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1 Introduction

Sensor networks are systems appearing in real life, which measure physical quantities
using sensor nodes and convert them to a signal. Reading and analysing these signals
is a task, which can be done using the algebraic topology as a mathematical aid. This
thesis is going to introduce general concepts of algebraic topology in the context of
abstract simplicial complexes and show which tools can be used in the �eld of sensor
networks.

First, in chapter 2 some mathematical fundamentals have to be discussed, so that
chapter 3 can then introduce the Vietoris-Rips complex and describe an application
for it in a real sensor network. Finally, a conclusion and an outlook for possible future
work is given in chapter 4.

With respect to de�nitions appearing, this thesis closely follows the work of Kozlov [1],
Ghrist [2, 5] and Zimmermann [3].

2 Mathematical Basics

In order to understand the idea of sensor networks and the underlying topological
spaces, some fundamental mathematical terms and ideas of algebraic topology have to
be explained �rst. This chapter will give the reader an overview about these mathem-
atical basics.

2.1 Abstract Simplicial Complexes

The topological spaces that occur in this thesis are to be described in a simple way as
the following.

De�nition 1 Let A be a �nite set and ∆ a collection consisting of subsets of A. Then
∆ is called an abstract simplicial complex if X ∈ ∆ and Y ⊆ X, then Y ∈ ∆.

For brevity purposes the abstract simplicial complexes from De�nition 1 are sometimes
just called simplicial complexes. They are denoted by the symbol ∆. The elements
v ∈ A or also v ∈ ∆ are called vertices of ∆ (singular: vertex). The set of all vertices
of ∆ shall be V (∆).
If all subsets of A are included in ∆, it is denoted by ∆A and called a simplex. The
sets σ ∈ ∆ are called simplices. Unique simplices σ ∈ ∆ that are not part of any other
simplex of ∆ are maximal.

Figure 1 shows some examples of simplices, which are not simplicial complexes, because
they violate one of the conditions above. The left simplex is missing a vertex in the
middle of the two edges, so that four edges would be generated. For the middle simplex
an edge between the two unconnected vertices needs to be added in order to form a
triangle. In the last example the triangle is crossed by one edge at an interior point.

4



Figure 1: Non-examples of simplicial complexes

Example 1 The collection of sets {{0, 1}, {0, 2}, {1, 2}, {0}, {1}, {2}, ∅} forms
the simplicial complex ∆. But in order to get a simplex ∆{0,1,2} the set {0, 1, 2} would
have to be added to the collection.

Simplices have a dimension , which is denoted as dim ∆ in the following. The dimen-
sion is de�ned as the maximum cardinality of the elements of the simplex. If a simplex
∆ has the dimension dim ∆ = k, it can be called a k-simplex. As the empty set has
the cardinality 0, its dimension equals -1. Therefore in an Euclidean space Rn for all
−1 ≤ k ≤ n, with n being an integer, there is a simplex of the dimension n.
From left to right �gure 2 shows simplices from the dimension -1 to 3 and thus starting
from the (-1)-simplex to the 3-simplex there are �ve simplices of the R3: empty set,
vertex, edge, triangle and tetrahedron.

∅

−1 0 1 2 3

Figure 2: Simplices in R3 with rising dimension, denoted below each simplex

Each k-simplex has k + 1 points (or vertices). A convex hull of any nonempty subset
of these k+ 1 points is called a face of the simplex. Thus each face is a simplex itself.
Let ∆1 and ∆2 be simplices and ∆1 a face of ∆2. Furthermore if dim ∆1 = l, then
∆1 is called an l-face. The 0-faces are vertices, the 1-faces edges and so on.
There are two improper faces of ∆2, the empty set ∆1 = ∅ and the original simplex
itself ∆1 = ∆2. All other faces of ∆2 are proper. For each simplex ∆ the number of
l-faces of a k-simplex can be easily calculated by determining the number of ways l+1
can be chosen from k + 1 points:

(
k + 1

l + 1

)
=

(k + 1)!

(l + 1)!(k − l)!
.
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And so the total number of faces in all dimensions is

k∑
l=−1

(
k + 1

l + 1

)
= 2k+1.

Let ∆1,∆2 be abstract simplicial complexes, then ∆1 is an abstract simplicial subcom-
plex of ∆2 if v ∈ ∆1 implies v ∈ ∆2, which is denoted as ∆1 ⊆ ∆2. Additionally if
there exists a v ∈ ∆2 such that v /∈ ∆1, ∆1 is a proper subcomplex of ∆2.

For abstract simplicial complexes the dimension is equal to the maximum dimension
of its simplices. In this regard, if ∆1 is an abstract simplicial subcomplex of ∆2, then
dim ∆1 ≤ dim ∆2.

De�nition 2 If an n-simplex has a speci�ed orientation, it is called an oriented n-
simplex. The orientation is a collection of orderings for each vertex in the set.

Any n-simplex has (n+ 1)! distinct ordered simplices, of which not all should be dis-
tinguished between. There are only two geometrically di�erent orientations, clockwise
and anti-clockwise.

Example 2 The triangle, a 2-simplex, has six di�erent associated ordered simplices.
The denotations [v0, v1, v2], [v1, v2, v0], [v2, v0, v1] order the triangle in the one direc-
tion, while [v0, v2, v1], [v2, v1, v0], [v1, v0, v2] order them in the other direction. Thus

[v0, v1, v2] = [v1, v2, v0] 6= [v2, v1, v0].

�
v0 v1

v2

Figure 3: Oriented 3-simplex

Example 3 In �gure 3 an oriented complex has the following set of vertices [v0, v2, v1].
The set [v0, v2, v1] has the dimension d = 2 and is therefore called a 2-simplex.

In this example the simplicial complex is as following:

∆ = {[v0, v1, v2], [v0, v2], [v2, v1], [v1, v0], [v0], [v1], [v2], ∅}

In this case the set [v1, v0] is a 1-face and [v0] is a 0-face. In general it can be said
that a set containing n vertices is an n-face.
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Given an abstract simplicial complex ∆ and a �eld K = R a real space can be generated
as Cn = Cn(∆,R) with its own basis elements.
These elements are given by oriented n + 1 - simplices [v0, . . . , vn] and the relations
for the simplices [v0, . . . , vn] = (−1)sgn(π) · [vπ(1), . . . , vπ(n)], where π is a permutation
of the degree n+1.

Example 4 The following set of edges C1 = {[v0, v2], [v2, v1], [v1, v0]} are possible
basis elements of the space R3.
Any edge, like in this case [v0, v2], can also be read in the other direction, additionally
including a negative sign and thus [v0, v2] = −[v2, v0]. Also in this case the permutation
is π = (0, 2) and therefore sgn(π) = −1.
In order to span the whole R3-space the basis elements have to be multiplied by real
numbers likeab

c

 = a · [v0, v2] + b · [v2, v1] + c · [v1, v0], where a,b,c ∈ R.

Accordingly a real space can also be described by the vertices or the triangle of the
oriented complex, so that for all Cn(∆) in R3:

C0 = 〈[v0], [v1], [v2]〉 = R3,

C1 = 〈[v0, v2], [v2, v1], [v1, v0]〉 = R3,

C2 = 〈[v0, v1, v2]〉 = R1.

2.2 Operators and Maps

De�nition 3 The boundary operator δn : Cn → Cn−1 is a linear transformation,
which is de�ned as

[v0, . . . , vn] 7→
n∑
k=0

(−1)k · [v0, . . . , v̂k, . . . , vn].

The operator δn maps a set of basis elements of the n-th dimension to a sum of elements
of (n− 1)-th dimension by taking out v̂k.

Example 5 The 3-simplex shown in �gure 4, a tetrahedron, is mapped to four di�erent
triangles by δ3 : C3 → C2. The result is a sum of these four triangles with alternating
signs, each with one of the vertices taken out as

δ3([v0, v1, v2, v3]) =

3∑
k=0

(−1)k · [v0, . . . , v̂k, . . . , v3]

= [v1, v2, v3]− [v0, v2, v3] + [v0, v1, v3]− [v0, v1, v2].
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v1

v2

Figure 4: Boundary operator applied to a tetrahedron

A triangle (2-simplex) is mapped to its three edges, which it consists of:

δ2 : C2 → C1 : [v0, v1, v2] 7→ [v1, v2]− [v0, v2] + [v0, v1].

The map δn is linear. This can easily be shown by linear extension, as δn is de�ned
on basis elements and can be linearly extended.
Furthermore it is known that for each n ≥ 0,

δn ◦ δn+1 = 0, (1)

meaning that each boundary of a chain is an empty boundary.
A proof for that statement can be found in [1, page 40]. Here it will be illustrated
using a graphic, see Figure 5. The left ellipse shows the space Cn+1, from which the
operator δn+1 maps to Cn. This time though only a part of the space Cn is occupied
by the newly generated simplex, shown by the gray area. Ultimately the simplices are
mapped to 0 in the Cn−1 space by δn, seen at the right ellipse.

0

Cn+1 Cn Cn−1

δn+1

δn

Figure 5: Boundary of a chain complex
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Example 6 This example will demonstrate that the boundary of a chain is 0. For
that, the tetrahedron from the example above will be used again. It was already mapped
to its triangles and is now further mapped to its edges, thus being mapped from C3 to
C1:

δ3([v0, v1, v2, v3]) = [v1, v2, v3]− [v0, v2, v3] + [v0, v1, v3]− [v0, v1, v2]

and by applying the second boundary operator

δ2(δ3([v0, v1, v2, v3])) = −[v2, v3] + [v1, v3]− [v1, v2]− (−[v2, v3] + [v0, v3]− [v0, v2])+

(−[v1, v3] + [v0, v3]− [v0, v1])− (−[v1, v2] + [v0, v2]− [v0, v1])

= 0.

Using the boundary operator multiple times results in a chain complex, which is a
sequence of vector spaces connected by linear transformations:

· · · δn+2−−−→ Cn+1
δn+1−−−→ Cn

δn−−−→ Cn−1 · · ·
δ2−−−→ C1

δ1−−−→ C0
δ0−−−→ 0.

The image of δn+1 is

Im(δn+1) = {δn+1(v) | v ∈ Cn+1}.

And the kernel of δn is

Ker(δn) = {v ∈ Cn | δn(v) = 0}.

The image of the boundary operator δn+1 always lies in the kernel of δn, which means
Im(δn+1) ⊆ Ker(δn). This follows immediately from equation (1).

Both Im(δn+1) and Ker(δn) are subspaces of Cn. As a result there are two subspaces
of Cn, which are di�erent from each other. They are de�ned as the following:

n− cycles : Zn(∆) = Ker(δn),

n− boundaries : Bn(∆) = Im(δn+1).

Because of equation (1), for all n ≥ 0 : Bn(∆) ⊆ Zn(∆).
The n-cycles of the simplicial complex ∆ are the basis elements counting the holes of
dimension n of ∆, denoted by the Betti number, which will be described in the next
subsection.

2.3 Homology Groups

Let V be a vector space in R and U a subspace of V. The quotient vector space is then
de�ned as V

/
U := {v + U | v ∈ V }.

Figure 6 shows U as a subspace of V, in this case U is a line through the origin in the
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U

v + U

w + U

(v + w) + U

v w

w

v

V = R2

Figure 6: Subspaces U, V in R2

space R2. A�ne subspaces are reached by adding the vectors v or w (dashed arrows),
which act like vectors in R2. Adding the sum of v and w can also be displayed by
adding either vector after the other. This is displayed by the dotted arrows.

The equivalence classes are v = {w ∈ V | v ∼ w} and as shown in �gure 6 v + U =
{v + u | u ∈ U}, which is an a�ne subspace of U. Then v = v + U . According to the
linearity of the relation:

v + w := v + w ⇔ (v + U) + (w + U) = (v + w) + U

s · v = s · v ⇔ s · (v + U) = (s · v) + U , s ∈ R.

De�nition 4 The quotient vector space of the cycles and boundaries is de�ned as an
n-dimensional homology group

Hn(∆) = Zn(∆)
/
Bn(∆).

If the di�erence of two cycles v, w ∈ Zn(∆) is a boundary, the cycles are called homo-
logous or equivalent, as described by the relation

v ∼ w ⇔ v − w ∈ Bn(∆).

For the dimension of the quotient vector space it is known that

dim V = dim U + dim V
/
U.

With dim V
/
U = 1, then dim V > dim U . This yields for the dimension of H0(∆)

the number of connected components of ∆.
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Let [v] be the denotation for any element of C0(∆) = Z0(∆) and [v] ∈ H0(∆) be the
class of this element. Then

[v] = [v] + U = [v] +B0(∆).

Now let [v] and [w] be two vertices of C0(∆) and [v, w] an edge of ∆, then with

δ1([v, w]) = [w]− [v] = B0(∆),

it can be concluded that

[v] +B0(∆) = [v] + ([w]− [v]) +B0(∆) = [w] +B0(∆)

⇒ [v] = [w].

This means that the two elements from H0(∆) have the same class. This is also true
for the vertices in any connected component.

Hn(∆) is the n-dimensional homology of ∆. The Betti number is denoted by β and
exists for every homology group H∗(∆) so that each dimension has its own Betti
number de�ned as βn(∆) := dim(Hn). As stated before the nth Betti number counts
the number of holes in Hn by counting the number of n-cycles not corresponding to
the n + 1-boundaries. The �rst three Betti number are intuitive and conceivable. β0
counts 1-dimensional holes, which are the connected components. β1 is the number
for the 2-dimensional or circular holes. And lastly β2 counts the 3-dimensional holes
called cavities or voids.

Figure 7: 3-dimensional hollow torus, picture taken from [7]
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Example 7 Figure 7 shows a 3-dimensional torus, which has the following Betti num-
bers

β0 = 1,

β1 = 2,

β2 = 1.

This is because the torus is one wholly connected component (β0), which has two cir-
cular holes: The one in the middle and one in the inside of the torus (β1). Also the
inside of the tube is a 3-dimensional cavity (β2).

Example 8 Let the abstract simplicial complex ∆ be a triangle with the set of ver-
tices [v0, v1, v2] and the set of edges {[v0, v1], [v1, v2], [v0, v2]}. The two relevant chain
complexes for this example are

C0 = 〈[v0], [v1], [v2]〉 = R3,

C1 = 〈[v0, v1], [v1, v2], [v0, v2]〉 = R3,

and the boundary operator δ1([vi, vj ]) = −[vi]+ [vj ], for all 0 ≤ i, j ≤ 2 and i 6= j. The
homology groups then are

H0(∆) = Z0(∆)
/
B0(∆) = C0(∆)

/
〈[v0]− [v1], [v0]− [v2]〉 = 〈v0 +B0(∆)〉 = R,

H1(∆) = Z1(∆)
/
B1(∆) = Z1(∆) = 〈[v0, v1]− [v1, v2] + [v0, v2]〉 = R,

and the higher dimensional homology groups are Hi(∆) = 0 for i > 1.

3 Sensor Networks

For the application of algebraic topology in sensor networks a few more mathematical
ideas have to be explained. These ideas can be directly used to describe a network of
nodes as a simplicial complex.
Often in real-life applications data is gathered and represented as an unordered se-
quence of points in a real Euclidean space Rn of dimension n. For this thesis it is
convenient to assume that the data comes from a series of sensor readings. The data is
then called point cloud data. Obtaining the cloud of points from the physical sensors
is easy and the goal is now to topologically represent the data of the sensors.

This can be done by converting the point cloud into vertices of a graph. The connec-
tions of the points would be illustrated by edges and determined by a speci�ed distance
between the vertices, which has to be met. Even though this is a rather primitive ap-
proach, the underlying idea remains the same for a higher dimensional representation,
which also grasps the more complex structures of point clouds.
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3.1 Vietoris-Rips Complex

The Vietoris-Rips complex (often abbreviated as Rips complex or Vietoris complex) is
an abstract simplicial complex in the Euclidean space Rn.

De�nition 5 Let V be a set of points (or vertices) in Rn. With a non-negative real
number ε the Vietoris-Rips complex is denoted as Rε(V ). Its simplices are formed on
every �nite set of points within the pairwise distance ε. Each subset of V of (k + 1)
points forms a k-simplex, which is included in the Vietoris-Rips complex.

The generation of a sample complex is illustrated in Figure 8. In this case V is a set
of nine points (red) around which circles with the radius ε/2 (diameter ε) are drawn.
Those circles indicate the maximum distance another point can have from the �rst
point with them having a connection. A pair is formed by the two points, which is
represented by an edge (black). For this, overlapping circles indicate a connection
between two or more points. Triples of points are shown by the three yellow triangles
and lastly there is also one quadruple of points in green.

ε

Figure 8: Step-by-step generation of a Vietoris-Rips complex
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Choosing a good value for ε is an essential task, which can be very di�cult. For an
extremely small ε the complex is a discrete set, without any connections between the
points. A very large ε results in only one simplex, which has a very high dimension.
Both outcomes are undesirable, as they do not capture the underlying topology of
the data set in most cases. Therefore a suitable ε needs to be found for a good
approximation. To illustrate the rami�cations of a smaller or larger ε it is best to
revisit the complex from Figure 8.

Figure 9: A series of Vietoris-Rips complexes with an increasing ε

In the �rst complex of Figure 9, ε starts up smaller than in Figure 8. This results in
only one triple of points, but more importantly two points are completely disconnected
from the rest, as the ε was too small for them to form pairs. The parameter ε is then
gradually increased, which results in the Vietoris-Rips complex already known from
Figure 8. New pairs are formed and the hole in the upper left corner has turned into
a quadruple of points. However a new hole has occurred in the bottom right corner.
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The last graphic shows the complex for a further increase of ε. The most signi�cant
change is the hole, which has turned into a quintuple of points (red).
If ε would be increased even further, some of the outer points would make connections,
thus covering even more space. On the downside, the dimension of several triplets or
quadruples would also increase, making the complex more complicated and di�cult to
compute in reality.

3.2 Relation to �ech Complex

Like the Vietoris-Rips Complex the �ech Complex is an abstract simplicial complex
in Rn.

De�nition 6 Let V be a set of points (or vertices) in Rn. With a non-negative real
number ε the �ech complex is de�ned as Cε(V ). Its simplices are formed on every �nite
set of points, whose closed ε/2-balls around the points have a non-empty intersection.
Each subset of V of (k + 1) points forms a k-simplex, which is included in the �ech
complex.

The �ech complex C is a subcomplex of the Vietoris-Rips complex R, thus C ⊆ R.
With the �ech complex, high dimensional simplices no longer appear, which makes
the complex topologically more accurate. But still, there are also some disadvantages
to the �ech complex. Its construction is very complicated, as one needs to check many
ε/2-ball intersections in order to build the complex. Even though the Vietoris-Rips
complex has more simplices, it is less expensive to compute and store. This is due to
the fact that it is a �ag complex. These are abstract simplicial complexes of an abstract
graph G = (V,E), where its simplices are all subsets S ⊆ V , so that the subgraph
G[S] is a complete graph. In other words this means a Vietoris-Rips complex is wholly
determined by its vertices and edges, so that only the 1-skeleton needs to be stored,
with the rest of the complex being rebuilt later.
These di�erent aspects of the complexes lead to the conclusion that for this thesis, the
Vietoris-Rips complex is of more importance, because its advantages in computability
are prevailing.

3.3 Applications in Sensor Networks

The applications for Vietoris-Rips complexes in real life are manifold. In general a real
system is going to be some sort of network of nodes, which provide readings, repres-
ented by the data clouds. This was already brie�y explained in the beginning of this
section. In this subsection a concrete application will be described, which �ts the use
for a sensor network using the Vietoris-Rips complex and algebraic topology.

Imagine a large area covered by a forest, which is prone to forest �res. As the area is
very large, it is almost impossible to be constantly monitored manually. Helicopters or
planes over�ying the area are probably very cost-intensive, which means this can not
be done at all times. A practicable way to quickly detect �re is by installing several

15



devices in the forest, which are able to detect the �re by smoke, heat or something
similar. The problem occurring with this method is that it is going to be a hard task to
install the devices in a way, so that the whole forest is covered and no small areas are
out of reach of the detectors. If the forest area would be rectangular or even quadratic,
the problem would be very simple, but more often than not the forests are of irregular
shape with more than four corners or roundings. In order to cover such an irregular
area one needs a way to �nd holes in the sensor network.

This problem will now be approached using algebraic topology. With the aid of the
Vietoris-Rips complexes described in the previous section, the sensor network can be
translated to the �eld of topology. The �re detecting devices are nodes of the complex,
while ε is going to be an approximation of the range of each �re detector, within which
�re can be detected. If holes appear in the complex, the Betti numbers should be used
to detect them in the homology groups. There are two possible way to compute the
Vietoris-Rips complex.

Firstly, each node could be equipped with a CPU and memory, so that all of them
are able to calculate the complex based on the information it receives from its neigh-
bours. It can be safely assumed that the data link range of the nodes is large enough
to communicate with all other nodes within the entire area. This way, the nodes can
share information about their position (ideally using GPS coordinates) and their range
(which is identical for all nodes in an ideal case). Now each node can calculate the
Vietoris-Rips complex based on this information.
The second method involves an additional central unit, which maintains a connection
to all of the nodes in the network. This main unit is responsible for gathering the to-
pological data and computing the complex. One advantage of this method is that the
calculation is centralized, thus eliminating the need for all the other nodes to calculate
the complex. Yet this can also be seen as a disadvantage, as the centralization leads
to dependence on the central node. If it were to fail, the whole sensor network would
stop working, which means there needs to be a certain amount of redundancy when
implementing the central unit. Using a central unit is going to be the better choice,
the more nodes exist in the network. Communication between all nodes is going to
rise exponentially, when they have to communicate with each other, as the addition
of one node adds multiple new communication links. With a central node, only one
more bidirectional link is added.

In general both methods do have one big disadvantage. Every time a �re detector
node malfunctions, it has to be repaired or replaced before the entire system is on-line
again. This means that there is always an area which is not fully covered at this time.
Quickly repairing or replacing the node manually is both expensive and impracticable.
It would be a great improvement if the nodes were moveable and able to close out the
hole by themselves. Therefore using unmanned aerial vehicles (UAV) equipped with
�re detectors might be more expensive in the short term, but in the long term they
will pay o� due to the addition of more added security, as the system is less likely to
be operated with holes for longer periods of time.
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The idea of using UAVs to quickly cover holes works in a simple principle. As the
central node constantly determines the Betti numbers for the topological complex, a
hole can be detected very quickly. If unused UAVs were available at this time, they
would be deployed to the exact same spot the now defunct one is at. If no unused
UAVs are available, it is the task of the central unit to arrange the remaining UAVs in
a new pattern, so that the maximal area of the forest is encircled by the range of the
detectors. As computing every possible new Vietoris-Rips complex is very expensive
in terms of computing power, it is practicable to just use an UAV from the outer edges
of the forest and deploy it, so that the hole is covered again. Even though this is going
to eliminate one or two edges on the outside of the complex, the much more critical
hole problem is solved. If the defunct UAV is repaired or replaced by a new one, the
old arrangement can be used again.

The sensor network system described above guarantees a �re detection coverage of the
forest at most times, with the exception of only small periods, when a malfunction
occurred. These periods can be further reduced if redundancy is added to the sensor
network. Especially in areas, which are particularly prone to �re, it might be practical
to deploy more UAVs than necessary. Failing nodes would now a�ect the network
much less than before, as at least a large part of the hole is still covered due to the
added UAVs.
Another possibility for redundancy would be an increase of the range of the detectors
(represented by ε in the Vietoris-Rips complex) beyond the minimal range required
for the nodes to form simplices of a certain dimension. This would of course result in
more higher dimensional simplices (at least in the high risk area) and therefore a more
complicated complex representation.
Which of the methods is preferable strongly depends on several side aspects. Adding
more UAVs to the network is expensive, but might be less complicated for the to-
pological representation. Whereas increasing the detection range is only possible to
a limited extent without having to acquire newer and more powerful �re detection
devices. Both methods have their disadvantages, but this is a price, which one might
be willing to pay for the added safety.

One more aspect of the application needs to be discussed here. So far, this chapter was
mainly focused an a 2-dimensional representation of the sensor network. In reality, for
most forests the third dimension can be safely omitted, as the height di�erences are in-
signi�cant compared to the other measurements. But still, especially in a mountainous
region the Vietoris-Rips complex would have to be used in R3 in order to be accur-
ate. Technically, it would work in a very similar way. Instead of circles of diameter ε
around the points, now spheres have to be used. This leads to the whole calculation
of pairs, triangles and higher dimensional simplices becoming more complicated due
to the added dimension.
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4 Conclusion and Outlook

One possible application of sensor networks using algebraic topology in detecting forest
�res has been described in this thesis, but there are several other possibilities in which
the algebraic topology can be used in sensor networks. There is for example the moun-
tain rescue scenario, in which a mountain, or a mountain range is monitored by sensors,
preferably also UAVs. These sensors would be searching lost people in the area and
automatically forward their position the mountain rescue service.
Another application could be in the �eld of earthquake prediction. Sensor nodes could
detect seismic activity in the ground. Of course in this application using UAVs is not
an option and thus it would be more complicated to change the physical location of
the detectors and with that the underlying topological representation in the abstract
simplicial complex. But the idea still remains applicable for that scenario.

There is a lot of improvement that can be done by future research in this area. Espe-
cially the autonomous coordination and communication of the UAVs (with or without
a central unit) is a task, which is rather di�cult to realise. Also using the �ech com-
plex instead of the Vietoris-Rips complex can improve the accuracy of the topological
representation. Even though there are the disadvantages that have been mentioned,
it should be possible to use the complex in a way its advantages outweigh them.
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