (3: free,
7: not free). The numbers indicate the amount of loops prone to Zeno runs ZenoTool
found. The � symbol indicates a certain configuration combination was not applicable for
a specific model. The character D displays usage of the safely dependent data variable
heuristic; the character C stands for the conflicting loop heuristic. The Sync Matrix
columns show the results of our enhanced detection approach while the Sync Groups
columns show results obtained by Gómez’ base method.

Table 4.1.: Analysis accuracy results obtained by ZenoTool

4.4.3. Performance
Concerning ZenoTool’s performance for our performance checks we compared Gómez’
synchronization group approach without heuristics to our synchronization matrix me-
thod using both data heuristics. We decided on this setup to emphasize that even
if the work load is additionally increased because of the data heuristics, ZenoTool’s
performance scales well. Our performance results can be seen in table 4.2.

Generally all analyses run in less than a second even for complex models. Thus,
time is not a major factor when using ZenoTool. Memory consumption generally also is
quite low. During our experiments the heap memory consumption barely exceeded two
megabytes, which is a very low value.

When taking a closer look at the performance results, comparing Gómez’ method to
ours the run times differences are nearly negligible. Only the csmacd32 model shows a
significant difference in run time. Our synchronization matrix approach including the

65

heuristics takes nearly twice the time than the original method. However, this is an
expected result because the model benefits from the synchronization matrix approach.
In the model using only two participants the analysis accuracy is improved due to the
synchronization matrix calculation. This improvement shows that the constructed equa-
tion system is not trivial. Accordingly in the model using 32 participants the equation
system to solve is significantly bigger and still not trivial. Thus, the solving process is
more complex and takes more time.

Sync groups, no heuristics Sync matrix, both heuristics
Model min max avg memory min max avg memory

bridge.xml 6 10 9 587 10 11 10 671
lipsync.xml 11 11 11 792 11 13 12 881

train-gate8.xml 9 15 12 620 � � � �
fddi32.xml 77 86 80 1911 79 85 81 2011
bocdp.xml 172 183 175 1140 176 189 179 1221
tdma.xml 87 88 88 866 87 98 89 951

gearbox.xml 19 21 20 872 25 28 26 955
csmacd.xml 10 12 11 629 8 13 10 723
csmacd2.xml 11 11 11 633 9 15 10 721
csmacd32.xml 48 51 49 1881 95 98 96 1961
fischer6.xml 11 12 11 562 11 17 15 641
bmp.xml 11 15 12 684 13 14 13 764

zeroconf.xml 14 22 18 704 � � � �

Units [msecs] [kb] [msecs] [kb]

All run times are in milliseconds and rounded up. Memory consumption is measured
in kilobytes and is also rounded up. The given memory consumption is the peak heap
memory consumption. ZenoTool additionally needs a certain amount of static memory
that is not accounted for here. The � symbol again indicates that a certain configuration
combination was not applicable for a model.

Table 4.2.: Analysis performance of ZenoTool

Generally, we expected the performance to take a more significant hit due to the nature
of the equation solving process involved in the synchronization matrix method. However,
the results of the csmacd32 model indicate that most of our test models generate equation
systems that are very easy to solve for GLPK and thus run time does not increase
as much. Models that benefit from the synchronization matrix accuracy improvement
probably will perform worse than our results show.
The performance of the data variable heuristics depends on the accuracy of the previ-

ous analysis result set. As most experiment models returned small sets of unsafe loops
the heuristics seem to have a small effect on ZenoTool’s run time. Models that have

66

many unsafe loops without considering data variables probably will also see a drop in
performance compared to our performance results.

Altogether ZenoTool’s performance, however, is still very good as it provides its results
nearly instantly to the user. When ensuring time divergence of a model using our static
analysis results can be obtained at a much faster rate compared to using a test automaton
in UPPAAL.

4.4.4. Conclusion
Considering all the facts gathered so far, ZenoTool’s static analysis provides accurate,
yet sometimes overapproximated results while still using few resources for its execution.
The synchronization matrix approach always has at least the same analysis accuracy
as Gómez initial Zeno run detection method. In special cases even an improvement
in accuracy may be attained. From our performance experiments one can see that
even though we use more machinery in our enhanced approach the synchronization
matrix method performs well and compared to using synchronization groups for safety
propagation the hit in performance is small.

Models that benefit from our enhanced approach the most have loops that make exten-
sive use of synchronization. Loops synchronizing multiple times even on the same chan-
nel reduce possible synchronization scenarios and the synchronization matrix method
detects such scenarios accurately.
Regarding the safely dependent loop heuristic models that use guards with data vari-

ables all have the possibility to greatly benefit from its usage. The extension of safety
propagation by using linked data variables provides means to effectively improve Zeno
run detection. A more general data flow analysis could further improve this result.
In contrast the conflicting loops heuristic should be seen as a sanity check because

generally the presence of conflicting loops in models is not desirable as such a model
becomes confusing and unclear most of the time. While it may improve accuracy of
Zeno run detection in some models restructuring of such a model might be the better
solution.

67

5. Conclusions and Future Work

In this thesis we discussed the influence of Zeno runs on UPPAAL specifications and
presented detection methods to check for their absence in such models. We enhanced
Gómez’ initial Zeno run detection method that calculates synchronization groups to deal
with safety propagation by introduction of a newly developed synchronization matrix. In
contrast to the synchronization group method, which only checks for available partners,
the synchronization matrix approach eliminates impossible synchronization scenarios by
also considering the amount of necessary synchronization partners and thus improves
safety propagation. In addition, we developed two data variable heuristics to improve
the gained analysis accuracy even further. The safely dependent loop heuristic extends
the concept of safety propagation to data variables assuring that variable valuations
necessary for Zeno run iterations can only be attained by iterating over safe loops.
Respectively, the conflicting loop heuristics achieves the removal of loops that are unable
to iterate due to guards that require conflicting data variable valuations. ZenoTool, a
command-line tool implementing these analysis methods, was developed and applied to
several case studies to empirically evaluate the improvements of our enhanced detection
approach.

The experiment results indeed validate our expectations. Due to the static nature of
the analyses used, ZenoTool provides sound analysis results in a timely manner and in
some cases our enhancements to Gómez’ Zeno run detection method yielded improve-
ments in the analysis accuracy. Loops that formerly were falsely considered to exhibit
Zeno runs were shown to be safe and therefore absent from the analysis result set of
our modified approach. In this context, the synchronization matrix method is most
useful if the loops in the analyzed model require a multitude of synchronizations; specif-
ically models with repeated use of the same synchronization channel benefit most. Also,
performance apparently is no issue as ZenoTool’s run time is generally within a few sec-
onds and scales well regarding its memory consumption. Concluding, our static analysis
provides sound, easy-to-use Zeno run detection functionality for a broad variety of UP-
PAAL specification models. Thus, it contributes to gaining confidence in the correctness
of specifications, enhancing UPPAAL’s explanatory power thereby.

However, ZenoTool is still work in progress and in the future, several improvements
could be made to it. The most obvious one is establishing feature completeness regard-
ing UPPAAL’s specification language as currently ZenoTool is still missing support for
certain constructs like data records or complex expressions.
A more complicated task concerning ZenoTool would be the incorporation of user de-

fined functions, though this would probably require the introduction of a complete data
flow analysis into the tool. Such a fully-fledged data flow analysis could also be incorpo-

68

rated into the presently implemented data variable heuristics significantly augmenting
their power and the confidence in them. Thus, extending ZenoTool with a data flow
analysis module is beneficial and should be considered in the future.

Another development possibility would be to create an interface from ZenoTool to
UPPAAL. An additional analysis module in ZenoTool could make use of such an interface
and check detected Zeno runs for their reachability as Zeno runs exhibiting loops may
be in unreachable state space of the model and thus have no influence on the behavior
of the model. Such a module could discard falsely detected Zeno loops depending on
their reachability in the model state space further increasing the accuracy of the analysis
result. Also, as Zeno runs are not necessarily harmful to a model the interface could be
used to classify the Zeno runs regarding to their possibility to create timelocks.

69

Bibliography

[1] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time
systems. In Proceedings of the Fifth IEEE Logic in Computer Science (LICS), 1990,
pages 414 –425, jun 1990.

[2] Rajeev Alur and David Dill. Automata for modeling real-time systems. In Michael
Paterson, editor, Automata, Languages and Programming, volume 443 of Lecture
Notes in Computer Science, pages 322–335. Springer Berlin / Heidelberg, 1990.
10.1007/BFb0032042.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[4] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelnek. Lower and
upper bounds in zone based abstractions of timed automata, 2004.

[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL.
In M. Bernardo and F. Corradini, editors, International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM-RT 2004.
Revised Lectures, volume 3185 of Lecture Notes in Computer Science, pages 200–
237. Springer Verlag, 2004.

[6] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson, Paul
Pettersson, Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In Quantitative Evalu-
ation of Systems (QEST), pages 125–126, 2006.

[7] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed
systems. In International Symposium: Compositionality - The Significant Differ-
ence, pages 103–129. Springer, 1997.

[8] Howard Bowman. Modelling timeouts without timelocks. In ARTS’99, 5th Inter-
national AMAST Workshop on Real-time and Probabilistic Systems, volume 1601
of Lecture Notes in Computer Science, pages 334–354. Springer-Verlag, May 1999.

[9] Howard Bowman. On time and action lock free description of timed systems. Tech-
nical Report 16-99, Computing Laboratory, University of Kent at Canterbury, De-
cember 1999.

[10] Howard Bowman. Time and action lock freedom properties of timed automata. In
M. Kim, B. Chin, S. Kang, and D. Lee, editors, Formal Techniques for Networked
and Distributed Systems, pages 119–134. Kluwer Academic Publishers, August 2001.

70

[11] Howard Bowman, Giorgio Faconti, Joost-Pieter Katoen, Diego Latella, and
M. Massink. Automatic verification of a lip-synchronisation protocol using UP-
PAAL. Formal Aspects of Computing, 10:550–575, 1998.

[12] Howard Bowman and Rodolfo Gómez. How to stop time stopping. Formal Aspects
of Computing, 18:459–493, 2006. 10.1007/s00165-006-0010-7.

[13] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The tool
KRONOS. In Proceedings of the DIMACS/SYCON workshop on Hybrid systems
III : verification and control: verification and control, pages 208–219, Secaucus, NJ,
USA, 1996. Springer-Verlag New York, Inc.

[14] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming, 2(3):241
– 266, 1982.

[15] Biniam Gebremichael and Frits Vaandrager. Specifying urgency in timed I/O au-
tomata. In Proceedings of the third IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2005), pages 64 – 73, sept. 2005.

[16] Biniam Gebremichael, Frits Vaandrager, and Miaomiao Zhang. Analysis of the zero-
conf protocol using UPPAAL. In Proceedings of the 6th ACM & IEEE International
Conference on Embedded Software, EMSOFT ’06, pages 242–251, New York, NY,
USA, 2006. ACM.

[17] Rodolfo Gómez. Verification of Real-Time Systems: Improving Tool Support. PhD
thesis, Computing Laboratory, University of Kent, October 2006.

[18] Rodolfo Gómez. Verification of Timed Automata with Deadlines in UPPAAL. Tech-
nical Report 2-08, Computing Laboratory, University of Kent, June 2008.

[19] Rodolfo Gómez. A compositional translation of timed automata with deadlines to
UPPAAL timed automata. In Proceedings of the 7th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS 2009), FORMATS
’09, pages 179–194, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] Rodolfo Gómez and Howard Bowman. Discrete Timed Automata and MONA:
Description, Specification and Verification of a Multimedia Stream. In H Konig,
M Heiner, and A Wolisz, editors, Formal Techniques for Networked and Distributed
Systems - FORTE 2003. Proceedings of the 23rd IFIP WG 6.1 International Con-
ference, number 2767 in LNCS, pages 177–192, Berlin, Germany, September 2003.
Springer.

[21] Rodolfo Gómez and Howard Bowman. Discrete Timed Automata. Technical Report
3-05, University of Kent, Computing Laboratory, February 2005.

71

[22] Rodolfo Gómez and Howard Bowman. Efficient Detection of Zeno Runs in Timed
Automata. In J.-F. Raskin and P.S. Thiagarajan, editors, Proceedings of the 5th In-
ternational Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS 2007), volume 4763 of LNCS, pages 195–210, Salzburg, Austria, October
2007. Springer.

[23] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal modeling
and analysis of an audio/video protocol: an industrial case study using UPPAAL.
In Proceedings of the 18th IEEE Real-Time Systems Symposium, RTSS ’97, pages
2–13, Washington, DC, USA, 1997. IEEE Computer Society.

[24] Martijn Hendriks, Gerd Behrmann, Kim G. Larsen, Peter Niebert, and Frits Vaan-
drager. Adding symmetry reduction to UPPAAL. In Proceedings of the First Inter-
national Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS
2003), volume 2791 of LNCS, pages 46–49. Springer-Verlag, 2004.

[25] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Information and Computation, 111:394–406,
1992.

[26] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst.,
5(1):1–11, January 1987.

[27] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Int. Journal
on Software Tools for Technology Transfer, 1:134–152, 1997.

[28] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a
Gear-Box Controller. In Proc. of the 4th Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, number 1384 in Lecture Notes in Computer
Science, pages 281–297. Springer–Verlag, March 1998.

[29] Henrik Lönn and Paul Pettersson. Formal verification of a TDMA protocol start-up
mechanism. In Proceedings of the 1997 Pacific Rim International Symposium on
Fault-Tolerant Systems, PRFTS ’97, pages 235–242, Washington, DC, USA, 1997.
IEEE Computer Society.

[30] Tim Regan. Multimedia in temporal lotos: A lip-synchronization algorithm. In
Proceedings of the IFIP TC6/WG6.1 Thirteenth International Symposium on Pro-
tocol Specification, Testing and Verification XIII, pages 127–142, Amsterdam, The
Netherlands, The Netherlands, 1993. North-Holland Publishing Co.

[31] Jayme L. Szwarcfiter and Peter E. Lauer. A search strategy for the elementary
cycles of a directed graph. BIT Numerical Mathematics, 16:192–204, 1976.

[32] Robert E Tarjan. Enumeration of the elementary circuits of a directed graph.
Technical report, Department of Computer Science, Cornell University, Ithaca, NY,
USA, 1972.

72

[33] James C. Tiernan. An efficient search algorithm to find the elementary circuits of
a graph. Commun. ACM, 13:722–726, December 1970.

[34] Stavros Tripakis. Verifying progress in timed systems. In ARTS’99, 5th Interna-
tional AMAST Workshop on Real-time and Probabilistic Systems, volume 1601 of
Lecture Notes in Computer Science, pages 299–314. Springer-Verlag, May 1999.

[35] Stavros Tripakis. Checking timed Büchi automata emptiness efficiently. In Formal
Methods in System Design, pages 267–292, 2005.

[36] Frits Vaandrager and Adriaan de Groot. Analysis of a biphase mark protocol with
UPPAAL and PVS. Formal Aspects of Computing, 18:433–458, 2006.

[37] Farn Wang. Model-checking distributed real-time systems with states, events, and
multiple fairness assumptions. In Charles Rattray, Savitri Maharaj, and Carron
Shankland, editors, Algebraic Methodology and Software Technology, volume 3116
of Lecture Notes in Computer Science, pages 139–142. Springer Berlin / Heidelberg,
2004.

73

List of Figures

2.1. Emergency door example model . 5
2.2. Path formulae in UPPAAL, annotated nodes indicate satisfied properties 14
2.3. Modified emergency door model (no invariant) 15
2.4. A timing run of the emergency model without an invariant 16
2.5. Modified emergency door model (invalid time space partitioning) 16
2.6. A timing run of the emergency model with false time space partitioning . 17
2.7. Modified emergency door model . 17
2.8. A timing run of the extended emergency model without urgent behavior . 18
2.9. Extended emergency door model with urgent channel 19
2.10. A model with a pure-actionlock . 21
2.11. A model with a time-actionlock . 21
2.12. A model with a Zeno-timelock . 22
2.13. A model that conceals a deadlock . 22

3.1. Concealed deadlock model with test automaton 23
3.2. Strongly non-Zeno and not strongly non-Zeno loops 25
3.3. (N)SNZ loops involving non-zero clock updates 25
3.4. Influence on SNZ by external updates . 27
3.5. Synchronization effects on (N)SNZ property 28
3.6. Broadcast channel influence on synchronization 29
3.7. Synchronization group calculation . 30
3.8. Non-deterministic channel synchronization 31
3.9. Impossible synchronization scenario . 32
3.10. Synchronization cases for loop model generation 34
3.11. Impossible synchronization scenario . 37
3.12. Model involving complex synchronization 38
3.13. Fischer protocol automaton . 40
3.14. Model with an impossible loop . 41

4.1. ZenoTool’s workflow . 48
4.2. Parsing system example . 50

A.1. Loop classification test involving synchronization 77
A.2. Loop classification test involving template parameters 78
A.3. Transitivity test for safely dependent loops 78
A.4. Combinations of guards . 79

74

B.1. CSMA/CD protocol model . 81
B.2. Fischer protocol model . 86
B.3. Biphase Mark protocol model . 89

75

Appendices

76

A. Test Examples

To give an idea of the tests we used to validate the functionality of ZenoTool we selected
four test scenarios from our test suite. One test gives an idea of loop classification and
safety propagation, one test shows template parameter binding and safety invalidation
by external clock updates, one test tests the transitivity property of the safely dependent
data heuristic, and the last test covers the conflicting guard heuristics by checking all
possible combinations of guards.

The test suite model is available from the website of the Institute for Software Systems
of the Hamburg University of Technology.1

A.1. Loop Classification and Safety Propagation

x == 1

c?

x = 0

a!

(a) First loop

b!a?

(b) Second loop

c!b?

(c) Third loop

c?b!

(d) Fourth loop

Figure A.1.: Loop classification test involving synchronization

Global declarations

chan a, b, c;

Local declarations (first loop)

clock x;

This test features four loops. The first loop is safe by construction due to a local SNZ
witness. The second loop becomes safe due to synchronization with the first and third
loop. The last two loops could synchronize on their own and thus remain unsafe.

1http://www.sts.tu-harburg.de/research/zenotool.html

77

http://www.sts.tu-harburg.de/research/zenotool.html

A.2. Template Parameter Binding and Safety Invalidation

extclock > 0extclock = 0

(a) First template

extclock = 1

(b) Second template

Figure A.2.: Loop classification test involving template parameters

Template parameters (first template)

clock & extclock

Template parameters (second template)

clock & extclock

Template instantiation

clock externalclock;
Instance1 = FirstTemplate(externalclock);
Instance2 = SecondTemplate(externalclock);
system Instance1, Instance2;

This test features two templates that both obtain their clock variable from a template
parameter. The clock is provided by reference. The first loop is strongly non-Zeno but
its safety depends on external updates on the provided clock variable. In this test the
same clock is used by the second template and the second loop provides such an external
update. Therefore, both loops are unsafe.

A.3. Transitivity of Safely Dependent Loops

e = 99

50 >= e

1 <= d

d = -3, e = 10

d = 0

x > 0

x = 0

Figure A.3.: Transitivity test for safely dependent loops

78

Local declarations

clock x;
int d, e;

This test features a template with three loops. The leftmost loop is safe by construc-
tion because of a local SNZ witness. The top loop can only iterate if the safe loop is
executed as well, due to its constraints on the data variable d. Therefore, it is a safely
dependent loop. Then, the right loop also becomes safely dependent as the data update
on e is safe and there are no other valuations for e.

A.4. Conflicting Guards Combination Coverage

d < b

d <= b

d != b

d == b

d >= b

d > b

d < a

d <= a

d != a

d == a

d >= a

d > a

Figure A.4.: Combinations of guards

Local declarations

int d;

Template parameters

const int a, const int b

Template instantiation

Instance1 = Template(3,5);
Instance2 = Template(5,3);
Instance3 = Template(2,2);
system Instance1, Instance2, Instance3;

This test covers all different guard combinations for the determination of conflicting
guards. The template features a loop for every combination of two comparison operators.
The instantiation ensures all relevant cases for the constants are covered: a > b, a < b,
and a = b.

79

B. Case Study Models

In the following we show three of our analyzed UPPAAL models to give an impression
of the appearance of the models and the UPPAAL specification model file format. We
selected the models of the Carrier Sense, Multiple-Access with Collision Detection pro-
tocol used for UPPAAL benchmarking (see section B.1), the Fischer protocol example
(see section B.2), and the Biphase Mark Protocol model (see section B.3) as they show
different modeling styles.

All analyzed models can be found on the website of the Institute for Software Systems
of the Hamburg University of Technology.1

B.1. CSMA/CD Protocol
B.1.1. Declarations
Global declarations

chan begin, end, busy, cd1, cd2;

Local declarations (bus template)

clock x;

Local declarations (first participant template)

clock x;

Local declarations (second participant template)

clock x;

B.1.2. Model File (csmacd2.xml)

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE nta PUBLIC "-//Uppaal Team//DTD Flat System 1.1//EN"

"http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd">
<nta>
<declaration>// −−

// CSMA/CD 2

1http://www.sts.tu-harburg.de/research/zenotool.html

80

http://www.sts.tu-harburg.de/research/zenotool.html

bus_idle bus_active

bus_collision1
x < 26

bus_collision2
x <= 0

begin ?
x:= 0

end ?
x:= 0

x >= 26
busy !

x < 26
begin ?
x:= 0

x < 26
cd1 !
x:= 0

x <= 0
cd2 !
x:= 0

(a) Bus template

sender_wait

sender_transm

x<= 808

sender_retry

x < 52

begin !
x:= 0

cd1 ?
x:= 0

cd1 ?
x:= 0

busy ?
x:= 0

x == 808
end !
x:= 0

x < 52
cd1 ?
x:= 0

x < 52
begin !
x:= 0

x < 52
cd1 ?
x:= 0

(b) First participant template

sender_wait

sender_transm

x<= 808

sender_retry

x < 52

begin !
x:= 0

cd2 ?
x:= 0

cd2 ?
x:= 0

busy ?
x:= 0

x == 808
end !
x:= 0

x < 52
cd2 ?
x:= 0

x < 52
begin !
x:= 0

x < 52
cd2 ?
x:= 0

(c) Second participant template

Figure B.1.: CSMA/CD protocol model

81

// Carrier Sense, Multiple−Access with Collision Detection
//
// automatically generated by script genCSMA_CD.awk
// M. Oliver Moeller <omoeller@brics.dk>
// Wed Sep 19 11:48:20 2001
// −−
chan begin, end, busy, cd1, cd2;</declaration>
<template>
<name>P0</name>
<declaration>clock x;</declaration>
<location id="id0" x="-32" y="72">
<name x="-112" y="64">bus_idle</name>

</location>
<location id="id1" x="240" y="72">
<name x="264" y="64">bus_active</name>

</location>
<location id="id2" x="240" y="264">
<name x="256" y="256">bus_collision1</name>
<label kind="invariant" x="256" y="272">x < 26</label>

</location>
<location id="id3" x="-32" y="264">
<name x="-152" y="256">bus_collision2</name>
<label kind="invariant" x="-104" y="272">x <= 0</label>

</location>
<init ref="id0"/>
<transition>
<source ref="id0"/>
<target ref="id1"/>
<label kind="synchronisation" x="80" y="40">begin ?</label>
<label kind="assignment" x="80" y="56">x:= 0</label>

</transition>
<transition>
<source ref="id1"/>
<target ref="id0"/>
<label kind="synchronisation" x="80" y="1">end ?</label>
<label kind="assignment" x="80" y="16">x:= 0</label>
<nail x="184" y="32"/>
<nail x="16" y="32"/>

</transition>
<transition>
<source ref="id1"/>
<target ref="id1"/>
<label kind="guard" x="216" y="8">x >= 26</label>
<label kind="synchronisation" x="224" y="24">busy !</label>
<nail x="210" y="42"/>
<nail x="270" y="42"/>

</transition>
<transition>
<source ref="id1"/>

82

<target ref="id2"/>
<label kind="guard" x="248" y="138">x < 26</label>
<label kind="synchronisation" x="248" y="153">begin ?</label>
<label kind="assignment" x="248" y="168">x:= 0</label>

</transition>
<transition>
<source ref="id2"/>
<target ref="id3"/>
<label kind="guard" x="88" y="266">x < 26</label>
<label kind="synchronisation" x="88" y="281">cd1 !</label>
<label kind="assignment" x="88" y="296">x:= 0</label>

</transition>
<transition>
<source ref="id3"/>
<target ref="id0"/>
<label kind="guard" x="-88" y="138">x <= 0</label>
<label kind="synchronisation" x="-88" y="153">cd2 !</label>
<label kind="assignment" x="-88" y="168">x:= 0</label>

</transition>
</template>
<template>
<name>P1</name>
<declaration>clock x;</declaration>
<location id="id4" x="-48" y="88">
<name x="-152" y="80">sender_wait</name>

</location>
<location id="id5" x="88" y="232">
<name x="40" y="248">sender_transm</name>
<label kind="invariant" x="56" y="272">x<= 808</label>

</location>
<location id="id6" x="240" y="88">
<name x="256" y="80">sender_retry</name>
<label kind="invariant" x="230" y="103">x < 52</label>

</location>
<init ref="id4"/>
<transition>
<source ref="id4"/>
<target ref="id5"/>
<label kind="synchronisation" x="-24" y="160">begin !</label>
<label kind="assignment" x="-24" y="175">x:= 0</label>

</transition>
<transition>
<source ref="id4"/>
<target ref="id4"/>
<label kind="synchronisation" x="-64" y="25">cd1 ?</label>
<label kind="assignment" x="-64" y="40">x:= 0</label>
<nail x="-78" y="58"/>
<nail x="-18" y="58"/>

</transition>

83

<transition>
<source ref="id4"/>
<target ref="id6"/>
<label kind="synchronisation" x="72" y="9">cd1 ?</label>
<label kind="assignment" x="72" y="24">x:= 0</label>
<nail x="8" y="48"/>
<nail x="176" y="48"/>

</transition>
<transition>
<source ref="id4"/>
<target ref="id6"/>
<label kind="synchronisation" x="72" y="56">busy ?</label>
<label kind="assignment" x="72" y="72">x:= 0</label>

</transition>
<transition>
<source ref="id5"/>
<target ref="id4"/>
<label kind="guard" x="-120" y="170">x == 808</label>
<label kind="synchronisation" x="-120" y="185">end !</label>
<label kind="assignment" x="-120" y="200">x:= 0</label>
<nail x="-48" y="232"/>

</transition>
<transition>
<source ref="id5"/>
<target ref="id6"/>
<label kind="guard" x="160" y="161">x < 52</label>
<label kind="synchronisation" x="160" y="176">cd1 ?</label>
<label kind="assignment" x="160" y="191">x:= 0</label>

</transition>
<transition>
<source ref="id6"/>
<target ref="id5"/>
<label kind="guard" x="248" y="170">x < 52</label>
<label kind="synchronisation" x="248" y="185">begin !</label>
<label kind="assignment" x="248" y="200">x:= 0</label>
<nail x="240" y="232"/>

</transition>
<transition>
<source ref="id6"/>
<target ref="id6"/>
<label kind="guard" x="224" y="10">x < 52</label>
<label kind="synchronisation" x="224" y="25">cd1 ?</label>
<label kind="assignment" x="224" y="40">x:= 0</label>
<nail x="212" y="56"/>
<nail x="272" y="56"/>

</transition>
</template>
<template>
<name>P2</name>

84

<declaration>clock x;</declaration>
<location id="id7" x="40" y="80">
<name x="30" y="50">sender_wait</name>

</location>
<location id="id8" x="190" y="80">
<name x="180" y="50">sender_transm</name>
<label kind="invariant" x="180" y="95">x<= 808</label>

</location>
<location id="id9" x="190" y="230">
<name x="180" y="200">sender_retry</name>
<label kind="invariant" x="180" y="245">x < 52</label>

</location>
<init ref="id7"/>
<transition>
<source ref="id7"/>
<target ref="id8"/>
<label kind="synchronisation" x="55" y="65">begin !</label>
<label kind="assignment" x="55" y="80">x:= 0</label>

</transition>
<transition>
<source ref="id7"/>
<target ref="id7"/>
<label kind="synchronisation" x="-20" y="65">cd2 ?</label>
<label kind="assignment" x="-20" y="80">x:= 0</label>
<nail x="10" y="50"/>
<nail x="70" y="50"/>

</transition>
<transition>
<source ref="id7"/>
<target ref="id9"/>
<label kind="synchronisation" x="55" y="140">cd2 ?</label>
<label kind="assignment" x="55" y="155">x:= 0</label>

</transition>
<transition>
<source ref="id7"/>
<target ref="id9"/>
<label kind="synchronisation" x="55" y="140">busy ?</label>
<label kind="assignment" x="55" y="155">x:= 0</label>

</transition>
<transition>
<source ref="id8"/>
<target ref="id7"/>
<label kind="guard" x="55" y="50">x == 808</label>
<label kind="synchronisation" x="55" y="65">end !</label>
<label kind="assignment" x="55" y="80">x:= 0</label>

</transition>
<transition>
<source ref="id8"/>
<target ref="id9"/>

85

<label kind="guard" x="130" y="125">x < 52</label>
<label kind="synchronisation" x="130" y="140">cd2 ?</label>
<label kind="assignment" x="130" y="155">x:= 0</label>

</transition>
<transition>
<source ref="id9"/>
<target ref="id8"/>
<label kind="guard" x="130" y="125">x < 52</label>
<label kind="synchronisation" x="130" y="140">begin !</label>
<label kind="assignment" x="130" y="155">x:= 0</label>

</transition>
<transition>
<source ref="id9"/>
<target ref="id9"/>
<label kind="guard" x="130" y="200">x < 52</label>
<label kind="synchronisation" x="130" y="215">cd2 ?</label>
<label kind="assignment" x="130" y="230">x:= 0</label>
<nail x="160" y="200"/>
<nail x="220" y="200"/>

</transition>
</template>
<system>system P0, P1, P2;</system>

</nta>

B.2. Fischer Protocol

wait

req
x<=k

A

cs

id== 0 x = 0

x<=k

x = 0,
id = pid id== 0

x = 0

x>k && id==pid

id = 0

Figure B.2.: Fischer protocol model

B.2.1. Declarations
Global declarations

typedef int[1,6] id_t;
int id;

Local declarations (protocol template)

clock x;
const int k = 2;

86

Template parameters (protocol template)

const id_t pid

B.2.2. Model File (fischer6.xml)

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE nta PUBLIC "-//Uppaal Team//DTD Flat System 1.1//EN"

"http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd">
<nta>
<declaration>// Mutual exclusion protocol by Fischer.

typedef int[1,6] id_t;
int id;</declaration>
<template>
<name x="16" y="-8">P</name>
<parameter>const id_t pid</parameter>
<declaration>clock x;

const int k = 2;</declaration>
<location id="id0" x="216" y="176">
<name x="216" y="192">wait</name>

</location>
<location id="id1" x="216" y="48">
<name x="216" y="16">req</name>
<label kind="invariant" x="240" y="32">x<=k</label>

</location>
<location id="id2" x="64" y="48">
<name x="54" y="18">A</name>

</location>
<location id="id3" x="64" y="176">
<name x="56" y="192">cs</name>

</location>
<init ref="id2"/>
<transition>
<source ref="id2"/>
<target ref="id1"/>
<label kind="guard" x="88" y="24">id== 0</label>
<label kind="assignment" x="160" y="24">x = 0</label>

</transition>
<transition>
<source ref="id1"/>
<target ref="id0"/>
<label kind="guard" x="144" y="72">x<=k</label>
<label kind="assignment" x="144" y="104">x = 0,

id = pid</label>
</transition>
<transition>
<source ref="id0"/>
<target ref="id1"/>

87

<label kind="guard" x="264" y="120">id== 0</label>
<label kind="assignment" x="264" y="88">x = 0</label>
<nail x="251" y="146"/>
<nail x="251" y="82"/>

</transition>
<transition>
<source ref="id0"/>
<target ref="id3"/>
<label kind="guard" x="96" y="184">x>k && id==pid</label>

</transition>
<transition>
<source ref="id3"/>
<target ref="id2"/>
<label kind="assignment" x="8" y="80">id = 0</label>

</transition>
</template>
<system>system P;</system>

</nta>

B.3. Biphase Mark Protocol
B.3.1. Declarations
Global declarations

const int cell = 14;
const int mark = 7;
const int sample = 10;
const int min = 93;
const int max = 100;
const int edgelength = 100;

chan tick, tock, edge, get, put;
broadcast chan fuzz, settle, Sample;
int m, n;
bool in, out, v, w, s, new, old, buf;
clock x, y, z;

B.3.2. Model File (bmp.xml)

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE nta PUBLIC "-//Uppaal Team//DTD Flat System 1.1//EN"

"http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd">
<nta>
<declaration>// Global Declarations

chan tick, tock, edge, get, put;

88

C4

C3

C2C1

C0

get?

in == 1
edge!

n < mark - 1
tick?

n := n+1

in == 0
edge!

n < cell - 1
tick?

n := n+1

n == cell - 1
tick?

n := 0 edge!

n == mark - 1
tick?

n := n+1

(a) Coder template
D2

D1
D0

new != old
tock?

old := new

put!
m := 0

m == sample - 1
tock?

out := (new != old),
m := m + 1,
old := new

m < sample - 1
tock?

m := m+1
new == old
tock?

(b) Decoder template

W2

W1
z <= edgelength

W0

fuzz!
w := 1 - w

edge?
z := 0,
v := 1 - v

z == edgelength
settle!

w := v

edge?

(c) Wire template

T3T2T1

Error

T0
get!
in := 1

get!
buf := in,
in := 1

out != in
put?put?

get!
in := 0

out == in
put?

get!
buf := in,
in := 0

out == buf
put?

out != buf
put?

get!

(d) Tester template

s == 0
Sample!
new := w,
s := 1

(e) Sampler template

X0

x <= max

x >= min

tick!

x := 0

(f) Clock templates

y <= max

y >=min && s==1
tock!
y := 0,
s := 0

(g) Second clock template

Figure B.3.: Biphase Mark protocol model

89

broadcast chan fuzz, settle, Sample;

int m, n;

bool in, out, v, w, s, new, old, buf;

clock x, y, z;

const int cell = 14;

const int mark = 7;

const int sample = 10;

const int min = 93;

const int max = 100;

const int edgelength = 100;</declaration>
<template>
<name x="5" y="5">Coder</name>
<location id="id0" x="320" y="240">
<name x="344" y="240">C4</name>
<urgent/>

</location>
<location id="id1" x="320" y="128">
<name x="345" y="112">C3</name>

</location>
<location id="id2" x="320" y="352">
<name x="344" y="357">C2</name>

</location>
<location id="id3" x="96" y="352">
<name x="58" y="360">C1</name>
<urgent/>

</location>
<location id="id4" x="96" y="128">
<name x="86" y="98">C0</name>
<urgent/>

</location>
<init ref="id4"/>
<transition>
<source ref="id4"/>
<target ref="id3"/>
<label kind="synchronisation" x="56" y="232">get?</label>

</transition>
<transition>
<source ref="id3"/>
<target ref="id2"/>
<label kind="guard" x="184" y="376">in == 1</label>

90

<label kind="synchronisation" x="184" y="360">edge!</label>
</transition>
<transition>
<source ref="id2"/>
<target ref="id2"/>
<label kind="guard" x="360" y="416">n < mark − 1</label>
<label kind="synchronisation" x="360" y="400">tick?</label>
<label kind="assignment" x="360" y="432">n := n+1</label>
<nail x="320" y="448"/>
<nail x="352" y="448"/>

</transition>
<transition>
<source ref="id3"/>
<target ref="id1"/>
<label kind="guard" x="192" y="280">in == 0</label>
<label kind="synchronisation" x="192" y="264">edge!</label>

</transition>
<transition>
<source ref="id1"/>
<target ref="id1"/>
<label kind="guard" x="368" y="48">n < cell − 1</label>
<label kind="synchronisation" x="368" y="32">tick?</label>
<label kind="assignment" x="368" y="64">n := n+1</label>
<nail x="320" y="32"/>
<nail x="352" y="32"/>

</transition>
<transition>
<source ref="id1"/>
<target ref="id4"/>
<label kind="guard" x="136" y="152">n == cell − 1</label>
<label kind="synchronisation" x="136" y="136">tick?</label>
<label kind="assignment" x="136" y="168">n := 0</label>

</transition>
<transition>
<source ref="id0"/>
<target ref="id1"/>
<label kind="synchronisation" x="328" y="168">edge!</label>

</transition>
<transition>
<source ref="id2"/>
<target ref="id0"/>
<label kind="guard" x="328" y="288">n == mark − 1</label>
<label kind="synchronisation" x="328" y="272">tick?</label>
<label kind="assignment" x="328" y="304">n := n+1</label>

</transition>
</template>
<template>
<name x="5" y="5">Clock</name>
<location id="id5" x="128" y="96">

91

<name x="90" y="90">X0</name>
<label kind="invariant" x="56" y="112">x <= max</label>

</location>
<init ref="id5"/>
<transition>
<source ref="id5"/>
<target ref="id5"/>
<label kind="guard" x="240" y="80">x >= min</label>
<label kind="synchronisation" x="240" y="96">tick!</label>
<label kind="assignment" x="240" y="112">x := 0</label>
<nail x="224" y="128"/>
<nail x="224" y="96"/>

</transition>
</template>
<template>
<name x="8" y="0">Wire</name>
<location id="id6" x="544" y="128">
<name x="534" y="98">W2</name>

</location>
<location id="id7" x="352" y="128">
<name x="384" y="136">W1</name>
<label kind="invariant" x="384" y="152">z <= edgelength</label>

</location>
<location id="id8" x="160" y="128">
<name x="112" y="120">W0</name>

</location>
<init ref="id8"/>
<transition>
<source ref="id7"/>
<target ref="id7"/>
<label kind="synchronisation" x="392" y="200">fuzz!</label>
<label kind="assignment" x="392" y="216">w := 1 − w</label>
<nail x="352" y="224"/>
<nail x="384" y="224"/>

</transition>
<transition>
<source ref="id8"/>
<target ref="id7"/>
<label kind="synchronisation" x="192" y="72">edge?</label>
<label kind="assignment" x="192" y="88">z := 0,

v := 1 − v</label>
</transition>
<transition>
<source ref="id7"/>
<target ref="id8"/>
<label kind="guard" x="176" y="208">z == edgelength</label>
<label kind="synchronisation" x="176" y="192">settle!</label>
<label kind="assignment" x="176" y="224">w := v</label>
<nail x="220" y="192"/>

92

</transition>
<transition>
<source ref="id7"/>
<target ref="id6"/>
<label kind="synchronisation" x="456" y="104">edge?</label>

</transition>
</template>
<template>
<name x="5" y="5">Sampler</name>
<location id="id9" x="96" y="128"/>
<init ref="id9"/>
<transition>
<source ref="id9"/>
<target ref="id9"/>
<label kind="guard" x="208" y="112">s == 0</label>
<label kind="synchronisation" x="208" y="128">Sample!</label>
<label kind="assignment" x="208" y="144">new := w,

s := 1</label>
<nail x="192" y="128"/>
<nail x="192" y="160"/>

</transition>
</template>
<template>
<name x="5" y="5">Decoder</name>
<location id="id10" x="320" y="384">
<name x="344" y="376">D2</name>
<urgent/>

</location>
<location id="id11" x="320" y="160">
<name x="336" y="168">D1</name>

</location>
<location id="id12" x="96" y="160">
<name x="72" y="176">D0</name>

</location>
<init ref="id12"/>
<transition>
<source ref="id12"/>
<target ref="id11"/>
<label kind="guard" x="184" y="184">new != old</label>
<label kind="synchronisation" x="184" y="168">tock?</label>
<label kind="assignment" x="184" y="200">old := new</label>

</transition>
<transition>
<source ref="id10"/>
<target ref="id12"/>
<label kind="synchronisation" x="152" y="272">put!</label>
<label kind="assignment" x="152" y="288">m := 0</label>

</transition>
<transition>

93

<source ref="id11"/>
<target ref="id10"/>
<label kind="guard" x="328" y="256">m == sample − 1</label>
<label kind="synchronisation" x="328" y="240">tock?</label>
<label kind="assignment" x="328" y="272">out := (new != old),

m := m + 1,
old := new</label>

</transition>
<transition>
<source ref="id11"/>
<target ref="id11"/>
<label kind="guard" x="360" y="80">m < sample − 1</label>
<label kind="synchronisation" x="360" y="64">tock?</label>
<label kind="assignment" x="360" y="96">m := m+1</label>
<nail x="320" y="64"/>
<nail x="352" y="64"/>

</transition>
<transition>
<source ref="id12"/>
<target ref="id12"/>
<label kind="guard" x="136" y="80">new == old</label>
<label kind="synchronisation" x="136" y="64">tock?</label>
<nail x="96" y="64"/>
<nail x="128" y="64"/>

</transition>
</template>
<template>
<name x="8" y="0">Tester</name>
<location id="id13" x="576" y="224">
<name x="576" y="240">T3</name>

</location>
<location id="id14" x="416" y="224">
<name x="424" y="240">T2</name>

</location>
<location id="id15" x="256" y="224">
<name x="264" y="240">T1</name>

</location>
<location id="id16" x="256" y="384">
<name x="232" y="400">Error</name>

</location>
<location id="id17" x="96" y="224">
<name x="104" y="240">T0</name>

</location>
<init ref="id17"/>
<transition>
<source ref="id17"/>
<target ref="id15"/>
<label kind="synchronisation" x="152" y="232">get!</label>
<label kind="assignment" x="152" y="248">in := 1</label>

94

</transition>
<transition>
<source ref="id15"/>
<target ref="id14"/>
<label kind="synchronisation" x="312" y="232">get!</label>
<label kind="assignment" x="312" y="248">buf := in,

in := 1</label>
</transition>
<transition>
<source ref="id15"/>
<target ref="id16"/>
<label kind="guard" x="264" y="336">out != in</label>
<label kind="synchronisation" x="264" y="320">put?</label>

</transition>
<transition>
<source ref="id17"/>
<target ref="id16"/>
<label kind="synchronisation" x="104" y="320">put?</label>
<nail x="96" y="384"/>

</transition>
<transition>
<source ref="id17"/>
<target ref="id15"/>
<label kind="synchronisation" x="152" y="160">get!</label>
<label kind="assignment" x="152" y="176">in := 0</label>
<nail x="160" y="192"/>

</transition>
<transition>
<source ref="id15"/>
<target ref="id17"/>
<label kind="guard" x="120" y="80">out == in</label>
<label kind="synchronisation" x="120" y="64">put?</label>
<nail x="224" y="96"/>
<nail x="96" y="96"/>

</transition>
<transition>
<source ref="id15"/>
<target ref="id14"/>
<label kind="synchronisation" x="312" y="144">get!</label>
<label kind="assignment" x="312" y="160">buf := in,

in := 0</label>
<nail x="320" y="192"/>

</transition>
<transition>
<source ref="id14"/>
<target ref="id15"/>
<label kind="guard" x="312" y="80">out == buf</label>
<label kind="synchronisation" x="312" y="64">put?</label>
<nail x="416" y="96"/>

95

<nail x="288" y="96"/>
</transition>
<transition>
<source ref="id14"/>
<target ref="id16"/>
<label kind="guard" x="424" y="336">out != buf</label>
<label kind="synchronisation" x="424" y="320">put?</label>
<nail x="416" y="384"/>

</transition>
<transition>
<source ref="id14"/>
<target ref="id13"/>
<label kind="synchronisation" x="472" y="232">get!</label>

</transition>
</template>
<template>
<name x="5" y="5">Clock2</name>
<location id="id18" x="128" y="128">
<label kind="invariant" x="56" y="144">y <= max</label>

</location>
<init ref="id18"/>
<transition>
<source ref="id18"/>
<target ref="id18"/>
<label kind="guard" x="232" y="112">y >=min && s==1</label>
<label kind="synchronisation" x="232" y="128">tock!</label>
<label kind="assignment" x="232" y="144">y := 0,

s := 0</label>
<nail x="224" y="128"/>
<nail x="224" y="160"/>

</transition>
</template>
<system>

system Coder, Clock, Wire, Sampler, Clock2, Decoder, Tester;</system>
</nta>

96

	Abstract
	1 Introduction
	2 UPPAAL
	2.1 Timed Automata
	2.1.1 Additional Modeling Features
	2.1.2 Modeling Syntax and Semantics
	2.1.3 Verifying the System

	2.2 Time in Detail
	2.2.1 Invariants and Guards
	2.2.2 Urgency

	2.3 Timelocks and Zeno Runs
	2.3.1 Pure-actionlock
	2.3.2 Time-actionlock
	2.3.3 Zeno-timelock (Pure-timelock)
	2.3.4 Property Concealment

	3 Ensuring Time Divergence
	3.1 Strong Non-Zenoness and Loop Safety
	3.2 Safety Propagation
	3.2.1 Synchronization Groups
	3.2.2 Synchronization Matrix
	3.2.2.1 Loop Modeling
	3.2.2.2 Synchronization Matrix Construction
	3.2.2.3 Synchronization Scenario Calculation
	3.2.2.4 Accuracy Improvement

	3.3 Data Variable Heuristics
	3.3.1 Safe Variable Dependencies
	3.3.2 Conflicting Guards Elimination

	4 ZenoTool
	4.1 Usage
	4.1.1 Command-line Parameters
	4.1.2 Limitations and Workarounds

	4.2 Implementation Details
	4.2.1 The Parsing Subsystem
	4.2.2 Algorithms
	4.2.2.1 Cycle Detection
	4.2.2.2 Strong Non-Zenoness and Loop Safety
	4.2.2.3 Synchronization Methods
	4.2.2.4 Data Variable Heuristics

	4.2.3 Libraries

	4.3 Validation
	4.4 Experiments
	4.4.1 Models
	4.4.2 Accuracy
	4.4.3 Performance
	4.4.4 Conclusion

	5 Conclusions and Future Work
	Bibliography
	List of Figures
	Appendices
	A Test Examples
	A.1 Loop Classification and Safety Propagation
	A.2 Template Parameter Binding and Safety Invalidation
	A.3 Transitivity of Safely Dependent Loops
	A.4 Conflicting Guards Combination Coverage

	B Case Study Models
	B.1 CSMA/CD Protocol
	B.1.1 Declarations
	B.1.2 Model File (csmacd2.xml)

	B.2 Fischer Protocol
	B.2.1 Declarations
	B.2.2 Model File (fischer6.xml)

	B.3 Biphase Mark Protocol
	B.3.1 Declarations
	B.3.2 Model File (bmp.xml)

