Technische Universitat Hamburg-Harburg
Institute for Software Systems

Run-Time Load Analysis of Multi-Threaded
Applications by Inspection of Inter-Process
Communication

Bachelor Thesis

submitted by
Nikolai Weh

supervised by
Prof. Dr. Sibylle Schupp

Eidesstattliche Erklarung

Ich, Nikolai Weh, erklére hiermit an Eides Statt, dass die vorliegende Bachelor-
arbeit mit dem Titel Run-Time Load Analysis of Multi-Threaded Applications
by Inspection of Inter-Process Communication selbstandig und lediglich unter
Benutzung der angegebenen Hilfsmittel und Literatur angefertigt wurde.

Ich erklare weiterhin, dass die vorliegende Arbeit nicht im Rahmen eines weiteren
Priifungsverfahrens vorgelegt wurde.

Hamburg, der

Contents

List of Figures

List of Tables

1

%)

Q w »

Introduction

1.1 Problem Statement
1.2 Application Layout
1.3 Performance Analysis Using Tracing
1.4 Related Work oo

Design and Implementation

2.1 Queue Registration o000
2.2 Topology Information
2.3 Data Collection L
2.4 Data Export

Validation
3.1 Test Environment L oL
3.2 Validation of Data,
3.3 Performance Impact
3.4 Performance of the Sampling Code
3.5 Visibility of Performance Data
3.6 Results.
3.6.1 Quality of the Data
3.6.2 Suitability for Performance Analysis

Conclusions and Future Work
References

Source: Queue Sample Thread
Source: Discrepancy Detection Tool

Data Preparation Process

C.1 Trace Data
C.2 Sampled Data
C.3 Plot Generation e

Additional Graphs and Tables
D.1 Queue Sample Performance
D.2 Queue Fill Level at 50us Replay Delay

ii

20
20
22
25
27
29
37
37
38

40

42

44

45

48
48
48
50

List of Figures

0O Ui Wi+

Queue sampling: Schematic overview 3
Microburst patterno Lo 4
Critical event path 5
ITM main path layout (example) 6
Queue sample interface as base class to the queue interface . . . 12
Queue sample interface as mixino 13
Updating the topology information within the consumer loop . . 15
Updating the topology information using a notification mechanism 15
RPC queue sample data structure 18
Trace count and sampled queue fill level over time (excerpt) . . . 24
Queue sample duration for individual queues 28
Queue sample duration for individual queues, in sample order . . 29
Queue fill levels at 40us replay delay 30
Queue fill levels at 40us replay delay, cumulative sum 31
Queue fill levels at 80us replay delay 33
Queue fill levels at 90us replay delay 35
Queue fill levels at 1ms replay delay, bursts of 8 packets 35
Queue sample performance at 90us replay delay, quantiles 52
Queue fill levels at 50us replay delay 53
Queue fill levels at 50us replay delay, cumulative sum 54

Comparison of cumulative non-zero fill level sum 54

iii

List of Tables

1

S Tk W N

Measured latency impacts of the queues connecting feed, market,

orderbook and strategy when changing sample frequencies [us] . 26
LLC Load Misses at different sample frequencies 27
Summary of non-zero fill levels at 40us replay delay 32
Queue fill level pattern at 80us replay delay 33
Summary of non-zero fill levels at 80us replay delay 34
Summary of non-zero fill levels at 1ms replay delay, bursts of 8

packets e 36
Summary of non-zero fill levels at 50us replay delay 53

iv

Acknowledgements

I would first like to thank Prof. Dr. Sibylle Schupp, head of the Institute for
Software Technology Systems, and Dr. Joachim Worringen at IAT for giving me
the opportunity to work on this project and their valuable assistance.

I would also like to thank IAT International Algorithmic Trading GmbH for
sponsoring this research project, and all of my colleagues in the software engi-
neering department for their support.

Finally, I would like to thank Maren, my family and my friends for their support
and understanding.

Abstract

In a concurrent system, where threads are connected by queues in
a pipelined scheme, the queue fill level could give information about
possible bottlenecks and performance issues. This thesis presents the
design, implementation, and validation of an approach that allows run-
time observation of these fill levels in the context of an application focused
on low latency. The approach described is therefore focused on having little
performance impact itself. A basic implementation for this approach is
given, along with suggestions for improvements and alternatives for specific
parts of the approach. The implementation is then tested for accuracy,
performance and meaningfulness of the gained data regarding performance
analysis. It is shown that in a system with focus on low-latency, the fill
levels of the queues are mostly zero, but that peak values can indicate
performance problems.

vi

1 Introduction

1.1 Problem Statement

Measuring application performance is an important part in an application’s
lifecycle. It is required when implementing the application, while planning
deployment of an application, and to determine run-time behavior in production.
In a concurrent software application, where threads are connected in a pipe-lined
scheme using queues for communication and implicit synchronization, the queue
fill level could give information about possible bottlenecks and performance
issues. This thesis discusses the idea that periodically sampling the fill level of
these queues could have less performance impact, can be less intrusive to the
code base, and less complex to analyze than other approaches to performance
analysis. The approach presented in this thesis should allow for a complete,
live overview of the performance of a complex and multi-threaded application.
For this purpose, I will design and implement a system designed to periodically
gather information of the inter-thread communication queues’ states. I will then
analyze the quality of the data gained through this system, and discuss the
suitability of this approach for performance analysis.

The process of determining how the software performs in multi-thread ap-
plications can be significantly more complex than the analysis of single-thread
applications. However, with CPU manufacturers shifting their focus from higher
clock-frequencies to greater core numbers, multi-core systems are now the stan-
dard even in the personal computer market [17]. In order to leverage the
computing power of multi-core systems, application developers are forced to
adopt multi-process or multi-thread techniques.

In single core applications, coarse-grained performance measuring, analysis
and monitoring can essentially done by

e calculating the CPU time used by the application as well as memory access
characteristics, information typically provided by the operating system,

e looking at the type and duration of I/O calls, based on information stored
and managed by the VFS and network layers of the operating system, and

e using a profiler to determine which parts of the application are most
frequently used and consume most execution time.

While these techniques also apply to multi-thread and multi-process appli-
cations, in these applications synchronization or locking issues may also lead
to performance problems. For example, a slow' single-threaded application
may either have too little CPU time available or is waiting for input/output
completion. An application with multiple parallel strings of execution may also
wait on completion of another thread of execution, thus the program may have
little CPU or I/0 activity, and still runs slowly.

Performance analysis of concurrent applications is therefore not a trivial task.
How this task is approached depends on the basic architecture of the concurrency
and how the threads of execution synchronize and communicate with each other.
While some examples of concurrent programing usages and techniques are given

1In the context of this introduction, the term slow refers to an application that is not
making full use of the system’s resources.

in Section 1.4, the main focus of this work lies in the performance analysis of a
system based on the Staged Event Driven Architecture (SEDA) [24], which is
described in the following section.

A common approach for analyzing performance in such systems is by using
the tracing approach. Within the system that forms the basis for this thesis, it
has already been implemented for the subset of queues that form the critical
path. This approach, however, while giving accurate results, is not a feasible
option for a complete run-time performance analysis, as discussed in Section 1.3.

Therefore, another solution for a live overview of the whole system is required,
possibly with lower, but sufficient accuracy and less performance impact. This
could allow an operator or an algorithm to detect performance problems at
runtime, and enable the tracing mechanism for the components that actually
perform bad.

The approach described in this thesis focuses on analyzing the fill level
of the inter-thread communication queues. A schematic overview of the base
architecture for this approach is shown in Figure 1.

e Every queue instance that is related to inter-thread communication registers
itself to a single registry instance.

e Additionally, the queue provides information on how it is used within the
system, in order to create a graph-like representation of how the queues
connect to the stages (topology).

e A separate thread is used to periodically request a current list of the
registered queues and collects their fill level information (sampling).

e This information, along with the topology information, is sent to an external
system for further processing.

It is expected that this approach will allow extracting of performance data
while having little performance impact itself. Also, this approach relies on
extending the queues rather than extending the code that uses the queues. The
performance data measured can therefore automatically include even helper
queues, whose performance statistics might prove valuable as well. Also, when
adding new threads with the corresponding inter-thread communication, no
separate performance analysis code will have to be written. This is in contrast
with the tracing approach, which requires this separate code to be written
whenever a queue is used. This process proved to be error-prone when working
in an application with a complex layout of possible event paths. The remainder
of this section is structured as follows: In 1.2, an introduction to the underlying
application and its structure is given. A more in-depth introduction to the
tracing approach and the problems with this is given in Section 1.3. Finally,
1.4 discusses previous performance analysis research in the area of concurrent
systems.

Section 2 describes the design decisions and the implementation of the
approach. In Section 3, the data gained from running the implementation in
various test-scenarios is validated and analyzed, and the results regarding the
quality of the gained data and its suitability for performance analysis is discussed.
Finally, Section 4 concludes the thesis and suggests future work topics.

Register

RPC ‘ Send topology Queue
Registry

Query list
of Queues

Send sampled data | Sampler .
Thread Fetch fill state

Interface

Figure 1: Queue sampling: Schematic overview

1.2 Application Layout

In this section, the ITM application, which forms the basis of this work, is
outlined along with the requirements of a modern stock-market application and
the inter-thread communication method this thesis focuses on.

The ITM application is a high-frequency trading (HFT) platform developed
by TAT International Algorithmic Trading GmbH. This type of application
connects to one or more stock markets, typically via multiple channels for market
data and one or more connections for submission of orders and order status
information. The application provides interfaces and an abstraction of the
exchanges’ functionality to so-called strategies. These react to the incoming data,
to external information, and control systems used by human operators.

Application Requirements Over the past years, all major stock exchanges
migrated from manual to electronic trading, so that order entry and matching
is done automatically. Starting ca. 2007, this change led to the creation of
high-frequency trading, which uses various strategies to leverage microscopic
market fluctuations and differences between market places in order to make
profit [19]. The second-most important factor to be able to compete, next to
a decent strategy, is to minimize the latency between the market updates and
the strategy, and the latency between the strategy and order entry. Minimizing
latency is achieved by using server locations as close as possible to the exchanges,
and state-of-the-art hardware and a software framework designed specifically for
the purpose of low-latency network applications and high-frequency trading [13].

A third important aspect to consider when designing a system for high-
frequency applications is that there is a special pattern of incoming data called
a microburst [16]. A microburst can happen if a large number of participants at
the exchange update their orders at the same time, and leads to a situation where
the market updates appear back-to-back on the network interface. Therefore,
being able to handle a (temporary) high-throughput scenario is an important
design aspect of a high-frequency trading system. The microburst pattern is
displayed in Figure 2, which displays the maximum amount of messages within
1 millisecond against the average message count per millisecond over one second.
Shown is the average over 100 seconds. The plot has been generated from the
marketdata of the Chi-X exchange on June 22, 2012.

The last important aspect is modularity, since the software should be able to

30 : 90
— average — amplification
— maximum 180
25}
170
2 20t {60
2 i | o
= \ 150
- | | :
g 1 g
140 &
g 5
< £
g 10 130 ®

120
5
110
0 o ‘ 8
0 50 100 150 200 250 300 35

time [100s]

Figure 2: Microburst pattern

connect to a variety of exchanges? and be able to run different strategies.

Intra-Process Communication As a result of the requirements described
above, the ITM has the following design characteristics:

e The system is built in a pipe-lined layout. In each logical processing step
(stage group), work can be done in parallel by creating more than one
instance (component or stage) that form a stage group.

e In each stage, an incoming event is processed, and zero or more events are
generated from the resulting data. These are then passed to the instances
of the next stage group.

e By leveraging the shared object functionality for the stage instance imple-
mentation, new code modules may be added at any time.

e The stages are connected using event queues. These serve both as a simple
thread communication and synchronization mechanism and as a buffer in
microburst situations.

2Although there are standards for market data messages and communication with the
exchanges, nearly all exchanges choose to implement these in a non-standard way, use specific
features differently, or implement their own, proprietary or ”"native” communication protocol.
The latter is becoming increasingly popular, because it has the advantage that the exchange’s
software does not need to convert the data from its internal format into another, thus reducing
latency.

0

feed_decoder

Figure 3: Critical event path

e Low latency is achieved by not relying on standard inter-thread event mech-
anisms® alone, but choosing to continuously poll the consumer interface
for new data where low latency is required (dedicated CPU core).

The type of processing required for a stock market application dictates a
standard set of stage groups, which form the critical path for the events with
respect to the requirements listed above [13]. This critical path is shown in
Figure 3. In this figure, the dashed lines show the interactions with the exchange,
and the solid lines display the event flow between the stage groups. While other
stage groups may exist, they are not as performance critical as those shown in
the figure.

Within the ITM these stage groups are:

e Feed Decoders, which are used to normalize the incoming market updates
into an internal format,

the Market, which performs management of the orderbooks and routing of
feed messages into the orderbooks,

Orderbooks, which store the current prices for a specific instrument,

Strategies, which apply the trading logic to the incoming events,
e FEzecution Units, which maintain orders with the exchange.

The applications design makes heavy use of multi-core systems by extensive
usage of threads in (currently) 2 different processes running on a single machine.
Stage instances and stage groups can be configured either as shared, where one
thread handles multiple stage instances, or as dedicated, where one thread handles
one single instance. Another special type of thread/instance association are
worker threads. These are for example used in the Orderbook components. Here,
multiple threads handle incoming events in parallel, partitioning the incoming
and outgoing event queues between multiple threads.

3The standard way of waiting for a new element in the queue is using a blocking mechanism.
If there is no new element available, the thread blocks. As soon as a new element is added to
the queue, all corresponding blocking threads are woken up. While this saves CPU resources,
it significantly increases latency [23].

feed_decoder @ @ @

Figure 4: ITM main path layout (example)

An example configuration of the main connection path is shown in Figure
4: The left column shows the semantics of the stage group, to which the other
elements belong. The graph shows a network of stages, where the edges represent
the inter-thread communication queues. In this example, Fxchange 1 provides
market data for three orderbooks via two channels. The three strategies subscribe
to any number of orderbooks, and use one or more execution venues for order
submission.

Since the execution unit is realized in a second process for security reasons,
and is constructed simpler than the main process, it will not be considered in
the rest of this thesis.

The usage of queues within the I'TM is not limited to inter-thread commu-
nication. There are two additional queue specializations, which also share the
basic queue interface:

e Interprocess communication queues, used for communicating work items
between the main I'TM process and the Ezecution process.

e Memory pools, used for assigning and releasing preallocated resources.

While these queues are not directly used for event-passing, their analysis can
provide the performance analyst with additional information. The scope of this
thesis does not include the analysis of such special queues. However, the design
and implementation approach presented in this thesis will be discussed regarding
its capability to handle future extensions, such as the inclusion of Inter-Process
Communication (IPC) and memory pool queues.

1.3 Performance Analysis Using Tracing

This section gives a more in-depth introduction to the tracing approach to
performance analysis that is already implemented within the ITM. It also
describes why tracing can not be easily used for a complete coverage of the
inter-thread communication.

The tracing approach delivers the most accurate results for performance
analysis. Here, in each stage of the pipeline, timestamps are taken when starting

and finishing the processing of an event. The timestamps are stored in a structure,
which is passed on to the next stage. The information in this structure can be
extended with semantic information, such as what the incoming messages’ type
was, or information on how the stages handled the message. For example, a flag
could be set if a conditional statement evaluated in a way that rarely-executed
code was executed. Event traces can therefore give a detailed and accurate
insight in the application behavior. However, some problems exist:

e Whenever an element is inserted and removed from a queue, creation
and storage of a timestamp is required. Adding tracing to an existing
application requires changes in the program code and data structures.

e The path of a trace may start and stop at multiple locations, making the
analysis of the trace data more complex

e Using traces with some queues, such as helper queues and memory pool
queues, might not be practical, as the tracing mechanism may have to
be implemented separately for each use of the queue, thus introducing
complexity and implementation overhead.

e Using traces introduces a considerable memory footprint and CPU usage
overhead at runtime.

The problem that is most apparent when running performance analysis on a
large-scale system is that the tracing mechanism has some performance impact
itself. Since every time an incoming event results in multiple outgoing events,
all of the previous trace data needs to be duplicated. This will result in a large
amount of copy operations alongside with a large amount of redundant data
that needs to be processed. In a situation with multiple hundred strategies
connecting to a number of orderbooks each this might lead to notable performance
degradation. Microbursts, as described in the previous section, amplify the
problem, as longer processing time will lead to longer queues building up.

1.4 Related Work

In this section, an overview of related work on performance analysis of concurrent
applications is given. Three different types and applications of concurrency are
discussed. The first part focuses on work in the High Performance Computing
area. The second part contains recent, popular programming models, such as
the MapReduce programming model. The last part discusses work similar to, or
directly related to the SEDA approach.

High Performance Computing Most initial research on concurrent pro-
gramming and techniques was done in the context of High Performance Com-
puting (HPC), and the area continues to be important in parallel computing
research [1]. In this area, the focus lies mainly on throughput, therefore perfor-
mance analysis and optimization focuses on cache and NUMA issues as well as
on the optimization of the algorithms used. Most important however is that the
HPC system makes best use of the computing power available, and avoids that
single processes run out of work or are forced to block and wait. In order to
achieve this a high parallelization factor, that is maximization of the proportion

P of the program that can be run independently from all the others, is desirable
(Amdahl’s Law [2]). Still, some form of synchronization between processes must
exist, and the various approaches have generated a large amount of research
activity on the performance analysis of the specific synchronization methods. In
the following paragraphs, two popular approaches for thread and process syn-
chronization in the HPC context are discussed along with performance analysis
techniques.

The first technique is message passing, with its most popular implementation
MPI [14]. MPI specifies an APT used to exchange data between processes and
distributed machines. MPI performance measurement is mostly done using event
traces and collecting data from performance counters, such as message size and
the time spent in MPI API calls. The MPI standard defines a profiling interface
(PMPI, [14]), which allows profiling tools to intercept calls to MPI functions and
insert instrumentation code. Examples of such tools are TAU, which focuses
on automatic instrumentation tools for problem detection, and KOJAK, which
provides a toolchain for instrumentation and analysis of trace data in order to
perform a detailed analysis of badly performing system components [7].

The second approach is loop-level parallelization, where a loop statement is
executed in multiple threads at the same time. The most popular framework
for this is OpenMP, which requires support from the compiler used [6]. One
of its main advantages is the support of an incremental development model, as
it allows the introduction of parallelism to existing code with little effort [4].
There is no standard way to obtain performance statistics directly from OpenMP.
Two common approaches use source-to-source transformation in order to add
instrumentation code to OpenMP statements, POMP and ompP [22]. The
Thread Profiler plugin for VTune by Intel is able to identify OpenMP parallel
regions and provides OpenMP libraries containing instrumentation code [22].

Since the advent of multi-core multi-node clusters, hybrid programming
models using both MPI and OpenMP are becoming increasingly common. Per-
formance analysis tools and methods supporting these architectures have been
developed, for example the Scalasca performance toolset architecture [15] and the
VampirNG [4] infrastructure. VampirNG focuses on detailed analysis of event
traces for automatic detection of problems with extensive visualization options.
The Scalasca toolset uses event tracing and per-thread call-path profiling, as well
as various performance counters gathered from the MPI, OpenMP, and the oper-
ating systems performance counters. Both are based on the KOJAK framework
and its functionality to use compiler hooks for generation of instrumentation
probes in C, C++, and Fortran.

It may be possible to perform coarse-grained analysis of asynchronous inter-
process communication using the data gathered from the profiling technique in
combination with event counters. However, detailed analysis of asynchronous
inter-process communication with the tools and frameworks listed above is only
possible by using event traces.

Recent Developments A more recently developed technology is the currently
popular Google MapReduce technology, which simplifies execution of code
that can be run in parallel by employing functional programming techniques.
MapReduce has been designed for analysis of large datasets and is used by Google
Inc., for example, for the regeneration of their web-site index. Performance

analysis therefore focuses on high throughput rather than low latency [5,11].
A popular implementation of the MapReduce technology is the Apache
Hadoop Project, on which various large-scale databases and data warehouse
systems are based, such as Apache HBase and Apache Hive. Apache HBase has
been a research focus of Facebook Inc., which introduced optimizations regarding
throughput and low latency to the HBase code base. Performance analysis can
be done using event counters and timing metrics, which are exported from HBase
and the RegionServer database manager, which is distributed with HBase [3].

SEDA Architecture A variant of the architecture used by the application
that is the focus of this thesis is the Staged Event-Driven Architecture (SEDA) [24].
In their paper, Welsh et. al. describe a pipe-lined, event-driven layout using
queues for inter-thread communication and buffering of work items. As the
primary advantage, the authors cite increased fairness (that each incoming
event is served with equal priority, and in order) and the high throughput in
high-load scenarios. As an example of a problem this architecture solves in
an HTTP web-server, the so-called slashdot effect is cited, where a website’s
traffic can be a increased by a factor of about 1000 for a brief period of time. In
this situation, clients experience connection timeouts or partially loaded pages,
because the server is unable to handle the large amount of requests in parallel.
Since the SEDA approach can handle parts of the processing stages of a request
sequentially or with a limited amount of parallelism, it can make more efficient
use of especially disk I/O, which is hard to parallelize. This can even lead to
decreased latency in comparison to a completely parallel approach, although
having a large amount of requests in the input buffer and serializing requests
might suggest the opposite behavior. Performance measurement of the described
system is done by the clients connected to the application, and is measured in
terms of response time.

Some work on on-line performance measurement of individual stages and a
complete SEDA system has been done by Li et al. [20]. A system using thread
pools for each stage is automatically tuned to achieve better performance by
using control system techniques. For this, the number of elements inserted into
the incoming event queues is used as an input for a controller, which in turn
regulates the number of worker threads in each stage.

There is only little work on low-latency performance analysis and optimization.
At LMAX Ltd., a foreign-exchange trade platform, the so-called Disruptor-
Pattern has been developed, which builds upon the SEDA architecture [23].
It is pointed out that the standard queue implementations provided by Java
introduce a considerable amount of latency as well as jitter. Thompson et al.
describe an alternative inter-thread communication structure that shares the
first in - first out characteristics with queues, but is aware of CPU caches and
supports multiple producers and consumers. The concurrent write access in the
Disruptor pattern shares some similarities with the Phaser pattern introduced
in Java 7, a deadlock-free one-way (point-to-point) synchronization mechanism
(hence the name Disruptor). The performance analysis done by the authors is
however limited to off-line analysis, using small test cases.

The approach of realizing intra-process communication by sending messages
between threads through queues can be considered a low-level implementation
of the Communicating Sequential Processes (CSP) language. This approach

forms the center of programming languages such as Newsqueak and the more
recent Go Programming Language developed at Google, Inc. [9]. However,
performance analysis utilities of these are restricted to call-graph generation and
benchmarking utilities, such as the Go standard library testing package and the
gopprof profiler [10].

The SEDA approach can also be considered to be an inter-thread variant of
the inter-process message-queues provided by most operating systems, commonly
referred to as System V IPC message queues. Kernel-supported distributed
inter-process communication, such as the DIPC extension to the System V IPC
model, has been found to yield better performance characteristics than user-space
based systems such as MPI. However, performance analysis on System V message
queues has mostly been limited to timing and throughput measurements [21,25].

Except for the event tracing approaches, the techniques listed above focus
on profiling and throughput or latency measurement. These techniques provide
either off-line analysis, or coarse grained analysis of the whole system rather than
of the individual components. These techniques can not be easily adapted for
in-depth analysis of an asynchronous inter-process communication architecture,
as required for the problem at hand.

10

2 Design and Implementation

In this section, the actual design and the implementation of the queue sampling
method are discussed. Where applicable, alternative implementations and
improvements are suggested. Four major aspects of the design are discussed.
Section 2.1 contains the functionality of registering to a central instance the
queues that are to be observed. In Section 2.2, topology information is added
to the queues, which can be used to describe the network of queues similar to
what is shown in Figure 4. In Section 2.3, the collection of the data from the
queues is described. Finally, Section 2.4 describes the export of the collected
data through the RPC mechanism.

This work builds upon various components that are already used and available
within the ITM: There are different kinds of queue wrapper classes, which
internally use either the concurrent_queue queue implementation made available
by Intel in their Threading Building Blocks (tbb) package [18], or, in cases
where less flexibility and higher performance is required, an internal ring-buffer
structure developed by IAT. The RPC mechanism is implemented using the ICE
framework by Zero-C [26]. This mechanism is also used by the trace functionality
already available in the ITM.

The programming language used for creating the I'TM is C++, with some
performance critical parts written in C or assembly. The implementation for
the queue sampling approach has been done in C++, and consists of about 480
lines of code for the queue registration and topology information classes. The
implementation of the necessary RPC calls and structures consists of additional
180 lines of code.

2.1 Queue Registration

In this section, two methods for automatically registering selected queues to a
central registry will be discussed. The first approach extends the base queue class
by adding a second level of inheritance, thus forcing all queues to provide the
interface for data sampling. The second approach provides this functionality as
a mizin, allowing to selectively choose which derived classes should be registered
and sampled. The second approach is more complex and requires programming
language support for multiple inheritance, but is also more flexible than the first
approach.

In order to periodically sample the queue fill levels, all relevant inter-thread
communication queues must be known to a central entity. A straight-forward
approach is to store pointers to the queue instances in a container structure.
A sampler function must then iterate over this container, gather the fill level
information, and export the data to allow analysis.

A reasonable approach for a container type would be a key-value storage such
as the std: :map container provided in the C++ STL, using an unique ID of the
queue as the key, and additional information on the queue, such as the topology
information described in Section 2.2, as the value. In this implementation,
the memory address of the queue object is used as the queue ID. By default,
elements in the std: :map container are arranged in ascending order of the key
values, which facilitates further optimizations regarding the RPC mechanism as
described in Section 2.4.

11

StatisticsInterface

StatisticsInterface()
~StatisticsInterface()
incount ()=0: uint
outcount ()=0: uint

+ o+ o+ o+

Queuelnterface

+ push(T)=0: void
+ pop()=0: T

UniDirectionalQueue

InterProcessQueue
+ incount ()
+ outcount () + push(T)
+ push(T) +pop(): T
+ pop(): T

Figure 5: Queue sample interface as base class to the queue interface

Unified Interface for a Parameterized Class The design used for a central
registration of all current queue instances is based on a singleton class called
QueueRegistry. Upon construction, every queue related to inter-thread com-
munication has to register itself to the QueueRegistry instance. Since multiple,
different types of queues may exist and the type of data that has to be sent
through the queue may differ, the queues need to inherit from one common base
class providing the methods to gather the required raw data values. This base
classes’ constructor will also take care of registration and de-registration with
the registry. A common queue interface containing the operations push() and
pop () can not necessarily be extended and used for this, since these operations
have a template argument or return value, thus introducing the requirement
for the interface to be a template class as well. Since the queues should be
stored in a single standard data container for every specialization, the basic
interface must not be a template class. The approach of using a second level
of inheritance, where the top-level class only provides the methods required for
sampling and queue registration is shown in Figure 5. This is not a very ”clean’
design on one hand, since it introduces another level of inheritance but also
introduces the requirement for every queue extending the interface to register
itself with the registry. On the other hand, some special kind of queues, such
as the inter-process queues used for communication with the Ezecution unit,
may require separate handling when accessing statistics, or cannot provide those
statistics at all. A better approach is using the statistics interface as a mixin,
as shown in Figure 6. With this approach, the queue’s designer may add the
sample functionality where appropriate by extending an additional abstract
StatisticsInterface class.

i

12

StatisticsInterface

Queuelnterface
+ StatisticsInterface()
+ ~StatisticsInterface () + push(T)=0: void
+ incount ()=0: uint + pop()=0: T
+ outcount ()=0: uint

UniDirectionalQueue

InterProcessQueue
+ incount ()
+ outcount () + push(T)
+ push (T) + pop(): T
+ pop(): T

Figure 6: Queue sample interface as mixin

Handling of Special Queues Still, the problem with the registration han-
dling of specialized queues, such as shared-memory inter-process queues, bi-
directional queues, and memory pool queues, remains. These queues, while
sharing a same basic interface with standard queues, may have different inner
workings and can therefore require a different interface for accessing fill level or
state information. A description of these queues is given below.

The first example is the memory pool queue. This class provides a number of
pre-allocated objects. A thread that wishes to use an object of that type fetches
one element from that queue instead of using standard memory allocation,
and therefore avoids a more expensive system call along with possible non-
deterministic behavior of the memory allocator. The usage information of
this queue can yield performance-related data and may give insight into the
application’s internal processes. The results need to be derived in a different
way. For example, other than with the queues connecting the stages, an empty
fill level is a critical state and a full queue is not.

In the case of the shared-memory inter-process queues, it is important to
consider that automatic queue registration will access the registry of the current
process, or will instantiate a new registry if the current process did not yet have
one.*

A third kind is the bi-directional queue. This kind of queue could for example
extend the basic queue class by encapsulating a second ”"return”-queue. The
queue registry needs to be aware of both encapsulated queues, and of the fact
that consumer and producer switch roles when using the second queue.

To be able to handle these queues correctly, a specific mixin for each special
queue can be created. This approach will allow for implementing the required
functionality separately for each specialization without having to change previ-
ously created functionality. The implementation done in this thesis focuses only
on queues within the critical path, which does not contain any of the special
queues listed above.

4This is assuming a default singleton pattern, where the getInstance() call will create a
new instance on demand.

13

Concurrency Considerations The methods of the queue registry, especially
the register and deregister methods, are expected to be subject to heavy
parallel usage on application startup and when changing the configuration of the
system. The operations performed in both methods consist of testing whether
the queue is already present within the container structure, and inserting or
removing an element from the container. It is therefore expected that these
methods will not use a large amount of time to finish execution. Since the
creation and destruction of queues is not a performance-critical process and the
methods do not invoke other methods of the same object, calls to these methods
can be processed serially and locked with a non-reentrant mutex lock mechanism.

In the implementation used, when the data is read by the sampler thread,
the same lock is acquired to protect the sampler thread against changes in the
container structure. The iteration over the container is neither performance-
critical itself, so the delay introduced by an operating register or deregister
call holding the lock is acceptable, nor is it expected that the sampling itself will
take time long enough to seriously interfere with application startup or when
changing the configuration.

2.2 Topology Information

This section discusses methods for determining topology meta-information about
each queue. This is the set of data containing the description on which stage
instances send, and which stage instances receive events through every single
queue. The advantages and disadvantages of three approaches will be discussed,
where the first and the second approach directly associate queue- and thread
ids, and the third approach uses a more indirect approach by adding semantic
information to both queues and threads.

The topology information associates the endpoints of each queue with the
type of functionality that the producers and consumers of the queue provide.
It needs to show each queues place in the overall graph of edges (queues) and
nodes (stages, threads). Since the queues connect threads, the thread ID may
be used to create a topology map. Threads need to specify whether they are
going to use a queue as a source or a drain endpoint. In order to obtain correct
topology information, a thread should register if and only if it uses the queue.

The main problems when designing and implementing this functionality are:

e The thread constructing the queue can not only be either the consumer or
the producer thread, but it is also possible that the queues are created by
a completely different thread.

e The reverse is true as well: When constructing the threads, not every queue
may be already constructed, requiring the thread to be able to detect new
queues.

e New queues and threads may be added or destroyed at any time during
program execution, by any other thread.

e Since latency is a constraint, updating the topology every time a push()
and pop() happens is not a feasible option.

e When creating and initializing the application, constructing a new queue
or when performing a standard or emergency shutdown, push() and pop()

14

while (!threadShouldTerminate ()) {
queue = selectQueueWithElements (DONT-WAIT));
if (queue = NULL) {
// There is currently no queue with elements waiting|.
updateTopologyInformation ();
queue = selectQueueWithElements (WAIT_UNTIL . TIMEOUT) ;
}
process (queue—>pop ());

}

Figure 7: Updating the topology information within the consumer loop

while (!threadShouldTerminate ()) {
if (configurationHasChanged = true) {
updateTopologyInformation ();
}

queue = selectQueueWithElements (WAIT_UNTIL. TIMEOUT);
process (queue—>pop ());

}

Figure 8: Updating the topology information using a notification mechanism

operations may be performed by threads handling the current operation
rather than the threads that would normally use them. For example, a
memory pool queue that is filled on creation will have a number of push()
operations done by the thread setting up the queue, and will have the
same number of pop() operations by the thread performing the shutdown.

I have developed two basic approaches that can be used to keep an up-to-date
list of queues by directly associating the queue pointers with the thread IDs.?
The first approach implicitly updates the list of queues, after an element has
been processed, and the second approach uses a notification variable, which
will cause the thread to update its list of queues after a change of the queue
configuration has occurred. Pseudocode-listings of how both approaches can be
used in the consumer loop are given in Figure 7 and Figure 8.

Figure 7 shows a slightly optimized version of the first approach. Here, the
topology information will be updated only if there is currently no further element
that needs processing. The second approach is shown in Figure 8. Here, when
the flag configurationHasChanged is set, the topology configuration is updated.
In contrast to the first approach, this method does not trigger an update in
every iteration. It does however rely on the queue constructor’s ability to set this
flag, possibly for the affected threads only, to minimize latency impact when the
configuration has been changed. The latter can be hard to implement, since the

5Thread ID in this thesis is any unique identification for a thread. Examples of such thread
IDs available in Linux could be the ID as given by the pthread system using pthread_self (),
the operating systems’ ID for the thread which is retrieved using gettid(), or a memory
address referencing some thread specific memory structure. Which data is available depends
on the thread implementation.

15

thread ID has to be known to the queue constructor, if the thread is constructed
first.

Three main problems led to the development of a third approach. First, both
approaches have an performance impact on the ITM. Limiting the extent of the
impact comes with the tradeoff of not having correct topology information all
the time, as the algorithm in Figure 7 may consume various elements before
an update is registered. Second, mapping of more complex queue-endpoint
to thread relations is not a trivial task. For example, associating a thread
pool with a queue endpoint requires more complex data structures. Finally,
the requirement of inserting the code in places where the queue is used by a
consumer or producer, or whenever a new thread or queue is created does not
meet the given requirement of the system being less intrusive to the codebase.

A third method is therefore considered, which will allow the sampler thread
to request topology information when required. In this approach, semantic
information about the queue is added to its constructor. This information
includes for both source and drain the stage type, and an additional string
parameter describing the stage instance. For example, the source stage type could
be Orderbook and the drain type could be Strategy, and the string parameters
could describe the feed symbol and the strategy instance ID. This approach
has the advantage that not all information about the endpoints needs to be
present at construction time, as the string parameter can be left blank. While
this approach leads to incomplete information, it allows for a more rapid and
incremental design process. It also simplifies the implementation of 1:N and N:1
relations, as described in the following paragraph.

In the case of a thread pool handling the queue endpoint, one provides the ID
of the Pool instead of, for example, the list of thread IDs handling the endpoint.
Likewise, in the case of a single thread handling a group of stage instances (shared
thread), the queues will be grouped and identifiable by a queue group identifier.
This identifier can be used as endpoint for the queues, and as target for the
thread. This could happen in the case of a pool of worker threads that share the
same queue endpoint. In a more special case that is present within the ITM,
multiple pools of threads may be allocated for static subsets of the instances.
For example, a single ITM instance may have a few thousand orderbooks, where
each subset of 100 orderbooks is handled by a couple of threads. While this
layout has the advantage of cache locality when processing the orderbooks, it
makes analysis of thread load more complex.

The actual implementation used in this thesis defines a QueueMetaInfor-
mation class, which accepts the parameters type and name for both source and
drain on construction. The queues’ constructor is extended to accept an instance
of this type, which is then passed to the QueueRegistry: :register method by
the StatisticsInterface mixin constructor. The data is then stored in the
queue registry.

Since this approach allows the introduction of blanks, or an empty string
as substitute for an correct instance identification, it allows for a fast initial
implementation and iterative improvements of the accuracy of the topology
information. The approach also allows extension of the topology information to
queue types with special semantics, such as memory pool queues or bi-directional
queues through the use of separate mixins, as described in Section 2.1.

16

2.3 Data Collection

In this section, the method of accessing the raw data from the queues (sampling)
is described. The main problem presented here is that a lock may not be used
when accessing the data, and two approaches for handling this problem are given.

Collection of the data happens periodically using a dedicated thread. This
thread needs to access the list of queues and gather information:

e In-Count: The number of elements inserted into the queue,
e Out-Count: The number of elements removed from the queue and

e Timestamp: A timestamp taken directly after both previous values have
been retrieved.

Since it is assumed that in a large-scale system sampling will take a measurable
time, a timestamp is taken along with each data set instead of just taking one
timestamp for each sample period.

There is obviously a race condition when accessing in-count and out-count
without a lock. However, since the goal of this work is also to minimize latency
impact, using a lock in this code is undesirable. There are two basic ways to
approach this problem:

e Accept that the data can be inexact in some situations. Having the in-count
sampled first and the out-count sampled last will, in some situations, lead
to a negative value when calculating the element count held within the
queue. The number of occurrences of these numbers may help to estimate
the scale of the error introduced by the sampling thread being interrupted
by the scheduler.

e Use a light-weight lock-free structure. An example is a variant of the
fast-reader lock [8], where one would first read the in-count, then the
out-count, and then the in-count again. If it matches the previously read
in-count, a correct data snapshot has been retrieved at the time where
the out-count has been read. Otherwise, the algorithm would try again
until both in-counts match. This works in terms of correctness, because
both values are monotonically increasing, but it introduces the possibility
of a long sample duration if there is a lot of activity in the queue. A
termination condition, for example after a finite number of failed tries to
access the data, is therefore required.

For this implementation, the first approach has been chosen. The implementation
of this functionality is also listed in Appendix A.

In order to achieve a decent quality of data while sampling, there should not
be too many changes in the values between two samples. In the ITM’s case,
a single machine may have multiple 10 gigabit network interfaces. The size of
market update messages is typically around 50 bytes, or less.® When a microburst
occurs, these messages may appear back-to-back. Assuming a packet size of

6The BATS market data specification lists a few types and is available at
http://www.batstrading.com/resources/membership/BATS_MC_PITCH _Specification.pdf. In
version 2.0, retrieved on March 25th 2012, an ” Add Order” message is between 26 and 40
bytes long, a ”Modify Order” messages length can be as short as 14 bytes. No message is
longer than 47 bytes.

17

SingleQueueSample

QueueSampleEvent

int64_t queuelD
nanoseconds_t sampleTimestamp nanoseconds_t sampleTimestamp

int64_t inCount vector<SingleQueueSample> sampledata
int64_t outCount

Figure 9: RPC queue sample data structure

100 byte including ethernet and protocol headers, this allows for a theoretical
throughput of more than 1.25 * 107 messages per second and interface. This is
equivalent to one element every 100 nanoseconds. A high sample frequency will
necessarily generate high load on the CPU, but will also lead to lock contention
on the counter variables on cache level in extreme cases, because the cache
coherency protocol will implicitly perform some sort of synchronization [12]. An
evaluation of different sample frequencies is provided in Section 3.

2.4 Data Export

This section describes the final implementation stage, which consists of the export
of both the topology information and the sampled data. After describing the basic
implementation, which can be considered to be straight-forward, suggestions for
improving the performance and the data volume are given.

The data has to be exported out of the application for performing analysis.
For this, the RPC mechanism already present in the ITM is used. Along with
the actual sample data, the system also needs to push to the client updates
concerning the topology. In order to do this, the sampler thread needs to be
aware that such a change occurred, and needs to format an update to a client.
While detecting fresh queues only requires a flag in the queue (detectedBy-
SamplerThread), detecting removed queues requires the sampler thread to keep
a list of queues from the last sample period as well. This list would then have to
be compared to the current list of queues in the system.

Implementation of the required functionality in the RPC mechanism is
straight-forward. As an example, the RPC structure for the QueueSampleEvent
is given in Figure 9. A QueueSampleEvent contains the timestamp when the
event was generated and multiple SingleQueueSample structures. Each Single-
QueueSample contains the values of the in- and out counters, read directly before
the timestamp was taken, of the queue with the corresponding QueueID. A
very basic implementation of a TopologyUpdateEvent would include all current
QueuelIDs, along with the endpoint types and semantic names.

Optimizations In some situations it may be necessary to reduce the data
volume or the number of RPC calls to a smaller amount. A few ideas are
presented here.

e Omitting known data: If the queue registry uses a container that is
sorted by the QueueID and if it is certain that the topology can not
change between an TopologyUpdateEvent and a QueueSampledEvent, an
obvious optimization is that one can omit the QueueID from the data
structure sent to the client. This will allow cutting the payload’s size by

18

1/4 in the implementation used here. The client, having received a full
list of QueueIDs with the most recent TopologyUpdateEvent is then able
to assign the correct QueuelIDs to the SingleQueueSample structure by
sorting the list of QueueIDs and assigning each SingleQueueSample one
QueuelD, in order.

Event coalescing: It is possible to decouple the queue sampling from
the event generation, by using a second dedicated thread for the event
generation. The sampling thread would then store the results from each
sample period in a data structure, and the event-generating thread would
periodically collect the complete data set and send it to a client. By using
a longer period than the sample period for the event-generating thread,
the number of RPC calls made will be reduced.

Preprocessing and filtering: Building upon the concept of the event
coalescing above, having the data from previous sample periods available
would allow preprocessing and filtering. As an example, queue samples
that do not show changes when compared to the previous sample period
could be omitted from the data sent via the RPC.

19

3 Validation

In this section, a complete application instance is tested against recorded real-
world market data, using the playback speed of the recorded data, the sample
frequency, and the strategy configuration as parameters. The goal is to determine
how the data derived from queue sampling compares to the trace data, whether it
can be used for live-performance analysis, and how the two approaches compare
on a performance level. In more detail, we are looking for answers to the
following:

e What is the informative value of the data generated by the queue sample
data? Is it possible to observe partially filled or completely filled queue
states even though the processing time of the stages is generally very short?

e [s it possible to detect performance bottlenecks and back-pressure by
looking at the queue sample data? Can the queue sample data be used as
a live performance overview of the whole system?

e How does the tracing mechanism react to a high number of incoming events
and to a large number of concurrent traces? What is the performance
of the queue sampling code when a large number of queues need to be
processed?

The remainder of this section is structured as follows. First, a description
of the test environment and its limitations is given, along with a description of
the test procedure and parameters. Section 3.2 discusses various techniques for
validating the correctness of the received data, and discusses detected discrepan-
cies. In Section 3.3 it is discussed whether the sampling method introduces a
performance penalty on the ITM at various sample frequencies. In Section 3.4
the performance of the sampling code and anomalies in the time required for
sampling are analyzed. Finally, in Section 3.5, the data is tested to determine
whether performance issues can be detected using the collected data, using
different playback rates and strategy configurations. The validation is concluded
by discussing the results of this section.

3.1 Test Environment

The following will give a description of the environment used for testing, as well
as the restrictions and the differences compared to the production environment.

The tests have been performed on two Supermicro servers, using Intel Nehalem
processors with 16 cores at 3.2 GHz clock speed and 12GB RAM each. Both are
connected using two direct fiber optics connections with 10 Gigabit of throughput
each. The first (primary) server is used to run an ITM instance. The second
(supporting) server provides the market data as input for the primary server.
Both servers run the Red Hat derivative Scientific Linux 6.2. The RPC clients
are run on a third machine connected via a 1 Gigabit ethernet interface. Two
different market data streams can be run through the two network interfaces,
leading to a more realistic activity in the ITM.

In these tests, the market data retrieved from the exchanges BATS and
Chi-X will be used as input for the so-called SmartQuota strategy. This strategy

20

compares prices on two exchanges, looking for minor differences and utilizes
them.”

The choice of Chi-X and BATS was made because the feed layout is com-
paratively simple, and because the same instruments® are traded with the same
symbol on both exchanges. This significantly simplifies automated testing. The
market data used throughout this section was recorded on June 22, 2012 starting
at 3:00 A.M. and ending at midnight. The recording has captured the whole
trading hours phase, which ranges from 8:00 to 16:30 London time, along with
the setup data that is sent beforehand.

An important restriction of the test environment is that the packets were
streamed at a fixed rate rather than with the rate dictated by the market
environment. This restriction implies that it was not possible to simulate the
microburst conditions in the way they would appear in reality. Since these
bursts often concentrate on a very specific subset of market data or even a single
instrument, it was expected that short high-load conditions could be observed
nevertheless. These would however not appear at feed level — since the incoming
event speed was fixed here — but rather at later stages. A beneficial aspect of
the fixed replay speed in respect to the test procedure is that tests generally run
faster. For example, the data recorded from the Chi-X feed contained 9.8 million
packets. This results in a test time of about 15 minutes, whereas replaying at
the real speed would have resulted in a test time of 24 hours.

To to be able to partially simulate microburst conditions at feed level, a
modification of the test environment is done in Section 3.5: The tool playing back
the feeds is modified, so that instead of delaying the execution after every packet
sent, it will only introduce the delay every Nth packet, so that N packets are
sent back-to-back through the interfaces. This allows the simulation of bursts at
the feed levels. However, these bursts are missing the semantic context between
the amount of packets sent and the instruments responsible.

A second limitation became visible after initial tests had been run. It was
observed that high replay-speeds resulted in dropped packets at the feed decoders.
Since the feed decoders receive their packets directly from the operating system’s
network input buffer?, observation of the incoming queue of the feed decoder can
not be done using our approach. In a production environment, the system would
request the dropped packets from a recovery server provided by the exchange.
The test framework used provides simple replay of the recorded data, and does
not provide any recovery functionality.

The parameters that were modified in this test are:

e Queue Sample Period [milliseconds]: the time the sample thread waits
in between two sample runs.

e Replay Delay [microseconds]: configuration parameter of the packet
replay program. When replaying the recorded market data streams, this is

"The basic idea is that if a security is sold cheaper on exchange A than it is bought on
exchange B, the algorithm may buy on A and sell on B, where the difference in price times the
quantity is the profit the algorithm achieves. This strategy is seldomly used in a ”pure” form,
since the competition here is extremely high [13].

8 An instrument is any stock symbol, future, contract etc.

90n Linux, the size of the UDP input buffer depends on the available memory and
the sysctl configuration option net.ipv4.udp-mem, the buffer status can be observed in the
pseudo-file /proc/net/udp. More information can be found at http://www.kernel.org/doc/
Documentation/networking/ip-sysctl.txt (retrieved July 3, 2012).

21

the interval between each two consecutive packets.

e Burst Length: The amount of packets sent in each step by the replay
utility. The default value is 1, this parameter is only changed in Section
3.5.

e Strategy Configuration: The default configuration uses 10 strategies
that connect to one orderbook pair'® each. In Section 3.5 another con-
figuration is used, where 10 strategies connect to one single orderbook
pair.

For each feed instance, a separate feed, market and OrderbookWorker thread
is created. The strategies are configured to use the polling queue-wait mode,
resulting in the strategy continuously polling for new data on the incoming event
queues, therefore creating 100% load on one CPU core per strategy instance.

3.2 Validation of Data

In principle, it is possible to use the data generated by the tracing mechanism to
verify the correctness and usefulness of the sampled data. The tracing mechanism
inserts a timestamp T},s, into the trace data vector right before an element
is inserted into a queue. Right after the element has been removed, a current
timestamp 7}, is inserted into the trace vector. Therefore, for a given timestamp
Tsample at which the corresponding queue has been sampled, the count of traces
where
Tpush S Tsample S Tpop

holds should be equal to the measured fill level at that timestamp.
However, although this approach could work in some applications, a few
assumptions have been made that may prove to be invalid:

1. It is not possible to create a timestamp at the ezact moment of insertion
into the queue. In fact, when working with nanoseconds resolution, the
time spent in the required syscall for fetching the current time will be
considerable. There is also always a timespan between the insertion of the
timestamp into the vector, and the actual insertion of the element into the
queue. This value can be considerably large, if additional code lines are
inserted between these two actions.

2. A number of events can be filtered out at earlier stages, before the trace
generation can happen. In the orderbook component, most incoming
events are typically filtered out, and only those events subscribed to by
the strategy get passed to the next stages.

3. When a consumer merges two or more streams, it may not be possible
to determine where the origin was. This is the case with the feed traces
within the ITM: Traces are generated when a connected orderbook sends
out an event. Which orderbook sent the event, however, is not shown.

10For each instrument, one orderbook describes the activity of the instrument on each market.
The two corresponding orderbooks on both observed markets are referred to as orderbook pairs
in this thesis.

22

It is expected that the first problem will lead to some small differences in the
fill level calculated through the sampling method, and the fill level calculated
using data from the event traces.

Handling the second problem in this list requires that the validation is only
performed at stages where one can be certain that no elements are filtered out
before a trace is generated. In the ITM, this leaves us with the queues connecting
Orderbook stages with Strategy stages (Orderbook— Strategy queues). A problem
with these queues is that in the tests done, no non-zero fill level was visible at
all. This effect will be further discussed in Sections 3.5 and 3.6.

The third problem has to be handled differently for each validation test case
where this problem is relevant, and will therefore discussed separately in each
test case.

The validation tests have been done using the following test setup: 10
strategies connect to 10 different orderbook pairs (1:1 setup). The value of 10
was chosen as a tradeoff between a large number of strategies running in parallel,
and the necessity of having a few cores available for the remaining components
and other operating system tasks. The replay delay has been set to 50us/packet
for both interfaces, and the sample period has been set to 10ms. The instrument
with the most trading activity, and therefore the one generating the most traces
and the highest activity in both the orderbook and the corresponding strategy,
has been chosen for the validation. Of the instruments observed, this was Adidas
AG (ADSd on both Chi-X and BATS), which accounted for 83% (9634 of 11613)
of the generated traces.

Validation of the data has been done in three steps:

Step 1: Sum of Element Counts After the measurement session, the count
of traces that were received should be equal to the sum of the event counts of all
incoming queues, plus the count of control events.! This is also true for every
subset of the run time, in which no trace was currently active.

More specifically, the sum of all traces ending before the last queue state has
been recorded should be equal to the count of consumed elements. This analysis
can be done by hand when only a few queues are to be analysed.

In our measurement, the sum of eligible traces turned out to be 9634, and
the Out-Counts of the most recent sample event from both orderbooks of the
ADSd-pair are

CCMi=X 4 0BATS — 4405 + 5234 = 9639,

out out

which leaves 9639 — 9634 = 5 control elements, which is well within range of
what was expected. For the following validation stages, these 5 elements will be
implicitly subtracted from the sample data counts.

Step 2: Visual Inspection It is possible to visually inspect the increments
and differences between the queue state counters and the number of traces by
plotting those values against a time axis. In order to compare the cumulative
count of traces with the two input streams, the sampled counts from the two
input streams has to be combined. Since there is a timing difference between

11 Control events are used within the ITM to signal the occurrence of specific events, such as
packet loss or the start of the trading phase. Each stage will typically receive a small number
of such events in the startup process.

23

500 =— trace count 1
— sampled fillstate (combined)

4501

4001

350}

300t

1.0 1.5 2.0 2.5 3.0
le8+6.55236el3

Figure 10: Trace count and sampled queue fill level over time (excerpt)

the samples of both streams, albeit little, the result of combining the counts
from the same sample period might not give an exact result. It might however
be sufficient for a simple evaluation. Figure 10 is an excerpt of such a plot,
combining the sampled values of the two input queues while using the timestamp
of the earlier sample for the x-axis. It can easily be seen that the queue sample
count steps up to the trace in every sample period.

A more detailed analysis of the above can be done by including the individual
timestamps from the SingleQueueSample structure in the analysis.

Step 3: Validation of Correctness The most interesting question is whether
the sampled queue fill level actually reflects the count of elements at the time of
sampling in the queue that is observed.

In order to perform such an analysis, a program has been created that
performs the following processing on the data:

1. From the trace data, load the pair of data corresponding to the times of
insertion and removal from a queue.

2. Load the sampled data from this queue and for each sample, store the
timestamp Tsqmpie along with the calculated fill level C.

3. Iterate over the sampled data:

(a) Find the number of Ny,qtchn trace pairs where the insertion timestamp
is smaller and the removal timestamp is larger than Tgqmpie-

24

(b) If Npaten is not equal to C, output the expected and real value along
with a timestamp.

The algorithm outputs the cases, where a difference between the sampled fill
level and the fill level calculated using the trace data occurred. In the general
case, since this program considers only one queue but the traces of two queues
combined, one would expect a large number of false positives. This would happen
if the trace was generated by an event that passed a queue that was not inspected.
While this problem does exist, the effects are diminished here due to the already
mentioned fact that on both queues a fill level > 0 could not be observed. A
check whether a non-zero fill level, as calculated from the trace data, that was
not detected by the sampling method in one queue, was detected by the sample
date from the other queue, can therefore be omitted.

In the test scenario, the program found 17 and 13 discrepancies when analyz-
ing the data from the Chi-X orderbook queue and the BATS orderbook queue,
respectively. Manual analysis of the corresponding trace data suggested that in
fact a value should have been recorded. In fact, the sampled timestamp seemed
to generally be near the mean value of the insertion and removal timestamp.
Since no other indication of an error in the code was given, I suspect that a
scheduling problem combined with the timing discrepancy (problem 1 described
in Section 3.2) could have been responsible for the discrepancies. This theory is
supported by the fact that the duration T}, — Tpysn Was generally larger for the
traces corresponding to the discrepancies. The latter was 74554 nanoseconds on
average whereas the average duration over all the traces was 15572 nanoseconds.

3.3 Performance Impact

In order to measure performance impact of the queue sampling, and of using
different sample frequencies, a performance test has been done. It is expected
that increasing the sample frequency to a point, where the sampling thread fully
utilizes one CPU core, will have a small yet measurable performance impact on
the ITM.

As in the previous test, this test uses 10 strategies connected to one orderbook
pair each, as a tradeoff between a large number of strategies and providing enough
computing power to the remaining components. For measuring the system’s
performance, the data generated with the tracing mechanism has been used.
Since CPU performance statistics could also be relevant, the system was run
with the "perf’ tool'2, which can extract various statistics from the kernel and
the CPU, such as cache and TLB misses, as well as page faults and the number
of instructions the program used. Since this tool causes some overhead as well,
the packet delay was increased to 70us, as lower values caused dropped packets
in the feed handler. The lowest sample period possible in this test case is 5ms.
Lower values caused the RPC-System to overload.'® Other sample frequencies

12The perf tool has been created by Red Hat Inc. It is distributed with current Red Hat
Enterprise Linux editions. More information can be obtained at https://perf.wiki.kernel.
org/index.php/Main_Page (retrieved July 11, 2012)

I3RPC requests are currently performed synchronously. This means that while an RPC
request is processed by the client, other requests are queued. Also, when a trace is sent (with
considerable payload), the queue elements will have to wait as well. Since in the current
implementation heartbeat requests are queued as well, having a queue that takes more than
the heartbeat timeout to process will cause the client to drop because of the missing heartbeat.

25

sample freq. | mean | stddev | ql median | q99
foed —smarket 5ms 62.1 153.8 17.3 | 55.5 172.1
100ms 61.5 167.3 17.4 | 55.1 152.1
1000ms 60.3 | 212.7 17.6 | 54.1 131.5
market—OB 5ms 56.0 | 55.4 13.0 | 54.0 128.2
100ms 55.5 | 29.1 12.9 | 54.8 1184
1000ms 54.8 18.6 13.1 | 53.8 114.8
OB—sstrategy 5ms 16.8 | 7.0 8.0 | 15.5 49.7
100ms 15.1 6.0 7.3 | 144 44.1
1000ms 15.7 | 6.1 7.9 | 14.7 46.8

Table 1: Measured latency impacts of the queues connecting feed, market,
orderbook and strategy when changing sample frequencies [us]

used are 1000ms, which is expected to cause no measurable performance impact,
and 100ms, which can be considered a tradeoff between the two other values.

For each sample frequency configuration, about 17200 traces were collected
by running each test case twice.

The results are shown in Table 1. This table shows the latency introduced
by the queues, as measured by the trace mechanism, for three different sample
period lengths (5ms, 100ms and 1000ms) in the three critical path queues. The
latencies are given as the mean value, the standard deviation (stddev), the 1%
and 99% quantiles (¢ and ¢99), and the median value.

As stated in Section 3.1, the Strategy components use a polling queue-wait
mode, which leads to the significantly lower duration in the OB—strategy queues.
Due to the high standard deviation shown especially in the feed to market
queue, the quality of the results regarding the differences between various sample
frequencies is questionable. It is however visible, that the mean and q99 values
become significantly larger when lowering the sample period to 5ms. This is the
expected behavior, since increasing the load on the memory bus will necessarily
decrease the performance of other components.

No conclusive results can be derived from the ql and median values. The
standard deviation seems to become larger in the Feed—Market queues and
Orderbook— Strategy queues at 5ms sample period. On the other hand, within
the Feed—Market queue, a low sample period length seems have a positive effect
on the ql and stddev values. This behavior could originate from a caching effect,
since having a high access rate on specific values could cause them to being kept
in the CPU cache, even if they are accessed on a different CPU. Whether the
observed effect can be attributed to this caching effect may be an implementation
detail of the specific CPU type [12]. As shown in Table 2, using a low sample
frequency seems to slightly decrease cache misses in the Lowest Level Cache
(LLC). The accuracy of these results can however be questioned as well, since
the exact behavior of the CPU caches depends on a large number of factors, and
is hard to observe [12].

As the test results show a high standard variation and inconsistencies, they are
not suitable for derivation of a meaningful conclusion regarding the performance
impact of the sample code. As the RPC mechanism (and the sample code itself,
as shown in the following section) obstruct testing at higher frequencies, it can
be concluded that constructing meaningful test results is, with the given test

26

LLC-load | LLC-load-misses | percentage
5ms 8.2 x 10% | 5.3 x 108 64.2%
100ms 7.9 x 10® | 5.4 x 108 68.5%
1000ms | 8.1 x 10% | 5.5 x 108 67.4%

Table 2: LLC Load Misses at different sample frequencies

environment and implementation, not possible.

3.4 Performance of the Sampling Code

In this section, the time required for a single sample period is discussed, as the
sample duration in the previous tests appeared to be unusually high. Three
different theories that could be responsible are given and analyzed.

While analyzing various sample frequencies, it turned out that the duration of
the sampling itself took more than 1ms for 165 queues, which can be considered
to be very slow: In his paper on memory and caching [12], Drepper shows that
in extreme cases, on very large datasets, access time of elements using random
access can take up to 1500 CPU cycles. At 3.2 GHz CPU clock speed, this
should allow for 2.13 % 10° values to be accessed every second. Even in the
worst-case scenario, accessing 165 x 2 = 330 values should therefore be finished
within 330/(2.13 % 10%) = 1.5 % 10~* seconds, or 0.15 milliseconds.

The following shows possible reasons:

1. Each single sample requires a timestamp, which will result in a syscall.
Internal measurements done by TAT however show that the time for a
call to clock_gettime (CLOCK_REALTIME) took 29ns on average, therefore
these calls should take no longer than 5us for all queues combined.

2. The values can not be kept in the CPU’s cache due to the requirement of
other threads to read and write them as well.

3. Prefetcher logic can not be used for queues that are not located in a linear
layout in memory. It might even introduce performance penalties if small
sets of queues are located in a linear layout, followed (in the order of
sampling) by queues that are laid out differently, because the prefetcher
might load memory into the cache that is not going to be used.

It was assumed that the last issue concerning the caching in a multi-core
environment would account for the largest amount of time consumed. This
assumption implies that queues that have low activity should take less time to
be sampled, as the In-/Out-Count could stay within the sampler threads’ cache.
This might not apply to the strategy queues (poll-loop), depending on how the
cache coherency protocol is implemented.

A test was done to verify this assumption, using 10 strategies connecting
to 10 orderbook pairs in a 1:1 relation, a sample delay of 50ms, and a replay
delay of 50us. The results are shown in Figure 11. The graph shows for each
queue the average sample duration (blue line) and the number of elements that
were sent through the queue during the runtime (grey line, logarithmic). The
first observation is that, compared to the average sample duration, some queues
consistently take longer to be sampled, and some queues consistently take less

27

10000 T \ 6

— average sample duration
— in nt
9000} Cou
15
8000}
i 14
=) —
o
S 7000} M >
=) o
c 13 =
3 | l . IR 5
2 6000 o
: | LI LS
& 12
5000}
4000 11
3000 20 40 60 80 100 120 140 160 189

Queue Index (in descending order of sample duration)

Figure 11: Queue sample duration for individual queues

time to be sampled. The next observation is that, with one exception, there does
not seem to be any correlation between the number of events passing through
the queue and the time required for sampling them. The exception to this is
shown by the peak on the left side, which corresponds to the two feed to market
queues. Sampling the Chi-X queue took an average of 7250ns, sampling the
BATS queue 6974ns.

In order to determine whether CPU prefetcher logic could be responsible, a
second graph was created. It is assumed that queues that are in a linear layout
in memory, are sampled faster than queues lying at more random positions in
memory. Figure 12 shows the sample duration of each queue along with the
absolute difference of the memory location to the previously sampled queue.
Queues are sorted by increasing memory location. The graph shows 7 peaks in
sample duration over 6500, 4 of which are in a block containing about 13% of
the sampled queues (Queues 145-165). In this block, the memory locations of
the individual queues are non-contiguous, whereas in the remaining queues, only
2 deviations of the standard memory location difference can be observed.

Another observation that can be made in Figure 12 is that the queues
with a peak maximum average queue sample duration are, in sampling order,
always directly preceded by a queue with a minimum peak average queue sample
duration. That this is in fact not caused by some very large deviations from the
average was confirmed by calculating various quantiles, which showed similar
results. Plots of Figure 11 containing various quantiles can be found in Appendix
D.1.

It can be concluded that the theories presented at the beginning of this

28

10000 ‘ ‘ 16
— average sample duration
— memory location difference 114

9000

8000
7000}
6000% Wwww M

5000 A

4000

Sample duration [ns]
®
absolute difference between queue memory locations, log10

30000 20 40 60 80 100 120 140 160 188

Queue Index (in the order they were sampled)

Figure 12: Queue sample duration for individual queues, in sample order

section could not be verified, and that the reason for the large sample duration
remains unknown.

3.5 Visibility of Performance Data

This section focuses on the question whether it is possible to use the data as
generated by the queue sampling mechanism as an indicator for performance
issues. The sample interval in this test is 10ms. This value was chosen to
allow for higher replay speeds compared to the tests in Section 3.3. It is first
described why the queue used for communication with the RPC mechanism is
excluded from the measurements. Afterwards, for each of the three major test
configurations, a description of the test and an analysis of the test results is
given.

RPC Queue Removal An initial inspection of the data revealed, that a
distinction between the RPC queue and all other queues had to be made: RPC
events in the I'TM are pushed into an event queue, which is processed by a
publish-subscribe handler every 50 milliseconds. Since every 10 milliseconds a
new event is created by the sampler thread, the queue fills up with every sample
period, until the event count reaches 4. In the following sample period, the
queue is empty again and the pattern restarts from the beginning.

In the analysis following in the remainder of this section, the data gained
from the RPC queue was removed because of the following reasons:

1. The pattern showed only slight variations, independent of what the system

29

. 1
! — fill level
! .
! - - start of trading
200 - - packet loss
! I
! I
! I
_ 15p 1 | |
(] 1 X
>
3 [\
= I \
= 1 X
T 101 | | |
5 ! |
%]] |
g . :
1S 1 X
5t | | 1
I
I
]
0 | ! |
! I
! I
! I
-5 Il I I I I 1
0.5 1.0 1.5 2.0 2.5
Time [ns] (1.0ns*10e9 = 1s) lel0+5.651el3

Figure 13: Queue fill levels at 40us replay delay

load was. The variations found could either be attributed to scheduling
behavior (for example, when the pattern switched from 0-1-2-3 to 1-2-3-4),
or to the fact that an event has happened where clients should be notified,
such as a log message or a trade event.

. The queue does not have a size limit (UnlimitedQueue), so that it is not
possible to fill the queue or to generate a significant amount of backpressure.

. Since all stages share a single RPC event queue, the origin of an event
can not be determined with the queue sampling method, making the data
gathered unsuitable for performance analysis.

. Events in the RPC queue tended to appear in large bursts. In combination
with the fact that they are only periodically removed out of the queue,
sampled values tended to become very large in some situations (especially
during startup and shutdown, and at the start of trading) and overshadowed
measurements from the queues in the critical path.

1:1 Orderbook-Strategy Configuration In the first test, the configuration
used in the previous tests is analyzed. The first task was to determine the highest
replay-speed that does not cause dropped packets in the feed decoders. This
was done by manually increasing the replay delay in 10us-increments, until a
test run could be completed. The highest replay speed where the test did not
fail was determined to be at a replay delay of 50us. In order to determine if
an upcoming packet loss situation was indicated by the queue sample data, the

30

1600 I ,
— fill level
. I
1400f| - - start of trading I .
|
- - packet loss X
— I I
g 1200f | | .
'43 1 1
S I I
€ 1000f ! b
=} I I
L | 1
o) 1 1
> 800} I I 1
- 1 1
= | 1
3 600 | .
2 I I
g | |
£ 400f I I g
] |
I I
I I
200 | | b
I I
I I
! ! ! ! 1
%.o 0.5 1.0 1.5 2.0 2.5 3.0

Time [ns] (1.0ns*10e9 = 1s) 1lel0+5.651el3

Figure 14: Queue fill levels at 40us replay delay, cumulative sum

first analysis was done with the data gained from a test run where packet loss
occurred.

Figure 13 shows the fill level plotted against the time of sample for each
individual queue, using a replay delay of 40us. The red dashed line indicates
where the packet loss was detected. The green line approximates when the active
trading phase started.'*

There are 3 major observations that can be made in this graph:

e A number of small peaks occur at seemingly random positions in time.
Investigation showed that the Feed—Market queues, from both feeds, are
causing these peaks. The last peak can be attributed to queues filling up
caused by the system shutting down.

e Two small peaks can be seen at the time of the packet loss. These are
caused by the same Feed—Market queues. The fill levels are 4 and 5 for
the Chi-X—Market and BATS—Market queues, respectively.

e Negative values are visible. This is an expected behavior for a highly active
queue, as described in Section 2.3.

In order to determine if there are differences in the density of non-zero fill
levels over time, a cumulative plot of the sum of fill levels has been created and
is shown in Figure 14. This plot shows a mostly linear increase and short, larger

14 As this information can not directly be received from the queue sample data, it is assumed
that active trading has started when events are sent to an orderbook. To account for the fact
that a small amount of control events is sent at startup, a threshold of 10 has been used.

31

Queue count(C' > 1) > C inCount, total
Feed to Market
Feed:BATS to Market 618 689 136393
Feed:Chi-X to Market 354 701 92803
Market to Orderbook
to OB:Chi-X:ADSd 2 5 645
to OB:BATS:ADSd 8 8 1696
to OB:WorkerThread/1 62 40 35919
to OB:WorkerThread/0 88 89 59704

Table 3: Summary of non-zero fill levels at 40us replay delay

L g4 count(C > 1) Number of samples with non-zero fill level
et s Sum of (non-zero) fill levels

increases at the points where Figure 13 shows peaks. No major increase of the
cumulative sum is visible at the time of packet loss.

Table 3 shows an overview of the queues that are related to our configuration.
Queues that are not related to the ADSd orderbooks, and queues without detected
non-zero fill levels have been omitted. Two observations can be made in this table:
First, the sum of events in the queue Market—Orderbook: WorkerThread/1 is
less than the amount of detected non-zero fill levels. A further analysis of this
revealed that all the negative events seen in Figure 13 originate from this queue.
The second thing that can be observed is that the Orderbook—Strategy queue
did not appear due to the fact that no non-zero fill level was measured.

The observations made here are similar for a replay delay of 50us (see
Appendix D.2 for the corresponding table and graphs, and for a comparison of
the cumulative sum of fill levels between 40us and 50us replay speed).

1:10 Orderbook-Strategy Configuration Since packet loss occurred with-
out visible indication of a full queue, a different strategy configuration was
tested, using a 1:10 orderbook-pair to strategy relation: In this configuration,
the orderbook pair for the ADSd (Adidas AG) provides events to 10 strategies.
In this configuration, the ADSd Orderbooks have to generate 10 times as many
events as in the previous configuration, thus increasing the load on the orderbook
thread, which should in turn be visible in the incoming queue for this orderbook.

The changed configuration resulted in the requirement to further decrease the
replay-speed, as tests with a replay delay of 50us failed because of lost packets
at the feed decoders. A successful test run has been performed with a replay
delay of 90pus.

A plot for a configuration where packet loss occurred, using a replay delay of
80pus, is shown in Figure 15. The most significant observation that can be made
from the graph is the large peak at about 1/3 of the test runtime. An analysis
done of this peak revealed that in fact the pattern was caused due to pressure
on the Orderbook. Table 4 shows the fill levels over consecutive sample periods.
It can be seen that a high fill state in the Feed:Chi-X—Market queue causes
raised fill levels in the queues of the following stages.

At the time of packet loss, however, no significantly increased fill level can
be detected. A complete overview of the related non-zero fill levels is shown in

32

measured fill level

. ‘ ‘
I — fill level
]
120 - - start of trading [
| - - packet loss
1001 | .
]]
]]
80 ! \ |
]]
]]
]]
60 I 1
]]
]]
40+ ! ! 1
]]
]]
]]
20 1 [b
]]
]]
0 ! 'y L Land L 'I
]]
]]
_ L 1 .
207 2 3 4 5 6 7 8 9
Time [ns] (1.0ns*10e9 = 1s) 1e9+4.4959¢e13
Figure 15: Queue fill levels at 80us replay delay
Feed:Chi-X—Market 14 92 10 O 0 0

Market—OB:WorkerThread/1 0 0 44 102 124 O

Market—OB:ADSd 0 1 22 20 14

Table 4: Queue fill level pattern at 80us replay delay

33

0

Queue count(C' > 1) > C inCount, total
Feed to Market

Feed:BAT'S to Market 73 291 26534

Feed:Chi-X to Market 75 296 22568
Market to Orderbook

to OB:Chi-X:ADSd 6 84 353

to OB:BATS:ADSd 4 4 348

to OB:WorkerThread/1 28 372 6925

to OB:WorkerThread/0 35 65 11287
Orderbook to Strategy

Chi-X:ADSd to S:ADSd-9 1 1 266

Table 5: Summary of non-zero fill levels at 80us replay delay

Table 5. In comparison to Table 3, the sum of fill levels compared to the amount
of non-zero fill levels detected is significantly larger, although as shown in the
graph, this can be attributed mostly to single, large peaks.

Figure 16 shows the detected fill levels at a replay delay of 90us. Note that the
run-time of this test run is about 10 times longer than the previously analyzed run
as indicated by the scaling factor in the bottom right corner of the graph, due to
the fact that no packet loss occurred. The longer run-time leads to the visibility
of a larger amount of peaks. The peaks appear mostly in the Feed—Market and
the Market— Orderbook queues. An analysis of the peaks showed no significant
patterns other than slight variations of the pattern described above. The two
largest peaks originate from a loaded Orderbook:WorkerThread queue, which
is at a fill-level of 50 and zero in the following sample period (at about 5.3 on
the x-axis). The second large peak (near the 8-mark on the x-axis) is caused by
both Feed—Market queues, with values of 63 (BATS) and 68 (Chi-X). Both fill
levels are zero in the following sample period.

Simulation of Bursts As it was not possible to find any real indicator for
a loaded queue or backpressure, it was tried to get closer to the production
conditions by simulating the microburst load situation, with the constraints
described in Section 3.1.

Again, the change of configuration enforced an increase of the replay delay.
Starting off at bursts of 20 packets every 1 millisecond (50us replay delay on
average), the burst size was gradually decreased, until a configuration that did
not cause packet loss was found at a burst size of 8 packets every millisecond.
These values result in an average packet delay of 125us, which again is a lower
on-average replay delay than the value used in the previous tests. The resulting
graph is shown in Figure 17. It can be seen that the detected non-zero fill levels
are now generally larger, with the majority of fill levels being at 5 or less. Table 6
shows that these can largely be attributed to the Feed—Market queues, showing
an average non-zero fill level of 2.29, whereas the Market—Orderbook queues
show an average non-zero fill level of 1.48. This leads to the conclusion that the
market stage compensates for the peaks. While similar values can be observed
in Table 5, the corresponding graph and analysis shows that these values are
dominated by a few large peaks.

34

measured fill level

70

60

50

40

30

20

10

-10

measured fill level

20

15

10

— fill level
- - start of trading |/

1 2 3 4 5 6 7
Time [ns] (1.0ns*10e9 = 1s) 1lel0+4.48el3

Figure 16: Queue fill levels at 90us replay delay

— fill level
- - start of trading

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [ns] (1.0ns*10e9 = 1s) lel0+4.973el3

Figure 17: Queue fill levels at 1ms replay delay, bursts of 8 packets

35

Queue count(C' > 1) > C inCount, total
Feed to Market

Feed:BATS to Market 272 614 122807

Feed:Chi-X to Market 401 926 90088
Market to Orderbook

to OB:Chi-X:ADSd 10 14 693

to OB:BATS:ADSd 28 42 2050

to OB:WorkerThread/1 107 153 35425

to OB:WorkerThread/0 208 312 54817
Orderbook to Strategy

BATS:ADSd to S:ADSd-8 1 1 1287

BATS:ADSd to S:ADSd-4 1 1 613

Table 6: Summary of non-zero fill levels at 1ms replay delay, bursts of 8 packets

36

3.6 Results

In this section, the results gained from the measurements will be discussed.
A discussion of the accuracy of the gained data along with the problems that
appeared in testing will be done in Section 3.6.1. In Section 3.6.2, the suitability
of the queue sampling method for performance analysis is discussed.

3.6.1 Quality of the Data

This section discusses whether the raw data generated through the queue sampling
mechanism can be considered accurate. While there were no indications that an
actual error was made, indicators for timing and scheduling issues were present
that caused discrepancies between the data obtained through queue sampling
and the data that could be gained through the tracing mechanism.

First of all, there was no indication that incorrect data was retrieved from
the queues:

e Increasing the replay speed of the feed also caused a higher amount of
non-zero fill levels to be detected. This fact is visualized in Figure 21.
Using a burst input method caused higher peaks to appear — but those
were almost never higher than the burst size.

e It could be observed that queues run full when shutting down the ITM
system, where the fill level increased up to the point where no further
packets could be added to the queue.'®

e The data gathered from the RPC publish-subscriber queue clearly shows
the pattern that was expected because of the inner workings of the publish-
subscribe mechanism.

While it can therefore be assumed that the raw data collected from the
queues is correct, a few anomalies were visible as well, which raise the questions
whether the queue sampling method reflects the actual state of the queues at
sampling:

e In Section 3.2, in some single instances, discrepancies were detected between
the sampled fill level and the level calculated through the tracing mechanism.
These could be found in about 0.5% of all cases. However, in these cases
the duration that the element stayed in the queue was longer than the
average duration an element stayed in this queue over the whole test case,
strongly suggesting that a timing or scheduler problem is responsible for
this discrepancy.

e The time required for sampling was unusually high. While some theories
regarding caching and prefetcher issues could partially be applied to this
problem in Section 3.4, both can not completely explain the long duration.
Also, at the end of the mentioned section, a pattern in the sample duration
has been found where one queue would take unusually little time to be
sampled, and the following queue would account for the maximum sampled
value. No valid explanation for this behavior could be found.

15These values had to be omitted from the graphs and tables, as the values tended to become
very large and did not have any significant informative value.

37

Another problem with the data is that it was measured using test conditions
that proved not to accurately reflect real-world conditions. This was displayed
by the fact that in production, queues reach their maximum capacity in some
situations, causing error messages and backpressure. This situation was never
observed in testing. Instead, packets have been dropped at feed level, without any
sign that this drop has been caused by backpressure from later stages. Primary
differences between the test environment and the production environment, the
missing recovery functionality and that the replay-tool is not able to simulate
micro bursts correctly, have been discussed in Section 3.1. In addition to this,
the actual strategy- and orderbook configuration could differ. Real-life strategies
can be significantly more complex than the SmartQuota strategy used here and
will access more orderbooks than shown here.

3.6.2 Suitability for Performance Analysis

The following will give a discussion of whether the queue sample method can be
used for measurement and analysis of the given system, under the constraints
listed above.

Indication of Imminent Failures Throughout all test runs, no indication
of imminent packet loss could be found from looking at the queue sample data
alone. It was also not possible to observe large fill levels through the queue
sample data. The largest fill level recorded is shown in Figure 15, at a peak
value of 124. Considering that the queues within the I'TM are designed to hold
2048 events or more, and that the peak was not followed by any other significant
non-zero fill levels, this value can not be considered to be a direct indicator for
an imminent failure.

The change of configuration from a 1:1 to a 1:10 Orderbook to Strategy
mapping however resulted in the requirement of significantly lowering the replay
speed to avoid packet loss. The change in configuration did not introduce
or remove a significant change in CPU load, as the number of threads and
queues stayed the same. This indicates that some sort of backpressure has to be
responsible for this, but this could be seen neither in the queues nor in the log
files.

Relative Performance of the Stages One of the main goals of this thesis
was to determine whether the queue sampling method can be used as a live-
overview of the whole system, in which stages with relatively low performance
can be identified.

Two main observations made in Section 3.5 point to two performance prob-
lems: high peak values and differences in relative fill levels between stages.

High peak values are visible, for example, in Figure 16. While these peaks
are not an indicator for constant relative bad performance of a stage, they show
that there is bad performance certain situations. Two possible causes for the
peaks are listed below:

e The stage has to handle an uncommon special case that results in a larger
amount of required processing.

e The scheduler interrupts the thread handling the stage, causing event
processing to be stalled.

38

A special case of a peak value can be seen in Figure 15. Here, a high
peak value in the Feed—Market queues leads to a load increase in both the
Orderbook-Event queues (for example, Market—Orderbook:ADSd) and the
Market—Orderbook: WorkerThread queue, which is responsible for scheduling
the processing of the Events.

The second observation pointing to a possible performance problem is the
differences in fill levels between the incoming queues of stages connected directly
with each other. This observation is described in Table 6 and the corresponding
analysis. It can be seen that events accumulate in the incoming queue of the
market rather than in the incoming queues of the orderbooks, suggesting that
the market is

1. slower in processing events than the feed decoders are, as the feed decoders
are able to insert events into the queue faster than the market is able to
remove them, and

2. slower in processing events than the orderbooks are, as the average fill
level is higher in the market and the orderbook.¢

It can be summarized that the changed configurations yield the type of result
that was expected, but that, considering that replay speeds were used close to
speeds where packet loss occurred were used, the fill levels and the amount of
non-zero fill levels seen in testing are significantly lower than expected.

16 Although the events are distributed to multiple orderbooks, there are two worker threads
handling those orderbooks, and two market threads generating the events.

39

4 Conclusions and Future Work

This thesis describes the design, implementation, and validation of a system
designed for performance analysis of a SEDA-based system by periodically
measuring the inter-thread communication queues is described. It has been
shown that, due to the low-latency characteristics of the system, it is not possible
to directly derive performance-related statistics from the sampled data in this
specific implementation.

A basic implementation approach has been given, along with implementation
alternatives for the topology analysis and with suggestions for improvements for
the sampling code and the generation of RPC events. The design was required
to be less intrusive than the currently implemented tracing framework, and has
met this requirement, as changes in the code using the queues were only required
where the queues were instantiated, to add topology information to the queue.

When testing various aspects of the queue, it was shown that a performance
impact can be measured at very high sample frequencies. Further optimizations
to the sampling mechanism, as described in the Implementation section, could
help to mitigate the problem. When testing whether performance issues were
visible, test cases had to be specifically crafted to generate data that could
be used as indicators for performance problems. The test cases yielded the
expected results only partially, as it was not possible to find filled queues even
when performing the test at replay speeds close to packet loss. It was, however,
possible to detect indicators for performance problems, such as peaks and load
patterns.

The remainder of this section states ideas for future work based on the work
done in this thesis, split into work that would focus on implementation details
and into improvements regarding testing and simulation of the approach.

Design and Implementation The fixed-rate sample mechanism proved to
cause problems at high rates, but a higher sample frequency would be desirable
to obtain more accurate results. The use of an adaptive sampling method, where
queues with higher activity would be sampled more frequently, has been proposed
in section 2.3. The implementation, however, requires strategies that are able to
derive a good sampling frequency from the data available.

The mechanism used to derive the topology information can be used for
thread pools, shared threads, and combinations of those. In this thesis, however,
deriving this information from the data required additional knowledge of the
system layout and configuration. It could be desirable to refine the topology
mechanism used, in order to automatically generate a complete description of
the connections between threads and queues.

The RPC mechanism used proved to restrict the sampling frequency. In
Section 2.4, approaches for improvements are given, such as asynchronous event
generation, event coalescing, and event filtering. These approaches will have to
be evaluated in order to support higher sample frequencies.

As discussed in Section 2, the queue sampling method can be extended
to be used for inter-process communication and memory pool queues. The
latter would require a different form of analysis and would have to resolve
conflicts concerning the singleton QueueRegistry and possibly solve problems
regarding the determination of the in-counter and out-counters in a multi-process
environment.

40

Validation Techniques for increasing the visibility of performance isssues are
highly desirable. As previously discussed, the conditions in the test environment
did not allow to reproduce the problems that appeared in production. An
important future task is to determine the parameters that resulted in the different
behavior that was observed while testing. It could also be possible to introduce
latencies in the stage implementation to artificially generate backpressure and
higher non-zero fill levels.

The description of the arrival process and the service process at the incoming
queues can be done in a more formal way. This would allow to better determine
what system properties lead to data, where performance related information
can be extracted. On the other hand, having a formal model of the system
may help to interpret the queue fill states and patterns in the queue fill states.
Simulation frameworks exist that allow modeling of queueing theory processes
such as SimPy,'” and frameworks that allow discrete event simulation such as
Chute,'® possibly allowing for better inspection of the underlying causes of fill
states and fill state patterns.

A cause for the high duration of the queue sampling described in Section 3.4
could not be found, and requires more investigation. Although caching issues
have largely been ruled out for this specific problem and the performance impact
of the sampling code on the ITM does not give conclusive results because of
the high standard deviation, caching issues have an impact on latency-critical
applications. This is, for example, displayed by the fact that others [23] make
large efforts to minimize cache misses. A more in-depth analysis of these effects
in a SEDA application could be an interesting research topic.

Thttp://simpy.sourceforge.net/, accessed 13-July-2012
8http://code.google.com/p/chute/, accessed 13-July-2012

41

5
1]

8]

[9]

[10]

References

S. Adve, G. Agha, M. Frank, M. Garzaran, J. Hart, et al. Parallel comput-
ing research at Illinois: The UPCRC agenda. Online; URL http://wuw.
upcrc.illinois.edu/documents/UPCRC_Whitepaper.pdf, 2008, accessed
24-June-2012.

G. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, pages 483-485. ACM, 1967.

D. Borthakur, J. Gray, J. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, et al. Apache
hadoop goes realtime at facebook. In Proceedings of the 2011 International
Conference on Management of Data, SIGMOD, volume 11, pages 1071-1080,
2011.

H. Brunst and B. Mohr. Performance analysis of large-scale OpenMP
and hybrid MPI/OpenMP applications with Vampir NG. OpenMP Shared
Memory Parallel Programming, pages 5-14, 2008.

D. F. Carr. How Google Works. In Base Line Magazine; URL http://wuw.
baselinemag.com/c/a/Infrastructure/How-Google-Works-1, 2006, ac-
cessed 18-June-2012.

B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared
memory parallel programming. The MIT Press, 2007.

I. Chung, R. Walkup, H. Wen, and H. Yu. MPI performance analysis tools
on Blue Gene/L. In SC 2006 Conference, Proceedings of the ACM/IEEE,
pages 16-16. IEEE, 2006.

J. Corbert. Fast Reader Locks. In Linux Weekly News; URL http://lwn.
net/Articles/21379/, 2003, accessed 24-June-2012.

R. Cox. Bell labs and CSP threads. Online; URL http://swtch.com/
~rsc/thread/, 2011, accessed 26-June-2012.

R. Cox. Profiling go programs. In The Go Programming Language Blog;
http://blog.golang.org/2011/06/profiling-go-programs.html,
2011, accessed 26-June-2012.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

U. Drepper. What every programmer should know about memory. Online;
URL http://www.akkadia.org/drepper/cpumemory.pdf, 2007, accessed
12-July-2012.

M. Durbin. All About High-Frequency Trading. All About Series. McGraw-
Hill, 2010.

M. P. I. Forum. Mpi: A message-passing interface standard, version 2.2.
Online; URL http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.
pdf, 2009, accessed 12-July-2012.

42

[15]

[16]

[17]

[18]

[21]

[25]

[26]

M. Geimer, F. Wolf, B. Wylie, E. Abrahém, D. Becker, and B. Mohr. The
scalasca performance toolset architecture. Concurrency and Computation:
Practice and Ezperience, 22(6):702-719, 2010.

A. Hanif. Colocation and latency optimization. UCL Department of Com-
puter Science: Research Notes, 12(04), 2012.

Intel® Corporation. Enhanced Intel SpeedStep®) Technology for the Intel®)
Pentium@® M Processor, 2004.

Intel® Corporation. Intel® threading building blocks for open source.
http://threadingbuildingblocks.org/, 2012, accessed 26-June-2012.

D. J. Leinweber. Nerds on Wall Street: Math, Machines and Wired Markets.
Wiley, 1 edition, 2009.

Z. Li, D. Levy, S. Chen, and J. Zic. Auto-tune design and evaluation on
staged event-driven architecture. In Proceedings of the 1st Workshop on
Model Driven Development for Middleware (MODDM’06), pages 1-6. ACM,
2006.

S. Mirtaheri, E. Khaneghah, and M. Sharifi. A case for kernel level imple-
mentation of inter process communication mechanisms. In Information and
Communication Technologies: From Theory to Applications, 2008. ICTTA
2008. 3rd International Conference on, pages 1-7. IEEE, 2008.

M. Mohsen, R. Abdullah, and Y. Teo. A survey on performance tools
for openmp. Online; URL http://www.waset.org/journals/waset/v49/
v49-135.pdf, 2009, accessed 22-June-2012.

M. Thompson, D. Farley, et al. Disruptor: High performance alterna-
tive to bounded queues for exchanging data between concurrent threads.
Online; URL http://disruptor.googlecode.com/files/Disruptor-1.
0.pdf, 2011, accessed 6-June-2012.

M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. In Proceedings of the Eighteenth
Symposium on Operating System Principles, pages 230-243, 2001.

K. Wright and K. Kang. Performance analysis of various mechanisms for
inter-process communication. Online; URL http://osnet.cs.binghamton.
edu/publications/TR-20070820.pdf, 2007, accessed 22-June-2012.

Zero-C Inc. The ICE RPC framework. Online; http://www.zeroc.com/
overview.html, 2011, accessed 26-June-2012.

43

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29

30
31
32

A Source: Queue Sample Thread

This code describes the function performing the queue sampling. It is called by
the thread’s run function in a configurable interval (queue sample period).

int64_t StatisticsProvider :: getQueueSampleData ()
{

uint64_t count = 0;
uint64_t incount =

0;
QueueRegistry *xreg =

QueueRegistry :: getInstance () ;
ScopedBlockingLock sampleLock (reg—>registryLock);

std :: map<SampleableQueue *, QueueMeta> queues = reg—>
getQueues () ;

// send topology updates first.

if (reg—>getClearTopologyUpdated()) {

TopologyChangedEvent *xtopoEv = getCurrentTopologyLocked
(queues) ;

publishEvent (topoEv) ;

}

std :: vector <QueueSampleData> vQsd;
for (std::map<SampleableQueue x, QueueMeta>::iterator it
= queues. begin () ;
it != queues.end(); ++it) {
QueueSampleData qsd;
gsd . queueld = (size_t)it—>first;
gsd.inCount = it—>first —incount () ;
gsd.outCount = it—>first —>outcount () ;
gsd . timestamp = nsSinceMidnight () ;

vQsd . push_back (qsd) ;
}

QueueStateSampleEvent x sdev = new QueueStateSampleEvent
(nsSinceMidnight (), vQsd);

publishEvent (sdev) ;

return 0;

44

0 O Ui Wi =

20
21
22
23
24
25

B Source: Discrepancy Detection Tool

This script reads in both queue sample data and trace data. It then generates
an output for every time the fill state derived from the sampled data does not
match the fill state that is implied by the trace data.

Input: Two ASCII files. The first contains in every line a pair of timestamps
corresponding to the insertion and removal time of the queue that is analyzed.
These two timestamps should be separated by a comma (”,”). The second one
corresponds to the filtered dump of the Python data structure. It consists of 4
key/value pairs separated by ”=", where the keys are ”timestamp”, ?inCount”,
?outCount” and ”queueld”. The dump should be filtered, so that the value
of "queueld” is constant throughout the file. The 4 values should then be
terminated by a line containing only ”—".

Output: For each time a trace has not been ”detected” by the queue sample

mechanism at the sample timestamp T'sqmpie, the script outputs

1. A line containing only the insertion timestamp of the trace

b2

2. A line containing the removal timestamp of the trace, followed by 7 =
and the calculated duration the corresponding event spent in the queue.

if at least one trace has not been detected, a line is outputted containing Tsqmpie,
the fill state detected by the sample mechanism and the fill state detected using
the tracing mechanism, separated by single spaces.

#include <iostream>

#include <map>

#include <vector>

#include <string>

#include <fstream>

#include <boost/algorithm /string .hpp>
#include <boost/lexical_cast .hpp>
#include <map>

#include <algorithm>

using namespace std;
using namespace boost ;

// in each pair: timestamp, queueid
typedef vector<pair<uint64_-t, int64_t> > sampledata_t;
// in each pair: seconds, mnanoseconds
typedef vector<pair<uint64_t, uint64_t> > tracedata_t;
bool load_sampledata(char * filename , sampledata_t &
sampledata) {
string line;
uint64_t inCount, outCount, timestamp;
ifstream queuedata(filename);
while (!getline (queuedata, line).eof()) {
trim (line);
if (line = string ("—")) {

45

26

27

28

29
30
31
32

33
34
35

36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
o1
92
53
54

95
o6
o7
58
59
60
61
62
63
64
65
66
67
68

}

}

sampledata . push_back (make_pair (timestamp, inCount—
outCount)) ;
//the following line can be used for plot

generation :
//cout << timestamp << 7,7 << inCount << 7,7 <<
outCount << endl;
continue;
}
vector<string> tmp;
split (tmp, line, is_any_of(”.=\n"), token_compress_on
) ;
if (tmp.size() != 2) {
//cout << line.size();
cerr << "Malformed._line:."" << line << 7’,.7 << tmp
.size () << endl;
return —1;
if (tmp[0] = 7timestamp”) {
timestamp = lexical_cast <uint64_t >(tmp[1]) ;
} else if (tmp[0] = ”inCount”) {
inCount = lexical_cast<uint64_t >(tmp[1]) ;
} else if (tmp[0] == "outCount”) {
outCount = lexical_cast <uint64_t >(tmp[1]) ;
} else if (tmp[0] = "queueld”) {
continue;
} else {
cerr << "Invalid._Token:.” << tmp[0] << "_in.” <<
line << endl;
}

int main(int argc, char xx argv) {
if (arge != 3) {

}

cerr << "Usage:.” << argv[0] << ” .<tracetable.txt>.<
queuesampledata.txt>" << endl;
return 1;

ifstream tracetbl(argv[1l]);

tracedata_t tracedata;

string line;

int tracedata_count = 0;
uint64_t tracedatadiff_sum = 0;

while (!getline(tracetbl, line).eof()) {

vector<string> tmp;

split (tmp, line, is_any_of(”,”), token_compress_on);
uint64_t start = lexical_cast <uint64_t >(tmp[0]) ;
uint64_t stop = lexical_cast<uint64_t>(tmp[1l]);

46

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

85
86
87

88
89
90
91
92
93
94

95
96

97
98
99
100
101
102

103
104
105
106

107
108
109
110

tracedata.push_back (make_pair(start , stop));
tracedata_count—++;
tracedatadiff _sum 4= stop—start;

}

sort (tracedata.begin(), tracedata.end());
cerr << "Tracedata._.loading._completed.” << endl;

sampledata_t sampledata;
load_sampledata (argv[2], sampledata);

// All data has been loaded, start the analysis
int i = 0;

int ec = 0;
int ec_sumtslen = 0;
for (sampledata_t::iterator it = sampledata.begin(); it
!= sampledata.end(); ++it) {
i =0;

tracedata_t ::iterator td =
lower_bound (tracedata.begin(), tracedata.end(),
make_pair (it—>first , (uint64_t)0));

if (td = tracedata.begin() || td = tracedata.end())
continue;

—td;

// 7slide” window, and output all matching traces
while (td != tracedata.begin() && td != tracedata.end
() & td—first < it—>first &&
td—>second > it—=>first) {
cout << td—=>first << endl << td—>second << ".=."7 K
td—>second — td—>first << endl;
ec_sumtslen += (td—>second — td—>first);

++Hi; —td;
}
if (it—>second != i) {
cout << it—=>first << 7.7 << it—>second << 7.7 << i
<< endl;
ec+-+;
}
}
cout << 70f.” << tracedata.size () << ”_traces ,.” << ec

<< "failed ._Average_tracelength:._”
<< (double)tracedatadiff_sum /tracedata.size ()
<< 7 _average._tracelength_of_failed_traces:”
<< ec_sumtslen<< endl;

47

C Data Preparation Process

The following is a description of the process used to generate various forms of
input data for further analysis.

C.1 Trace Data

The trace data is stored in a postgresql database, as an array of integers for each
row. In order to have a portable form of the data without requiring to have a
database server installed on the system where the analysis is performed, a text
dump has been created from the database using

psql —c 7SELECT._.x FROM._feed_trace WHERE_.session .=.100;" >
ADSd. tracetable

where 100 is the ID of the trace corresponding to the test run and strategy
observed. ADSd is the name of the instrument that the strategy observes.
Further filtering removes everything except the trace data from the database
table dump:

sed —e ’'s/.x{//’ —e s/}// ADSd.tracetable > ADSd.stripped
.tracetable

Removal of the first and the last lines, which only contain table header and
summarizing statistics information, can be done by hand. The file now contains,
in each line, the data trace (as a comma-separated-values (CSV) table). The
resulting data set can then be brought into a form that is suitable for usage with
the tool described in appendix B: Fields 8 and 9, corresponding to the insertion
and extraction timestamp of the Orderbook-to-strategy-queue are selected from
the table.

cut —d, —f8,9 ADSd.stripped.tracetable > ADSd—OB-STRAT.
tracetable

To generate the raw data for Figure 10, one can append the line number
after a single value (in this example, the insertion timestamp):

cut —d, —fl1 ADSd-OB-STRAT. tracetable | awk ’{ print $17.”
NR }’ > ADSd-OB-STRAT.event—increment

C.2 Sampled Data

Conversion from ICE data For the most part, the Python module pickle
and the alternative, C-based version cPickle has been used to store the raw
data as received by the Python ICE client. Two problems with this module
should be noted:

e The module stores class-related information, and requires these classes to
be loadable when reversing the serialization process. I did run into the
problem, that although the representation'® of the data dump did only
show a standard python data structure, de-serializing of this data led to
errors. As pickle stores class information, both the slice2py generated

9as reported by the objects __repr__ method in python

48

01O Ui Wi =

21
22
23

=W N =

module and the ICE libraries had to be present. The ICE structures would
not load, apparently due to incompatibilities between the ICE internal
data structures on Linux and Mac OS X.

e Neither pickle modules does support stream-based reading and writing.
Therefore, loading and storing the data required up to 20 times the memory
of the resulting, "pickled” file. In some instances the resulting files size
turned out to be as large as 150MB, and the process of saving and loading
this file caused the system running the process to swap.

Both problems can partially be solved by using the json module for serialization
instead of pickle. json will still raise a TypeError when trying to serialize a
non-builtin type, but it is possible to specify a converter function in which the
”unknown” objects can be parsed:

def serialize_helper (obj):
o = None
try:
If the object is a SingleQueueSampleEvent, extract
corresponding data

o = { ’inCount’: obj .inCount ,
"outCount’: obj.outCount
"timestamp ’: obj.timestamp,
"queueld ’: obj.queueld }

except:

pass

else:

if the object is a QueueSampleFEvent, extract
sampledata and timestamp
o = { ’sampledata’: obj.sd,

"timestamp ’: obj.timestamp }
except:
pass
if o =— None:
raise ValueError (”Object . type_.not.supported:.” + repr
(obj))
return o

json .dump(data, file , default=serialize_helper)

Conversion from Python Data The raw data generated by the queue
sample mechanism can be formatted using the pprint in such a way that it
is correctly indented and values appear line-by-line. This can make further
processing more easy.

Alternatively, one can use the representation generated by the ICE objects
for this. This format will result in an output that looks similar to this:

{
timestamp = 99999990000

sd = {
[0] =H{

49

N O Ok Wi

inCount = 3999

outCount = 4000

queueld =1

timestamp = 99999999998

[\

queueld =

timestamp = 99999999999
sd = {

}
H

Such a format can easily be filtered using standard UNIX utlities. For
example, reducing the file to only the samples for a specific queue, in this
example Queue 1, can be done using grep:

grep —B 2 —A 1 —E ’queueld = 1$’ sampledata.out

This will include the two lines before and one line after the match to the output,
separating the output by a line containing only ”—”. Manually inserting this
line to end of the output makes it suitable for usage in the tool described in
Appendix B.

C.3 Plot Generation

Plots have been generated using the matplotlib framework. This example shows
the method used to generate the plot in Figure 10. For this, a cumulative count
of traces at a given timestamp is required. This can be done using line numbers,
as shown in the Trace data section of this appendix. The example code below
expects a file containing, for each trace, a line containing a sequentially increasing
number (the cumulative count of traces, which can be created using line numbers)
and a timestamp corresponding to the insertion timestamp. In the example code
below, this file is named ADSd-0B-STRAT.inCounts.tracetable.pluscount.

Preparation of the queue sample data can be done by removing the trace-
related code from the program shown in appendix B, and outputting the combined
inCount values of both observed queues along with the timestamp of the queue
that was sampled first.

import matplotlib.pyplot as p

f = open (”ADSd-OB-STRAT. inCounts. tracetable.pluscount”)

50

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

y2 = []

for 1 in f:
1:

f = open(”sampledata.combined. pluscount”)
for 1

T T

helle)

.plot (x, y, drawstyle='steps—post’, label="trace.count’)
.plot (x2, y2, drawstyle="steps—post’, label="sampled.

count)
.legend ()
.show ()

in f:

1 =

l.rstrip ().split(”.”)
x.append (1[0])
y.append(1[1])

l.rstrip () .split(7.7)

x2.append (1[0])

Remove 5 elements (number of control events)
y2.append(int (1[1])—5)

o1

D Additional Graphs and Tables

D.1 Queue Sample Performance

— average

12000 — median 1
— 75% quantile
— 90% quantile

10000 b

8000

Sample duration [ns]

6000

40001 1

0 20 40 60 80 100 120 140 160 180
Queue nr. (in descending order of sample duration)

Figure 18: Queue sample performance at 90us replay delay, quantiles

D.2 Queue Fill Level at 50us Replay Delay

52

Queue count(C' > 1) > C inCount, total
Feed to Market
Feed:BATS to Market: 212 241 55714
Feed:Chi-X to Market: 125 182 42782
Market to Orderbook
to OB:BATS:ADSd 3 3 625
to OB:WorkerThread/0 39 23 23846
to OB:WorkerThread/1 38 38 14758

Table 7: Summary of non-zero fill levels at 50us replay delay

L q count(C' > 1) Number of samples with non-zero fill level
e e Sum of (non-zero) fill levels

10— ‘ -
— fill level

- - start of trading

measured fill level

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Time [ns] (1.0ns*10e9 = 1s) 1lel0+5.683el3

Figure 19: Queue fill levels at 50us replay delay

53

600 \ \

— fill level
- - start of trading

500

4001

3001

measured fill level (cumulative)

100

%.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Time [ns] (1.0ns*10e9 = 1s) 1lel0+5.683el3

Figure 20: Queue fill levels at 50us replay delay, cumulative sum

600F| — 40us packet interval |
— 50us packet interval

500 1

400 1

3001 1

200 1

measured fill level (cumulative)

100 1

8.0 0.2 0.4 0.6 0.8 1.0
time [ns] lel0

Figure 21: Comparison of cumulative non-zero fill level sum

54

