
Bachelor Thesis

Max Schürenberg

Scalability Analysis of the Simulink Design Veri�er
on an Avionic System

August 8, 2012

supervised by:
Prof. Dr. Sibylle Schupp

Hamburg University of Technology (TUHH)

Technische Universität Hamburg-Harburg

Institute for Software Systems

21073 Hamburg

The work on this thesis was done in partnership with

Airbus Operations Ltd. and Airbus Operations GmbH

Abstract

In recent years, the application of model-based requirement engineering has been considered
very useful and has found its way into avionic system development and certi�cation. New
standards explicitly allow and de�ne the use of model-based design in the development
process. So far, simulation and testing is the only way to assure that a model meets its
required behaviour. Model checking is another promising approach for that. The Simulink
Design Veri�er is a new commercial tool that allows the application of model checking
within the established Matlab/Simulink development environment. The aim of this thesis
is to analyse if the Simulink Design Veri�er is applicable on a fuel tank management model
for a modern long range aircraft. The focus of the analysis is on the scalability of the tool.
The analysis revealed that proving simple properties is possible and scales well, while the
automated test case generation can not be applied due to design constructs within the fuel
management model as well as bugs in the Simulink Design Veri�er.

Contents

1 Introduction 7

2 Model-Based Design 9
2.1 Development Process . 9
2.2 Graphical Models . 11

2.2.1 Simulink . 11
2.2.2 State�ow . 12

2.3 Model Coverage . 13

3 Scalability 15
3.1 Use and De�nitions of Scalability . 15
3.2 De�ning Scalability in the Context of the Thesis 16

4 Simulink Design Veri�er 17
4.1 Model Checking . 17
4.2 Stålmarck's Proof Procedure . 18
4.3 Product Overview . 21
4.4 Possible Problems . 22

5 Analysing an Aircraft Fuel Management Model with the Simulink Design Veri-
�er 23
5.1 Strategies to Analyse an Existing Large Model 23

5.1.1 Top-Down Approach or Bottom-Up Approach 24
5.1.2 Integration or Separation of Veri�cation Components 25
5.1.3 Decision . 25

5.2 De�ne Test Requirements as Proof Objectives 26
5.3 Limitations/Problems arisen . 28

6 Results of the Veri�cation Concerning Scalability 35
6.1 Possible Improvements . 36

7 Conclusion 37
7.1 Future Work . 37

Appendices 41

A List of Abbreviations 41

B General Appendix 43

C Veri�cation Subsystems 47

D Data from the Scalability Analysis 57

5

1 Introduction

In recent years, the application of model-based requirement engineering has been considered
very useful and has found its way into avionic system development and certi�cation[26].
New standards explicitly allow and de�ne the use of model-based design in the development
process. Furthermore, the use of formal veri�cation techniques within model based-design
is recognized and described by the certi�cation authorities for avionic systems [17].

So far, simulation and testing is the only way to assure that a model meets its requirements.
Formal veri�cation and model checking follow a completely di�erent approach for that
purpose. Formal veri�cation is based on the insight that programs and systems may be
viewed as mathematical objects with predictable behaviour. The veri�cation problem is:
Determine whether a given program M satis�es a speci�cation h.

Model checking is derived from formal veri�cation. It provides methods to verify a temporal
property on a �nite state system via e�cient graph search. Model checking has its origins
in Harvard in the early 1980's [10]. In previous years, various model checking tools for
real-world application have been introduced, such as NuSMV[16], SPIN[24] or the SCADE
Design Veri�er[19].

With the Simulink Design Veri�er (SLDV), Mathworks has released another commercial
tool that brings model checking into industrial application. It can verify models that are
created with tools from the Matlab suite. The company claims that �rst attempts to
apply the SLDV in an industrial environment were successful and pro�table [12]. However,
the functionality of the tool is only shown on small models. Recent attempts to apply
the SLDV in the automotive and avionic industry either showed poor scaling and strong
limitations on the applicability [14][23] or even failed completely [26]. In 2011, Mathworks
released a new version. The aim of this thesis is to analyse if the SLDV is applicable on a
fuel tank management system for a modern Airbus long range aircraft. The main focus of
attention is the scalability of the tool and the usefulness of the gained results.

In section 2, I give a short introduction into model-based design. I sketch the development
process, present the tools that are used within Airbus and explain the use of model coverage.
The key aspect of this thesis is scalability. I explain and de�ne that term in section 3. In
section 4 I concentrate on the Simulink Design Veri�er, explain model checking and the
algorithm behind the SLDV and give a program introduction. The core analysis is outlined
in section 5, where I present my strategy to analyse the model and show the problems and
limitations I encountered during the analysis. In section 6, I present and discuss the
data that I collected during the analysis in terms of scalability. Finally, I end up with
a conclusion in section 7, where I summarize the results and give a recommendation for
future work on the SLDV.

7

2 Model-Based Design

In this section, I present the fundamentals of model-based design. I explain why model-
based design can facilitate the development process signi�cantly, at which points graphical
tools can be used in the system development process at Airbus and where the SLDV is
applicable.

2.1 Development Process

Because of the necessity of highly reliable aircraft to ensure passengers safety, the develop-
ment process of avionic systems is subject to strict regulations. In Europe, the certi�cation
process is controlled by the European Aviation Safety Agency (EASA). The de�nition of
the development process i.e. how certain documents and certi�cations can be achieved,
is given by the Radio Technical Commission for Aeronautics (RTCA) and its European
pendant, the European Organization for Civil Aviation Equipment (EUROCAE). For
system development, these institutions provide the documents ARP4754(RTCA) and ED-
79(EUROCAE) for the overall development process. Together with the DO-178B and the
new DO-178C which describe the software development and certi�cation process, all poli-
cies and guidelines are bundled in the Airbus internal documents ABD0200 and ABD0100.
According to this, the system development process at Airbus is based on a sequence of

Top Level Aircraft

Requirements

System

Specification

Detail Design

System

Requirements

Implementation

Aircraft Test

(A/C 1,2,...)

System Test

Unit Test

Integration Test

(A/C 0)

System Simulation

(A/C -1)

Validation
Test Development

Figure 2.1: A V diagram of system development as in [23]

design and implementation steps. Each of these steps outputs a document that drives the
successive step. This work�ow is called V model. A diagram of that model can be seen
in �gure 2.1. The V shape of the diagram illustrates two main aspects of the process.

9

One is the top-down approach with a narrowing scope of the design steps, where high-level
requirements are split into more and more detailed low-level requirements down to con-
crete design descriptions, followed by a wider scope of testing and integration, where small
parts are tested in isolation, integrated into their environment and then tested again for
their functionality in conjunction with other system parts. The other main aspect of the
V model is the relationship between design and test. Each design step has a corresponding
step in the integration and testing phase. Tests can therefore be directly derived from the
design document.

The main advantage of such a development process is the requirement traceability. At
every stage of design and implementation, all parts, subsystems and source-code snippets
of the system and their corresponding high-level requirements can be traced in both di-
rections, which helps to assure a high level of safety and con�dentiality. However, it also
puts a huge burden on the system design. If a high-level requirement turns out to be in-
correct in the corresponding implementation step, the whole process must be done again.
NASA published a famous study [8] that shows how the cost of �xing failures increases
with the development process stage in which the speci�c failure was found (see �gure 2.2).
More than that, Airbus's business strategy is to act as a developer and integrator. Every

Figure 2.2: NASA study on failure costs as in [8]

�xed implementation of a system or a structure is given to a subcontractor. In �gure 2.1,
the dotted line marks the interface between the responsibilities of Airbus (above the line)
and subcontractors (below the line). In order to prevent misunderstandings at that in-
terface and to ensure that Airbus can not be blamed for failures that occurred on the
subcontractor's site, a good system design is critical. It is therefore necessary to ensure in
every possible manner that the speci�cation of a system is correct, valid and unambiguous.
Model-based design is a powerful aid for that challenge.

A model can help as an executable speci�cation. Textual requirements are often ambigu-
ous. Consider the low-level requirement below:

10

The Left Valve open signal shall be set to true when any of the following

conditions is true:

-The Valve status is NO FAILURE and the Left Tank active signal is

TRUE

The problem which arises is that there are separate `Valve status' signals for the left and
right valve, therefore the subcontractor has to interpret the speci�cation. A model would
consist of a statechart (see section 2.2.2 on the following page) that clearly describes how
the `Over�ow Condition' signal is set.

In the context of this thesis, the most important advantage of a model is the fact that
it can also serve as a virtual prototype. That prototype can be simulated and �xed tests
can be generated before any real system implementation is carried out. Consider �gure
2.1 again to see how system simulation can improve the system development process. In
the speci�cation phase, the model is built according to the requirements. Before entering
the detail design phase, that model can be executed and tests can be performed to ensure
the right functionality according to the requirements and to validate the requirements
according to the observed system behaviour. If incorrect requirements are detected, it is
only the speci�cation that needs to be adjusted. Furthermore, the test cases that were
designed for the model can be used to derive the actual integration tests in later phases of
the development process. To sum up, model-based design is a very powerful strategy to
avoid failures in early design stages. If it is possible to ensure that the model is completely
correct, then failures in the real system would be also unlikely. Model checking is not a
replacement, but a powerful addition to simulation and testing. Both are carried out in
parallel. In section 4, I point out how model checking di�ers from testing and how it can
help to improve the correctness of a model.

2.2 Graphical Models

There are several ways to build a model. The system behaviour can be described via pseudo
code or graphical modelling tools can be used to illustrate the system architecture. In the
�eld of graphical modelling, two fundamental graphical modelling paradigms can be found:
Block diagrams and statecharts. Within Airbus, system models are built with graphical
modelling tools, particularly with Simulink for the block diagrams and State�ow for the
statecharts. Both tools are extensions for the Matlab suite, provided by the MathWorks

Inc[15]. The choice for graphical modelling tools results from the general advantages that
graphical representations have over source code. Complex relations between components
and signals can be abstracted to easy-to-read blocks and connectors and are therefore easier
to understand and maintain. In the following sections, the main functionalities of Simulink
and State�ow are explained based on [13] and [2].

2.2.1 Simulink

A Simulink block diagram consists of system blocks that are connected by lines to represent
the data�ow between them. A block is a set of equations which describe the relationship
between input and output signals and the state variables. Simulink computes the time-
based relationship between signals and state variables in the whole system. Elementary
blocks such as controllers, logical functions, sinks and sources can be obtained directly from
the library browser. The modelling of more complex equations is possible using Matlab
and C-Code. An example from the Airbus Fuel System Modelling Environment (AFSME)
is shown in �gure 2.3 on the next page. To keep a certain level of clear arrangements,

11

Figure 2.3: Signal Routing with Simulink

blocks can be grouped into subsystems. Therefore, Simulink allows a hierarchical system
structure. It is possible to deal with discrete as well as continuous systems. Parameters
like start and stop time and number of timesteps for the simulation can be manipulated
by the user.

2.2.2 State�ow

State�ow is an extension to Simulink. Adding a State�ow block to a Simulink diagram,
enables the user to control the input and output behaviour via statecharts. Statecharts are
a variation of the �nite state machine visualization after [11]. They can be used to describe
how a system with a �nite set of states can change from one mode to another. An example
statechart from AFSME can be seen in �gure 2.4. States can either be exclusive, which

Figure 2.4: Statechart in State�ow

means that only one state can hold at a time, or parallel. Parallel states are indicated
by a dotted frame. A state consists of the following optional entries: entry, during, exit,
on event1, bind. Events can be passed to these entries, that are than triggered at the
speci�c timestep (e.g. on entry to the state). Transitions are represented by connecting
arrows. Unconditional transitions are not labelled and will be executed with a delay of
one timestep. Conditional transitions are executed if their corresponding condition holds.
In square brackets, an event is de�ned. If that event holds during program execution, the
active state changes to the respective state. With conjunctions and loops, more complex
transitions can be modelled.

12

2.3 Model Coverage

Coverage analysis is a static analysis technique that measures the completeness of testing.
It analyses the program execution over time and records which parts of the system or
code under test are actually used. This technique is referred to as white box testing [20].
There are di�erent types of coverage. In the following, these types are presented using the

[1] d = 1;

[2] if(a>0 && b>0){

[3] d = 0;

[4] } else {

[5] }

[6] p = d;

[7] return d;

3

6

7

2T F

1

Figure 2.5: Pseudo Code Snippet to illustrate code coverage

example code and control-�ow graph in �gure 2.5, according to [1].

Statement coverage is the weakest condition. Statement coverage claims that every de-
cision has to be executed at least once, so that every node in the respecting graph is
reached. In the example, a test case with a = 1 and b = 1 or any other combination of
numbers that leads to a true outcome of the if-statement would satisfy this criteria.

Decision coverage claims that every decision has to take every possible outcome. In the
example, two test cases that lead the program to the true branch as well as to the
false branch are necessary, e.g. Test Case 1: a=1, b=1 and Test Case 2: a=1,
b=0. Looking at the control-�ow-graph, decision coverage covers the whole graph.
However, it leaves out the problem that can result from logical operations that are
used as conditions.

Condition coverage considers that problem. Condition coverage claims that every condi-
tion in a decision executes at least once with a true and a false value. In the example,
Test Case 1: a=1, b=1, Test Case 2: a=1, b=0 and Test Case 3: a=0, b=0 would
satisfy this criteria.

MCDC stands for modi�ed condition-decision coverage and is the most strict type of
coverage. It was originally developed at Boeing [4]. It claims all rules from decision
and condition coverage and adds the claim that every single condition has to be
tested separately for its a�ects on the program execution while the other inputs are
held constant. In the example, three test cases would be necessary. Test Case 1:
a=1, b=1, Test Case 2: a=1, b=0, Test Case 3: a=0, b=1.

To a certain extent, model coverage is more complicated than code coverage due to a larger
range of possible control �ow constructs. However, in the context of the thesis, I will just
deal with statecharts, so I will only need to consider the characteristics of coverage in
state diagrams. In state diagrams, transitions are the central components that drive the
control �ow. In State�ow, conditional transitions are executed in a speci�c order that is
predicted by the developer. Unconditional transitions are executed by default after every
other transition has been tested false. Transitions in State�ow are equal to statements in
source code. That means in order to reach decision coverage, every conditional transition

13

has to be tested as true (the transition will be taken) and as false (another transition will
be taken or the state will hold).

On a small example, test cases that achieve a certain level of coverage can easily be found
heuristically. When it comes to bigger models, that process becomes hard and time con-
suming. In section 4.3, I will show how the SLDV can also help to facilitate test case
generation.

14

3 Scalability

The term scalability is frequently used in computer science. It can be found in highly
di�erent domains such as parallel computing, software processes, model checking and com-
munication protocols. However, a strict de�nition of its characteristics is still missing,
while several papers on that subject are trying to present a more systematic way of de�n-
ing scalability [9] [5]. Therefore it is necessary to have a look at how scalability is valued
in di�erent domains and to clearly de�ne scalability in the context of this thesis.

3.1 Use and De�nitions of Scalability

In general terms, a scalable system is a system that handles an increasing amount of work
gracefully and/or can be enlarged to handle that work. Speaking of a system that does not
scale means that the resource-costs (memory usage, computation time, human-machine
interacting) of coping with increasing work would rise exponentially or that the system
can not even handle this increasing amount of work. Increasing resource-costs or even
the need for replacement of the software almost automatically lead to increasing �nancial
costs. Therefore, scalability is often a requirement in the design process of systems and
software. In university lectures on operating systems, scalability is mentioned as one of
the key quality characteristics [27].

[5] tries to specify scalability into four di�erent subsections: Load scalability for graceful
performance under heavy and light load, space scalability for a sublinear relation between
number of supported objects and memory consumption, space-time scalability for graceful
performance with increasing number of supported items and structural scalability for a
system architecture that does not constrain growth in the number of supported objects,
e.g. through �nite a address space. However, the given de�nitions are still very vague and
are not universally applicable for the di�erent contexts in the �eld of computer science.
Still, the given approach requires an individual de�nition of scalability.

[9] considers the fact that a universal de�nition of scalability can hardly be given and
proposes a framework for the characterization and analysis in each speci�c context. Here,
scalability is de�ned as:

a quality of software systems characterized by the causal impact that scaling
aspects of the system environment and design have on certain measured system
qualities as these aspects are varied over expected operational ranges.

The system stakeholder has the responsibility to de�ne scalability variables from the fol-
lowing cluster: Scaling dimensions for the independent variables of the system that can
actually be manipulated for the scalability analysis, non-scaling variables for the charac-
teristics of the application domain or the machine that are �xed and dependent variables

for the variables that are a�ected by changes of the independent variables.

15

3.2 De�ning Scalability in the Context of the Thesis

I consider the proposed framework in [9] as to be very useful, so I will use it to de�ne
scalability in the context of the thesis. I de�ne the following variables:

Scaling dimensions: number of states in the statecharts, number of transitions in the
statecharts, number of veri�cation objectives

The scaling dimensions are chosen due to the analysis strategy picked in section 5.1. In
a �rst part, the number of veri�cation objectives is �xed and the numbers of statecharts
and transitions are constantly increased. In a second round, when the model has reached
its original size, the number of veri�cation objectives is then increased.

Non-scaling variables: CPU, system memory

The analysis is performed on a single machine with the resources of a typical engineering
workplace. The aim of the thesis is to prove if the SLDV is applicable in the `daily work' of
system development, therefore it has to consider the average equipment available. Further
work could also consider the analysis on di�erent machines. The exact data of the machine
is:

� Intel Xeon CPU W3520 @ 2.67 GHz quad-core

� 3.23 GB RAM

� Windows XP Professional Version 2002 Service Pack 3

Dependent variables: overall computation time, analysis time, CPU-usage, memory usage

The overall computation time is the time that the Matlab process stays idle. That includes
the compilation, translation, veri�cation and report generation. Most of these parameters
are not speci�c to the SLDV, however they are of interest for a feasibility analysis. The
analysis time is the actual time the SLDV claims to need for the analysis. The CPU-usage
is of interest to see if and how the CPU requirements increase with a growing model. Same
applies for the memory usage. To reach a good scalability, these parameters are expected
to show linear behaviour in relation to the scaling dimensions.

16

4 Simulink Design Veri�er

The Simulink Design Veri�er is an extension to Simulink. It uses formal veri�cation meth-
ods to assist developers in veri�cation and validation of their Simulink and State�ow mod-
els. The SLDV was introduced in Matlab 2007 and renewed under the release 2.0 in Matlab
2011.

The use of formal veri�cation in model-based design is a qualitatively new approach to
detect errors. Testing has a severe limitation on ensuring a program's correctness, which
is posed by a quote of Edsger W. Dijkstra in 1969:

Testing shows the presence, not the absence of bugs. [6, p. 16]

The strategy of testing is to trigger the system with very speci�c inputs and to compare
the results from that simulation with the results that were expected. A test case therefore
covers a concrete possible execution trace of the program. The results of a test case allow
the judgement over the behaviour of the system for exactly these inputs, but they can not
be used for any further predictions, which is meant by the quote stated above. If a correct
test case �nds a failure, the program is obviously faulty, but the fact that a test case does
not �nd a failure does not mean necessarily that the system is correct. More than that, a
failing test can also be the result of incorrect test cases and expected results, which puts an
additional downside on the con�dentiality of testing. To gain a certain level of con�dence
in the system's functionality, as many test cases as necessary should be written in order to
cover every possible execution path of the system.

Model checking follows a completely di�erent approach. Instead of simulating the system,
it abstracts the system into a deterministic �nite state machine and veri�es that abstraction
against properties that are given in temporal logic. The problem is then to prove that the
property holds within the de�ned temporal range.

The SLDV is a `push-button tool', therefore an understanding of the underlying algorithm
is not necessary for its application. The SLDV as well as the underlying proof engine,
the Prover Plug-In by Prover Technology AB [18], are commercially distributed tools, so
details on implementation and functionality are not available to the public. Nevertheless,
I will give an overview over model checking with the SLDV and allow a closer look at the
underlying algorithm.

4.1 Model Checking

The process of model checking consists of three main steps, which are illustrated in �g-
ure 4.1 on the following page and explained below based on [7]:

Modelling The �rst step is to transfer the model into a formal representation that can be
used by the model checking tool. The structure widely used in literature about model
checking is called a Kripke structure. It consists of a set of states, a set of transitions
and a labelling function that relates each state to a set of properties that holds in
that state. The representation of the Kripke structure in the latter model checking
algorithm is crucial to its performance when it comes to larger state spaces. In
explicit model checking algorithms, the Kripke structure is represented by a labelled,
direct graph. When it comes to systems with many concurrent parts, the number

17

Standard

representation of

logic-based control

systems

Implicit Boolean State

Space Model

Boolean Satisfiability

Problem

Formal Specification

in Temporal Logic

Prover-Plugin Result

Not passed:

Counterexample

Passed

Step 1

Step 2

Step 3

Figure 4.1: Steps Within Model Checking

of states in that transition graph gets too large to handle. With symbolic model
checking, a more compact, boolean representation of the model is used. The symbolic
representation captures loops and regularity in the state space graph. The ordinary
symbolic representation is a Binary Decision Diagram (BDD). The underlying proof
engine within the SLDV uses an alternative to BDDs, however, due to the proprietary
nature of the tool, it is not known how the abstraction is done.

Speci�cation The next step is to inform the model checker about the properties that the
model has to satisfy. This is done in temporal logic, a logical formalism that allows
to describe the ordering of events in time without explicitly mentioning exact times.
There are several di�erent types of temporal logic. Linear Time Logic (LTL) is a
temporal logic that allows to describe events along a single computation path, so for
all possible paths from a state. Computation Tree Logic (CTL) is a branching-time
temporal logic; here, it is possible to express properties for all paths or for only one
possible path from a state. Finally, CTL* combines LTL and CTL.

Veri�cation The model checking problem is introduced: Given the model M and the
speci�cation f in temporal logic, prove if M satis�es f at all time. In the underlying
engine, the model and the speci�cation are merged propositional logic and the model
checking problem turns into a Satis�ability Problem (SAT): Search for a combination
of parameters that can evaluate the formula to true. The model checking algorithm
returns a counterexample if the given property could not be satis�ed.

4.2 Stålmarck's Proof Procedure

It is known from the documentation of the SLDV, that the Prover Plug-In is based on
Stålmarck's proof procedure which was patented in 1992. In the following, the concepts
of that proof procedure are presented following a tutorial which was released by Gunnar
Stålmarck and Mary Sheeran in 2000 [21]1.

Stålmarck's proof procedure is a tautology checker for propositional logic. The method
introduces triplets, a special representation for formulas in propositional logic.

Triplets Triplets can be de�ned as the following: Let x, y and z be variables. A triplet is
a 3-Tupel (x, y, z) which is an abbreviation for the logical proposition x↔ (y → z).
In conjunction with the logical operator FALSE, represented by a 0, triplets are a function-

1The explanation of the algorithm is based on the given paper, therefore it is not repeatedly referenced
in this subsection

18

ally complete set [28] because they contain the implication and all other logical operators
can be derived:

¬A to A→ FALSE

A ∨B to ¬A→ B

A ∧B to ¬(A→ ¬B)

Therefore, any formula in propositional logic can be expressed in a connective set of triplets.
For example, the formula (A ∧ B) → C can be transformed into ¬(A → ¬B) → C. The
triplet representation is the following:

(b′, b, 0) ¬B
(d, a, b′) A→¬B
(d′, d, 0) ¬(A→¬B)

(f, d′, c) ¬(A→¬B)→ C

Here, a, b and c are representations for the variables A,B and C, while d, a′, b′ and f
represent subformulas to serve as connectives between triplets. The variable f contains
the whole formula. To prove if the formula is valid, one assumes it to be false and tries to
�nd a contradiction. A contradiction is a terminal triplet, i.e. a triplet that is contradictory
in itself. The terminal triplets and the reasons why they are contradictory are given below:

(0, y, 1) it must be possible to conclude something true

(1, 1, 0) something true can not result in something false

(0, 0, x) something false can result in anything

To drive a set of triplets into a set that contains a terminal triplet, Stålmarck presents the
application of simple rules or a branching rule, called dilemma rule.

Simple rules Simple rules can be applied to triplets that matches their pattern. They
are used to derive new information about variables in the whole set of triplets. The simple
rules are simply derived from the truth table of the implication, e.g. if a set contains the
triplet (x, 0, z), the variable x must always be true because something false can result in
anything. x can therefore be replaced by 1. All simple rules are listed below.

Notation:
triplet

variable/substitution

Rule 1:
(0, y, z)

y/1 z/0
Rule 2:

(x, y, 1)

x/1

Rule 3:
(x, 0, z)

x/1
Rule 4:

(x, 1, z)

x/z

Rule 5:
(x, y, 0)

x/¬y
Rule 6:

(x, x, z)

x/1

Rule 7:
(x, y, y)

x/1

Take for example the logical proposition a → (b → a) and its triplet representation
(i, b, a), (j, a, i). As mentioned earlier, the entry step is to claim that the whole formula is

19

not valid, therefore to set j = 0. The resulting triplet (0, a, i) matches the pattern of rule
1, so in the whole set of triplets the substitutions (a/1, i/0) can be applied. The resulting
set of triplets is (0, b, 1), (0, 1, 0). The �rst of these triplets is a terminal triplet. Thus,
a→ (b→ a) is valid and always true.

Of course, not all sets of triplets can be solved with simple rules. With the dilemma rule,
Stålmarck introduces a branching method based on the relation of two subformulas. To
understand the dilemma rule, formula relations need to be understood.

Formula relations If X is a formula, then S(X) is a set which contains all subformulas
of X and their complements. A formula relation ∼ is an equivalence relation between the
subformulas A and B on S(X) with the constraint that if A ∼ B, then the same applies
for the complements of A and B, A′ ∼ B′. Thus, A and B are from the same equivalence
class and have the same truth value. R(A ≡ B) denotes the smallest formula relation that
contains R and somehow relates A and B. Important formula relations are X+, which
puts every element of S(X) into its own equivalence class. X+(X ≡ >) would then be
the starting point when trying to disprove X. Rules can be applied to add or to remove
information to the relation. For example, the knowledge that A ∧ B ≡ > allows to set
A ≡ > and B ≡ >. Using rules, one can merge equivalence classes inside formula relations.
When an element and its complement are detected within the same equivalence class, the
relation is proved to be false.

Dilemma rule The dilemma rule uses the above information to distinguish between cases
when applying simple rules does not lead to results. The formula is shown below:

R

R(A ≡ B) R(A ≡ ¬B)
(derivation) (derivation)

R1 R2

R1 uR2
(4.1)

The relation R is a set of triplets. A and B have to be from di�erent equivalence classes, in
fact B is from a space of {TRUE,FALSE}. The second line in equation (4.1) leads to two
new Dilemma derivations R1 and R2. Each of these derivations is analysed separately until
two elements F and ¬F are found in the same equivalence class, so until a contradiction is
found. The respective derivation is then expected to be ⊥. The information gained from
the analysis of the two separate derivations is then merged, so the operation R1 uR2 can
have the following results:

� R1 if R2 =⊥. R2 leads to a terminal triplet, therefore R1 is followed.

� R2 if R1 =⊥ analogous.

� Finish if R1 =⊥ and R2 =⊥. Both derivations lead to a terminal triplet, therefore
the whole set is contradictory and so the underlying logical proposition can be proven
valid.

� R1 ∩R2 if neither R1 nor R2 lead to a terminal triplet.

Proof hardness and time consumption It is obvious that with depth of open derivations,
the number of sets that need to be analysed rises exponentially. Stålmarck introduces the
term hardness. If the proof system uses only the simple rules, the system is called M0. If
the dilemma rule is used for only one level of branching, it is called M1, if it uses branching
within branching it is M2 and so on. Thus, a system M1 has only one open assumption

20

on a variable when it analyses the derivations. A valid formula is declared as i-hard if it is
solvable in Mi but not in Mi +1. The complexity for solving a formula in Mi is O(n2i+1).
Here, n is the size |A| of a formula A which is the number of variable occurrences plus
the number of connectives. A proof in M0 can be done in linear time; Stålmarck's proof
method is thus much more prone to proof-hardness than to proof-size. The authors claim
that most formulas that occur in the veri�cation of industrial systems are of hardness
degree 0 or 1, which would explain why the method is used in the plug-in for the SLDV.

4.3 Product Overview

The SLDV works in three modes: Property Proving, Test Case Generation and Design

Error Detection [3]. The latter can be used to detect design errors like integer over�ows or
division-by-zeroes in the model. The Fuel Quantity Management System (FQMS) is not
using particular arithmetic operations, therefore the design error detection mode is not used
in this analysis. As mentioned in section 2.3, building exhaustive tests to reach a certain
level of coverage is often hard. Collecting coverage information will detect non-tested
elements, but it will not give inputs to stimulate these elements to reach full coverage. With
the test case generation mode, the tool can automatically generate test cases for a given
level of coverage. It analyses the model to detect elements that need to be covered, called
objectives, e.g. a conditional transition that needs to be triggered as TRUE and FALSE

adds two objectives. To �nd a test case that covers a certain objective, the SLDV uses the
underlying proof engine by negating the given objective and searching for a counterexample
with the proof engine. The SLDV o�ers decision coverage, condition coverage and MCDC
coverage. The result of a test case generation analysis is an overview of the objectives that
could be covered, the percentage of coverage that could be achieved and the underlying
set of test cases that had been produced. The objectives are classi�ed as satis�ed if they
could be covered by test case, unsatis�able if they denote an infeasible path that can never
be reached or undecided if the SLDV can not �nd a test case that satis�es the objective
but also can not declare the objective as unsatis�able.

The property proving mode can be used to check if the model meets the underlying re-
quirements. The requirements can be modelled within Simulink. The proof engine picks
the requirement and searches for counterexamples in the model. To model requirements for
property proving, the SLDV provides a block library and an own application programming
interface (API). I did not use the API in the analysis, so I just present how to work with
the library. The main blocks that are used are the Assumption and the Proof Objective

blocks. With a proof objective, one can design a range of values that a speci�c signal has
to hold during program execution. With an assumption, one can restrict input signals to
a range of values for the analysis of the respective proof objective. An example of how to
build an easy model with assumptions and prove objectives can be seen in �gure 4.2. The

Figure 4.2: Model block with veri�cation components

21

given example shows how to directly integrate the veri�cation objectives in the model. The
P-block in the right part of the model is the property block. Within this block, one can
de�ne a range of values that the underlying signal has to hold at all time during program
execution. In property proving mode, the SLDV searches for violations of all properties
that are de�ned. The A-block in the left part of the model is a proof assumption block.
This block serves to restrict an input signal to a range of values for property proving. The
SLDV keeps the input signal within the de�ned range when searching for violations for
the respective property. Note that the A-block does not in�uence the signal in the model
simulation. The underlying signal can still carry any value during model execution. It is
just used when the developer wants to prove properties in a predicted environment. The
SLDV would prove the property in the example to TRUE. The A-block restricts the input
signal to the values -1 or 0. The Compare-To-Zero-Block outputs a 1 when its input signal
is smaller than or equals 0. Thus, the proof assumption restricts the input signal to a
range of values that lead the Compare-To-Zero-Block to always output a 1. The P-block
claims that the underlying signal has to be a 1 at all times, therefore this property can be
proven valid.

The SLDV also provides a block called Veri�cation Subsystem, which contains a reference
to the design model. Veri�cation objectives can be built inside the veri�cation subsystem.
Other blocks in the SLDV environment are temporal operators, that allow to model and
detect signal delays. The result of a property proving analysis is either a simple success
message if all properties could be proved to be right, or the counterexample that disproves
the requirement. A harness model can be produced to drive the model to the state where
the property is violated.

4.4 Possible Problems

[22] mentions several problems and limitations that could in�uence the analysis:

� The application of formal veri�cation methods is limited to discrete systems. If
the model contains continuous blocks like a PID-controller, these blocks have to be
replaced.

� State�ow in general is not capable of handling concurrency. Therefore, the execution
order for transitions has to be determined. Even the so called parallel statecharts
are not really executed in concurrency. That limits the accuracy of the veri�cation
results and also leads to problems with certain model designs (section 5.3).

� In order to avoid an in�nite number of possible system states, the software performs
several simpli�cations on data types and structures. That includes the conversion of
�oating-point to rational number arithmetic and a maximum number of while-loop
executions in test case generation mode. That could possibly a�ect the accuracy of
the veri�cation.

� In property proving mode, unbounded loops are not supported. If the model contains
for- or while loops with no or a conditional exit statement, the analysis process will
stop.

22

5 Analysing an Aircraft Fuel

Management Model with the Simulink

Design Veri�er

The model on which I performed the scalability analysis is the Fuel Quantity Management
System of a modern Airbus long range aircraft. It is the heart of the Airbus Fuel System
Modelling Environment (AFSME). While almost all other parts of the AFSME serve to
guarantee an exact-as-possible simulation of the system, the fuel management subsystem
actually describes the later implementation of the system. Therefore, the FQMS serves
as the executable speci�cation mentioned in section 2.1. That is why that model has to
be as correct and exact as possible. The FQMS consists only of statecharts, which are
considered easier, clearer and less ambiguous than enabled subsystems [23]. Each major
aircraft function has an own statechart. Transition conditions are calculated as booleans
within Simulink to ensure an easy reading. The key data to the Fuel Quantity Management
System is the following:

� 810 State�ow states

� 175 functions to calculate transition conditions

� 509 junctions that split or merge transitions

� 1754 State�ow transitions

� 45 input vectors that sum up to 185 input signals

� 28 output vectors that sum up to 321 output signals

The top level of the statecharts (see �gure 5.1 on the following page) contains four parallel
states. The main state contains all the actual operations of the FQMS in its subcharts. The
other states deal with equipment monitoring and general equipment logic. The operations
in the main state are exclusively separated by ground operations and in-�ight operations.
The ground operations subchart contains exclusive states that mainly deal with refuelling
and defuelling. The �ight operations subchart contains four parallel states, dealing with
jettison, engine feed et al. The system hierarchy of the �rst three levels of the FQMS is
shown in �gure B.2.

Even if the SLDV is a `push-button tool' that does not require theoretical background or
mathematical operations, the veri�cation of such a big model is not trivial and requires a
considerable amount of preliminary considerations, mainly concerning strategies and best
practices. The considerations underlying the scalability analysis of this thesis are presented
in the following section.

5.1 Strategies to Analyse an Existing Large Model

To e�ectively analyse the model and to gain useful data to measure the scalability of the
SLDV, it is necessary to �nd a way to start the analysis with only a small part of the
model. Step-by-step, the number of states can then be increased. Thereby, the veri�cation
objectives should be built in such a way that they do not constrain this step-by-step process
and keep their validity. In terms of general strategy, I decided to divide the analysis into

23

TOP_LEVEL_FUEL_MANAGEMENT

GROUND_FLIGHT_MODE_SELECTION
entry:
evaluate_conditions();
during:
evaluate_conditions();

2

GROUND_OPS FLIGHT_OPS

COMMON_LOGIC

3

EQUIPMENT_COMMANDS

4

EQUIPMENT_MONITORING

1

[~GROUND_OPS][GROUND_OPS]

[~GROUND_OPS]

[GROUND_OPS]

Figure 5.1: Top level of the FQMS statecharts

two main parts. In the �rst part, I picked the requirements in �gure C.1 and C.2 and rebuilt
them as veri�cation objectives, which resulted in three properties that needed to be proved.
Starting with the small part of the model and adding statecharts with every iteration, I
proved these properties in property proving mode and also generated tests for the model
in test case generation mode. In the second part, I took the complete model and increased
the number of properties. For that, I picked the requirements ID3 to ID10 (see �gure
C.2 �.). Together with the requirements in ID1 and ID2, that resulted in 13 properties.
The requirements ID4, ID5 and ID10 led to a failure in the SLDV which is explained in
section 5.3 on page 32, therefore they were not used later on. Starting with one property,
I added two properties in every iteration to see how the number of properties in�uences
the performance of the SLDV. The selection of the requirements is to a certain extent
arbitrary. The Sub-System Requirements Document (SSRD) contains approximately 800
requirements, so this analysis can only give a slight insight.

5.1.1 Top-Down Approach or Bottom-Up Approach

To �nd an approach for the analysis, it has to be considered that the SLDV runs with
two modes i.e. test generation and property proving. Property proving requires that the
states that a�ect the given property are included in the model, otherwise the veri�cation
will logically fail. Test generation produces concrete test cases that execute the model in
a certain sequence. If states are embedded into superstates after a test generation, that
might lead to a di�erent execution order and so the test cases from the previous step get
useless. To sum up, the requirements for e�cient property proving and test generation
are contrary to a certain extent. That has to be considered in the decision for an analysis
strategy. Therefore, I suggest the following two approaches:

Bottom-Up approach: The bottom-up approach starts at the very low level of the system
with a set of states that has no more substates. If the SLDV is applied to these
states, they will be integrated into their superstate. The SLDV is then applied

24

to this superstate in conjunction with the other states at the speci�c level. That
work�ow iterates several times, until the top-level is reached.

Top-Down approach: The top-down approach starts at the top-level of the system, while
all lower level states are excluded (consider �gure B.2 again). In each iteration, the
next lower level is included in the veri�cation process, until the lowest level is reached.

5.1.2 Integration or Separation of Veri�cation Components

As mentioned in section 4.3, the SLDV provides two strategies to include veri�cation
objectives for property proving in the model:

Direct integration: In small models, the direct integration of veri�cation components is
much easier, because they can directly be added by `drag&drop'. However, if it
comes to more complex models and properties that need to be proved, the direct
integration provides a poor overview over the aim and the relation of veri�cation
objectives. Another disadvantage is the need for a change in the model.

Veri�cation subsystem: Veri�cation objectives can also be bundled in a separate subsys-
tem called veri�cation subsystem, a model block that references the design model
and contains one or more subsystems that de�ne the properties and any required
constraints. If many or complicated properties need to be proved, the veri�cation
subsystem provides a better overview over the veri�cation objectives. Also, the veri-
�cation subsystem can be built in isolation of the design model. Section 5.2 contains
a description of how to build up such a veri�cation model. Inside that subsystem,
it is possible to use any Simulink block to model a requirement, including Matlab
function blocks. Although not used during this scalability analysis, Matlab functions
o�er the possibility to describe di�cult requirements within the Matlab language,
thus avoid complicated Simulink models.

5.1.3 Decision

I decided to use veri�cation subsystems for the property proving mode. Apart from the fact
that a key requirement to the analysis process was not to touch the actual design model,
there are several other advantages. The veri�cation objectives to each requirement can be
grouped in a separate subsystem, which maintains a good level of traceability. Di�erent
requirements also have di�erent assumptions and objectives on input and output signals.
With the integration method, it would only be possible to put a single assumption or
objective on a signal, which is not the case within a veri�cation model.

In terms of the analysis approach, I decided for a top-down approach with certain mod-
i�cations. Lower states often rely on variables that are assigned in their superstates. A
bottom-up approach would thus just not be possible. Consider table D.1 on page 58, which
is a changelog that tracks which parts of the model have been added in the speci�c steps,
together with the nesting level, especially the state numbering, in �gure B.2 on page 44
to follow this explanation. At �rst, I determined the statecharts that a�ected the prop-
erties to be proved. I kept these charts and their direct supercharts and deleted all other
statecharts. In step 3, all statecharts that directly a�ected the properties in �gure C.1 on
page 48 and C.2 were added. In step 4, I build the top level of the system which can also be
seen in �gure 5.1, where all of the underlying statecharts were empty, except for the charts
added in the steps before. In the next steps, I tried to evenly add new states and transi-
tions by adding substates. Instead of adding a certain number of states and transitions, I
added full functionalities, such as one ground operation per step in steps 6-11, to minimise

25

the risk of errors caused by interdependent statecharts. When all ground operations were
added, I continued with adding the equipment monitoring and command charts. These
contain the same control sequence for every pump and valve. I �nished with the �ight
operations. The selection of the steps was arbitrary. When adding full functionalities, the
model is complete after 18 steps. However, the ordering of these steps could also be done in
any other way. Because many parts of the model are interdependent, this ordering might
also a�ect the intermediate results of the veri�cation, although this was not observed in
this analysis.

5.2 De�ne Test Requirements as Proof Objectives

A crucial step in the application of the SLDV is the actual translation of textual re-
quirements into veri�cation objectives. Although a translation into temporal logic is not
necessary, one still has to consider how to express a requirement with the Simulink blocks
that are available and one must �nd a way to ensure that the veri�cation objectives actu-
ally meet the given requirements. To understand how the subsystems which contain the

Figure 5.2: Top level of the Veri�cation Subsystem

property proving blocks work, an understanding of the model architecture is necessary. An
abstraction of the system's top level can be seen in �gure B.1 on page 43. On the top level
of the veri�cation subsystem, the inputs and outputs of the design system are mapped
to Simulink GoTo-blocks. A pair of a GoTo- and a From-block in Simulink has the same
functionality as a regular line connection, but it avoids complicated wiring by making a
signal of a system globally available with the GoTo-block, which can then be fetched with
the From-block. The veri�cation objectives to a speci�c group of requirements are encap-
sulated into several subsystems which are grouped and named by the respective section
in the requirements document (see �gure 5.2). This architecture achieves an adequate
overview and a good level of maintainability.

The underlying requirements document is the SSRD. The requirements in the document
are located between high- and low-level requirements as they de�ne speci�cally how certain
signals shall behave over time but do not describe a concrete implementation. A group
of requirements I used for the analysis is shown below. I modi�ed the original text of
the requirement by annotations in brackets to facilitate the reference to signal names and
values.

26

REQ:

The 'Overflow Condition' (OC) shall be set to true when any of the

following conditions is true:

-The Resolved Overflow status in the Left Wing Surge Tank (ROSL) is

NOT FAILED(0) and the Left Wing Surge Tank Resolved Overflow state

(LTOS) is WET(1).

-The Resolved Overflow status in the Right Wing Surge Tank (ROSR) is

NOT FAILED(0) and the Right Wing Surge Tank Resolved Overflow state

(RTOS) is WET(1).

REQ:

The 'Overflow Condition'(OC) shall be set to true when the Resolved

Overflow status in the Left (ROSL) or Right Wing Surge Tank (ROSR)

is FAILED(1).

REQ:

The 'Overflow Condition' (OC) shall be set to false when all of the

following conditions are true:

-The Resolved Overflow status in the Left Wing Surge Tank (ROSL) is

NOT FAILED(0) and the Left Wing Surge Tank Overflow state (LTOS) is

DRY(0).

-The Resolved Overflow status in the Right Wing Surge Tank (ROSR) is

NOT FAILED(0) and the Right Wing Surge Tank Resolved Overflow state

(RTOS) is DRY(0).

These requirements are representative for the rest of the document as they describe the
behaviour of speci�c output signals in a certain environment. The signals that are used
are mainly of boolean type, parameters such as NOT FAILED and WET are de�ned in
the system and work as placeholders for the boolean values TRUE and FALSE. These
characteristics of requirements o�er a great opportunity for designing proof objectives and
to assure that they meet the requirements: Truth tables. The truth table for the re-
quirements above is shown in table 5.1. The computer science o�ers various techniques to

ROSL ROSR LTOS RTOS OC

0 1 1

0 1 1

1 1

1 1

0 0 0 0 0

Table 5.1: Truth table for the over�ow requirement

derive a logical circuit from a truth table, e.g. Karnaugh maps or the Quine-McCluskey
algorithm [28]. In most cases it was possible to �nd a suitable logical circuit at �rst sight.
In the given example, a logical OR-connection of the four input signals would satisfy the
desired behaviour. The veri�cation task is to prove that the signal Over�ow Condition

meets the output of on OR-connection of the two input signals. In �gure 5.3 on the
next page, the respective Simulink model is shown. Three From-blocks catch the input
signals RESOLVED_OVERFLOW_STATE and RESOLVED_OVERFLOW_STATUS,
which each carry a signal for the left and for the right tank, and the output signal OVER-
FLOW_CONDITION. The relational operator proves if the OR-connection of the input

27

Figure 5.3: Simulink model for the Over�ow requirement veri�cation

signals and the output signal have the same value. In the new version, the SLDV also
o�ers support for temporal properties. The temporal properties in the SSRD are limited
to delays in signal changes. These can be implemented with the Detector block. The
Detector-block detects the input duration of a signal while it outputs FALSE. After a
given time, the output signal of the block becomes TRUE and stays like that as long as
the input signal continues to be TRUE. The truth tables are not intuitively applicable any-
more when it comes to properties that contain delays, unless a delay is treated as a signal
itself that is true after the delay has elapsed, which I did in the particular cases. This is
applicable without problems but might turn out as a lack of easy readability. An example
implementation can be seen in �gure C.10 on page 55. A glance in the whole requirement
document and in every statechart revealed that more than 50% of all requirements deal
with delays. Since the purpose of the model is to deal with actual hardware equipment,
which means that response times and execution times have to be considered, this number
is no surprise.

Note here that all requirements that have been used for the analysis could be proven valid
at all time.

5.3 Limitations/Problems arisen

During the analysis, several problems arose which impact either the analysis in a way that
does not allow to continue or the usefulness of the gained results. These problems and
limitations have to be considered when the SLDV is applied to a system. In the following
list, I will present these problems, together with a valuation of how severe a problem
impacts the applicability of the SLDV on the given Fuel Quantity Management System
and a possible solution to that problem.

Incomplete Model Coverage

Problem As mentioned earlier in section 2.3 on page 13, it is necessary to trigger a tran-
sition in a statechart as TRUE and as FALSE to reach full decision coverage. Transitions
are executed in a speci�c, predicted order; unconditional transitions are executed last. The
problem which occurs when applying the SLDV to the FQMS can be seen at the very top
level of the statecharts. Figure 5.4 on the facing page shows a screenshot of the top level
statechart after the test case generation with the SLDV. The results of the generation are
highlighted by the tool. The respective log contains the following entry:

28

Figure 5.4: Top level statechart for the system behaviour of the FQMS

Objectives Proven Unsatis�able

Type Model Item Description

Decision Chart.[...].[GROUND_OPS] Transition: Transition
trigger expression F

The transition that caused the unsatis�able objective is highlighted red in �gure 5.4. The
reason for the incomplete coverage is that when the tool tries to trigger the transition as
FALSE, it picks the signal ∼GROUND_OPS. To reach the transition, the other transitions
have to be executed in the given order, which can be read from the numbers on every
transition. Obviously, when ∼GROUND_OPS is selected and the transition number 1
is executed, that transition will be taken. Therefore, transition number 2 can never be
executed with ∼GROUND_OPS and therefore denotes an infeasible path.

Severity According to certain styleguides, almost every statechart in the FQMS contains
that architecture where a junction decides between a variable and its negation. Therefore
this issue is very severe.

Proposal for Solution If State�ow would allow real concurrent execution, a dedicated
execution order for transitions would not be necessary anymore and therefore the current
design of the FQMS could be tested with full model coverage. The only solutions that would
cope with the given issue with the current version of the SLDV would require a change in
the model. Since the FQMS has already started to go through the certi�cation process,
every change in the model would require a signi�cant amount of document changing and
re-certi�cation. Changing the model would just not be feasible, because almost every
statechart is a�ected. Nevertheless, if a change in the model would be allowed, one could
replace every transition that has a condition which is simply a negotiation of another
transition by an unconditional transition. That would not a�ect the behaviour of the
model because unconditional transitions are executed last and need to be executed just
once to reach full MCDC coverage. Using the SLDV, one could then prove that the new

29

model behaves exactly the same as the old model, and apply the SLDV to the new model.
Though, unconditional transitions are considered bad design.

Corrupt MCDC Coverage

Problem The di�erence between MCDC coverage and decision coverage is the way that
combinations of inputs in conditions are handled (see section 2.3 on page 13). In the
FQMS, input conditions are grouped in functions and variables. Consider the statechart
in �gure 5.4 on the previous page. In fact, GROUND_OPS is not a signal but a variable,
which is evaluated in the evaluate_conditions block. The evaluation is similar to the
following:

GROUND_OPS = RES_OVERFLOW & FAILURE

An MCDC coverage would require to test all conditions as true and then every condition
separately as false while the others are held true. Thus, an MCDC coverage analysis would
require three test cases or input combinations within a test case. However, the SLDV does
not recognize that GROUND_OPS is only a variable and tests only GROUND_OPS as
TRUE and FALSE for an MCDC coverage analysis.

Severity Almost every condition in the FQMS is a variable that is evaluated in a separate
function. It provides better reading and makes information available for lower states with-
out the need of recomputing signal combinations several times. Therefore nearly all the
information about MCDC coverage is not right. Testing with MCDC coverage is a non-
mandatory requirement in the ABD0200. The generated test cases do not reach MCDC
coverage, therefore it is not su�cient to derive the test cases from model testing for later
system tests. That issue a�ects also the con�dentiality about the right functionality of the
model.

Proposal for Solution Functions in State�ow are not covered by model coverage with the
SLDV. However, functions that are evaluated in Matlab functions embedded into State�ow
are covered by model coverage. By replacing all State�ow functions by embedded Matlab
functions, one could work around that problem. This could be done with an automated
script, and it would not mean changing, but instrumenting the model for the veri�cation.
Thus, this approach is promising. It would also be possible to work around that problem
by consequently avoiding using variables. However, that would decrease the readability of
the model signi�cantly.

No Support of Unbounded Loops

Problem The SLDV is unable to cope with unbounded loops in property proving mode.
Remembering the strategy of model checking (see section 4.1 on page 17), it is obvious
that it is impossible to derive a deterministic �nite state machine from an unbounded
loop, because the number of possible states would be in�nite. However, strategies such as
busy waiting and other systems behaviour have to be excluded from the model. A lack of
usability is the fact that the SLDV stops the analysis when detecting an unbounded loop
but gives no information about the location of the loop.

30

Severity Again, a redesign of the model would �x the problem, but it is not said that
an unbounded loop is not essential for the systems functionality, so it is not said that the
redesign equals the original model.

Proposal for Solution However, there are only 2 unbounded loops in the FQMS, and
the respective statecharts are working in isolation of other parts of the system, so I just
excluded them from the model and accepted that the results are not 100% accurate.

Annulling Test Case Generation

Problem During the analysis, I encountered a situation whereby adding certain parts
of the model led to an analysis time which was about 5% of the former analysis time,
while suddenly about 95% of the objectives were classi�ed as undecided. In the following,
I describe this signi�cant loss in the success rate as annulling. A manual debugging led to
the conclusion that a certain architecture annuls the test case generation. Speci�cally, it
is using an equality check between two boolean values that is used as a condition within
State�ow functions. An example can be constructed given the statechart in �gure 5.1 on
page 24. In the function at the bottom of the statechart, the expression in the square

OVERFLOW
entry:
evaluate_conditions ()
during:
evaluate_conditions ()

1

OVERFLOW
entry:
OVERFLOW_CONDITION =TRUE;

NOT_OVERFLOW
entry:
OVERFLOW_CONDITION = FALSE;

 function evaluate_conditions

[NOT_OFLOW_CONDITION]

[OFLOW_CONDITION]

[OFLOW_CONDITION]

[NOT_OFLOW_CONDITION]

[(STATUS == NORMAL) & (INFO == NO_FAILURE)]
{
OFLOW_CONDITION = ((INPUT1 == TRUE) & (INPUT2 == TRUE));

NOT_OFLOW_CONDITION = (INPUT1 == TRUE) & (INPUT2 == FALSE));
}

Figure 5.5: Statechart with function that annuls test case generation

brackets is the boolean equality check that leads to the given problem. If the check returns
TRUE, the underlying equations are executed.

Severity The architecture in �gure 5.1 is used several times throughout the model. An
elimination of the respective statecharts would change the behaviour of the model and is
therefore not applicable. This issue is very severe, because the SLDV can not produce
useful results in test generation mode on the FQMS. In fact, it led to the fact that I

31

stopped the scalability analysis for the test generation mode after several iterations (see
section 6 on page 35.)

Proposal for solution A query at Mathworks revealed that the equality check is allowed
and commonly used in systems design, and that the problem is a bug that is �xed in the
latest version 2012a of Matlab, which was not available for the scalability analysis. A
workaround was suggested that consisted of changing the data type of one of the boolean
values in the equality check to another data type such as integer. However, that is in
contradiction to the solution of the problem in section 5.3 and was therefore not followed.

Reading the Status of Output Signals

Problem During the second part of the scalability analysis (see section 6), I encountered
that also in property proving mode, adding certain veri�cation objectives led to an analysis
that could not produce any results and left all properties undecided. Speci�cally, the failure
occurred when I added requirement ID 4 (�gure C.4). I assumed that the origin of that
issue is when the status of an output signal is a condition for another output signal. This
assumption was con�rmed when removing requirement ID 4 and adding requirement ID
5 (�gure C.5), which does nothing else than proving that two output signals behave the
same, led to the same empty set of results. However, this applies only for signals like
AFDX_MGMT_CMDS in the given case, which are used and assigned in many di�erent
charts throughout the whole model. Note that output signal means an output signal of
the FQMS, so of the own system, so the SLDV should know the status of these signals.
This was con�rmed when trying to read from OVERFLOW_CONDITION, another output
signal, was successful, so in general the structure is allowed and the problem only occurs
when the signal is subject to more complicated computations.

Severity About 80% of the equipment monitoring requirements contain the AFDX output
signal as a condition to another output signal. However, the issue only occurs when
trying to verify these requirements. Their implementation apparently does not a�ect the
analysis. Thus, these requirements can not be directly veri�ed, but a veri�cation of other
requirements is still possible.

Proposal for solution On the users side, a change in the requirements or in the implemen-
tation might solve the problem. Although it was not tested, I suggest that breaking a signal
�ow that underlies a requirement into smaller steps and verifying these steps leads to more
appropriate results. For example, instead of using the status of AFDX_MGMT_CMDS

as a condition for the veri�cation objective, one could use the input signals that drive
AFDX_MGMT_CMDS. If it does not a�ect the system's behaviour, the logic could also
be changed in a way that it uses the value of the AFDX signal from the previous timestep
rather than the current signal. On the Mathworks side, I can just guess where the error
might occur. It is possible that not all possible states are derived from the model when
creating the state space model.

Using Doubles Instead of Booleans

Problem Apart from the signals that carry the �ight data and the fuel level in the tanks,
all signals are booleans. However, around 20% of them are modelled as doubles because

32

this is the default data type in Simulink. That causes trouble in two ways. On the one
hand, it leads to a larger state space, on the other, the SLDV �nds counterexamples that
are not achievable in practice.

Severity The workaround for this problem is not di�cult. However, the problem has to
be considered for further development of the model and for further work with the SLDV.

Proposal for solution Changing the data types from double to boolean is a �ve-minute-
task. A change will not have any e�ect on the behaviour of the model because the respective
signals are handled as booleans. Even if a change in the model is not feasible or not desired,
the respective signals can be constrained with assumption blocks inside the veri�cation
objectives. Figure C.6 on page 53 shows such a workaround.

Runtime Error in Test Case Generation Mode

Problem When I tried to apply the test case generation mode to the complete model, a
runtime error occurred �ve minutes later after the compatibility check, so before the actual
analysis started. The stacktrace was displayed, together with the information about an
unknown exception that was thrown. This failure was reproducible in 9 out of 10 times.

Severity For the analysis, this failure was not severe because I decided to stop the test
case generation before. However, if that runtime error is not related to the problems that
have been mentioned before, it makes the application of the test case generation mode on
the whole model impossible.

Proposal for solution A support query at Mathworks revealed that the runtime error is
caused by a bug that is �xed in the latest version 2012a.

33

6 Results of the Veri�cation Concerning

Scalability

The data that has been collected during the scalability analysis is shown in section D on
page 58.

The parameters and the reason why they were recorded are explained in section 3.2. The
data on memory consumption and CPU usage needs some kind of interpretation and also
some background knowledge of how the data was collected. Matlab o�ers .NET support,
so information on processes running on the machine can be directly gained inside Matlab. I
used the System Information Class for Windows [25] from the Matlab File Exchange. The
class o�ers functions to record the memory allocation by the Matlab process and the CPU-
usage of the Matlab process. It also generates a plot where both parameters are plotted
over time. The Matlab process apparently allocates system memory and does not release it
after its usage. This was observed when the same iteration was executed on di�erent days
during di�erent times and the maximum system memory used changed between 400 MB
and 800 MB, dependent on how long and how intensely Matlab was used before. Therefore,
in terms of memory consumption, the property of interest is the di�erence between low-
peak and high-peak memory usage, because this value actually shows the impact of starting
an SLDV analysis.

In terms of CPU usage, one needs to keep in mind that a CPU with 4 cores was used.
Comparing one of the generated plots (�gure B.4 on page 45) with the Windows Task
Manager Performance Window (�gure B.3 on page 45), it can be seen that the Matlab
process obviously does multithreading within certain boundaries, because it sometimes
uses more than 25% of the CPU and must therefore use more than one core. In more
detail, the graphs allow the conclusion that the Matlab process almost constantly uses a
single core until it is completely in use and distributes remaining threads over the spare
cores to a total sum of maximum 50% CPU usage. During program execution, Matlab
including its GUI is blocked. A query at Mathworks revealed that the SLDV itself is
not multithreaded, so the tasks that are distributed over the other CPU cores belong to
background operations such as data management.

For the graphs, I chose the median of the three iterations whenever applicable.

As described in section 5, the scalability analysis can be divided into the following two
main parts: Property proving and test case generation on the growing model and property
proving on the full model. These parts are in chronological order in terms of their process-
ing. Due to the fact that the results of the test case generation were not useful, which is
discussed below, and that the SLDV started to throw an unknown exception of unknown

type when trying to start the test case generation, I decided to stop the analysis for that
mode in step 10. As mentioned in section 5.1.3, model interdependencies might in�uence
the analysis when certain statecharts are not yet added in the analysis. In step 14, all
equipment monitoring and equipment commands statecharts, which a�ect all pumps and
valves and might therefore in�uence other statecharts that deal with pumps and valves
status, were added. I started another test case generation in this step to assure that the
results were still not satisfying, which was right. This last attempt also took over two days

35

of trying to avoid the runtime error, so my decision to stop the test case generation turned
out to be right.

The data collected during property proving on the growing model (section D.3 on page 61)
allows the conclusion that the SLDV scales well with a growing number of states and
transitions. All parameters show at least linear growth with the number of states and
transitions. The same applies for property proving with an increasing number of veri�cation
objectives (section D.4 on page 65). Here, apart from the analysis time, the parameters
even decreased with a growing number of objectives, so it can be assumed that the main
challenge for the SLDV is the size of the model rather than the number of objectives. It
has to be considered that the underlying requirements were easy requirements that could
be captured by truth tables. When it comes to proofs that require timing or latency, the
SLDV might still show poor scaling.

In terms of test case generation, the data in table D.3 on page 60 is missing any structure
or observable trend. Adding more states and transitions directly leads to an increasing
number of objectives, because e.g. a conditional transition needs to be triggered as TRUE
and FALSE and therefore adds two objectives. After the 5th step, the number of satis�ed
objectives stagnated around 300 for the next 5 steps, while the number of undecided
objectives increased signi�cantly. In the 14th step, around 70% of the objectives were
declared undecided. More than that, the number of unsatis�able objectives decreased
after the 8th step down to 1 in the 14th step, although the model contains almost one
unreachable path per statechart as described in section 5.3. Looking at the memory usage
and CPU usage, it seemed that the SLDV got stuck in computation in some parts of
the model. Altogether, this unstructured behaviour is due to problems that could mainly
traced back to an incompatible model design that constrained the interface between the
model and the SLDV, which are presented in section 5.3. I did not plot any resulting
graphs for the scalability because they could also be misleading. However, because the
test case generation mode is using the proof engine to search for counterexamples, as it is
also done in the property proving mode which scales well, it can be assumed that also test
case generation shows good scalability on an appropriate model.

6.1 Possible Improvements

All possible improvements have the purpose to get more accurate results in the test case
generation mode because the property proving mode scaled well and performed promisingly.
Some improvements have already been mentioned in section 5.3. A summary of them which
should be applied as Best Practice in model design, not only to facilitate the work with
the SLDV but also to meet existing design habits, is given below:

� Use the latest version Matlab 2012a when working with the SLDV. All support
queries to Mathworks concerning problems with the SLDV could be tracked down to
bugs that had been �xed in the latest version.

� Use Matlab functions to compute transition conditions instead of Simulink functions.

� Always use the smallest design that is possible. Especially never use doubles instead
of booleans for signal types.

� When using calculated outputs in equations, use the previous step's output.

36

7 Conclusion

As I discussed in section 6 on page 35, the results from the scalability analysis that were
useful lead to the promising conclusion that at least parts of the SLDV scale very well on
the Fuel Quantity Management System. In the introduction work for this thesis, I reviewed
the work with the SLDV and its embedding into the model as logical and structured. Also,
the modelling of requirements is a work�ow that might be considered easy by test engineers,
due to the fact that although the strategy of model checking and testing are completely
di�erent, building a test-case or a veri�cation objective both requires exact understanding
of the requirement.

Although many problems and limitations for the application of the SLDV on the FQMS
were discovered, I would still come the the conclusion that it is feasible to use the tool
in the current development process at Airbus. The test case generation mode is not yet
applicable and it would require a considerable amount of redesign of the model to use it.
Nevertheless, the fact that property proving works well makes the application of the SLDV
interesting. It might be too much work and also not helpful to subsequently implement
every requirement in the SSRD as a veri�cation objective to verify it on the the model.
But in case of slight modi�cations of a single statechart, the SLDV could be used to ensure
that the corresponding requirements are still satis�ed. The results of that veri�cation can
serve as additional evidence for the re-certi�cation of the model after such a slight change.

7.1 Future Work

Future work on the topic of this thesis should at �rst focus on the possible improvements
I gave in section 6.1 on the facing page. If all the suggestions and ideas are implemented,
there should be no major problem with the application of the SLDV on the FQMS. It also
became quite obvious in the context of the thesis that the SLDV and its applicability have
improved with every new Matlab version. I therefore recommend to repeat the analysis
which was done for this thesis with every new release of Matlab.

Another interesting approach would be to integrate the SLDV in a completely new model
design process. The requirements could then directly be built as veri�cation objectives
before the system design has started. It would then be possible to check at any time of
the design phase if the model already meets certain requirements and also avoid that the
model architecture constrains the later application of the SLDV on the whole model.

37

Appendices

39

A List of Abbreviations

SLDV Simulink Design Veri�er

EASA European Aviation Safety Agency

RTCA Radio Technical Commission for Aeronautics

EUROCAE European Organization for Civil Aviation Equipment

AFSME Airbus Fuel System Modelling Environment

FQMS Fuel Quantity Management System

A/C Aircraft

API application programming interface

SSRD Sub-System Requirements Document

BDD Binary Decision Diagram

41

B General Appendix

Figure B.1: Abstraction of the Top Level of the FQMS Testing Environment

43

OPERATIONS

5.1

LOGIC

 5.4

MONITORING

 5.5

COMMANDS

 5.6

GROUND_OPS

 5,2
FLIGHT_OPS

 5.3

MAN_REFUEL

5.2.3

DEFUEL

5.2.4

SHUT_OFF_TEST

5.2.6

AUT_REFUEL

5.2.2

TRANSFER

5.2.5

OFF

5.2.5

JETTISON

5.3.2

FUELSCAVENGE

5.3.3

ENGINE_FEED

5.3.1

REFUEL_DRAIN

5,3,4

OVERFLOW

5.4.2

TANK_EMPTY

5.4.1

EOF_RESET

5.4.4

STANDBY

5.4.3

DATA_TRANS

5.4.6

DATA_ACQ

5.4.5

PUMP_COM

5.5.2

VALVE_COM

5.5.1

PUMP_COM

5.5.2

VALVE_COM

5.5.1

Figure B.2: System Hierarchy of the First Three Levels of the FQMS - Parallel states are
marked grey. The numbering denotes the level of the speci�c chart, starting
with chart 5 for the very top level

44

Figure B.3: Screenshot of the Windows Task Manager during test case generation with the
SLDV

Figure B.4: Performance data gained with Matlab during test case generation with the
SLDV

45

C Veri�cation Subsystems

The following requirements are representatives of the relevant FQMS requirements and
should not be used to imply about the functionality of the Fuel Quantity Management
System used within Airbus.

C.1 Over�ow Condition

Requirement ID 1

REQ:
The 'Over�ow Condition' (OC) shall be set to true when any of the following conditions
is true:
-The Resolved Over�ow status in the Left Wing Surge Tank (ROSL) is NOT FAILED(0)
and the Left Wing Surge Tank Resolved Over�ow state (LTOS) is WET(1).
-The Resolved Over�ow status in the Right Wing Surge Tank (ROSR) is NOT FAILED(0)
and the Right Wing Surge Tank Resolved Over�ow state (RTOS) is WET(1).
REQ:
The 'Over�ow Condition'(OC) shall be set to true when the Resolved Over�ow status in
the Left (ROSL) or Right Wing Surge Tank (ROSR) is FAILED(1).
REQ:
The 'Over�ow Condition' (OC) shall be set to false when all of the following conditions
are true:
-The Resolved Over�ow status in the Left Wing Surge Tank (ROSL) is NOT FAILED(0)
and the Left Wing Surge Tank Over�ow state (LTOS) is DRY(0).
-The Resolved Over�ow status in the Right Wing Surge Tank (ROSR) is NOT FAILED(0)
and the Right Wing Surge Tank Resolved Over�ow state (RTOS) is DRY(0).

Truth Table

ROSL ROSR LTOS RTOS OC

0 1 1

0 1 1

1 1

1 1

0 0 0 0 0

Table C.1: Truth table for requirement ID 1

47

Architecture

Figure C.1: Veri�cation model for requirement ID 1

C.2 Equipment Monitoring Valves

Requirement ID 2

REQ:
The resolved command for an Engine LP Valve (RES_CMD_LP1) (RES_CMD_LP2)
shall be OPEN(1) when all of the following conditions are true:
-The respective Engine Master Switch pushbutton (E1) (E2) is selected ON(1).
-The respective Engine Fire Handle on the cockpit ICP (ICP1) (ICP2) is selected OFF(0).
Otherwise the resolved command for the respective Engine LP Valve (RES_CMD_LP1)
(RES_CMD_LP2) shall be SHUT(0).

Truth Table

E1 ¬ICP1 RES_CMD_LP1

1 1 1

all others 0

(a) Engine LP1 Valve

E2 ¬ICP2 RES_CMD2_LP2

1 1 1

all others 0

(b) Engine LP2 Valve

Table C.2: Truth table for requirement ID 2

48

Architecture

Figure C.2: Veri�cation model for requirement ID 2 (LP2 analogous)

Requirement ID 3

REQ:
The resolved command for a Crossfeed Valve (RES_CMD_XA) (RES_CMD_XB) shall
be OPEN(1) when any of the following conditions are true:
-The respective Crossfeed Valve (ICPXA) (ICPXB) pushbutton on the cockpit ICP is se-
lected ON(1).
-The Crossfeed Open Override Relay signals that the respective Crossfeed Valve (XA_OPEN)
(XB_OPEN) is TRUE(1) and there is an Electrical System Emergency Condition(EC ==
1).
Otherwise the resolved command for the respective Crossfeed Valve (RES_CMD_XA)
(RES_CMD_XB) shall be SHUT(0).

Truth Table

ICPXA XA_OPEN EC RES_CMD_XA

1 1

1 1 1

all others 0

Table C.3: Truth table for requirement ID 3 (XB analogous)

49

Architecture

Figure C.3: Veri�cation model for requirement ID 3 (XB analogous)

Requirement ID 4

REQ:
The resolved command for a Jettison Valve (RES_CMD_J1) (RES_CMD_J2) shall be
OPEN(1) when all of the following conditions are true:
- Jettison is enabled via hardware pin programming (HPP).
- The FQMS commands the respective Jettison Valve (J1_OPEN) (J2_OPEN) OPEN(1).
- The Jettison ARM and ACTIVE pushbuttons on the cockpit ICP are selected ON.
- The resolved state of the Left Wing Tank Low Level sensors (LSENS) is WET(1).
- The resolved state of the Right Wing Tank Low Level sensors (RSENS) is WET(1).
Otherwise the resolved command for the respective Jettison Valve (RES_CMD_J1)
(RES_CMD_J2) shall be SHUT(0).

Truth Table

HPP J1_OPEN ARM ACTIVE LSENS RSENS RES_CMD_J1

1 1 1 1 1 1 1

all others 0

Table C.4: Truth table for requirement ID 4 (J2 analogous)

50

Architecture

Figure C.4: Veri�cation model for requirement ID 4 (J2 analogous)

Requirement ID 5

REQ:
The resolved command for a Scavenge Valve (RES_CMD_TL) (RES_CMD_TR) shall
be OPEN(1) when the FQMS commands the respective Fuel Scavenge Valve (TL) (TR)
OPEN(1).
Otherwise the resolved command for the respective Scavenge Valve (RES_CMD_TL)
(RES_CMD_TR) shall be SHUT(0).

Truth Table

RES_CMD_TL == TL

RES_CMD_TR == TR

51

Architecture

Figure C.5: Veri�cation model for requirement ID 5 (TR analogous)

Requirement ID 6

REQ:
The resolved command for the APU Isolation Valve (RES_CMD_SA) shall be OPEN(1)
when all of the following conditions are true:
- The APU Fuel Demand State (FDS) is TRUE(1).
- The APU Fuel Line Damage Signal (FDL) is FALSE(0).
Otherwise the resolved command for the APU Isolation Valve (RES_CMD_SA) shall be
SHUT(0).

REQ:
The resolved command for the APU LP Valve (RES_CMD_LPA) shall be OPEN when
all of the following conditions are true:
- The APU Fuel Demand State (FDS) is TRUE(1).
- The APU Fuel Line Damage Signal (FDL) is FALSE(0).
Otherwise the resolved command for the APU LP Valve (RES_CMD_LPA) shall be
SHUT(0).

Truth Table

FDS ¬FDL RES_CMD_LPA RES_CMD_SA

1 1 1 1

all others 0 0

Table C.5: Truth table for requirement ID 6

52

Architecture

Figure C.6: Veri�cation model for requirement ID 6

Requirement ID 7

REQ:
The resolved manual command for the Main Pumps (RES_MAN_CMD_PM1)
(RES_MAN_CMD_PM2) shall be ON(1) when the load shedding conditions that apply
for the Main Pumps
(PUMP_SHED_PM1) (PUMP_SHED_PM2) are FALSE(0).
Otherwise the resolved manual command for the Main Pumps (RES_MAN_CMD_PM1)
(RES_MAN_CMD_PM2) shall be OFF(0).

Truth Table

RES_MAN_CMD_PM1 == ¬PUMP_SHED_PM1

RES_MAN_CMD_PM2 == ¬PUMP_SHED_PM2

Architecture

Figure C.7: Veri�cation model for requirement ID 7 (PM2 analogous)

53

Requirement ID 8

REQ:
The resolved manual command for a Standby Pump (RES_MAN_CMD_PS1)
(RES_MAN_CMD_PS2) shall be ON(1) when the respective Main Pump (PUMP_LP_PM1)
(PUMP_LP_PM2) pressure switch state indicates LOW PRESSURE(1).
Otherwise the resolved manual command for the respective Standby Pump
(RES_MAN_CMD_PS1) (RES_MAN_CMD_PS2) shall be OFF(0).

Truth Table

RES_MAN_CMD_PS1 == PUMP_LP_PM1

RES_MAN_CMD_PS2 == PUMP_LP_PM2

Architecture

Figure C.8: Veri�cation model for requirement ID 7 (PS2 analogous)

Requirement ID 9

REQ:
The resolved manual command for both Centre Tank Pumps (RES_MAN_CMD_PC1)
(RES_MAN_CMD_PC2) shall be ON(1) when the Centre Tank Manual Feed pushbut-
ton (ICP_CTR_TK_FEED_PB) is selected ON(1) on the ICP.
Otherwise the resolved manual command for both Centre Tank Pumps (RES_MAN_CMD_PC1)
(RES_MAN_CMD_PC2) shall be OFF(0).

Truth Table

RES_MAN_CMD_PC1 == ICP_CTR_TK_FEED_PB

RES_MAN_CMD_PC2 == ICP_CTR_TK_FEED_PB

54

Architecture

Figure C.9: Veri�cation model for requirement ID 9

Requirement ID 10

REQ:
The FQMS shall command the Left Jettison Valve (J1) SHUT(0) when the Jettison mode
enters the 'Complete' sub-mode (CMPL) and a con�rm time, 'DELAY_JETT_VALVES'
(DELAY) has elapsed.

REQ:
The FQMS shall command the Right Jettison Valve (J2) SHUT when the Jettison mode
enters the 'Complete' sub-mode (CMPL) and a con�rm time, 'DELAY_JETT_VALVES'
(DELAY) has elapsed.

Truth Table

CMPL DELAY J1

1 1 0

all others not covered

Table C.6: Truth table for requirement ID 10 (J2 analogous)

Architecture

Figure C.10: Veri�cation model for requirement ID 10

55

57

D Data from the Scalability Analysis

D.1 Changelog: Parts Added in Each Step in the First Part

Step Annotation

1 Common_Logic_Over�ow only
charts added: 5.0 5.4, 5.4.2

2 Valve Equipment Monitoring LP_1 added
charts added: 5.6, 5.6.1, 5.6.1.17
1 Objective added

3 Valve Equipment Monitoring LP_2 added
charts added: 5.6.1.18
1 Objective added

4 Operations added
charts added: 5.1, 5.2(empty), 5.3(empty)

5 all ground_ops functions added
charts added: 5.2(2), 5.2(3), 5.2.X(empty)

6 Manual Refuel functionality fully added
charts added: 5.2.3 all, 5.2.3.1, 5.2.3.1.X

7 automatic refuel functionality �rst level added
charts added: 5.2.2(1), 5.2.2(2), 5.2.2.2, 5.2.2.1(empty)

8 automatic refuel functionality fully added
charts added: 5.2.2.1, 5.2.2.1.X
5.2.2.1.3(2) and 5.2.2.1.3(3) excluded due to bad performance

9 SHUT_OFF_TEST fully added
charts added: 5.2.6, 5.2.6(X)

10 added OFF functionality and GROUND_TRANSFER fucntionality
charts added: 5.2.7, 5.2.5.ALLSUBSTATES

11 added DEFUEL functionality completely
charts added: 5.2.2.1.3(2) and 5.2.2.1.3(3), 5.2.4.ALLSUBSTATES(*)
*DELETED 5.2.4.ALLSUBSTATES because of unbounded loops

12 added ALL Equipement commands
charts added: 5.5.ALLSUBSTATES

13 added ALL Valve-Monitoring commands
charts added: 5.6.1.ALLSUBSTATES

14 added ALL Pump-Monitoring commands
charts added: 5.6.2.ALLSUBSTATES
test cases with decision coverage tried

15 added TANK_EMPTY, STANDBY_PUMP_LOGIC, EOF_RESET from COMMON_LOGIC
charts added: 5.4.1ALLSUBSTATES, 5.4.3.ALLSUBSTATES, 5.4.4

16 added DATA_ACQUISITION and DATA_TRANSMISSION from COMMON_LOGIC
charts added: 5.4.5.ALLSUBSTATES, 5.4.6.ALLSUBSTATES(*)
*DELETED 5.4.6.1.2(4) because of unbounded loops

17 added ENGINE_FEED, FUEL_SCAVENGE, REFUEL_GALLERY_DRAIN from FLIGHT_OPS
charts added: 5.3.1, 5.3.3, 5.3.4

18 added JETTISON from FLIGHT_OPS. Model completed
charts added: 5.3.2.ALLSUBSTATES

Table D.1: Changelog

58

D.2 Data Collected in the First Part

Property proving with 2 requirements (ID1 and ID2) that result in 3 objectives and test
case generation on the growing model.

Step General Information time [s] memory usage [MB] CPU [%] objectives

states transitions overall sldv low peak high peak di�erence av. usage proven
1 5 4 64.60 1.00 549.40 562.92 13.52 21.74 1

64.21 0.00 562.89 568.31 5.41 22.72
62.73 0.00 565.58 569.00 3.43 23.10

2 19 34 64.69 1.00 603.94 607.29 3.35 23.07 2
64.36 0.00 605.11 608.73 3.62 23.24
64.94 0.00 605.83 609.07 3.24 23.20

3 31 61 62.90 0.00 500.08 526.43 26.34 22.98 3
63.08 0.00 524.26 529.59 5.32 23.05
63.31 1.00 527.40 532.51 5.11 23.26

4 34 66 64.74 0.00 598.52 610.89 12.37 22.83 3
64.95 0.00 610.71 619.44 8.72 22.86
65.32 0.00 616.71 625.05 8.34 22.99

5 46 97 66.19 0.00 479.94 569.05 89.11 22.58 3
66.85 0.00 571.45 588.27 16.83 22.98
68.35 0.00 584.39 591.93 7.54 22.81

6 61 125 69.71 1.00 774.63 778.91 4.28 22.67 3
70.38 0.00 775.02 780.39 5.38 22.82
70.16 1.00 776.46 781.05 4.59 22.60

7 72 151 68.71 0.00 852.39 861.72 9.34 22.84 3
68.75 0.00 857.39 863.03 5.64 22.63
69.19 0.00 858.71 864.80 6.09 22.67

8 85 169 73.54 1.00 529.24 534.94 5.70 21.16 3
74.04 0.00 530.64 536.40 5.76 21.11
76.05 0.00 531.26 536.86 5.60 21.16

9 89 181 71.32 1.00 799.79 805.44 5.65 22.51 3
72.24 0.00 799.45 804.89 5.45 22.41
72.79 0.00 799.64 805.64 6.00 22.53

10 109 219 72.75 1.00 822.87 829.39 6.52 22.17 3
72.33 0.00 824.34 829.91 5.57 22.28
72.47 0.00 824.67 830.14 5.47 22.39

11 DEFUEL MODE causes unbounded loops in top level. Deleted again.

12 163 321 80.83 1.00 822.87 829.42 6.55 22.05 3
80.73 1.00 824.12 831.97 7.85 22.14
80.56 0.00 826.61 833.47 6.86 22.12

13 381 803 110.55 3.00 716.93 743.96 27.04 19.85 3
113.16 3.00 726.41 756.61 30.20 19.72
119.34 3.00 739.43 760.88 21.45 19.50

14 540 1162 141.89 3.00 795.37 829.03 33.66 18.10 3
144.99 3.00 800.51 831.75 31.23 17.86
141.89 3.00 805.70 834.28 28.59 18.18

15 594 1307 159.19 3.00 979.14 1066.74 87.60 19.57 3
145.31 3.00 1025.99 1072.13 46.14 19.95
144.85 3.00 1033.36 1075.22 41.87 20.01

16 697 1505 167.31 4.00 745.51 802.27 56.77 18.67 3
168.09 3.00 751.47 810.91 59.44 19.28
167.57 4.00 757.04 814.60 57.56 18.83

17 726 1562 193.96 3.00 834.05 893.27 59.23 18.42 3
182.95 3.00 839.14 897.45 58.31 17.39
176.45 3.00 845.04 901.05 56.01 18.83

18 787 1680 205.31 4.00 925.36 999.71 74.36 18.64 3
183.50 4.00 928.30 1003.99 75.69 18.67
186.35 5.00 936.39 1008.88 72.49 19.07

Table D.2: Data Collected in First Part for Property Proving

59

T
ab
le
D
.3:

D
ata

C
ollected

in
F
irst

P
art

for
T
est

C
ase

G
en
eration

S
te
p

G
e
n
e
r
a
l
In
fo
r
m
a
tio

n
tim

e
[s]

C
o
v
e
r
a
g
e
D
a
ta

m
e
m
o
r
y
u
sa
g
e
[M

B
]

C
P
U

[%
]

sta
te
s

tr
a
n
sitio

n
s

o
v
e
r
a
ll

sld
v

o
b
je
c
tiv

e
s

sa
tis�

e
d

u
n
d
e
c
id
e
d

u
n
sa
tis�

a
b
le

lo
w
p
e
a
k

h
ig
h
p
e
a
k

d
i�
e
r
e
n
c
e

a
v
.
u
sa
g
e

1
5

4
5
9
.8
7

1
.0
0

1
0

9
0

1
5
6
6
.3
4

5
7
1
.7
8

5
.4
4

2
1
.9
9

2
1
9

3
4

1
4
1
.5
3

7
7
.0
0

9
9

9
2

0
7

6
0
6
.6
4

6
1
1
.6
8

5
.0
4

2
4
.2
2

3
3
1

6
1

4
1
5
.7
4

3
5
0
.0
0

1
8
8

1
3
9

3
6

1
3

6
4
1
.9
4

6
5
2
.5
0

1
0
.5
6

2
5
.7
4

4
3
4

6
6

4
1
2
.8
7

3
4
8
.0
0

1
9
8

1
4
1

4
3

1
4

6
6
3
.3
2

6
6
9
.7
5

6
.4
3

2
6
.5
7

5
4
6

9
7

5
5
3
.1
2

4
8
0
.0
0

5
0
2

2
9
7

1
4
9

5
6

2
9
8
.8
9

3
7
6
.0
2

7
7
.1
3

2
4
.5
6

6
6
1

1
2
5

7
2
3
.1
1

6
4
6
.0
0

5
6
2

3
0
0

2
0
5

5
7

4
5
2
.6
7

4
6
3
.3
0

1
0
.6
3

2
5
.3
5

7
7
2

1
5
1

7
2
8
.4
5

6
4
5
.0
0

6
3
6

3
1
0

1
9
5

1
3
1

4
6
4
.1
3

4
7
8
.0
1

1
3
.8
8

2
5
.3
0

8
8
5

1
6
9

7
7
2
.1
2

6
8
4
.0
0

6
7
6

3
0
0

2
0
5

1
7
1

5
0
5
.0
1

5
3
3
.1
7

2
8
.1
6

2
4
.4
9

9
8
9

1
8
1

1
1
6
2
.9
9

1
0
7
6
.0
0

6
9
8

3
0
4

3
6
7

2
7

7
9
8
.2
5

8
0
5
.7
2

7
.4
8

2
4
.3
5

1
0

1
0
9

2
1
9

1
3
8
8
.8
5

1
2
9
6
.0
0

7
7
6

3
0
5

4
4
6

2
5

8
2
5
.4
2

8
3
6
.6
9

1
1
.2
7

2
4
.9
1

1
1

T
E
S
T
C
A
S
E
G
E
N
E
R
A
T
IO

N
P
A
U
S
E
D
H
E
R
E

1
2

1
6
3

3
2
1

1
3

3
8
1

8
0
3

1
4

5
4
0

1
1
6
2

5
3
1
5
.3
6

5
0
4
1
.0
0

2
4
9
3

7
3
4

1
7
5
8

1
7
5
7
.3
3

8
8
3
.7
9

1
2
6
.4
6

2
5
.0
7

1
5

5
9
4

1
3
0
7

T
E
S
T
C
A
S
E
G
E
N
E
R
A
T
IO

N
S
T
O
P
P
E
D
H
E
R
E

60

D.3 Resulting Graphs from the First Part: Property Proving

The data for the test case generation was too sparse and without any structure, therefore
graphs were just plotted for the property proving data.

Overall Time

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900

O
ve
ra
ll
Ti
m
e
in
 s

Number of States

Figure D.1: Overall Time against Number of States in Property Proving Mode

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800

O
ve
ra
ll
Ti
m
e
in
 s

Number of Transitions

Figure D.2: Overall Time against Number of Transitions in Property Proving Mode

61

SLDV Analysis Time

0

1

1

2

2

3

3

4

4

5

0 100 200 300 400 500 600 700 800 900

SL
D
V
 A
na

ly
si
s
Ti
m
e
in
 s

Number of States

Figure D.3: SLDV Analysis Time against Number of States in Property Proving Mode

0

1

1

2

2

3

3

4

4

5

0 200 400 600 800 1000 1200 1400 1600 1800

SL
D
V
 A
na

ly
si
s
Ti
m
e
in
 s

Number of Transitions

Figure D.4: SLDV Analysis Time against Number of Transitions in Property Proving Mode

62

System Memory Usage

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900

M
em

or
y
U
sa
ge
 in

 M
B

Number of States

Figure D.5: Memory Usage against Number of States in Property Proving Mode

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800

M
em

or
y
U
sa
ge
 in

 M
B

Number of Transitions

Figure D.6: Memory Usage against Number of Transitions in Property Proving Mode

63

Average CPU Usage

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900

A
ve
ra
ge
 C
PU

 U
sa
ge
 in

 %

Number of States

Figure D.7: Average CPU Usage against Number of States in Property Proving Mode

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

A
ve
ra
ge
 C
PU

 U
sa
ge
 in

 %

Number of Transitions

Figure D.8: Average CPU Usage against Number of Transitions in Property Proving Mode

64

D.4 Data Collected in the Second Part

Increasing the number of objectives to prove on the full model, therefore:

� number of states �xed to 787

� number of transitions �xed to 1680

Note that adding one requirement can result in adding more than one objective, because
the requirement might cover multiple equipment parts.

Table D.4: Data Collected in Second Part for Property Proving

Step time [s] memory usage [MB] CPU [%] objectives

overall sldv low peak high peak di�erence av. cpu usage proven
A1 190.78 2.00 550.60 635.52 84.92 18.41 1

193.15 1.00 580.98 641.15 60.16 18.80
193.08 2.00 588.93 649.39 60.46 18.69

A2 135.47 5.00 543.72 641.63 97.90 18.01 3
137.70 4.00 561.77 656.07 94.30 17.90
138.18 5.00 575.64 661.79 86.14 17.71

A3 142.81 4.00 584.00 677.27 93.27 17.55 5
138.26 5.00 612.38 683.30 70.92 18.17
140.24 4.00 622.52 706.16 83.65 17.76

A4 165.58 8.00 270.63 503.77 233.14 17.65 7
143.63 8.00 459.29 522.57 63.28 17.96
143.58 8.00 472.18 532.05 59.88 18.07

A5 148.79 7.00 480.00 538.88 58.88 17.23 9
144.41 7.00 493.75 545.80 52.05 18.07
145.75 7.00 502.13 551.38 49.25 18.10

A6 151.39 7.00 505.77 555.59 49.82 17.45 11
143.70 7.00 516.73 562.71 45.99 18.06
145.79 7.00 524.84 570.30 45.46 18.04

A7 149.37 7.00 529.44 574.29 44.85 17.84 13
146.38 7.00 540.38 580.80 40.42 18.01
147.36 8.00 547.57 587.29 39.72 18.19

Table D.5: Requirements Added in Each Step in Second Part

Step Annotation

Requirements Proven

A1 ID1
A2 ID1, ID2
A3 ID1, ID2, ID3
A4 ID1, ID2, ID3, ID6
A5 ID1, ID2, ID3, ID6, ID7
A6 ID1, ID2, ID3, ID6, ID7, ID8
A7 ID1, ID2, ID3, ID6, ID7, ID8, ID9

65

D.5 Resulting Graphs from the Second Part

Overall Time

0

50

100

150

200

250

0 2 4 6 8 10 12 14

O
ve
ra
ll
Ti
m
e
in
 s

Number of Objectives

Figure D.9: Overall Time against Number of Objectives in Property Proving Mode

66

SLDV Analysis Time

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

SL
D
V
 A
na

ly
si
s
Ti
m
e
in
 s

Number of Objectives

Figure D.10: Analysis Time against Number of Objectives in Property Proving Mode

System Memory Consumption

0

50

100

150

200

250

0 2 4 6 8 10 12 14

M
em

or
y
U
sa
ge
 in

 M
B

Number of Objectives

Figure D.11: Memory Usage against Number of Objectives in Property Proving Mode

67

Average CPU Usage

17.0

17.2

17.4

17.6

17.8

18.0

18.2

18.4

18.6

18.8

19.0

0 2 4 6 8 10 12 14

CP
U
 U
sa
ge
 in

 %

Number of Objectives

Figure D.12: CPU Usage against Number of Objectives in Property Proving Mode

68

Bibliography

[1] William Aldrich. `Using Model Coverage Analysis to Improve the Controls Develop-
ment Process'. In: AIAA Modeling and Simulation Technologies Conference, Mon-

terey (US). The Mathworks Inc. 2002.

[2] Anne Angermann et al. MATLAB - Simulink - State�ow. 6th ed. München: Olden-
bourg Wissenschaftsverlag GmbH, 2009. isbn: 978-3-486-58985-6.

[3] Goran Begic.Webinar: Introduction to Simulink Design Veri�er. The Mathworks Inc.
url: http://www.mathworks.co.uk/webex/recordings/link_desver_061207/
index.html.

[4] R. Black and J.L. Mitchell. Advanced Software Testing - Vol. 3: Guide to the ISTQB
Advanced Certi�cation as an Advanced Technical Test Analyst. Rocky Nook, 2011.
isbn: 9781457112201. url: http://books.google.co.uk/books?id=QF2ZtucOLikC.

[5] André B. Bondi. `Characteristics of scalability and their impact on performance'. In:
Proceedings of the 2nd international workshop on Software and performance. WOSP
'00. ACM, 2000, pp. 195�203. isbn: 1-58113-195-X. doi: 10.1145/350391.350432.
url: http://doi.acm.org/10.1145/350391.350432.

[6] J.N. Buxton and B. Randell, eds. Software Engineering Techniques. Apr. 1970.

[7] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. The MIT
Press, 1999. isbn: 0-262-03270-8.

[8] J. A. Dabney. Return on Investment of Independent Veri�cation and Validation Study
Preliminary Phase 2B Report. Tech. rep. NASA IV and V Facility, 2003.

[9] Leticia Duboc, David Rosenblum, and Tony Wicks. `A framework for characteriza-
tion and analysis of software system scalability'. In: Proceedings of the the 6th joint

meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering. ESEC-FSE '07. ACM, 2007,
pp. 375�384. isbn: 978-1-59593-811-4. doi: 10.1145/1287624.1287679. url: http:
//doi.acm.org/10.1145/1287624.1287679.

[10] E. Allen Emerson. `25 Years of Model Checking'. In: ed. by Orna Grumberg and
Helmut Veith. Berlin, Heidelberg: Springer-Verlag, 2008. Chap. The Beginning of
Model Checking: A Personal Perspective, pp. 27�45. isbn: 978-3-540-69849-4. doi:
10.1007/978-3-540-69850-0_2. url: http://dx.doi.org/10.1007/978-3-540-
69850-0_2.

[11] David Harel. `Statecharts: A Visual Formalism for Complex Systems'. In: Science of
Computer Programming 8. 1987, pp. 231�274.

[12] Christopher Hellwig. TRW Automotive Develops and Tests Electric Parking Brake

Using Simulink and Simulink Design Veri�er. TRW Automotive Inc. 2009. url:
http://www.mathworks.de/company/user_stories/TRW-Automotive-Develops-

and-Tests-Electric-Parking-Brake-Using-Simulink-and-Simulink-Design-

Verifier.html.

69

http://www.mathworks.co.uk/webex/recordings/link_desver_061207/index.html
http://www.mathworks.co.uk/webex/recordings/link_desver_061207/index.html
http://books.google.co.uk/books?id=QF2ZtucOLikC
http://dx.doi.org/10.1145/350391.350432
http://doi.acm.org/10.1145/350391.350432
http://dx.doi.org/10.1145/1287624.1287679
http://doi.acm.org/10.1145/1287624.1287679
http://doi.acm.org/10.1145/1287624.1287679
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://www.mathworks.de/company/user_stories/TRW-Automotive-Develops-and-Tests-Electric-Parking-Brake-Using-Simulink-and-Simulink-Design-Verifier.html
http://www.mathworks.de/company/user_stories/TRW-Automotive-Develops-and-Tests-Electric-Parking-Brake-Using-Simulink-and-Simulink-Design-Verifier.html
http://www.mathworks.de/company/user_stories/TRW-Automotive-Develops-and-Tests-Electric-Parking-Brake-Using-Simulink-and-Simulink-Design-Verifier.html

[13] The Mathworks Inc. User's Guide: How Simulink Works. url: http://www.mathworks.
de/help/toolbox/simulink/ug/f7-882.html.

[14] Florian Leitner. Evaluation of the Matlab Simulink Design Veri�er versus the model

checker SPIN. Tech. rep. University of Konstanz, Department of Computer and In-
formation Science, 2008.

[15] Mathworks Inc. Product Overview. June 13, 2012. url: http://www.mathworks.de/
products/.

[16] NuSMV Model Checker. June 21, 2012. url: http://nusmv.fbk.eu/.

[17] Online Newspaper article on new Software Standard DO-178C. June 13, 2012. url:
http://www.avionics- intelligence.com/articles/2009/10/upgrade- to-

do-178b-certification-do-178c-to-address-modern-avionics-software-

trends.html.

[18] Prover Technoloy AB Product Page. June 21, 2012. url: http://www.prover.com/
products/prover_plugin/.

[19] SCADE Design Veri�er. June 21, 2012. url: http://www.esterel-technologies.
com/products/scade-suite/add-on-modules/design-verifier.

[20] Sibylle Schupp. `Lecture Script on Software Engineering SoSe 11'. Institute for Soft-
ware Systems Hamburg University of Technology (TUHH). 2011.

[21] Mary Sheeran and Gunnar Stålmarck. `A Tutorial on Stålmarck's Proof Procedure for
PropositionalLogic'. In: Form. Methods Syst. Des. 16.1 (Jan. 2000), pp. 23�58. issn:
0925-9856. doi: 10.1023/A:1008725524946. url: http://dx.doi.org/10.1023/A:
1008725524946.

[22] Simulink Design Veri�er User's Guide. The Mathworks Inc. url: http://www.
mathworks.de/help/releases/R2011b/pdf_doc/sldv/sldv_ug.pdf.

[23] Christopher Slack. `Model Based Design for Fuel System Development'. internal pre-
sentation. May 2010.

[24] SPIN Model Checker. June 21, 2012. url: http://spinroot.com/spin/whatispin.
html.

[25] System Information Class for Windows on Matlab File Exchange. July 4, 2012. url:
http : / / www . mathworks . com / matlabcentral / fileexchange / 26662 - system -

information-class-for-windows.

[26] Marvin Tunnat. `Integration modellbasierter Methoden in den Entwicklungsprozess
hybrider Flugzeugregelungssysteme am Beispiel des Ventilation-Control-System'. MA
thesis. Technische Universität Hamburg-Harburg, 2011.

[27] Volker Turau. `Lecture Script on Operating Systems SoSe 11'. Institute of Telematics
Hamburg University of Technology (TUHH). 2011.

[28] John F. Wakerly. Digital Design: Principles and Practices. 4th ed. Pearson Prentice
Hall, 2010. isbn: 978-0-13-613987-4.

70

http://www.mathworks.de/help/toolbox/simulink/ug/f7-882.html
http://www.mathworks.de/help/toolbox/simulink/ug/f7-882.html
http://www.mathworks.de/products/
http://www.mathworks.de/products/
http://nusmv.fbk.eu/
http://www.avionics-intelligence.com/articles/2009/10/upgrade-to-do-178b-certification-do-178c-to-address-modern-avionics-software-trends.html
http://www.avionics-intelligence.com/articles/2009/10/upgrade-to-do-178b-certification-do-178c-to-address-modern-avionics-software-trends.html
http://www.avionics-intelligence.com/articles/2009/10/upgrade-to-do-178b-certification-do-178c-to-address-modern-avionics-software-trends.html
http://www.prover.com/products/prover_plugin/
http://www.prover.com/products/prover_plugin/
http://www.esterel-technologies.com/products/scade-suite/add-on-modules/design-verifier
http://www.esterel-technologies.com/products/scade-suite/add-on-modules/design-verifier
http://dx.doi.org/10.1023/A:1008725524946
http://dx.doi.org/10.1023/A:1008725524946
http://dx.doi.org/10.1023/A:1008725524946
http://www.mathworks.de/help/releases/R2011b/pdf_doc/sldv/sldv_ug.pdf
http://www.mathworks.de/help/releases/R2011b/pdf_doc/sldv/sldv_ug.pdf
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://www.mathworks.com/matlabcentral/fileexchange/26662-system-information-class-for-windows
http://www.mathworks.com/matlabcentral/fileexchange/26662-system-information-class-for-windows

Declaration

I, Max Schürenberg, solemnly declare that I have written this bachelor thesis indepen-
dently, and that I have not made use of any aid other than those acknowledged in this
bachelor thesis. Neither this bachelor thesis, nor any other similar work, has been previ-
ously submitted to any examination board.

Bristol, August 8, 2012

71

	Introduction
	Model-Based Design
	Development Process
	Graphical Models
	Simulink
	Stateflow

	Model Coverage

	Scalability
	Use and Definitions of Scalability
	Defining Scalability in the Context of the Thesis

	Simulink Design Verifier
	Model Checking
	Stålmarck's Proof Procedure
	Product Overview
	Possible Problems

	Analysing an Aircraft Fuel Management Model with the Simulink Design Verifier
	Strategies to Analyse an Existing Large Model
	Top-Down Approach or Bottom-Up Approach
	Integration or Separation of Verification Components
	Decision

	Define Test Requirements as Proof Objectives
	Limitations/Problems arisen

	Results of the Verification Concerning Scalability
	Possible Improvements

	Conclusion
	Future Work

	Appendices
	List of Abbreviations
	General Appendix
	Verification Subsystems
	Overflow Condition
	Equipment Monitoring Valves

	Data from the Scalability Analysis
	Changelog: Parts Added in Each Step in the First Part
	Data Collected in the First Part
	Resulting Graphs from the First Part: Property Proving
	Data Collected in the Second Part
	Resulting Graphs from the Second Part
	References

