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Introduction

One of the tasks of a maintenance, repair, and overhaul (MRO) shop is
testing of control systems. The shop uses information from maintenance
manuals. These manuals may contain gaps. One possibility to close such
gaps is the reconstruction of the code that runs in the control system.
This thesis investigates binary analysis for code reconstruction of control

software. The original code of a control software is compiled into a binary
that is executed on the hardware. The absence of debug information in a
binary introduces disambiguities that need to be resolved to reconstruct the
code of a system.
An ideal code reconstruction must uncover all statements that are con-

tained in the union of all possible execution traces. Unreachable code that a
non-ideal-optimizing compiler may have produced may be uncovered. Bytes
in the executable that are not part of the code must not be decoded into
instructions.
The linear sweep approach to disassembly is unable to distinguish be-

tween code and data in an executable. It marks the minimal constrains for
reconstruction: It is necessary to use techniques that follow the control-flow
of the code from an initial entry point.
Recursive traversal disassemblers process and uncover the control-flow

graph by resolving the targets of jumps and calls. Indirect jumps and calls
cannot be resolved without data-flow information in general. Recursive
traversal disassemblers make use of heuristics to resolve such indirect jumps.
Iterative disassemblers use a different approach to calculate the targets of

indirect jumps and calls. They alternate rounds of disassembly with data-
flow analyses on the so-far uncovered control-flow graph. Thereby they can
calculate the actual targets of the indirect jumps and calls.
This thesis develops cf96, a lightweight, recursive-descend disassembler

for the MCS-96 architecture, which is able to automatically recover the
switch idiom of the architecture’s compiler.
It compares cf96 with IDA, the leading, commercial, recursive descend

disassembler and Jakstab, an academic, iterative disassembler on two input
binaries (a test file and an example system’s image) using metrics that
describe the precision of the reconstructed code. In this comparison cf96
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is on par with IDA Pro concerning the precision of the reconstructed code.
Jakstab is more precise than both of the tools on the test binary, but cannot
reconstruct the whole executed code of the example system’s image.
This observation allows the conclusion that the lightweight approach to

code reconstruction is sufficient.
Altogether this thesis makes the following contributions:

• cf96, a lightweight recursive descend disassembler.

• IDA Pro MCS-96 CPU module, with support to add an offset to all
data accesses.

• Jakstab extension to MCS-96 architecture.

• Case studies, to assess the three different tools using a specially gen-
erated test binary and a system image of an example control system.

This thesis is divided into five chapters.
The motivation to code reconstructions and the problems (both general and
special) of different approaches (linear, recursive, iterative) are described in
chapter 1.
Chapters 2 and 3 describe the foundations on which code reconstruction can
work, the different reconstruction approaches, and how to tag the different
functions and data locations in the reconstructed code using available in-
formations about the control system.
Chapter 4 presents cf96, the lightweight recursive traversal approach to code
reconstruction and describes concepts how to give evidence that the recon-
structed code is not faulty.
Chapter 5 evaluates cf96 by comparing the reconstructed code with the out-
put of IDA Pro and jakstab. It describes a system and compiler, which are
used in a code reconstruction experiment, the switch heuristic extracted
from the compiler, extensions of the existing tools, and the result of the
code reconstruction experiment.
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1 Binary Analysis Problems

This chapter gives an overview of the purpose of binary analysis and the
typical problems that need to be solved. It introduces the assembly language
(MCS-96 assembly) that is used in this thesis.
Different kinds of analyses are able to cope with some or all of the the-

oretical problems. The most important sensitivity criteria are control-flow
and data-flow sensitivity.

1.1 Motivation

The first and very reasonable question is: Why analyze binaries and not
the source code? Working on binaries or assembly language is not widely
practiced, but necessary in case of unavailable source code, untrusted tool
chains, or hidden or unintended functionalities.

Missing Source Code The source code of a system is usually not accessible
except for the original manufacturer. Source code can be lost over time or
inaccessible for other reasons.
To assess the compliance of systems with their specification or to analyze

faults it can be necessary to know how the system internally works.
Legacy software, where only executables exist, force the analysis of the

binaries to recover information about the functionality and allow the re-
sumption of development of the software.
In case of missing source code it is important to transform the machine

code into a more human readable form. The goal is to either help the reader
with annotations of the assembly language or to transform the program into
a representation in a higher programming language (for example C).
Depending on the purpose of the analysis, it can be necessary to recover

all of the executed code to be sure not to miss any functionality. The intro-
duction of spurious code that does not exist in the real system is acceptable
because the analyst can manually remove it.
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1 Binary Analysis Problems

Malware Detection Another motivation to analyze binaries stems from
the security community, which wants to know about the use of exploitable
software as part of an attack vector. Exploitable code can be introduced
by programming errors, hidden, or unintended functionality, resulting from
effects introduced by the compilation process.

For malware detection, it is not necessary to transform the whole program
into an understandable representation. It is sufficient if the analyst gets
hints, which program locations to look at in particular. False alarms are
acceptable.

Program Reasoning As a third motivation, it is more efficient to analyze
the executable and not the source code in some cases. In general, the
compiler can reduce the possible control flow during optimization, helping
to reduce the state space that needs to explored in an analysis. Analyzing
the executables and not the source code also removes the necessity to trust
the compiler/tool chain.

The introduction of spurious code by the code reconstruction leads to
a larger state space for the additional analysis and may introduce false
information.

All of the motivations share one common subproblem: Disassembling or
the recovery of the possibly executed machine code. While it is a trivial
task to convert bytes into a single statement, the reconstruction of code
from a binary poses a challenge because the statements are not saved as a
single linear sequence in the binary.

In this thesis the software of a control system is analyzed to answer high-
level questions about it, concerning the existence of functionality in the
code or the check whether certain specified requirements are met, posed by
the industry.

To answer these questions it is necessary to recover the source code from
the binaries. After the reconstruction of the source code it is analyzed to
answer the industry question.

This thesis contributes an evaluation of two recursive traversal and one
iterative approach to reconstruct code from binaries.
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1.2 Compilation and Decompilation

Sourcecode:

int i_1234 ;
++i_1234 ;

(D
e-
)c
om

pi
le
r

Assembly Language:

ld R1C, 0x1234 [ R00 ]
inc R1C
st R1C, 0x1234 [ R00 ]

Memory Map:

int16 @ 0x1234

(D
is
-)
as
se
m
bl
er

Machine Code:

A0 00 34 12
1C 07 1C C0
00 34 12 1C

Figure 1.1: Basic Information Flow During Decompilation

1.2 Compilation and Decompilation

To understand binary analysis it is important to know how binaries are
generated and what information is of interest for a binary analysis.

Compilation Compilation is the chain of transformations of high-level
source code down to low-level machine code.
Compilation happens in a tool chain, where the source code is stepwise

processed into an assembly representation by a compiler. The assembly is
then processed by an assembler into the machine code. Finally, one or more
chunks of machine code and sections of constant data are processed by a
linker to form an executable.
During compilation, information can be lost in each step. High-level

concepts get transformed to their implementation and the original repre-
sentation of the high-level concept is no longer available. The challenge of
binary analysis is to regain the lost information or to construct approxima-
tions to these informations to help further analyses to provide more precise
results.
Figure 1.1 lists a simplified example of representations in the tool chain.

The high-level C source code declares an integer variable i_1234 and in-
crements its value. After compilation and resolution of symbols the same
operation is represented by three instructions and a memory map informa-
tion about the location of the variable. Finally, the assembler produces
machine code, representing the assembly instructions.

Decompilation Decompilation is the process of transforming machine code
back to high-level source code, reconstructing lost abstract concepts if pos-
sible or constructing abstract concepts similar to the original ones used in
the original source code.
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1 Binary Analysis Problems

To perform its task, the disassembler needs information about the exe-
cuted statements as well as the memory access, but this information must
be explicitly given in the debug information or reconstructed by analyzing
the binary.
The disassembler recovers the assembly language representation from the

machine code. A general disassembler is unable to recover the same rep-
resentation of the machine code in the assembly language because of the
problems described in section 1.4. The general problem is that the binary
does not contain a linear sequence of statements to be executed, but may
also contain data, padding, and the control structure usually contains jump
that break the linear structure in the code parts.
Another goal of decompilation is the recovery of type information. A

type recovery analysis runs into disambiguities caused by similar or identi-
cal implementations of different high-level types. It is generally impossible
to recover the original types, because this information is lost during compi-
lation and can only be approximated.

Compilation will always reduce the abstraction level in every step. Decom-
pilation must therefore recover approximations to former abstractions that
are as similar as possible to the original one.

1.3 Assembly and Machine Code

This section introduces assembly language and its translation to machine
(hex) code, using MCS-96 assembly as example.
Assembly language is a programming language designed to represent ma-

chine instructions. Because of the difference in machine instruction sets, an
assembly language is machine-dependent. Even on a single architecture it
can be split up into different dialects, used by different development soft-
ware. A famous example of such dialects is the splitting of x86 assembly
language into Intel syntax and AT&T syntax.
The general concepts in syntax and semantics as well as conversions to

machine instructions are shown in the next subsection using MCS-96 as-
sembly language (see [13]).

1.3.1 Syntax

Generally, every assembler instruction is built from an operator followed
by a list of operands (may be empty). The operator can be modified by
suffixes. The suffix of an operator is a list of properties of an operator.

6



1.3 Assembly and Machine Code

asm:
operator operands

operator:
mnem suffix

operands: one of
op
operands , op

suffix: one of
add
sub
. . .

suffix: combinations of
u
c
. . .

add op1 , op2 , op3
ld op1 , op2
push op1
ret

Figure 1.2: Assembly Language Syntax

Examples of operator modifying suffixes are "u", converting an operation
to its unsigned form, or "c", for an operation to take the state of the carry
flag into account (mulu = multiply unsigned, addc = add with carry).
Instruction operands have a certain direction, determining which operands

are to be considered as source of an operation and which are the destina-
tion. There are two major conventions, to write down the destination either
first or last. In this work, like in Intel development tools, the destination is
written first, fixing the reading of the operands from right to left in terms
of data-flow direction.
For binary operations that calculate a result from both operands, the first

operand is used both as argument and as destination of the operation.
Figure 1.2 shows examples of the addition operation (add), a load from

memory (ld), pushing a variable on the stack (push), and returning from
a function (ret) to illustrate the grammar.

1.3.2 Operations

The main component of an assembler instruction is the operator. Each
operator has a unique opcode, given in an opcode table (see [13]). Instruc-
tions can be grouped according to the functionality they provide and the
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1 Binary Analysis Problems

concepts they implement. Typical groups include instructions that calcu-
late (Arithmetic and Logic), actively change the program counter (Jump),
copy data (Memory), or operate on a stack. We briefly explain each group
in this section.

Memory Instructions Memory instructions have no calculation effect, they
only copy data. Typical memory instructions are "ld dst, src" load from
memory, "st src , dst"1 store to memory. Usually there are more complex
copy instructions that allow the transfer of more than entity at once (here:
bmov).

Arithmetic and Logic Instructions The main calculation instructions fall
in the category of arithmetic or logic instructions. These are, for example,
arithmetic (add, sub, mul, div), logical (and, or, xor), simple arithmetic
(inc, dec) and bit/arithmetic shift (shl, shr, shra).

Flag Name
Z Zero result equal to zero
N Negative result is negative
V oVerflow result is outside the range for the destination
VT oVerflow Trap sticky version of V
C Carry arithmetic carry or last bit shifted out
ST STicky bit sticky version of C during shift

Table 1.1: MCS-96 Condition Flags

These instructions together with the "cmp, setc, clrc, clrvt"2 instruc-
tion modify the processor internal state flags stored in the program status
word (see table 1.1).

Jump Instructions All of the instructions that carry out simple direct
modifications of the program counter belong to the jump category. Control-
flow instructions are either conditional or unconditional. Conditional in-
structions (j...) execute their jump according to the valuation of the proces-
sor’s state flags. Table 1.2 shows the possible conditions that are available
for jumps on MCS-96. Unconditional jumps (sjmp, ljmp, br) always alter
the control flow to their target.

1st is the only instruction to break the operand direction rule.
2cmp is substraction without storage of the result.

8



1.3 Assembly and Machine Code

Name Logic
C C = 1 carry
NC C = 0 no carry
E Z = 1 equals
NE Z = 0 not equals
V V = 1 overflow
NV V = 0 no overflow
ST ST = 1 sticky
NST ST = 0 no sticky
GE N = 0 greater or equal
LT N = 1 less
GT N = 0 ∧ Z = 0 greater
LE N = 1 ∨ Z = 1 less or equal
H C = 1 ∧ Z = 0 higher
NH C = 0 ∨ Z = 1 not higher
VT V T = 1 overflow trap ; clear VT
NVT V T = 0 no overflow trap ; clear VT

Table 1.2: MCS-96 Jump Conditions

Stack Instructions Simple stack instructions (push and pop) just allocate
or free space on the stack and write their data to the stack or read it again.
There are special stack instructions, pushf/popf, that save and restore

the program status word and disable/enable the system interrupts, and
pusha/popa instructions that also operate on the program status word
and the system interrupt mask.

Callstack Instructions The callstack instructions (call and ret) operate
on the same stack in memory as the simple stack instructions, but perform
a more complex task. They save or retrieve the instruction pointer on the
stack, and then perform a jump to their target (call) or a jump to the
retrieved instruction pointer (ret).

Special Instructions Special instructions perform operations controlling
the processor hardware or do not fit into any of the other categories.
Interrupt handling in the processor is supported by the (ei/di) enable

and disable interrupt instructions. For software interrupts, there also exists
a "trap" instruction that behaves like a call to a fixed address (0x2010)
and is used to implement functionality like bios/os calls.

9
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The processor hardware is controlled using instructions like "idlpd" (idle
powerdown), "rst" (reset), or "nop"/"skip" (no-operation) instructions.

Instruction Data Width

Arithmetic operations are performed using the processor word width (MCS-
96 word: 16 bit). It is possible to modify these instructions with a byte suffix
(b) limiting the operation in its width. Some operations also support double
word (l) operation.
The access of operands is performed with the width of the operation to be

performed. Multiplication and division access their destination with twice
the width of their operands, storing either their larger result (multiplication)
or a pair of their result and the remainder (division).
For explicit type converstion the instructions ldbse/ldbze (load byte

sign/zero extend) or ext (sign extension) can be used.
Many architectures support access to one and the same register using

different data widths. It is also common to allow subaddressing of parts
of the register. This possibility leads to register aliasing where updates to
a register can kill parts of another register that was not obviously part of
the operation. Any data-flow analysis needs to cover this fact to perform a
sound analysis.

1.3.3 Addressing Modes

Every operand of an instruction uses a specific addressing mode, addressing
a register or memory or using operations to calculate memory locations.
All except the last of the operands for a given instruction use register

direct addressing. The last operand in the list can use one of the following
addressing modes.

Mode Example
direct add R1C, R1E R1C += R1E
indirect add R1C, [R1E] R1C += ∗(R1E)
indir. + incr. add R1C, [R1E]+ R1C += ∗(R1E++)
indexed add R1C, 0x1234[R1E] R1C += 0x1234[R1E]
immediate add R1C, 0x1234 R1C += 0x1234

Table 1.3: Assembly Language Addressing Modes

10



1.3 Assembly and Machine Code

Direct Register direct operands address one register of the CPU, and di-
rectly access its content.

Immediate Immediate operand do not access memory or registers, but
directly use the operand as a value in the operation.

Indirect Indirect operands use the contents of a register as an address to
access the actual content. As a specialization the register might automati-
cally be incremented after the access.

Indexed Indexed operands combine immediate and indirect operands, by
adding the immediate offset to the register value and then using this address
to access the content. The MCS-96 architecture supports the use of short
(byte) and long (word) immediate parts of the indexed operands.

1.3.4 Translation to Machine Code

Every assembly instruction can be translated without loss of information to
and from a machine code instruction.
There are two major conventions how to organize a machine code: a

variable length list of bytes and a fixed (word size) instruction length.
The fixed instruction length usually enforces a fixed alignment of the in-

terpretation of instructions. Every instruction needs to be encoded into the
number of bits available per instruction. Usually the addressing modes for
one instruction are not as flexible as they are for variable length instructions.
On machines with variable length instructions, the translation of assem-

bly language to machine code is a step-by-step transformation. Each oper-
ator is represented by a number, called the opcode. If there are operands,
their addressing mode needs to be specified, before they can be encoded.
Specification of the addressing mode can be done within the opcode or by
prefixing each operand. The opcode table in [13] defines a unique relation
between operators, addressing modes, and opcodes. For instructions with-
out operands a lookup of the opcode from the opcode table is sufficient. If
operands exist, they are encoded one by one according to their specification.
Figure 1.3 shows the encoding of an add instruction in 3-operand form.

The first step is to look up the opcode and addressing mode in the opcode
table. The second step is to encode the special operand using the addressing
mode. The last step is to list the remaining register operands.

11
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add R1C, R1E, 0x0123[R20] ⇐⇒ 47 21 23 01 1E 1C

add R1C, R1E, 0x0123[R20]
| | | | | |

47: 40 (add) -/ +7 (indexed) -/-/--/
21: 20 (R20) + 1 (long ind.) -/-/--/
23: 23 (low addr) |----|------|-/
01: 01 (high addr) ----|------/
1E: 1E (R1E) -----|----/
1C: 1C (R1C) -----/

Figure 1.3: Assembly Language to Machine Code

Add in its three operand form is encoded with the opcode 0x40/(mask:
0xF8). In the three low bits of the opcode, the addressing mode (0x7 =
indexed) is specified. Together, this results in the first byte 0x47.
Next, the special operand is encoded: 0x0123[R20] is a long indexed

operand. The long indexed operand is encoded in the lowest bit (1) of the
register part. The resulting bytes are therefore 0x21, 0x23, 0x01.
The two register direct operands are encoded as 0x1E and 0x1C. The

whole instruction is represented as 0x47, 0x21, 0x23, 0x01, 0x1E, 0x1C.

1.3.5 Symbols & Debug Information

Assembly language is usually written by a compiler or a human being and
supports symbolic names for entities such as start addresses of functions,
variables, and constants. The normal transformation process from assem-
bler to machine code resolves these symbols and generates a mapping of
symbols to addresses.
This information helps recovering source code as well as high-level con-

cepts in the source code of an executable, but it is not generally present
in the final executable. It is only saved in a memory map external to the
executable or as debug information in the executable.

Debug information Debug information gives correlations between ma-
chine instructions and their prior position in the source code and informa-
tion about high-level types of memory positions. Using debug information
it is usually possible to find the start of code blocks from this information
to separate code and data.
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The software security community does not necessarily trust available de-
bug information because it may be forged to mislead an analysis or the
high-level concept might hide details of interest.

Stripped Binaries In many cases debug information is no longer available
in production code, either to save space or to prevent disassembly.

Altogether a disassembly method cannot assume the availability of a mem-
ory map or debug information to recover the executed code of a binary.
In this thesis, a memory map of the system is provided in the system

documentation, but the executable does not contain any known debug in-
formation and the code must be recovered using specialized techniques.

1.4 Code Recovery

The term "code recovery" denotes the extraction of every possibly executed
statement from a binary. A possibly executed statement is an assembly
language statement that could be executed by a real system running the
binary.
It is theoretically possible to only save instructions in a binary, without

any padding or gaps. Real-world binaries, however, usually contain memory
images that do not only contain instructions, but also constants, space or
initialization for variables and padding.
Because of this, a simple linear decoding of instructions is not sufficient

and the discovery of start bytes of instructions is necessary. Such discovery
goes beyond a mere syntactic pattern matching, but requires, as we will
argue, a semantically sensitive analysis.
In the following the common problems of code recovery are described in

more detail. The sections 1.4.1 and 1.4.2 cover the general problems that
every code recovery strategy has to cope with; more complicated situations
that need to be covered by specialized analyses are discussed in sections 1.5.1
to 1.5.3. Section 1.4.3 discusses individual memory architectures, which
complicate the analysis. Those are often found embedded systems.

1.4.1 Program and Data Ambiguity

In binaries, a mixture of machine code interleaved with constants or data
is quite common.
An analysis that is not sensitive to the semantics of the instructions it

decodes can only traverse its byte stream trying to disassemble every chunk

13



1 Binary Analysis Problems

Address Bytes Assembly Language

A
0x122A 64 1C 1C add R1C, R1C
0x122D A7 1D 34 12 1C ld R1C, 0x1234[R1C]
0x1232 E3 1C br R1C

B’

0x1234 38 12 3C jbs 0, R12, 0x1234+0x3C
0x1237 12 B1 notb RB1
0x1239 1C ??
0x123A 17 F0 incb RF0

t 0x1234 38 12 dw 1238
0x1236 3C 12 dw 123C

B 0x1238 B1 1C 17 ldb R1C, 0x17
0x123B F0 ret

C 0x123C B1 1C 04 ldb R1C, 0x04
0x123F F0 ret

Figure 1.4: Misalignment in Binaries due to Mixture of Program and Data.

into an instruction, even if it really refers to data. Because instruction
sets/opcodes are packed quite densely and only few constraints for operands
exist, such behavior usually decodes data into bogus instructions.
Figure 1.4 illustrates a sematically sensitive and insensitive decoding of

instructions. Block (A) fetches the address of a second block (B or C) from
a table (t) and jumps to this block. Block (B’) is the raw decoding of the
bytes starting at address 0x1234 and contains nonsense instructions. Block
(B) and (C) are the table’s jump targets and return values (0x17 and 0x4)
from the function.
Block (A) of instructions is successfully decoded in both cases. The sec-

ond block (B’) is decoded wrong by semantically insensitive analyses, be-
cause the analysis misses the semantics of the jump instructions at the end
of the first block (A). Block (B) and table (t) show a semantically sensi-
tive disassembly of the same bytes, taking care of the jump semantics and
skipping the interleaved data. Both analyses correctly identify block (C) as
successor of block (B’) respectively block (B).

Misalignment

Instruction decoding is called misaligned, if the interpreted bytes are part
of an instruction, but the decoded instruction start bytes do not align with
the real start bytes.

14



1.4 Code Recovery

Due to the high density of instruction sets, valid looking interpretations
are possible that have an offset to the real one. Such an interpretation
contains nonsense instructions, but each instruction follows the syntax of
the machine code. If no syntax errors result, it is only possible to detect such
misinterpretations by reasoning about the decoded instructions’ semantics.
It might even be the case that after a few bogus instructions the instruction
flow realigns and further instructions are decoded correctly. [21] describes
this phenomena as self-repairing disassembly.
As we have already seen in section 1.4.1 interpretation of data might lead

to bogus instructions, but the interpretation of instructions with an offset
also produces bogus instructions. Such an interpretation is possible if it
continues linear decoding, where control flow performs a jump (for example
at the end of blocks or functions), instruction decoding has bugs, the cal-
culation of jump targets produces erroneous results, or the disassembling
process has general alignment problems.
Block (B’) in fig. 1.4 shows the effect of misaligned interpretation as well

as realignment. The bytes at 0x1234 are part of a data table containing
addresses. The first three bytes decode to a jbs (jump bit set) instruction
with two byte operands. The next two bytes decode to notb with one
operand. The byte 0x1C at 0x1239 is not an opcode and cannot be decoded.
The final two bytes decode to incb and one operand.
This case of misaligned interpretation shows a syntax error at address

0x1239 and is therefore easy to spot. It also shows realignement starting at
address 0x123C.

1.4.2 Indirect Code

Indirect jumps cannot be handled without some data-sensitive analysis.
For some instructions control-flow semantic is not only defined by the

statements themselves, but also by the valuation of the context during ex-
ecution.
If a jump instruction contains a target that is not given as an immediate

position, but as a reference to a register or memory location, data-flow
information needs to be available to calculate possible targets of the jump.
If there is not data-flow information available the analysis has to assume a
jump to every possible target (every address). It is common to signal these
points during the disassembly and not actually assume all possible targets,
because this assumption makes the analysis’ result unusable.

15



1 Binary Analysis Problems

0x2340 :
ld R1C, 0x3456
br R1C

0x2346 :
hlt

0x3456 :
rst

rst??? hlt

ld R1C, 0x3456

br R1C

0x2346 0x3456TOP

Figure 1.5: Indirect Branch

Figure 1.5 illustrates the indirect jump problem. The first instruction fills
the register R1C with the immediate constant 0x3456. The next instruction
is an indirect jump using the value stored in R1C.
A semantically insensitive analysis decodes 0x2346 as the next instruc-

tion, just because it is given by the next bytes after the indirect jump. A
semantically sensitive analysis without data flow can only assume TOP as
target of the indirect jump, assuming every address as the next instruction’s
start. Only a semantically sensitive analysis with data-flow information can
infer, that the only possible target is 0x3456.

1.4.3 Memory Layout

Any system needs to address its memory. Especially on small systems with
limited register sizes but larger memories or on systems with virtual mem-
ory, the available memory is split into virtual addresses are translated into
hardware addresses.
It is a standard feature of the existing analyses to support the usual or

default memory configuration of a system, but the system developer can
add modifications to the default layout both in hard- and software and
then make it hard to resolve any memory accesses.
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1.5 Advanced Code Recovery

If an analysis is unable to take the memory layout into account while
resolving the targets of memory access, references to code and data will not
be resolvable.
A special problem is the change of memory contents independently from

access by the master controller, for example, by memory mapped input/out-
put (MMIO) operations. Using the MMIO technique an independent con-
troller can provide data in a memory area that is reachable by the master
controller. If such data access is used by a data-flow sensitive analysis, no
assumption on the contents of the memory can be made. It is not sound to
assume a fixed value (even if it is the whole range of possible values) for two
consecutive read attempts. To perform a sound analysis these reads must
return an undefined value.

1.5 Advanced Code Recovery

The following code recovery problems, from the code obfuscation domain,
break the usual conventions of an architecture. They are important for
analyses, because they can misguide simple code recovery and thereby hide
functionality of the code.
In the security and malware sector such obfuscated code is usually hand

crafted to specially hide a functionality. For prevention of reverse-engineering,
code obfuscation techniques are developed to automatically provide coun-
termeasures (see [19]).

1.5.1 Multialignment

Multialignment or instruction aliasing is the exploitation of instruction mis-
alignment by voluntarily hiding a second stream of instruction in the same
memory that is already occupied by the first stream. Malware might use
multialignment to hide code from analyses that enforce unique interpreta-
tion of data at a given address.
Classical disassembling allows only one stream of instructions with one

fixed alignment for a given sequence of bytes. With this assumption, one
instruction that occupies some bytes in memory prohibits any additional
interpretation of these bytes with an offset. If such an analysis encounters a
multialignment, it will probably find a jump instruction, the target of which
will jump with an offset into the already fixed stream of instructions. It
then cannot interpret the instructions at the jump target, thereby missing
some instructions that would be executed on a real machine.

17
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0x0000: B8 00 03 C1 BB mov eax, 0xBBC10300
0x0005: B9 00 00 00 05 mov ecx, 0x05000000
0x000A: 03 C1 add eax, ecx
0x000C: EB F4 jmp $-10

0x000E: 03 C3 add eax, ebx
0x0010: C3 ret

0x0002: 03 C1 add eax, ecx
0x0004: BB B9 00 00 00 mov ebx, 0xB9
0x0009: 05 03 C1 EB F4 add eax, 0xF4EBC103
0x0010: C3 ret

Figure 1.6: Multialignment Example from [17]

Figure 1.6 shows an example of a byte sequence containing two streams of
instructions. The first stream contains blocks 0x0000-0x000C and 0x000E-
0x0010. The second stream contains the blocks 0x0000-0x000C and 0x0002-
0x0010. At address 0x000C a relative jump instruction alters the control
flow to continue at 0x0002.
A multialignment insensitive analysis can decode the indirect jump at

0x000C, but cannot resolve its target at 0x0002, because the bytes are
already part of a differently aligned instruction.
An analysis with support for multiple alignments can decode one and the

same bytes as part of more than one instruction, allowing the discovery of
the second (formerly hidden) sequence of instructions.

1.5.2 Stack (Instruction) Abuse

It is possible to abuse instructions that implement parts of high-level con-
cepts to perform operations the instructions were not intended for.
Using instructions in a way that breaks high-level abstractions that are

assumed to hold for the instruction is called instruction abuse.
An important class of abuses concerns the return statement. Using tech-

niques similar to those described in [20], it is possible to abuse the return
instruction as a general purpose indirect jump, by manipulating the return
address saved on the stack.
Usually every function has a balanced number of pushes and pops leaving

no variables on the stack and the topmost element is the return address.
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1.5 Advanced Code Recovery

jmp 0x1234 ⇐⇒ push 0x1234
ret

jmp A: PC <- A;
push A: SP <- SP - 2; (SP) <- A;
ret: PC <- (SP); SP <- SP + 2;

Figure 1.7: Stack Abuse

By pushing a value on the stack, and breaking the convention, the function
will return to this value and not to the real return address.
It is important to distinguish this behavior from a normal (optimized)

return from a function that can be implemented using manual manipulations
of the stack pointer and an explicit indirect branch to the return address.
This is a standard compiler behavior and can be detected using heuristics
(see section 5.1.4).
If an analysis blindly follows the semantics of the return instruction (leave

the current function, and return to the site of the function call), and does
not account for changes of what is interpreted as the return address of a
function on the stack, it is possible to hide this indirect jump from the
analysis.
Figure 1.7 shows a simple instruction sequence consisting of a push and

a return instruction, as well as the concrete semantics of the push, return
and jump instructions. By convention for normal function use, the return
address is stored at the top of the stack. This allows a simple jump-like
behavior by pushing the address onto the stack and a return. The return
pops the address from the stack and writes it into the instruction pointer.
An analysis without semantics for individual stack operations assumes the
end of the function at the return statement. Only an analysis covering
the semantics of a stack instruction discovers the implicitly encoded jump
instruction.

1.5.3 Selfmodification

Any change of a program at its own program code is called selfmodification.
While changes to data are common and in general do not pose problems to
an analysis, selfmodification poses a big problem for an analysis.
Many architectures allow execution of program code from changeable

memory, thereby generally allowing the execution of selfmodified program
code. If it is necessary to analyze such code, all of the changes to the
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ld R1C, 0x1230 [ R00 ]
ld R1E, 0x1232 [ R00 ]
ld R20 , 0x1234 [ R00 ]
ld R22 , 0x1236 [ R00 ]
add R1C, R20
addc R1E, R22
st R1C, 0x1230 [ R00 ]
st R1E, 0x1232 [ R00 ]

long int x , y ;
x+=y ;

Figure 1.8: Addition of Dwords

executed memory locations need to be tracked in detail, so that the decoding
of the memory as instructions is possible.
The loading of libraries at the program startup is usually not consid-

ered selfmodification, because the linker information can usually be followed
quite well by an analysis.

1.6 Data Type Recovery

A major problem for decompilation is data type recovery. Although it
is possible to just express all the low-level data accesses in a high-level
language, the reader of the high-level language would be disappointed not
to see the use of the abstract concepts that the accesses represent on this
level. It is therefore often desired to recover high-level representations of
the data access.
The usual types (for C as higher language) that need to be discovered

are the width of integer variables, the use of memory to implement soft-
ware floating point types, the members of structs, and the size of arrays.
Targeting an object-oriented language also requires the detection of class
hierarchies and class member structures.
Figure 1.8 shows the addition of two 32 bit integer (dword) variables in C

and assembler notation. Due to the limit of the arithmetic add instruction
to 16 bit (word) width, it is necessary to split the operation into two add
instructions, the second of which uses the carry flag of the first (addc).
The load and store instructions are split into word size instructions as well.
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1.6 Data Type Recovery

An Analysis needs to link the independent load and store instructions by
understanding the semantics of carry-chained addition.
The reconstruction of abstract type concepts is beyond the scope of this

work. It requires data-flow sensitive analyses with complex abstract do-
mains working on a given control-flow graph.

This thesis concentrates entirely on recovering the code of an executable.
Two code reconstruction approaches in three tools are evaluated to deter-
mine, which code reconstruction problems exist in the analyzed system and
how complex it is to adopt the tools to the system.
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A major simplification of code reconstruction is possible if it is known that
the code is originally generated by a compiler. Two aspects of compiler
generated code are very important.
First, to be linkable the code follows a procedure call standard, which

defines how to call or return from a function. If such a function abstraction
exists, code reconstructions can exploit it to trivially resolve all indirect
jumps that are part of a function’s return.
Second, a compiler emits certain idioms for high-level constructs in the

original source that are easily detectable and allow simplifications for the
calculation of targets of indirect jumps that might be involved.

After the code reconstruction is completed, the code does not contain sym-
bol names. Reading code that only contains addresses and no names is
nearly impossible.
It is possible to gather names for the input/output (I/O) boundaries of

a code from the actual executing hardware. By systematically propagating
these names along the code, functionality clusters can be detected.
Only with these informations it is possible to answer real-world questions.

2.1 Generated Binary Code

To call functions compilers use a calling convention or procedure call stan-
dard. These standards allow interoperability of code produced by different
compilers, or in different compiler runs in one final executable.
It is also common for compiler-generated code to not be optimally op-

timized, which leads to the existence of patterns (idioms) in the machine
code that represent common patterns of the source code. Typical idioms
include function prologues or epilogues and switch implementations with
jump tables.
Both the procedure call standard and idioms in the code allow a simpli-

fication of the analysis of the machine code.
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2 Binary Analysis Theory

2.1.1 Procedure Call Standard

Every platform (compiler) uses a certain way to call and pass parameters
to its function implementations.
The procedure call standard defines how to call functions and how to

receive return data from them. It introduces a call and parameter stack
and defines how registers are used during a function call.
To be able to link object files, it is necessary to know the interfaces

that the object files provide. The optimization a compiler can perform is
therefore limited to the definitions of the interface, keeping optimizations
inside single functions.
Many compilers or linkers are not able to proceed with optimization after

the linking process, leaving the interfaces available in the final executable.
The common degrees of freedom of a procedure call standard are described

in the following.

Stack Every procedure call needs to store its return address and supports
a call depth of more than function, forcing the storage of return addresses
on some sort of stack.

Parameters While it is possible to store the parameters of a function call
in the registers of the machine, this limits the total amount of parameters
to the amount of registers available for parameter storage. It is therefore
common to also use a stack to store function call parameters (this is usually
the same, as the one used for return addresses).

Return Data The return data of a function can be stored in a register or
on the stack.

Registers It is necessary to define the general usage of registers in a func-
tion call, so that it is possible for the caller, callee, or both to save and
restore the registers possibly modified by the other. A special case are in-
terrupt service routines where no assumptions on registers hold in general
and all normal function use registers that need to be saved.

Local Variables It is possible to keep the local variables of a function in
the registers or to store them on a stack.
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2.1 Generated Binary Code

Register Access Contents
R00 Byte, Word Static 0
R02 - R17 Byte/Word Special Registers (IO, Status, Config)
R18 Word Stack Pointer
R1A Word Frame Pointer
R1C - R23 Byte, Word, Dword Local Variables, Fkt. Return Data
R24 - RFF Byte, Word, Dword General Purpose

Table 2.1: MCS-96 Registers

f k t ( short param1 ,
long int param2 ,
int param3 ) ;

???? :param1
high word:param2
low word :param2

param3
return address ← Stack Pointer

Figure 2.1: MCS-96 Stackframe Layout

MCS-96 Register and Stack

We illustrate the architecture terms of the procedure call standard using
the Intel MCS-96 architecture stack and register as described in [13].
Table 2.1 shows the 256 available registers on MCS-96. Register R00 is

filled with a static constant 0 and registers R02 to R17 are used as spe-
cial function registers to control and receive status of the controller hard-
ware. R18 is the current stack pointer and is automatically modified by
push/pop/call/return instructions. R1A is a function local copy of the
stack pointer on function entry and is used to address the local variables on
the stack.
R1C to R23 are used as temporary storage inside a function and need

to be saved by the callee prior to their usage. R1C is also used to store
the return value of a function. An extended version of the procedure call
standard allows the extension of this region to R2A. Finally, R24 to RFF
are available for general purpose use.
On MCS-96, the stack grows from higher to lower addresses, decrementing

the stack pointer to allocate new stack space. Only the function parame-
ters, return address and local variables are saved on the stack. To allocate
local variables the stack pointer is further decreased and copied into the
frame pointer, thereby allowing indexing of the local variables with positive
numbers.
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2 Binary Analysis Theory

Figure 2.1 shows an example stack frame for the call of a function. It
takes three parameters (param1-3) with short, long int and int types. The
first entries in the stack frame of it are the parameter variables, followed
by the return address of the function. Every parameter entry on the stack
is split up into word sized chunks (push/pop can only operate on words).
param1 occupies a word-sized chunk with a high byte of undefined value,
param2 is split into two words, and param3 fits exactly into one word.

2.1.2 Compiler Idioms and Heuristics

Compilers are developed for a certain platform and usually have patterns
stored that are used to transform input constructs into the binary code rep-
resentation. These constructs usually help to implement the procedure call
standard (call/enter, leave a function) as well as the control-flow constructs
of the language used (in C, for example, for-loops, switch/case statements).

Switch A common pattern is the implementation of a switch construct
from the C language as a combination of a jump address table and an
indirect jump instruction. After an optional check of the switch variable
bounds, an index into the table is calculated and the jump to the case
block is executed. Especially for large and dense switch structures this can
significantly reduce the number of condition evaluations that is necessary
otherwise.
In the absence of a default case is not uncommon to use the switch variable

unchecked in the calculation of the case entry, leading to fetches of invalid
target addresses from arbitrary memory outside the table.
As many compilers emit switch idioms in their code, it is a common

practise to search for their use and use the table to resolve the targets of
the indirect jump involved (see [6]).

Function Prologue Another idiom that can be used on many architectures
are function prologues. These usually handle the function entry modifica-
tions of the stack. On x86 using gcc for example, prologues consist of a
well-recognizable sequence of pushl, movl and subl instructions.
Figure 2.2 shows how such function prologues can be used to recognize the

start addresses of functions inside a raw binary, without any other necessary
knowledge.
The usage of a known function prologue allows the detection of function

start addresses by scanning a file for the known instruction sequence, elim-
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2.2 Reading and Understanding Code
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Figure 2.2: Matching of Known Idioms to Instruction Sequences

inating the need for giving entry points into the program explicitly. The
MCS-96 compiler does not emit a fixed function prologue.

2.2 Reading and Understanding Code

Reading large amounts of assembly code without symbols or names for
functions and data access poses a big problem.
It is generally not possible to understand the meaning of a function just

by its code without the knowledge of the data it is working on. Take as
example a function that calculates y = m∗x+b. Without the knowledge of
the semantics of y, m, x, and b it is possible to name the function only with
a general abstraction (calc_linear). If it were known that m and b stem
from a calibration read-only memory (ROM) and that x is a value received
from an analog to digital (AD) conversion, it would be possible to give the
function a more specific name like ad_apply_calibration. Conversely, it is
hard to find names for data, if it is unknown which operations are performed
on it.
In the following several techniques are introduced that support code un-

derstanding.

Control Flow Visualization To understand a function, a visualizations of
its control flow is of great help. There are two major visualization of control
flow: control-flow graphs (CFGs) and call graphs (CGs).
The view of a function as a CFG, shown as a connection of basic blocks,

is helpful to understand a function. Simple loops and chains of checks can
be spotted this way.
A CG showing the caller/callee relation between functions helps to un-

derstand the causal and temporal connection between functions.
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Ida Pro ([12]) provides a so-called proximity view that combines part
of the call graph with a limited depth with a def/use view grouping the
functions in addition by providing information about shared variables.

Compiler Idioms It is possible to recover high-level constructs of the input
language by detecting idioms in the source code.
In addition to the idioms described in section 5.1.4, a typical pattern of

the for loop emerged in the assembly code.

Information propagation Strategies similar to program slicing can spread
available information through the program and name entities according to
the known semantics of the slice.
A program slice is a subset of program instructions determined by select-

ing all of the instructions affecting a certain memory location at a program
position ([24]). Program slices are commonly used to follow the propagation
of a single value through a program. In this thesis, they are used not to
propagate a value but an abstract name of a value along the slice.
By using available information at I/O boundaries of the program, the

name of the I/O parameter can be propagated along the functions and
variables that are part of the slice. Typically, the I/O information of a
program is at least in parts available from the controller manual (interrupt
service routines, e.g., serial I/O) or the systems schematic.
Using this information to propagate a name through a program it is possi-

ble to name all the variables that depend on the result of an AD conversion
with the name of the AD channel. For example, all of the data that depends
on the AD value of a pressure sensor can be named with a pressure_ prefix.

With the described techniques it is possible to uncover enough of the orig-
inal code’s structure and domain semantic to answer real-world questions
to the code.
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The ideal result of a code reconstruction is a list of statements containing all
the statements that could be executed on the real hardware. More formally,
the ideal result is the union of all possible program traces.
An acceptable result, on the other hand, is output that does not miss any

possible control flow. In practice the output therefore overapproximates
the result. Additional non-executed statements may be contained for sev-
eral reasons. These instructions are acceptable only if they are originally
generated by the compiler.
It is inacceptable if bytes are decoded into instructions that never were

intended as such and represent behavior that never could occur on real
hardware.
This chapter describes the three major approaches of code reconstruction

for binary analysis with their abilities concerning the different classes of re-
sults, namely the linear sweep, recursive traversal, and code reconstruction
approaches. Linear sweep is unable to fulfill the minimal requirements of
code reconstructions. Recursive traversal and code reconstruction can gen-
erally cope with compiler generated code and principally calculate accept-
able results. Code reconstruction can also handle handwritten obfuscations
of cope.
The chapter is summarized by an overview of the available tools.

3.1 Linear Sweep

Linear sweep is the simplest approach to code recovery.
Linear sweep disassembly is completely insensitive to the semantics of the

statements it disassembles. The statements are only processed according to
their syntax and transformed to their textual representation.
Figure 1.4 from the introduction shows the typical behavior of a sweep

disassembler including its problem with constants mixed into the code.
In the presence of usable debug information this approach is successful.

It then knows about the start addresses of functions and data in the binary
and can process it accordingly.
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Linear sweep is not able to address the problems described in section 1.4.
It cannot distinguish between program and data, nor can it resolve indirect
jumps, detect multialigned instructions, or follow the effects of instruction
abuse, and of course it is not able to trace selfmodification.
It still is useful as one of the first tools to process a new binary file,

because although the disassembly will be fooled regularly, it might realign
and can therefore give a rough idea what to expect in a binary.
One of the most common tools for linear sweep disassembly is GNU ob-

jdump ([10]). In this work, the linear sweep disassembler is dis96 ([15]).
It reads a file with start and stop addresses of code and data and then
traverses the file byte by byte.

3.2 Recursive Traversal Code Recovery

Using platform conventions, a code recovery is possible. The recursive
traversal approach only needs information about the semantics of state-
ments directly manipulating control flow.
In the absence of malicious, perfectly globally optimized code it is there-

fore possible to recover the control flow using additional assumptions of the
target platform.
The recursive traversal code recovery models the call graph and recur-

sively follows each function call, recovering function entry points. The
intra-procedural control flow is recovered by traversing the jumps inside
of a function. The only input needed are the external entry points to the
program. The most popular implementor of this approach is IDA Pro (see
[12]).

3.2.1 Recursive Traversal

Recursive traversal starts at a program entry point. It decodes statements
like the linear sweep approach but limits its interpretation at unconditional
jumps (sjmp, ret, br). It marks the targets of call or jump instructions as
the start of new functions or code blocks. It then restarts interpretation at
these new code points until no new code or functions are detected.
Figure 3.1 shows the CFG of three functions calling each other. An

entry point (EP) is defined by one jump instruction external to the three
functions. The function starting at (EP) contains a call to (A) and a jump
to (EP’). Function (A) calls (B) and then either branches to (A’) or returns
directly. Function (B) immediately returns.
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jmp EP

EP:
EP’:
call A
jmp EP’

A:
call B
jc A’

ret (EP)

A’:
ret (EP)

B:
ret (A)

Figure 3.1: Control Flow Graph

EP
A:
EP’

B:
A’:
ret (EP)

ret (A)

ret (EP)

Figure 3.2: Traversal Tree of Code Locations

Figure 3.2 shows the recursive traversal of the control-flow graph from
fig. 3.1. The traversal starts at the entry point (EP). The first two locations
discovered are (A) and (EP’). Traversal of (A) resolves the locations (B) and
(A’) and a return to the (EP) function. Traversal of (B) uncovers a return
to (A). Traversal of (A’) uncovers a return to (EP). The traversal of (EP’)
does not uncover new code, as the memory is already covered by the initial
traversal of (EP). This leaves no call or jump target unexplored and the
analysis can stop.

3.2.2 Indirect Control Flow

The resolution of general indirect jumps or calls is impossible for the recur-
sive traversal approach. It does not know about the semantics of any other
than the explicit control-flow statements and therefore cannot determine
the value of an indirect branch.
In the most general case data-flow analysis is required to know the se-

mantics of all statements and calculate the possible values that a jump
instruction may use. We discuss this approach in section 3.3. There are,
however, heuristics for two single cases of indirect branches, which allow the
recursive approach to successfully disassemble the code.
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If indirect branches can be safely assumed to be part of leaving a func-
tions, the determination of the target can be ignored, if normal stack behav-
ior is assumed. If the indirect branch is part of a compiler idiom (especially
of a switch/case construct) it is usually possible to simply fetch the possible
target values from the table using the known pattern of the construct.

The biggest problem is to determine the length of the table if no explicit
masking/limiting of the switched-on value exists, but this problem can be
expressed fairly well using code locality assumptions expressed as heuristics
(see section 5.1.4).

3.3 Code Reconstruction

It is impossible to completely recover the code and control flow of a binary
without the ability to recover the targets of indirect jumps. Data-flow
analysis provides a method to calculate such information, but a chicken
and egg like problem exists.

To calculate indirect jump targets, data-flow analysis needs a control-flow
graph to be able to work, but in the presence of indirect jumps, a control-
flow graph can only be calculated if data-flow information is present.

It is possible to combine both techniques and recover control flow, while
calculating data-flow information. It is then possible to calculate indirect
flow targets, until a fixed point for both control and data flow is reached.
Jakstab (see [17]) implements this approach.

To implement this approach jakstab uses a formalism similar to cpachecker
(see [18, 4]) with the extension of adjustable precisions for the abstract do-
mains used.

Cpachecker provides a framework that is configurable between a classical
data-flow analysis and model-checking approaches by providing operators
that implement the merging or separation of two abstract states and a
termination check operator.

The actual abstract domains used in the calculation of the analysis can
also be specified and combined. Each analysis needs to provide its states,
semi-lattice, and concretization function as well as a transfer relation that
maps its states using the semantics of the transition specified by a state-
ment.
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3.3 Code Reconstruction

3.3.1 Statement Semantics

Jakstab defines its analyses on an intermediate language called statement
specification language (SSL). It is therefore possible to use the same analysis
for different binaries.

This idea and language is already used in different tools (boomerang ([5,
9]), jakstab ([14, 17]) and similar BAP ([2])) and is originally defined in [7].
SSL is modeled closely to a register transfer language, consisting of a mem-
ory/register model (especially to model aliasing) and assignments together
with the ability to perform elementary arithmetic and logic calculations.

During code recovery every disassembled statement is matched to its SSL
representation and the complete analysis is performed on these representa-
tions.

As an example of such mappings Figure 1.7 shows the semantic infor-
mation for some statements given in the microcontroller manual. Each
statement’s operation is broken up into elementary calculation and an as-
signment operation, where only elementary operations are allowed and each
operand is an abstract memory location.

3.3.2 Bounded Address Tracking

Jakstab provides a specialized abstract domain for code recovery called
bounded address tracking.

Bounded address tracking defines a type that is used to describe the
location of a tracked entity as well as its contents. Each location can contain
a limited set of values, bounded by a configurable constant. If the bound is
exceeded stepwise widening occurs.

The type used is a tuple of an abstract memory region (stack, global,
allocation, etc)̇ and an offset inside of the region.

The widening on that occurs if the number of states for a given location
exceeds the configured bound happens in two step. The first widening step
keeps the memory region of the values in tact and summarized the offsets
inside of the regions to a top element of the same bit-width as the original
values were. The second widening step proceeds to summarize the regions
into a top element if the number of individual regions in a state exceeds the
bound.
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3.4 Available Tools

There are several disassemblers and decompilers on the market. The first
selection criteria from a user’s point of view is the architecture support or
extensibility of the tools.
The second criteria is the aliveness of the tools, for example the time

since the last release and availability of support. We briefly evaluate the
major tools.

Commercial Tools

IDA Pro The most important commercial tool for source code recovery on
the market is IDA Pro ([12]). It grew from an x86-only interactive disassem-
bler to the interactive disassembler with the largest number of supported
architectures.
Its interactiveness allows users to correct the analysis if it is wrong or to

manually approximate in situation where automatic analysis halts.
For x86, it provides very fine-tuned heuristics to support and automate

code recovery far beyond traditional recursive descend recovery. Unfortu-
nately, these heuristics are not usable for other architectures and compilers.
Yet, IDA Pro provides an application programming interface (API) al-

lowing the extension with plugins as well as implementing new CPU archi-
tectures.

Codesurfer/x86 Codesurfer x86 is a commercial static analysis tool work-
ing on x86 assembly. It uses value-set analysis (VSA) ([1]) as abstract do-
main and calculates a so-called system dependency graph. Its distinguishing
feature is the ability to browse and work with this graph. Codesurfer/x86
uses IDA Pro for disassembly.

Research Tools

Binary Analysis Platform (BAP) Binary Analysis Platform (BAP)[2] is a
toolkit to support various analyses on an intermediate language. It includes
a tool (toil) that processes assembly language and lifts it to the intermediate
language of the toolkit. BAP is currently under active development.

Boomerang Boomerang is a decompiler supporting the reconstruction of
C code from x86 and SPARC executables ([9]). Boomerang uses the same
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intermediate language as jakstab ([7]). The development stalled in 2006
due to a conflict of interest when the main developers joined a company.

Jakstab Jakstab implements a configurable program analysis variant to
recover code. It provides a disassembler and translations to its interme-
diate language for x86 ([17, 7]). It is designed for extensibility by new
architectures, but according to the original author certain hidden assump-
tions about the x86 language might need to be generalized ([16]). Jakstab
is currently under active development.

In this thesis IDA Pro is used as the state of the art commercial bench-
mark. We also extended Jakstab to the MCS-96 architecture to evaluate
the possible gain in accuracy of the reconstructed code.
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In this thesis an experiment on code recovery is performed with an avionics
device. The development environment of such a device suggests that a
simplification in the code recovery is possible.
For one, airborne (critical) software is intensely reviewed and follows con-

ventions. The standard about avioncs software development ([22]) enforces
extensive documentation and analysis of the resulting software.
Second, the usage of certified compilers and extensive code review allows

the assumption of the absence of complex code recovery problems.
It is possible to check the resulting source code for inconsistencies to allow

the detection of breaches of the assumptions used.
In the following, a wrapper to a simple disassembler is described that is

able to recover the code of a binary following normal stack conventions and
produced by a compiler with known idioms. The wrapper uses a generic,
architecture independent algorithm that implements a recursive traversal
disassembly using the simple linear disassembler. The algorithm relies on
heuristics to resolve indirect jumps. Heuristics for the compiler used in the
example control system’s image are provided in section 5.1.4.

4.1 Wrapping a Sweep Disassembler: cf96

The dis96 disassembler needs manual annotations to disassemble a binary.
Writing these annotations for each block of each function is a tedious task.
We therefore developed cf96 as a wrapper around the dis96 disassembler

to automate the process of discovering the start addresses of code in an
executable, to locate and analyze switch idioms, and to provide alignment
directives for ends of code blocks. cf96 uses the recursive traversal code
recovery (see section 3.2).
cf96 is able to recover the code of an executable without manual interac-

tion except of the setting of entry points for the analysis.
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Command Description
fName input file = ‘Name’
tXX string terminator byte (default = 00)
eXXXX end of dissambly
pXXXX procedure start
cXXXX code starts at XXXX
lXXXX attach a label to address
bXXXX byte dump
sXXXX string dump
wXXXX word dump
aXXXX alphanum dump
kXXXX one-line (k)comment for address XXXX
nXXXX multi-line block comment

Table 4.1: dis96 Disassembly Input File Commands

4.1.1 Foundation: dis96

dis96 is a very simple disassembler for the MCS-96 microcontroller family
originally developed by Hengeveld [11] and significantly extended by John-
son [15].

dis96 reads a command file with annotations. It processes a binary file,
decoding the file according to the annotations in one traversal. It does not
support any automated recovery of the code section in the file. Every code
or data section must be annotated in the command file manually.

dis96 keeps a list of addresses that have labels assigned. During instruc-
tion decoding each constant is looked up and resolved to its label, if it
exists.

Table 4.1 shows the possible input commands to dis96. The list is split
into four sections. The first section lists the commands that are specified
once per file. The second section specifies start addresses of code blocks
in the file that are either functions/procedures (p), code blocks part of
functions or raw code blocks (c), or labels inside of code (l). The third
section offers different possibilities to annotate stored constants and data
access to variables. The last section contains commands to annotate the
disassembler output with user-specified content.
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Additions to dis96

The memory model of the unit under test makes it necessary to distinguish
between code and data access at the same address. We therefore split the
label and reference stores of code and data labels. As a consequence, code
addresses, introduced as immediate constants in the assembly are no longer
automatically resolved to a label.
Because of the new possibility of code and data at the same address

it is necessary to process the input file twice, once to disassemble code
sections and a second time to annotate constants and variable locations.
Since dis96 does not provide an explicit command to annotate the end of a
code section, and only supports the switching of code to data on instruction
end addresses. We introduce an alignment directive (z) that marks possible
transitions of code to data sections. At such alignment points dis96 is able
to stop interpreting input bytes as code.

4.1.2 Wrapper Algorithm

The wrapper algorithm follows a simple automation idea of a manual code
recovery process. In manual recovery, disassembly starts at an entry func-
tion. The recovered code is then read and every call to a function is used to
annotate the call destination as a new function. The same process repeats
for every jump found in the code, annotating the targets as code blocks of
functions. Attention must be paid to stop the interpretation of the code at
points where misalignment can occur.
The description so far only covers jumps/calls with explicit addresses.

If an indirect jump is found that is not trivial (eg. not a variation of
return-from-function), the possible targets must be resolved by reading and
understanding the code. This is especially easy if the indirect jump is part
of a compiler pattern.
This leads to the following idea of an algorithm. Read the input file and

locate the start of a function. Inside of a function, process the input lines
and check for direct jumps and calls. Emit new disassembly commands for
these calls and labels. Pay attention to stop interpretation if an uncondi-
tional jump ends a function. Resolve indirect jumps according to known
patterns.
The most important indirect jump that needs resolution is the jump part

of a switch idiom. The analysis proceeds in two steps: In the first step of
this resolution the analysis marks the jump table and in the second step it
reads the possible targets from the jump table.
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Statement # targets block end
jump 1 Y
call 1 N
return 1 Y
conditional jump 2 N
halt/rst 0 Y

Table 4.2: Control Flow Manipulating Statements Abstract Semantics

m = entrypoints
while c changes do

c = disassembly(m,bin)
m ∪ = process(c,m)

end while

Figure 4.1: cf96 Algorithm Pseudocode

Both the detection of function ends and resolution are problems that can-
not be solved generally using syntax. This algorithm makes use of heuristics
to answer them.
The algorithm is independent of the actual control-flow manipulating

statements1. It only uses an abstract semantic of these statements (see
table 4.2). It decides between statements that have calculated targets (in-
direct jump/call), statements with immediate targets (direct jump/call),
statements with targets stored on the call stack (return), statements with
two successors (conditional jump), and statements with no successors (halt).
Both the heuristics and actual statements are described in section 5.1.2.

Algorithm

The algorithm implements a recursive traversal disassembler. It depends
on a linear sweep disassembler for the actual disassembly and heuristics to
resolve indirect jumps. Its input is a set of entry points into the control
flow graph.
The main output of the algorithm is the input to the linear sweep dis-

assembler. This output gets refined on each loop and finally resembles all
information that the sweep disassembler needs to fully disassemble the bi-
nary file.

1Non control-flow manipulating statements are processed using the semantics of a no-
operation instruction.
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1: for all disassembly lines do
2: if functionstart then
3: mark in_function
4: end if
5: if in_function then
6: if direct jump or call then
7: mark dest
8: end if
9: if unconditional jump then
10: check if function ends
11: end if
12: if indirect jump then
13: if switch idiom then
14: mark jumptable
15: end if
16: end if
17: end if
18: if jumptable then
19: while valid entry do
20: mark entry
21: end while
22: end if
23: end for

Figure 4.2: cf96 Statement Processing

The algorithm (fig. 4.1) consist of a loop that triggers disassembly and
processes the result file, until the result file does not change. It is initialized
with the known program entry points. On each round the result of the
processing of the disassembler output is accumulated and used as annotation
of the binary in the next round.

Figure 4.2 shows the processing of the disassemblers output to calculate
new annotations. The output from the disassembler is processed line-by-
line. The interpretation of the input lines provides two functionalities: (1)
recover the possible control flow by processing instructions and (2) find
possible targets of indirect jumps stored in tables.

Except of the detection of the end of a function and the decision whether
an entry of a jump table is considered valid all of the decisions and detections
are completely syntactical.
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Interpretation of instructions is suspended until the start of a function
is detected (cmpl̇ines 2–5). Each function start is given explicitly in the
disassembler output by a function header.
Inside of functions the instructions are interpreted according to different

cases:

Line 6 Every jump or call marks its destination if it is not already marked.

Line 9 Every unconditional jump/call or no successor instruction is used
to check if the function is left.

Line 12 Indirect calls/jumps are checked whether they belong to the switch
idiom and processed accordingly.

The jumptable idiom marks the address of its target table as a data
location.

Since the disassembler also decodes data locations into the output file,
the reconstruction of jumptable targets can be directly included in the pro-
cessing of statements.
If a previous iteration has marked a memory position as jump table, the

table is processed and entries are added as targets if they fulfill the switch
idiom heuristic.
The newly marked locations are merged with the already known markers

and the overall process is restarted. The merge operation ensures that there
is a limit of one code marker and one data marker per location.

Termination

The algorithm performs a breadth-first search (BFS) on the control flow
graph. It marks every node it has traversed.
The control flow graph is of finite size, because every instruction is at

least one byte long, and the address space and therefore the number of
instructions is limited (to 64k bytes or instructions).
The BFS traversal of the finite sized CFG is also of finite size and the

algorithm will terminate.
The disassembly operation can be considered as a monotonic operation.

If more annotations are input, more output is received. Each time the
disassembler output is processed new markers can be calculated by the
processing part of the algorithm. The merging of new markers with all
previously known ones implicitly forms a power-set lattice in which it is
only possible to go upwards.

42



4.1 Wrapping a Sweep Disassembler: cf96

Since the algorithm never drops knowledge in any of its steps and is
bounded by its lattice, it must either reach a fixed point or the top element
of its lattice. For both the fixed point or the top element, the disassembler
output will stay the same in two loops and the algorithm will terminate.

Runtime Complexity

The worst case complexity of the algorithm is very simple to calculate. The
outer loop terminates after at most O(n) iterations, adding a single marker
for every single one out of n addresses at a time. The inner processing of
the loop is dominated by the merge operation of the markers, which for a
trivial, non-parallel implementation has a complexity of O(n2) operations.
This leaves in total for the worst case O(n3) operations.
It is important to note, that the outer loops number of iterations is con-

trolled by the depth of a BFS traversal of the CFG. In best-case of a flat
CFG there would be only three necessary iterations. On average the BFS
tree of the CFG’s height is related to log(n).
The inner loops statement processing part of the algorithm processes

every line of the disassembler output in a linear manner, resulting in a
complexity of O(n).
The disassembler current implementation sorts its input data (markers),

and then linearly processes the input bytes, thereby being dominated with
complexity O(n2) by its sort implementation.

Correctness

Soundness of a code reconstruction means that if the algorithm finds a
statement, it is one in the source. A complete reconstruction means that if
there is a statement in the source code, the algorithm finds it.
The algorithm described in this section is neither sound nor complete

on general input. It is sound if some assumptions about the input to the
algorithm and the idioms used to process the input hold.
The soundness criteria cannot be fulfilled on general input because the

algorithm does not contain a data-flow analysis and therefore cannot solve
the indirect jump problem for every possible input.
The completeness criteria is impossible to reach on a general input binary,

because the control flow in the binary may contain unconnected parts (for
example an uncalled function from a library).
To be able to calculate a sound result the following statements must hold:
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Input The input binary must contain a control-flow graph without edged
that lead out of the control flow. This disallows bogus targets (jumps
to positions where no code exists).

Input The code may not break the procedure call standard conventions
(e.g. if a function returns, it must return to its caller).

Input/Idiom The functions must not interleave in the binary.

Algorithm The algorithm must approximate the control-flow manipulating
statements in a way that they to not introduce unsound edges.

Idiom The idioms that are used to calculate the targets of indirect jumps
may not introduce unsound edges2.

A compiler generated binary without obfuscation, for which approxima-
tions for the indirect jumps are available as idioms will hold the above
assumptions.

4.1.3 Comparison to Existing

The proposed method of control flow recovery is implemented in a very
similar way in the commercial tool IDA pro (see page 32 in [17]). The
main difference is given by IDAs different disassembler component. The
IDA disassembler is able to disassemble single statements at a time and
IDA can therefore implement a depth-first search (DFS), which reduces the
necessary work to keep and process the code markers. In this algorithm
a BFS traversal is chosen because it fits the model of alternating calls to
the sweep disassembler and phases of calculating new positions in the code.
In each round the sweep disassembler can uncover the next depth in the
control-flow graph. Generally there is no difference in using a DFS or BFS
to recursively reconstruct the code.

4.2 Validation

In forward engineering each development step’s result is validated against
some previously set requirements. Reverse engineering without access to
the original specification has the problem that there is no ready-made set
of requirements to validate results against.

2The switch idiom must be tuned to each input individually.
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We discuss different kinds of imprecisions in (reverse-)engineering steps
and how to check approximations that needed to be made.
In the following different error sources and possible remedies are ex-

plained.

4.2.1 Error Sources

Reverse engineering of a binary into source code is split into two basic
phases: the acquisition of the binary image and the disassembling of the
code in the image. Both steps can introduce different errors that may
propagate into the next steps.
A special problem is the lack of error messages in the individual steps.

Disassembler Each class of disassembler can cope with different input
data. Section 1.4 and chapter 3 give an overview about the possibilities of
different approaches. The problem is that the individual approaches will not
be able to signal if they encounter code that they cannot process without
errors.
A second problem is that a disassembler may have a bug in its instruction

decoding stage and provide an erroneous interpretation of the bytes.

Image Acquisition Most analyses can safely assume a valid executable
image, but some might distrust their image acquisition process.
In embedded systems reverse engineering, the first errors can be intro-

duced during the acquisition of the firmware image to analyze.
The first problem is that the ROM could have bit errors. Such random bit

errors can be temporary or permanent. If temporary, they can be recovered
easily using multiple readouts of an image.
The second problem is that the readout process might introduce addi-

tional bit errors. A common source of these errors is a contacting problem
of parallel memory chips.
To further complicate this issue, neither standard ROM circuits nor the

readout process have error checking facilities, thereby making it impossible
to gain error reports at this stage.
It is easy to mitigate these problems if checksums of the ROM image are

available.
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4.2.2 Remedies

In the following paragraphs different remedies that address the problems
during code reconstruction and help to increase trust in reconstructed so-
lutions.
The following remedies sum up and provide a very solid check of the

reverse engineered result.

Tests When addressing the problem of disassembler capabilities, tests us-
ing binaries with known source code provide knowledge about what recon-
structions are performed.
For many systems it is possible to acquire development tool chains, al-

lowing the reverse engineer to produce executables for the architecture, and
thereby providing him with data (additional executables) and a specifica-
tion (known source code) to validate against. It is important to check, if
these executables follow the same patterns as the executable(s) under test,
to be able to notice if the tested analysis functionality is actually used in
the reverse engineering process.
Testing with known binaries works parallel to the following approaches

and assesses the individual tools capabilities.

Tool Output Comparison If it is possible to calculate the output of an
analysis’ step using tools that follow a significantly different approach a
comparison of the tools output is a promising technique to increase trust in
the result without knowledge of a specific domain.
If the control flow of an executable, calculated by different approaches is

identical, it can be assumed that the individual tools all validate against
the same specification.
If a step can be performed in multiple ways it is in general a good way

to validate the output of one tool against others.

Sanity Checks Sanity checks are relatively easy to perform checks that
can be performed immediately after a result is received to perform a quick
check that is supposed to show existing problems.
Despite the lack of a concrete system specification, for many systems it is

not feasible to produce software and hardware that breaks the conventions
of what is considered usual. An engineer that has knowledge of what is
usually built in the domain of the analyzed device can tell if the results of
an analysis step look sane.
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• In an executable image that communicates with human beings, it is
quite common to find ASCII (or some other encoding) strings, con-
taining messages that relate to the system’s domain.

• Assembler code recovered from a binary file should usually locally
operate on a bounded set of registers.

• If the code calculates results in one register, and then never reads this
again, something is usually wrong.

Sanity checks can be performed after any step in the process. Looking for
ASCII strings helps to check image acquisition, while checks on the recon-
structed code’s macro semantics provides good checks about the usefulness
of the code.

Selfcontained Validation A very specialized sanity check that can be per-
formed after the actual reconstruction work is completed, is the search for
a selfcontained validation.
Code running in safety critical environments can contain functionality to

check itself.
An example is the use of checksum functions calculated over the program

code. The result of these checksums is compared with known checksums
of the same code. If they match, a fairly good assurance about the un-
changedness of the program code compared to the original calculation can
be given.
If the functionality to check itself is recovered from a program code it is

possible to rebuild it in an external software and redo the calculation of the
checksums. If they match the ones that are used by the selfcheck the same
assurance about unchangedness can be given.

The described remedies provide adequate mitigations for the problems
that the core reconstruction process might encounter. Using them each
step in the process can be checked and confirmed, usually with more than
one individual method.
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To evaluate different code recovery strategies a real world example binary
from an embedded control device is analyzed.
The necessary changes to existing tools and platform details of the cf96

tool that instantiate a concrete version of the algorithm described in 4.1.2
are described.
The disassembly results of a test input and the real binaries results are

compared. The test input is specially designed using a C compiler for the
system and a source file with variations of switch statements. The real
binary is acquired from an example control system provided by an industry
partner. On both files code reconstruction is performed using the available
tools and an assessment is performed whether their results are acceptable.

5.1 Example Control System

The system consists of a microcontroller (MCU) and periphery devices that
are accessed via a bus system.
It is sufficient for an analysis to work with an abstract memory interface.

We summarize the arrangement of the system’s memory in . Section 5.1.1
describes the implications of the memory system for the analysis.
Sections 5.1.2 to 5.1.4 gives the MCS-96 platform information that pro-

vides semantics and heuristics for the control flow recovery.

5.1.1 Memory Architecture

The practical implication of the memory architecture is the existence of two
different entities in different memories but at the same address. Variables
are allocated at positions already occupied with code.
It is a common assumption for tool design that one address is uniquely

associated with a single code label or a single data label. This assumption
prohibits the naming of variables (data access) if a function already exists.
It is a common sanity assumption for compiler generated code to not allow

the introduction of additional misaligned labels inside of an instruction.
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To solve the issues of a unique mapping between address ranges and
instructions, respectively data locations the following two solutions exist.
It is possible to drop the sanity check and use two different symbol stores,

one for code and one for data. Using this approach it is possible to have
two different entities at the same address.
A less invasive approach is the usage of an offset for every data access.

By adding an offset to every data access it is possible to move the data
access space into an otherwise unused address region.
To use stack pointer or frame pointer based access heuristics for local

variables and parameters of functions it is possible to only add the offset to
accesses not using the R18 (stack pointer) or R1A (frame pointer) as index.

5.1.2 Control Flow Manipulating Statements

This section provides a detailed list of control flow manipulating statements
of the MCS-96 architecture together with a description of their code recovery
influencing semantics.

Conditional Jumps The conditional jump instructions evaluate an expres-
sion and either jump to their target or normally continue control flow, by
executing their successor.
The "jcond dst" instruction evaluates its condition (cond) and either

resumes execution with the next statement in memory or sets the program
counter to (dst) if it evaluated its condition to true.
The "jbs/jbc num, reg, dst" instruction tests if the bit (num) is set (s)

or clear (c) in the register (reg). On positive evaluation it jumps to its
target. The control flow is resumed with the next statement otherwise.
The "djnz reg, dst" instruction decrements the register (reg). If the

register (reg) is valued 0 the control flow is resumed with the next statement.
Any non-zero value executes the jump to (dst).

Unconditional Jump The unconditional jump (ljmp/sjmp dst) instruc-
tions set the program counter to the target given as the (dst) operand.
They never automatically execute the next statement and can therefore
end a sequence of instructions.

Indirect Jump The indirect branch (br reg) instruction behaves like an
unconditional jump. The difference is that the target is given in a register
(reg) and not as an immediate address. It can also end a sequence of
instructions.
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Unconditional Call The unconditional call ( lcall/scall dst) instructions
push the address of the next instruction in memory on the stack and execute
a jump to their target. If the called function returns, the control flow
resumes at the next statement.

Return From Function The ret return-from-function instruction takes
the topmost element (pop) from the stack and sets the program counter
to its value. The return function does not resume control flow at the next
instruction in memory and can therefore end statement sequences.

Special The rst reset instruction triggers a hardware reset of the process.
The control flow will resume at the reset address 0x2080. It never executes
the next statement in memory and can therefore end statement sequences.

5.1.3 Program Entry Points

The entry points of the control flow graph on the MCS-96 architecture stem
from the reset location and from the interrupt tables of the processor.

Reset The processor needs to start execution at an address after it is
powered on. This address is called the reset address. It is the initial value
of the program counter after reset. Usually the startup code of a compiled
software inserts a jump instruction to the main function. The reset address
of the MCS-96 architecture is 0x2080.

Interrupt Vector The interrupt vector stores the addresses of interrupt
service routines. It is used as a table to store the locations of functions that
are called by the hardware to handle an interrupt.
There are special interrupt locations that do not call their target but di-

rectly execute a jump, which prohibits normal resumption of control flow.
Such interrupts are NMI (non maskable interrupt) or unimplemented op-
code interrupt.
Irregardless of the execution of call or jump semantics, it is assumed that

code exists at the interrupt locations.
Two interrupt vectors of length eight exist on the MCS-96 architecture at

addresses 0x2000 and 0x2030. The locations of the trap and unimplemented
opcode interrupts are 0x2010 and 0x2012 respectively.
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ld reg1 , jump_table [ reg2 ]
br reg1

jump_table :
dw target1 , target2 , . . .

Figure 5.1: MCS-96 Switch Idiom

5.1.4 Compiler Idioms

This section introduces two idioms to resolve indirect jumps. Indirect jumps
on the MCS-96 can be spotted easily as there exists only one1 indirect jump
instruction: br.

The idioms are discovered by an exhaustive search for indirect branches
in the system’s software. We discuss three different idioms, two of which
are concerned with the resolution of indirect jumps and one that provides
knowledge of the layout of procedures in memory.

Switch Idiom

Compilers frequently make use of indirect jumps in the implementation of
switch idioms (see section 2.1.2).
The MCS-96 switch idiom consists of two instructions and one data lo-

cation (see fig. 5.1). The first instruction ld loads an entry from the table
(jump_table). It usually uses the same register as index of the fetch and
destination for the fetched entry. The second instruction is br. It uses the
fetched target and jumps to it.
The existence of a switch idiom with usage of jump tables is confirmed

in section 4-41 of [23].
To detect the switch idiom it is sufficient to match on the instruction

sequence ld reg, loc [reg], br reg. If both operate on the same register, it
is safe to assume a switch idiom and mark the memory location as a jump
table.
To resolve the target of a switch idiom jump the entries from the jump

table must be available to the analysis. It is trivial to perform an index
fetch for such an entry, but the index is unknown. If one assumes that the
table contains a compact list of entries at the beginning, the problem is
reduced to developing a heuristic to detect the end of such a list.

1The abuse of return as indirect jump is excluded.
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Figure 5.2: Maximum Entry Distance to Function Entry Point vs. Recov-
ered Entries

Assuming the locality of jumps in the code (see [8, 3]) it is possible to
provide a very simple heuristic the detect the end of the table. Every2 table
entry must be within a certain arithmetic interval to the function entry
point. The first entry that is not within limits marks the end of the table.
To recover the entries of the jump tables of the binary in this work an

arithmetic interval of ±4096 bytes to the function entry point was sufficient.
Figure 5.2 shows the variation of the heuristics parameter. Using the ex-

ample system software, code reconstruction is performed with the heuristic
parameter and the total number of recovered table entries is plotted. For
small values, no entries are recovered as there usually is some code between
the function entry and the position of the jump table targets. Between
64 and 2048 the number of recovered entries increases significantly. Beyond
16384, another increase can be noted. These are spurious entries. The num-

2This definition allows empty tables.
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add R1C, R1C
ld R1C, 0x7123 [R1C]
br R1C

0x7123 :
dw 0x7150 , 0x7180

0x7150 :
op1
op2
ret

0x7180 :
op3
op4
ret

Figure 5.3: MCS-96 Switch Idiom

ber of (spurious) recovered entries per table is implicitly limited by other
table and data references.
The first increase in values correlates with the valid recovered table en-

tries. The second increase happens when invalid entries are added to the
switch idioms targets.
Figure 5.3 shows an example instantiation of the switch idiom used by

the Intel MCS-96 compiler. The starting addresses of the case blocks are
stored in a table at 0x7123. The add instruction is used to double the
switched on variable and make it usable as table index. The ld instruction
then fetches the target address into R1C and the br instruction jumps on
R1C, leading the control flow to execute the case blocks.

Optimized Return

The second usage of the br instruction is in a pattern that the compiler
uses to return from a function, while simultaneously freeing local variables
and parameters on the stack.
In the example system’s executable all of these br instructions are per-

formed on register R22.
Figure 5.4 shows the optimized return pattern. The first instruction loads

the return address from the stack. The second instruction frees, by adding
a value to the stack pointer, corresponding to the size of the freed variables,
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ld R22 , cnt1 [ R18 ]
add R18 , cnt2
br [ R22 ]

Figure 5.4: MCS-96 Optimized Return Idiom

the remaining location on the stack. The third instruction performs the
jump the return address.
Detection of this pattern in this binary is extremely easy because the

compiler uses fixed registers to perform this operation. A simple detection
of br [R22] detects all occurrences.

Function Layout

To decide whether or not a function ends at a given memory address, a
simple model of the function layout in memory is used. A function is as-
sumed to have a unique lowest and highest address forming an interval that
is disjunct to every other functions interval. The decision is a simple check
of the interval bounds.
This function model only works if the compiler/linker does not use inter-

function block reordering to perform optimizations.

5.2 Tool Adoptions

From the available tools IDA Pro is selected to provide a compare to recur-
sive traversal disassembly of the executable. Jakstab is the only tool to use a
data-flow sensitive code reconstruction. Both available tools are customized
to support the MCS-96 controller and specialized memory architecture of
the system.

5.2.1 IDA Pro

IDA Pro supports the MCS-96 architecture in principle. The drawback of
IDA’s support is the missing ability to redirect data accesses into a memory
area separated from the code area.
The dual symbol-store approach (see section 5.1.1) is impossible to im-

plement in IDA. The symbol store of IDA is not customizable, which makes
it impossible to separate the storage of data and code symbols. This is
needed to support data and instructions that occupy the same memory.
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The second approach (see section 5.1.1) to support the system’s mem-
ory architecture is the implementation of an offset feature that allows the
addition of a numeric offset on every data access. This implementation
is possible because the IDA software development kit (SDK) provides the
source code for the MCS-96 architecture module.
Because of problems compiling the CPU module from the IDA SDK, a

reimplementation of the CPU module using IDA’s python API was neces-
sary.
Implementing a disassembler CPU module for IDA is very simple. Three

functions need to be implemented. The ana function reads bytes at the cur-
rent file position and decodes them into one instruction. The out function
processes the datastructure of an instruction and prints a textual represen-
tation of it. The emu function analyzes an instruction concerning its impact
on the control flow and data access. It provides information about all the
possible next statements of an instruction and all of its data accesses. This
information could include indirect accesses, but these usually cannot be
resolved at this stage.
IDA does not have a switch idiom heuristic for the MCS-96 architecture

and each of the occurrences has to be handled manually using the switch
idiom wizard. The wizard take the position of the indirect jump and the
length and position of the jump table and introduces control-flow edges
from the jump to all targets.

5.2.2 jakstab Adoptions

Jakstab so far only supports the x86 architecture. To use it on the MCS-96
binary, it must be extended.
To add a new architecture to the jakstab static analyzer it is necessary to

implement a disassembler, extend the assembly language classes to be able
to hold the disassembled code, provide a SSL file of the central process-
ing unit (CPU) and extend the intermediate language to support special
semantics of the hardware.
Jakstab uses the class hierarchy from the OpenJDK HotSpot-Serviceability-

Agent as base classes for its assembly language representation ([16]). A new
architecture needs to subclass this hierarchy and provide implementations
matching its specific instruction syntax and operand semantics.
Jakstab requires a disassembler class that implements one function to dis-

assemble one instruction at a time for a given memory address. There is no
additional disassembler infrastructure so the MCS-96 disassembler is imple-
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mented as a opcode-lookup-table based disassembler using parameterized
decoding classes to provide instruction-group-based disassembly.
The MCS-96 SSL file is based on the instruction semantics given in table

3-1 in [13]. This table provides a register-transfer-like description for the
MCS-96 instructions.
The MCS-96 register architecture provided in the SSL file lists all the

available general purpose byte, word, and double-word registers and defines
the shared bit-ranges between them.
We developed a assembler class hierarchy to hold the statements, a disas-

sembler, the SSL file, and adopted the assembler to intermediate language
mapper.

5.3 Results

This section describes the experiments inputs, the methods used to compare
the tools output, and examines the comparison.

5.3.1 Test Input File

To test the tools with a smaller input file, containing a known control-flow
graph, a sample C code is developed. With this file a first sanity check
about the general ability of the tools is possible. Since the file also contains
the important switch idiom it also serves as test for the general ability of
the tools to resolve it.
The C code contains several functions that use switch as their control

structure. It is designed to contain a data dependency from one function
to another selecting a single case statement out of a large set of cases.
The test binary for the disassemblers is compiled from C code using a

compiler similar to the compiler of the original system.
The switch statement in the C code with 40 cases triggers the use of the

jump table idiom in the compiler.
In summary the test file contains a loop-free callgraph between several

functions. Between the functions exists a data dependency that allows dead-
code elimination in one function. One switch statement is implemented
using a jump table.
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5.3.2 Experiment Settings

The experiment compares the disassembly results of two recursive traversal
(cf96 and IDA Pro) and one iterative (jakstab) disassembler. The experi-
ment helps to establish trust in the results of the tools disassembly output.
All of the tools need entry points to perform their work. Jakstab has a

configurable abstract domain that plays a role in the precision of its results
and is therefore also part of the experiment settings.
The recursive traversal disassemblers with disabled support for the switch

idiom are expected to be unable to recover the complete control flow. With
enabled switch support, they are expected to recover all possibly reachable
code. The iterative data-flow sensitive approach is expected to perform
an implicit dead code analysis and provide a smaller (compared to the
complete possibly reachable) but more precise (stripped from unreachable
code) result.

Entry Points None of the tools in this experiment is able to heuristically
discover the program entry points. Each tool is given the set of program
entry points as initial addresses for the code recovery.
The microcontroller manual ([13]) defines the possible entry points. The

reset location of the architecture is fixed and always the same at 0x2080.
The other entry points are saved in tables in the executable itself.
Table 5.1 lists all program entry points of the analyzed system. Three

different kinds of entries can be distinguished. At the address of the re-
set location, the binary contains code (jmp code) that jumps to the main
function. The interrupt tables at 0x2000 and 0x2030 contain addresses that
the controller hardware calls (int call), if the corresponding interrupt oc-
curs. The interrupts at 0x2010 and 0x2012 are not called but jumped to
(isr jump).
The test file does not contain interrupt routines. This makes the reset

location address sufficient to discover the complete control flow.

Jakstab The abstract domains in jakstab have an influence of the precision
that is achievable. Two abstract domains from the jakstab framework are
used to analyze the binaries.
The constant propagation domain is designed to provide a simple and

fast disassembly. It is not able to model a call stack, but jakstab contains
a so called optimistic resolver for function calls and returns that allows the
constant propagation domain to perform a whole program analysis.
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Location INT Name Kind Target
2080 reset location jmp code
2000 00 Timer overflow int call
2002 01 AD Conversion Complete int call
2004 02 HSI Data int call
2006 03 HSO int call
2008 04 HSI0 Pin int call
200A 05 SW Timer int call
200C 06 Serial int call
200E 07 External Int int call
2010 Trap isr jump
2012 Unknown Opcode isr jump
2030 08 Serial TI int call
2032 09 Serial RI int call
2034 10 HSI FIFO Half int call
2036 11 Timer2 Capture int call
2038 12 Timer3 Overflow int call
203A 13 External Int1 int call
203C 14 HSI FIFO Full int call
203E 15 Non Maskable Interrupt int call

Table 5.1: MCS-96 Entry points. (The shown target is extracted from the
given firmware image)
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Bounded address tracking (see section 3.3.2) is the default domain. It is
capable to perform a precise analysis providing its own model of the call
stack.

5.3.3 How to Compare

The analyses provide output in the form of text files containing lines with
pairs of addresses and instructions. The output is annotated with control
flow information between the instructions.
IDA and cf96 provide control flow information using labels to annotate the

destinations of jumps and calls. In the output no information on calculated
targets of jumps and calls is provided at the caller/jumper side.
Jakstab does not annotate its output with labels. It instead provides

information about to and from addresses at every statement where these
are not the previous or next statement.

Compare CFGs

From the assembly text recovered by the tools a control flow graph can be
calculated and compared.
A control flow graph is consists of a set of basic blocks and a set of

connections (pairs) of basic block exists and corresponding entries.
A basic block is built from a linear (one entry, one exit) sequence of state-

ments that are executed one after the other. The entry may be jumped/-
called to from more than one block and the exit may jump to more than
one other block. Basic blocks can contain calls to function.
Maximal basic blocks are basic blocks that are formed by concatenation

of basic blocks, where the first basic block has only one jump target at its
exit and the second block is only jumped to from the first. It an analysis
does not provide explicit information about single exits and single entries
of basic blocks it is impossible to perform such a concatenation that are not
consecutive in memory, resulting in non-maximum basic blocks.
These graphs could be compared for common subgraphs, but a much

simpler comparison of the output is possible. This simplification does not
weaken the comparisons results concerning the overall reconstructed code
and transforms the problem from a computationally expensive (common
subgraph search) to a simple linear line by line comparison.

Simplification The goal of the analysis is the discovery of reachable code,
meaning the information how the control flow to this code actually looks is
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not relevant for the comparison of the code recovery. Therefore the output
comparison can be simplified to just compare the existence of the same
instruction at the same address.
A second simplification is to compare only the operators of the instruc-

tion. The tools use a slightly different syntax to print the operands of an
instruction. By comparing only the opcode and not the complete instruction
a loss of information may be introduced but its scope can be limited.
If two tools identify the same opcode at a given address but different

operands, this error can only be introduced by a faulty operand decoding
in one of the tools.
If the instruction decoding part of the tools is not suspected to introduce

errors, the existence of the same operators at identical addresses is sufficient
to assume identical decoding.

5.3.4 Tables

This section describes the output of the tools for the test code and the
example system’s code.
The previously described test input file is processed by all three tools and

is compared on a basic block level.
The systems binary image is processed using the same tools but due to the

size of the output and cost of a manual basic block analysis, it is compared
on the instruction level.

Test Code

The code recovery of three tools in a sum of five configurations was used to
analyze the file containing the generated test code.
Jakstab runs on the file with bounded address tracking as abstract do-

main for the configurable program analysis. cf96 processed the file with
the heuristic for switch idiom recovery on and off. The output of IDA Pro
is extracted before (without switch) and after the manual recovery of the
switch idiom.
Table 5.2 lists information about the recovered code. For each tool, the

number of function entry points, the lines of code, jump and call instruc-
tions, indirect jumps and the number of basic blocks in the code is listed.
The results of the tools can be grouped by the number of lines of code

recovered. This grouping shows the correspondence of the results of cf96
and IDA Pro with and without switch idiom reconstruction. Both tools
recover identical lines for the same configuration (109 lines or 189 lines).
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Tool #
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cf96 6 109 19 9 1 29
IDA Pro 6 109 19 9 1 23
jakstab 6 111 20 9 1 24
cf96 + sw 6 189 59 9 1 69
IDA Pro + sw 6 189 59 9 1 63

Table 5.2: Code Comparison: Test Code

The difference stems from the 80 lines of code in the switch idioms case
statements.

Jakstab, with 111 lines, reconstructs only one of the case statements (2
lines).

A minor difference in the output of the tools exists in the number of
recovered basic blocks. Table 5.3 shows the number of maximal basic blocks
calculated from each of the outputs. The same non maximal basic blocks
exist in the output of cf96 and IDA Pro. With the output of IDA Pro it is
possible to append 6 blocks to their predecessors. While these non-maximal
basic blocks show a possible imprecision they are of no influence to the
code reconstruction as it does not influence the number of reconstructed
statements (lines of code).

The configurations of cf96 and IDA Pro recovered 80 lines of code (or
40 basic blocks more) if the switch idiom support was used, corresponding
exactly to the 40 switch cases in the test file C code.

Jakstab with its bounded address tracking domain was able to calculate
the 23 maximum basic blocks as well as one case of the switch idiom. The
code in the test file implementation sets the value to be switched on to this
specific case. Jakstab can determine this fact using constant-folding like
behavior included in bounded address tracking. Both cf96 and IDA Pro
are not able to determine this fact, because they do not perform data-flow
analyses and cannot propagate the knowledge of a single possible value for
a variable from one function to another.
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jakstab cf96 + sw cf96 ida + sw ida

jakstab 23+1=24
24(=)
45(+)
0(-)

24(=)
6(+)
1(-)

24(=)
39(+)
0(-)

23(=)
0(+)
1(-)

cf96 + sw
24(=)
0(+)
45(-)

23+6+40 = 69
29(=)
0(+)
40(-)

63(=)
0(+)
6(-)

23(=)
0(+)
46(-)

cf96
24(=)
1(+)
6(-)

29(=)
40(+)
0(-)

23+6=29
29(=)
40(+)
6(-)

23(=)
0(+)
6(-)

ida + sw
24(=)
0(+)
39(-)

63(=)
6(+)
0(-)

29(=)
6(+)
40(-)

23+40=63
23(=)
0(+)
40(-)

ida
23(=)
1(+)
0(-)

23(=)
46(+)
0(-)

23(=)
6(+)
0(-)

23(=)
40(+)
0(-)

23

Table 5.3: Basic Block Comparison: Test Software, reset entry point

Controller Code

The code reconstruction for the system’s code uses the same tools with
similar (jakstab) and identical (cf96, IDA) configurations, with the addition
of the input of 1 or entry
points. Limiting the control flow by setting only a single entry point helps
to keep the control flow small enough to manually make observation.

shows the metrics calculated for the output of the tools. The lines are
grouped using the number of recovered lines of code.
With the input of one entry point into the tools, all three tools were able

to recover functions with lines of code. The reconstruction of the
reachable code stopped at one indirect jump of the switch idiom.
With enabled support of the switch idiom, IDA and cf96 recover the

complete reachable code from the entry point and process two switch idioms.
Jakstab is not able to resolve the data-dependent jump in this case.
Jakstab provided identical code reconstructions for bounded address track-

ing and constant folding with optimistic function resolution. Without opti-
mistic function resolution there are no realistic results (less than lines
of code).
Using all twelve available entry points to the code the data shows a similar

result as with one entry point.
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Jakstab, together with the tools with disabled switch idiom support, re-
cover lines of code in functions.

The resolution of the switch idioms allows IDA and cf96 to further process
the file and recover lines of code in functions using a total of
recovered switch idioms.
The analysis of identical instructions at the same addresses shows a

growth only relation between the results (see ). The four result groups
(switch/noswitch, 1ep/ ep) can be ordered by the number of lines recov-
ered. Each result is completely contained in the next result. This result
shows that although some of the tools do not recover the whole possible
control flow, the recovered code is part of the complete result.

5.3.5 Summary

The code reconstruction using the test code shows the expected results for
all of the tools. Without switch support the recursive descend approaches
are not able to recover the whole reachable code. Using an idiom recovery
allows reconstruction of the whole program. Jakstab is able to use its ab-
stract domain and perform a code reconstruction with an integrated dead
code analysis, limiting the number of case statements to the single one that
would be executed on real hardware.
The code reconstruction for the system works as expected with the ex-

ception of an incomplete reconstruction using jakstab. The lightweight ap-
proach is capable to reconstruct the code with the same coverage and accu-
racy as the state of the art IDA Pro disassembler. Jakstab shows with the
test file that can reconstruct switch behavior precisely but either the MCS-
96 addition or the abstract domain configuration prohibited a calculation
of the possible switch targets contained in the example system’s image.
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Code Recovery IDA Pro and cf96 produce identical results. The cf96
approach of implementing the bare minimal semantics of the assembly lan-
guage and using compiler idioms to analyze the code only when needed
provides a simple solution that competitive with the industrial standard
solution of code recovery.
Generally, it seems to be possible to solve the code reconstruction with

simple tools if the stack and function call semantics of the code hold and
indirect jump operations are approximated by heuristics.
While jakstab is capable of precise control flow reconstruction for the test

file, it could not recover the whole code of a real world problem. It seems
improbable that the analysis engine itself is the source of the problem, leav-
ing the statement and memory abstractions as well as the abstract domain
configuration as source.

Further Work Providing answers to the industry questions about the high-
level concepts in the program needs annotations of functionality clusters in
the source code. Creating such annotations manually is very time consum-
ing. Automated analyses of shared (indirectly addressed) variables between
functions and propagation of names along such def/use paths could speed
up this process.
While it is possible to recover all executed statements of an executed

program using simplified execution instructions, automated code splicing
and sophisticated data flow analyses (points to, aliasing, . . . ) need precise
semantics of the statements to preform sound operations. Implementing
single tools with precise semantics per architecture seems forbidding. The
approach of jakstab to translate the assembly instructions to an intermedi-
ate language and perform its analyses on this language seems promising.
The binary analysis platform (BAP, [2]) follows this approach but so far

only provides a very simple (linear sweep) tool (toil) to transform executa-
bles with symbol information of the x86 platform. It looks very promising to
build an intermediate language lifter using recursive descend and heuristic
support disassembly to extend BAP with additional architectures.
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