
Bachelor Thesis

A Data Partitioning Algorithm for
Sound Particle Radiosity

Jan Winkelmann

August 6, 2012

advised by:

Alexander Pohl
HafenCity University Hamburg

and supervised by:

Prof. Dr. Sibylle Schupp

Technische Universität Hamburg-Harburg
Institute for Software Systems

Schwarzenbergstraße 95
21073 Hamburg

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich die vorliegende Bachelorarbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe. Die Arbeit wurde in dieser oder ähnlicher Form noch keiner Prüfungskommission
vorgelegt.

Hamburg, den 6. August 2012

Jan Winkelmann

I

Contents

1. Introduction 1

2. Basics 3
2.1. Geometrical Acoustics Simulation Methods 3

2.1.1. Radiosity Method . 3
2.1.2. Sound Particle Method . 4
2.1.3. Sound Simulations . 4

2.2. Sound Particle Radiosity . 5
2.2.1. Sound Particle Reunification 6
2.2.2. Sound Particle Radiosity Algorithm 6
2.2.3. Example . 7

2.3. Parallel Computing . 8
2.3.1. Parallel Computing . 8
2.3.2. The Message Passing Interface 11

2.4. Graph Partitioning . 11
2.4.1. Definition . 11
2.4.2. Data Partitioning using Graph Partitioning 11
2.4.3. Software: ParMETIS . 12

3. A Data Parallel SPR Algorithm 13
3.1. Parallelization Objectives . 13
3.2. Analysis of Reunification Buffer . 14
3.3. Decomposition of Reunification Buffer 15
3.4. A Data Parallel SPR Algorithm . 17

3.4.1. Synchronization . 19
3.4.2. Requirement for Data Partitioning 20

3.5. Memory Requirements . 20

4. Data Partitioning Algorithm for SPR 22
4.1. Graph Model of Data Dependencies 22
4.2. Using Graph Partitioning . 23

4.2.1. Existence of Good Decompositions 23
4.2.2. Load Balancing . 25

4.3. Data Partitioning Algorithm . 25
4.3.1. Parallel Generation of the Directed Graph Model 26
4.3.2. Parallel Generation of the Undirected Graph Model 26
4.3.3. Description of the Algorithm 27

II

4.3.4. Discussion . 29
4.4. Memory Requirements . 30

5. Evaluation 31
5.1. Hypotheses and Variables . 31
5.2. Experiment Design . 32
5.3. Analysis of Experiment Results . 33
5.4. Threats to Validity . 39

5.4.1. Threats to Internal Validity . 39
5.4.2. Threats to External Validity 41

5.5. Inferences . 41
5.5.1. Parallelization Objectives . 41
5.5.2. Effectiveness of the Data Partitioning Algorithm 43

6. Future Work 44

7. Conclusions 45

8. Bibliography 46

A. Experiment Setup Data 47

B. Complete Run Results 50

III

IV

1. Introduction

For the simulation of sound propagation in both room acoustics and urban settings,
geometrical acoustics simulation methods are widely used. Due to their functional
principle, these methods do not simulate wave effects, such as diffraction. Echograms
obtained from the simulations can be converted to noise maps of urban settings. Re-
verberation time, also obtained from echograms, is an important measure in indoor
acoustics.

Sound Particle Radiosity (SPR) is such a geometrical acoustic simulation technique,
based on the sound particle method, that explicitly models diffraction. The introduc-
tion of diffraction requires a split-up of sound particles on impact with a patch, causing
an exponential growth of the particles that need to be simulated. SPR compensates
this growth by the reunification of sound particles using a two dimensional reunifi-
cation buffer. The size of the reunification buffer is dependent on the size of the
simulated scene and the desired accuracy. For large or highly accurate simulations the
reunification buffer does not fit into the main memory of a single computer.

This thesis presents a version of SPR that uses distributed memory parallelism to
make faster and more accurate simulations possible. The algorithm leverages data
parallelism to distribute the reunification buffer among multiple processes.

As the parts of the buffer are interdependent, inter-process communication is re-
quired, which can grow to become a significant source of overhead. To reduce this
source of overhead, the thesis presents a parallel data partitioning algorithm. The
algorithm uses the SPR input data to decompose the reunification buffer in a way
that reduces the required inter-process communication

This reduction is accomplished by constructing a graph of the data dependencies
between the rows in the buffer and using graph partitioning to decompose the buffer.
When used as a preprocessing step, the data partitioning algorithm reduces the data
dependencies between the processes running the parallel version of SPR. The data
partitioning algorithm increases the scalability of the parallel SPR algorithm, making
even faster and more accurate simulations possible.

Finally, the performance of the parallel SPR algorithm and the data partitioning
algorithm for the reunification buffer are tested on cluster computers. The performance
of the data decomposition obtained with data partitioning algorithm is compared with
a näıve data decomposition.

This thesis is structured as follows. Chapter 2 introduces basic concepts that es-
tablish the basis for the rest of the thesis. In Chapter 3, the parallel SPR algorithm
is developed. The chapter also describes the goals for the parallel version of SPR and
then presents a data parallel parallelization approach. Chapter 4 presents the data
partitioning algorithm, used for decomposing the reunification buffer in a way that

1

reduces the inter-dependencies between the processes. These algorithms are evaluated
in Chapter 5, using experiment data obtained by running parallel SPR simulations on
cluster computers. Chapter 6 contains future directions for research, and Chapter 7
draws conclusions for the thesis.

2

2. Basics

This chapter contains the theoretical underpinnings for the rest of the thesis. In
the first section the geometrical acoustics, a category of sound simulation methods,
is introduced. Further, the second section explains Sound Particle Radiosity, the
algorithm that is inspected in the thesis. The third section contains a very short
introduction into parallel computing, including the Message Passing Interface. Lastly,
the fourth section defines graph partitioning and introduces a library that partitions
graphs in parallel.

2.1. Geometrical Acoustics Simulation Methods

This section includes an overview of two geometrical acoustics methods, the radiosity
method and the sound particle method, because they form the basis of Sound Particle
Radiosity. Furthermore, an explanation of the simulated scenes is given.

Geometrical acoustics is a simulation paradigm for methods that model sound prop-
agation. Phase information of sound is not modeled by geometrical acoustics methods.
Hence, simulations do not display wave phenomena, such as scattering or diffraction,
unless a method models these effects explicitly. Geometrical Acoustics methods are
primarily employed for the simulation of large, closed rooms and urban settings. Sim-
ulation methods that employ this paradigm are: the image source method, the sound
particle method, the beam tracing method, the radiosity method, and others [10].

Other simulation methods such as wave-based simulation techniques are not in-
spected in this thesis.

2.1.1. Radiosity Method

The radiosity method models the exchange of sound energy between surfaces. This
method was originally used in optics simulation. High accuracy is obtained by dis-
cretization into small sub-surfaces, called patches. For diffuse sound, the sound energy
that each patch radiates to every other patch is calculated. Then, these “view factors”
are used as coefficients in a system of linear equations that yield the brightness for
each patch.

Unfortunately, the radiosity method can only simulate diffuse reflections, because
the exchange of radiated energy is independent of the angle of incidence [14].

3

2.1.2. Sound Particle Method

The sound particle method approximates sound as particles that transport sound
energy along some direction. Particles travel from a starting point along a direction,
and are reflected from surfaces with the same emergent angle as the particles’ angle
of incidence, caused by the law of reflection, known from optics [14].

In the basic form of the sound particle method each particle that impacts a surface
reflects back exactly one particle. One possible way to model diffraction and scattering
using the sound particle method is by reflecting multiple particles for each particle that
impacts a surface [12]. This recursive split-up of particles causes the number of existing
particles to grow exponentially with the order of reflection. If high orders of reflection
are simulated, the number of particles created is too large to simulate with the sound
particle method.

The simulation scene is divided into convex sub-scenes, called rooms. Transparent
wall transport sound energy from one room to another and split-up of particles from
these walls can be used to simulate diffraction. Based on the uncertainty principle,
particles that pass closer to an obstacle are more strongly deflected. Since convex
rooms are free of obstacles, convex subdivision is an efficient method for the detection
of simulation events.

2.1.3. Sound Simulations

This section contains a description of the settings that are simulated by geometrical
acoustics algorithms and the result of a sound propagation simulation, the echogram.
For simplicity all simulation settings will be in 2 dimensions. However, all methods
presented here also work for 3 dimensions.

In the simulated scenes, reflecting objects (usually walls) are represented by closed
traverses. Line segments may be of different materials, which display different re-
flection properties. An impacting sound particle looses energy proportional to the
absorption factor of the impacted material.

The remaining energy can be emitted in a number of ways, including geometrical
reflection, scattering. Geometric reflections, as known from the law of reflection, are
dependent on the angle of the impacting particle. Scattering is a kind of reflection that
is independent of the angle of incidence. The ratio of energy emitted by geometrical
reflection or scattering is dependent on the impacted material.

Patches on “transparent” walls do not model geometrical reflections or scatter-
ing; these walls enable the simulation of diffraction by a custom split-up method.
Diffraction-based emission of sound energy occurs in non-convex rooms, only.

Sound is initially introduced uniformly around the emitter at a point into the scene.
The sound particles propagate through the scene and are registered by, possibly mul-
tiple, receivers. Receivers are spatially extended, because the particles travel on in-
finitesimally thin lines. Sound particles are not altered in direction or energy level by
passing through the receivers. For the purposes of this thesis the energy is recorded
independent of the rays’ direction. The information that is recorded by the receivers

4

(a) A simulation scene in which sound
propagates from a sender to a single
receiver.

E
n

er
g
y

Time

(b) An example echogram, showing sound
energy at the receiver over time.

Figure 2.1.: Figure taken from [12]

during the simulation is expressed in an echogram, which describes the reverberation
behavior, the “fingerprint” of a scene.

Figure 2.1a shows an example simulation setup. Simulated is a rectangular room
with a sound emitter and one receiver. The sound energy propagates from the emitter
to the receiver directly, as well as indirectly by reflection from wall segments.

An echogram is a histogram, showing received sound energy over time. Figure 2.1b
displays such an echogram. The echogram displays the registered energy over time.
Direct sound is registered first, with the most energy, shown in red. Early reflections
are shown in blue. The reverberation tail, shown in green, is caused by many particles
with lower energies and high orders of reflection.

2.2. Sound Particle Radiosity

This section deals with the simulation method revised in this thesis, and is layed out
as follows. After an explanation of sound particle reunification, the Sound Particle
Radiosity (SPR) algorithm is explained. Then the basic data structure of the SPR
algorithm is examined. Lastly, an example is given to illustrate the principle of SPR
and its data structures.

As previously discussed, one way to simulate scattering and diffraction is the re-
cursive split-up of particles on impact. Although the resulting growth of particles is
exponential, many of the resulting particles are similar. That is to say their origin
points, directions, and start times have little difference. Sound Particle Radiosity
(SPR) [12] is an extension of the sound particle method that takes the idea of implicit
reunification from the radiosity method and aims to handle the large number of par-
ticles by explicit reunification. A related method that also models wave phenomena
using a variation of the radiosity method is Acoustic Radiance Transfer [13].

5

2.2.1. Sound Particle Reunification

To systematically and efficiently reunify similar particles, SPR discretized time and
space. Surfaces are sectioned into patches, similar to the discretization required for
the radiosity method. Time is sectioned into discrete time indices, linearly to the
discretization of the line segments.

The discretization causes errors in the simulation, because sound travels in contin-
uous time and space. The point of impact for sound particles are discretized to be the
middle of patches. Discretization into smaller elements yields more accurate results at
the cost of higher memory and runtime requirements.

The reunification buffer is the primary data structure of SPR. A sound particles’
energy is stored in this buffer. The buffer has two dimension, one dimensions encodes
the origin patch and the ending patch, the other the starting time of the stored particle.
Thus, two particles with identical start and destination patches and the same starting
time, having the same coordinates, can be reunified by adding their energies.

SPR simulations have various parameters. Discretization is adjustable by the num-
ber of patches per mean free path length [9]. The generation of particles is dependent
on the number of initial particles emitted and multiple parameters defining the split-
up of particles on impact on surfaces. Additionally, particles below a certain amount
of energy are discarded.

2.2.2. Sound Particle Radiosity Algorithm

The SPR simulation algorithm works as follows. First, the scene is preprocessed by
subdivision into convex sub-scenes and by discretization of all wall segments.

Once the preprocessing is done, the initial sound energy is produced by the emitter.
The initial number of particles (a simulation parameter) are distributed determinis-
tically around the emitter. For each particles’ destination patch, the starting patch,
and starting time is calculated given the position of the emitter. Then the resulting
particles are written into the reunification buffer at the appropriate position.

SPR iterates over the buffer from lowest to highest time index. Each particle in
the buffer at the current time index is processed as follows. Dependent on the patch
material, the split-up of the particle at the destination patch is calculated, and reflected
geometrically or via scattering. On reflection the particle is slit-up into a fixed number
of particles, the reflection behavior of the patches is time invariant. The destination
patch of the original particle is the origin of the reflected particles.

Strictly iterating over one time index after the other ensures that all reunification
has been done on a certain particle, before that particle is processed. For a given time
index all patch to patch combinations are inspected. Non zero entries in the buffer
represent particles.

Each particle is processed only once, after the entry in the buffer was evaluated
the particle is not inspected again. If reunification occurs a set of coordinates may
be written to multiple times, by adding the energies of the particles. The energy of
each reflected particle is checked, particles with an energy below a certain minimum are

6

C D

A B

Figure 2.2.: An example scene for a simulation, consisting of one room with 2 full
absorber walls and 2 walls having 2 patches each.

discarded. If the particle passes through a receiver while traveling from origin patch to
destination patch, the energy is recorded by the receiver. Once all the reflected patches
have been written to the buffer the original particle has been completely processed.
Then, the next particle in the buffer can be simulated.

Particles with a start time after the maximum simulation time are discarded. The
algorithm terminates if no particles remain in the buffer.

A basic optimization is to make the reunification buffer a ring buffer with respect to
the time index. The size of the time index is the travel time between the furthest two
patches. Then old time indices, containing information that is not useful any longer,
can be overwritten, decreasing the size of the reunification buffer significantly.

2.2.3. Example

Figure 2.2 is the scene that will be used as an example throughout the thesis. The
scene contains one room with four walls. Two of the walls, with one patch each, are
fully sound-absorbent. Fully absorbing walls, by definition, do not reflect any particles.

The other two walls are discretized into two patches each, labeled from A to D.
These patches have an absorption factor of 0.1. Each patch reflects two new particles
for an impacting particle.

Particles can travel from each patch to the other two patches on the opposite wall.
The fully absorbing walls do not produce rays, as all sound energy is absorbed by
the patches. For simplicity, particles to the full absorbing walls are not shown. The
particles always originate from the middle of a patch.

Figure 2.3 is a basic example of how the reunification matrix works. Figure 2.3a is
an instance of the example room. The initial particle, indicated in black, travels from
patch A to patch C. On impact, the particle is split-up into two to new particles, one
from C to A and another from C to B, indicated in blue. Not all particles for the
second order of reflection are shown. One of the particles reflected at patch A would
be a particle from A to C , which is already in the figure, hence the reflection from

7

C D

A B

(a) The example room with an initial ray from
patch A to C. Some reflections are indi-
cated.

0 1 2 3
A→A
A→B
A→C 1 0.203
A→D 0.203
B→A
B→B
B→C 0.203
B→D 0.203
C→A 0.45 0.091+0.091
C→B 0.45 0.091+0.091
C→C
C→D
D→A 0.091+0.091
D→B 0.091+0.091
D→C
D→D

time

(b) The reunification matrix for the example
room. Rays that are not displayed in Fig-
ure 2.3a are grayed out.

Figure 2.3.: An example scene with the corresponding reunification buffer.

patch A are omitted. The second order reflection originating from patch B are shown
in red.

Figure 2.3b is the corresponding reunification buffer for the example room. For sim-
plicity, all particles require the same amount of time, regardless of the emergent angle;
this is meant to simplify the example, the simulations model reflection accurately. The
buffer is initialized with the particle from A to C with an energy of 1.0 and a time
index zero. With each reflection, the original particle looses one tenth of its energy
to absorption and spawns two new particles that equally divide the remaining energy
among them.

In this example, the first particle spawns two new particles, one particle from C to
A and one particle from C to B, each of which has 1 ∗ 0.9/2 = 0.45 energy units. The
two new particles are written into the time index one. Recursive split-up of particles
continues until time index three at which time a reunification occurs. Usually the
particles at time index three should have 0.203 ∗ 0.9/2 = 0.091 energy units, but since
two rays are reunified at that time their energies are added.

2.3. Parallel Computing

This section will give a short introduction into the basics of parallel computing and
aims to provide the basics concepts required to understand parallel algorithms.

2.3.1. Parallel Computing

Parallel computing can be used to execute programs on computers with large amounts
of resources, called clusters. Efficient execution of SPR on clusters is the goal of this
thesis. To this end, the theory for using clusters to speed up SPR simulations is

8

provided.
The first two parts lay out formal machine and programming models, respectively.

Further, the third part discusses problem decomposition for distributed execution.
Lastly, the concepts of overhead and speedup are introduced.

Machine model

The machine model assumed in this thesis is the Multicomputer [2]. A Multicom-
puter consists of multiple, separate von Neumann machines, called processes. These
processes have separate memory space and processing units, while collaborating via
inter-process communication using an interconnect.

The inter-process communication cost between any two processes is assumed to be
time invariant. Additionally, the cost of sending and receiving of messages is assumed
to be the same. The cost of a communication is proportional to the message length,
with a small constant factor that accounts for latency. Moreover, local memory access
is assumed to be significantly cheaper than access to remote data via message passing.

With these assumptions, sending a large amount of data in one chunk requires the
same time, independent of the sender and the receiver. However, sending the same
amount of data in multiple chucks requires more time than sending all the data at
once, because of the latency delays.

With these assumptions the model does not capture all aspects of the real world.
Realistically estimating communication costs requires a more specific model, incor-
porating prior knowledge about the computer architecture, the interconnect setup,
communication latency and transfer times, etc.

Developing a more complex model and optimizing algorithms for it is beyond the
scope of this thesis. The machine model presented here is a good approximation and
algorithms developed with it should perform as expected.

Programming model

The programming model employed in this thesis is known as Single Program Multiple
Data (SPMD), an extension of Flynn’s original taxonomy [2]. In SPMD, the available
number of processes is fixed for each program execution, and each process runs the
same binary. Processes are identified by a number, called rank, used to identify the
processes. The rank enumerates the processes, starting by zero. Inter-process commu-
nication, over the interconnect, is called message passing and used for synchronization
and for copying data from one address space to others.

The machine and programming models employed in this thesis are to be distin-
guished from shared memory models. In these models multiple threads share some or
all of the memory but usually have separate processing units.

Problem Decomposition

Using a distributed memory machine model, such as the Multicomputer, requires
algorithms to divide up problems among processes in order to solve them. There are

9

different degrees of decompositions, which vary in their granularity.

Domain decomposition is the highest level decomposition, it uses the application
semantics for decomposing the problem. Task level parallelism divides a problem in
multiple sub-problems that are then distributed to the processes. Sub-problems are
generally not identical, and each process may receive more than one such sub-problem.

A lower level method for problem decomposition is data decomposition, also known
as data level parallelism This approach divides up the data of the problem among the
processes. As far as possible, each process only works on local data. The efficiency of
data parallelism depends on how well local data can be worked on without requiring
message passing.

A problem parallelizes well if it can be solved solely by working on data locally—
these problems are in the class of embarrassingly parallel problems. If, however, a
problem cannot be solved by inspecting one datum at a time, the problem’s data is
said to have data dependencies. These data dependencies hinder parallel execution,
as they usually require message passing. For some problems, mappings of data to
processes may minimize the data dependencies between processes. Thus, even not
embarrassingly parallel problems can be parallelized efficiently.

Data partitioning is the process of decomposing data for later use in parallel pro-
gramming. A data partitioning algorithm analyzes the problem or a specific instance
of a problem and produces a data decomposition. In this thesis, data partitioning
aims to reduce data dependencies between the processes, which reduces the required
message passing. As message passing requires runtime, decreases the message passing
amount also reduces runtime.

Overhead

Very few real world problem parallelize without data dependencies that require com-
munication between the processes. The extra effort that is required to solve a problem
in parallel is the overhead of the parallel algorithm.

Conceptually, the sequential execution of a program requires a certain number of
instructions I. An optimal parallel algorithm distributes the workload evenly between
P processes without requiring extra effort; each process then executes I

P instructions.
Thus, 1

P is the upper bound for parallelism. This upper bound is rarely reached in
practice, because breaking down the problem and distributing the parts between the
processes and ensuring that all processes get roughly the same amount of work often
requires a considerable amount of instructions by itself.

To quantify the quality of parallelism that algorithms display, several metrics have
been developed. Let TP be the runtime of a program running with P processes in
parallel. The speedup is defined as SP = T1

TP
.

While high speedup indicates that a parallel program runs faster than its serial
version, speedup does not give any information about how efficient the program is.
Efficiency sets the obtained speedup in relation to the 1

P upper bound. It is defined

as EN = SP
P .

10

2.3.2. The Message Passing Interface

The Message Passing Interface (MPI) is a specification for a message passing interface
library. It is the de-facto standard for cluster computing. The MPI standard, released
by the MPI Forum, that will be used in this thesis is the 2.0 Standard [11].

Execution environments that implement the MPI standard provide functionality
for basic message passing, thus providing a framework for robust programming in
the message passing paradigm. Although it is technically possible to use different
programs that communicate with each other, each process uses the exact same one.
The number of processes to be spawned is specified at runtime.

MPI aims to provide ease of use and portability for programs on cluster computing
platforms. Portability is an essential part in cluster computing, as hardware can
vary widely. For instance the nodes in the clusters may vary in the interconnect
medium (Ethernet or Infiniband), endianness, and word size (32 or 64 bit). Compliant
execution environments provide message passing services between processes.

MPI messages can be synchronization between processes or the movement of data
from one address space to the other. The standard guarantees complete and correct
delivery of messages or notification of failure.

2.4. Graph Partitioning

This last section of the current chapter introduces graph partitioning. First, the term
is formally defined. Then the usage of graph partitioning as a data decomposition
method is discussed. Finally, ParMETIS a library for parallel graph partitioning is
presented.

2.4.1. Definition

A k−way partitioning of an undirected graph (V,E) is a partitioning of the set of
vertices V into k sets, V1, V2, ..., Vk such that

• |Vi| = n/k, for |V | = n, i ∈ {1, .., k}

•
⋃k

i=1 Vi = V

• Vi ∩ Vj = ∅, for 1 ≤ i, j ≤ k, i 6= j.

The edge cut of a partition is the number of edges incident to vertices of different
subsets. k−way graph partitioning with minimal edge cut is NP-hard, but as number
of heuristics with good runtime have been developed [6].

2.4.2. Data Partitioning using Graph Partitioning

Decomposing problems with data parallelism often results in dependencies between
the processes. When modeled as a graph, partitioning can be employed to reduce
these data dependencies.

11

Reducing the edge cut of the partition reduces the data dependencies between the
processes and thus the communication between the processes. A reduction of the
communication also decreases runtime, since than accessing data locally is faster than
communication over the interconnect.

Communication is directed, as one process sends data and another receives it. Graph
partitioning, however, is performed on undirected graphs, because the direction of the
communication is irrelevant to the communication volume. Assuming that incoming
and outgoing communication have the same cost, it is sufficient to model the com-
munication arising from data dependencies with an undirected graph. Thus, graph
partitioning is suitable for data partitioning in data parallel algorithms. The graph
that requires partitioning may be too large to be held in the memory of a single ma-
chine. To partition even large graphs parallel graph partitioning libraries have been
developed.

2.4.3. Software: ParMETIS

A number of tool kits have been developed for parallel graph partitioning, including
JOSTLE [15], ParMETIS [7], and PT-Scotch [1].

ParMETIS and PT-Scotch are still under active development, but JOSTLE is not.
PT-Scotch is slower but yields better results than ParMETIS. For both libraries the
edge cut worsens as a function of the processes used, but for PT-Scotch less so than for
ParMETIS [1]. In this thesis ParMETIS will be used for graph partitioning, because
runtime of the graph partitioning is important.

ParMETIS employs a multi-level method for graph partitioning. Multi-level meth-
ods “coarsen” the target graph, by collapsing vertices, thus obtaining a series of smaller
graphs. The smallest graph is then partitioned using traditional methods. Lastly, the
partitioning of the coarsest graph is successively “refined”, by mapping the partitioning
onto the bigger graphs, finally yielding a partition for the original graph.

ParMETIS is a parallel library, all processes call the graph partitioning routine at
the same time, and each process passes a part of the graph to the routine. The graphs
vertices to be encoded as integers, numbered contiguously starting from zero. Each
process owns a number of graphs vertices, and its adjacency list. Since the graph is
undirected, each edge is encoded on the adjacency list of both incident vertices. Each
process passes ParMETIS the adjacency lists of the vertices it owns.

The result of the graph partitioning is a mapping of vertices to subsets. ParMETIS
returns this mapping, however, every process receives only the mapping for the ver-
tices it owned when calling the graph partitioning function. The vertices are not
automatically redistributed, assembling the entire mapping of vertices to processes or
redistribution of the vertices must be done manually. For a complete explanation of
the ParMETIS library and its functions see the ParMETIS manual [8].

12

3. A Data Parallel SPR Algorithm

In this chapter a parallel SPR algorithm is presented that divides the reunification
buffer and the workload among multiple processes. Before the algorithm is presented,
some additional concepts are introduced in previous sections. First, Section 3.1 defines
the objectives for parallelization. These objectives form a basis for the algorithm
design, and will later be used to evaluate the quality of the algorithm design. Section
3.2 contains an analysis of the data behavior the SPR simulations exhibit. In Section
3.3 the insights into the data behavior are used then to propose a decomposition of
the reunification buffer. Further, Section 3.4 introduces a data parallel algorithm
for SPR. Last, Section 3.5 analyzes the parallel SPR algorithm with respect to the
parallelization objectives.

3.1. Parallelization Objectives

This section sets the design priorities for the parallelization algorithm, and eventually
in Chapter 4, the data partitioning algorithm. These objectives will decide which
trade-offs are made in the design of the algorithms, and set the bar for a successful
algorithm design.

Parallelization in cluster computing can decrease the runtime of programs. In the
case of SPR, however, the runtime of the simulations are not the primary problem.
Rather, the limiting factor is the size of the reunification buffer, as it quickly becomes
too large to be held in the random access memory (RAM) of a single machine.

The first parallelization objective is, therefore, leveraging the RAM gained by exe-
cuting a SPR simulation on multiple computers. Hence, the memory overhead of the
parallel SPR and the data partitioning algorithm should be kept small. The memory
requirements of sequential SPR simulations are in O(N3), for the number of patches
in the scene N . Memory overhead is not necessarily only a function of the problem
size, but also of the number of processes P . An efficient algorithm should decrease the
memory overhead with the number of processes. Ideally, the algorithm would scale in
O(N2/P), but a flexible data decomposition of the reunification buffer, for example
a mapping of rows to processes, has a size in O(N2). Unfortunately, this requires
a memory overhead in O(N2) to be acceptable. The memory usage of the parallel
SPR algorithm is discussed in Section 3.5, and of the data partitioning algorithms in
Section 4.4.

While the runtimes of the serial version of SPR are relatively short, runtime speedup
is still desirable. Under no circumstances should the parallel algorithm attain speedups
of less than one for realistic amounts of processes (1–64 processes). To keep runtime

13

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u
m
b
er

o
f
p
ar
ti
cl
es

0 1000 2000 3000 4000 5000 6000

Time index

Number of particles in buffer

Figure 3.1.: Number of particles in the reunification buffer over time

overhead to a minimum, data partitioning should not require excessive runtime, and
remain a small fraction of the execution time, independent of the number of processes.

3.2. Analysis of Reunification Buffer

The reunification buffer is the core data structure of SPR. It stores sound particles by
origin patch, destination patch, and starting time index. The SPR algorithm populates
the buffer with initial rays, and then iterates over the buffer from lowest to highest
time index. Each retrieved particle is simulated and deleted from the buffer. The
simulation of a particle results in a number of new particles, which are written back
into the reunification buffer. These writes may reunify two particles or create a new
particle.

An interesting metric is the number of particles in the buffer at a given time. The
length of a particles’ path from one patch to the other is limited by the scene, effectively
limiting the time indices that can be written to when simulating particles at a given
time index. The number of patches in the scene is also finite. Therefore, the number
of particles that can be in the buffer at one time is also limited. The rest of this section
will analyze exactly how close the buffer is to full occupation during a simulation.

At the beginning of the simulation only very few particles are stored in the buffer.
With each simulation step, the number of particles increases. Given a typical set of
simulation parameters, the number of particles grows, until either the maximum num-
ber of particles or the maximum simulation time is reached. For very large absorptions
of the scene the number of particles decreases before the maximum simulation time is
reached.

Given a buffer with a high number of particles stored in it, the reunification rate of
particles is very high, and SPR becomes an effective simulation method. For a scene
with low absorption, and a high maximum simulation time, the number of particles

14

in the buffer is plotted in Figure 3.11. The graph clearly displays three phases: The
beginning phase, with a low, but rising number of elements. A plateau phase, where
the increase in particles decreases until the maximum of possible particles in the buffer
is reached. Finally, the end phase when the maximum simulation time is reached, and
particles are discarded, resulting in a decreasing number of particles. In the figure
the beginning phase is from time index 0 up to circa time index 1000. The end phase
starts at about time index 5000.

In the rest of the thesis the plateau phase will be called the dense case, as the buffer
is densely populated. The beginning phase and the end phase will be called the sparse
case. The data partitioning will be done for the dense case, as this is the case SPR
works best at, and it is where the most writes per time index take place.

The occupation of the reunification buffer does not always progress as shown in
Figure 3.1. Usually the maximum simulation time is shorter than the 10 seconds used
in that example. The maximum simulation time may well be reached before the buffer
occupation plateaus.

Even if the maximum number of particles in the buffer is reached, the buffer is not
completely occupied. A maximum for the number of particles always exists, but is
dependent on the simulation parameters. The maximum will always be reached given
low absorption and high simulation time. If, for example, one of the scenes’ walls is
fully absorbent, no particles will originate from that wall, which decreases the possible
number of particles in the buffer. In case all walls are fully absorbent, no particles will
be reflected, and the buffer will never fill.

The occupation of the buffer is also influenced by the scene layout. It is physically
impossible for a particle to have the same origin and destination wall. Therefore, many
rows of the buffer cannot contain any particles, because the simulation cannot write
to them.

3.3. Decomposition of Reunification Buffer

This section deals with the decomposition of the reunification buffer. Decomposing the
buffer is an important step towards leveraging the RAM of processes for simulation.

This section disregards the simulation of the particles and focuses on the decom-
position of the buffer and how particles are stored and retrieved. Decomposition of
the buffer is done in a way that allows the storing and receiving of particles to be
transparent from the SPR simulation routines. The entire buffer, as it is presented
to the SPR simulation routines, is called the global buffer. The parts of the buffer a
process owns form what is called the local buffer.

The decomposition of the buffer has two requirements in order for reads and writes
to the global buffer to be possible. First of all, every process needs to be able to
determine the owner of a given particle. This can be done via a mapping of particles
to processes P. Second, given a particle that is owned by a process, that process
needs to be able to store that particle in the local buffer, and be able to retrieve it.

1For the simulation setup see Section 5.2

15

0 1 2 3
A→A
A→B
A→C 1 1 1
A→D
B→A
B→B
B→C
B→D
C→A 0.45 0.45 0.45
C→B 0.45 0.45 0.45
C→C
C→D
D→A
D→B
D→C
D→D

time

Figure 3.2.: The reflection behavior of patches is time invariant.

Read and write operation to the local buffer require a mapping C of a processes own
particles in the global buffer to particles in the local buffer. This mapping is partial
for process numbers larger than two, as each process will only own parts of the global
buffer. Each process has its own version of this mapping, because each process owns
different parts of the global reunification buffer.

If one were to map each particle to a process explicitly, the mapping of particles
to processes alone would be of the same size as the reunification buffer. Then, the
memory overhead would be larger that the reunification buffer itself. The mapping
needs to be smaller, sacrificing granularity of the mapping for size. A number of ways
to generalize the mapping are thinkable, for example mapping based on columns or
rows of the reunification buffer.

A data decomposition based on columns, for example, would be a very inefficient
mapping. Only particles from a few columns can be simulated at each time, because
the data dependencies of each particle must be respected. Many processes could not
work on their part of the buffer. Also, every single write would be remote, because
the particles generated by the simulation step always have a higher time index.

The split-up of particles on impact with patches is time invariant. Hence, the
simulation of a particle yields the same particles, expecting only the time offset, for
the entire simulation, see Figure 3.2. Therefore, the loss of granularity for row-based
mappings is very small, but the reduction in size is significant. This thesis will continue
to use row-based mappings.

For a data decomposition to be complete and correct, a P and a C mapping for every
process is required. P must be total, that is, it must assign every row to a process.
Every C mapping must map all the rows that are assigned to that process via the P
mapping to rows in the local buffer.

16

P
Row Process ID

A→A 0
A→B 0
A→C 0
A→D 0
B→A 0
B→B 0
B→C 0
B→D 0
C→A 1
C→B 1
C→C 1
C→D 1
D→A 1
D→B 1
D→C 1
D→D 1

C
Process 0 Process 1

Global Local Global Local

A→A 1 C→A 1
A→B 2 C→B 2
A→C 3 C→C 3
A→D 4 C→D 4
B→A 5 D→A 5
B→B 6 D→B 6
B→C 7 D→C 7
B→D 8 D→D 8

Figure 3.3.: Mapping of rows to processes (left) and mappings from local to global
buffer coordinates (right). This forms a data decomposition for reunifica-
tion buffer of the example room for two processes.

A simple way to obtain a data decomposition is to evenly distribute the rows among
the processes with no regard to data dependencies, whatsoever. This will be called a
näıve data decomposition. Näıve mappings preserve correctness of the algorithm, but
since the data dependencies of the particles in the buffer are not taken into account
the mappings are likely inefficient.

Figure 3.3 is an example for a näıve data decomposition of the example room and
two processes. This mapping takes the reunification buffer from Figure 3.2 and splits
it between B→D and C→A. Any decomposition for two processes assigns each process
half the rows of the global buffer, the number of columns remains the same for the
local and the global buffer. The global buffer has 16 rows, from A→A to D→D, while
the two local buffers have 8 rows each, numbered from 1 to 8. The P mapping of rows
to process identifier assigns the first eight rows to process zero and the latter eight to
process one. While C, the mappings from local to global buffer coordinates, assigns
the rows on the global buffer to coordinates in the local buffer.

3.4. A Data Parallel SPR Algorithm

The largest memory structure of SPR is by far the reunification buffer, and SPR
spends most of the runtime simulating particles from the buffer. Thus, parallelization
of SPR using a data parallel approach seems appropriate.

17

Given the parallelization objectives a distributed memory approach must be taken.
Shared memory parallelism, such as Open MP, can only increase the amount of process-
ing power available, but not the amount of available RAM. Only distributed memory
parallelism results in a gain of available RAM.

The development of a data parallel approach for SPR requires an understanding of
how the algorithm operates on its data. The data dependencies between the elements
in the reunification buffer is key for data parallelism.

To this end, Algorithm 3.1 illustrates the SPR algorithm from a data-centric point
of view. The algorithm provides a sketch of how particles are read and written to the
reunification buffer. The sound propagation logic takes place in the called functions.

Algorithm 3.1 The SPR from a data-centric point of view

function spr(SimulationParameters sp)
allocateBuffer(sp)
List<Echogram> es = initEchograms(sp)
while simulationNotCompleted() do

Particle p = getNextParticleFromBuffer()
List<Particle> ps = simulateParticle(p, es, sp)
for all Particle q in ps do

storeInBuffer(q)

end while
return es

The algorithm operates as follows. First, the buffer and the echograms are initial-
ized. Then, in the algorithms’ main loop, the next sound particle is read from the
buffer and simulated. The simulation returns the split-up particles and those are writ-
ten back to the buffer at the appropriate coordinates. simulationNotCompleted()

checks whether the simulation is complete, by checking whether the global buffer is
empty, or if the maximum simulation time is reached.

getNextParticle() reads particles from the reunification buffer. To ensure correct
results, the particles are retrieved ordered by time index. All the particles returned
by the simulation of the particle have a higher time index as the original particle.
The ordering can be realized by iterating over the time indices in a strictly increasing
sequence.

SPR can achieve parallelization by dividing the reunification buffer among the pro-
cesses. Each process calls the simulation routine for the particles in its part of the
buffer. Write operations to non-local parts of the buffer are realized via message
passing. Hence, this approach divides up the workload along with the data.

A data parallel concept for SPR is given in Algorithm 3.2. The buffer is näıvely
distributed among the processes, as discussed earlier. Every particle is uniquely as-
signed to one process. Each process reads particles from its own part of the buffer and
performs the required simulation steps, which generates new particles. The new par-
ticles are sent to the respective processes and written to the buffer there. Finally, the

18

Algorithm 3.2 A sketch of the parallelization approach for SPR

function parellel spr(SimulationParameters sp)
List<Echograms> es = initLocalEchograms(sp)
allocateLocalBuffer(sp)
while simulationNotCompleted() do

Particle p = getNextParticleFromLocalBuffer()
List<Particle> ps = simulateParticle(p, es, sp)
for all Particle q in ps do

sendParticleToOwningProcess(q)

List<Particle> ps’ = receiveParticlesFromProcesses()
for all Particle q in ps’ do

storeInLocalBuffer(q)

end while
synchronizeEchograms(es)
return es

echograms are synchronized between the processes, as each process keeps echograms
for its own particles.

Algorithm 3.2 is a straight forward implementation of the data parallel paradigm.
The reunification buffer is distributed among the processes and each process simulates
local particles. Remote write operations are handled transparently for the simulation
routines.

Given a correct decomposition, the parallel SPR algorithm yields the same result
as the sequential one. The parallel version is correct, because it simulates the same
particles as the serial version. In the parallel version the buffer is distributed, but
a correct decomposition can hide the message passing from the simulation routines.
The parallel version also simulates multiple particles at the same time, which preserves
correctness, as long as the processes synchronize.

The next section discusses this synchronization, and the section after that discusses
why data partitioning is helpful for this algorithm.

3.4.1. Synchronization

The data parallel approach requires that the data dependencies are accounted for when
simulating sound particles. SPR assumes that only completely reunified particles are
evaluated, i.e., no particle needs to be evaluated twice. A process may, therefore,
not simulate a particle from its buffer, that a process might still write to. For the
parallel algorithm, this constraint necessitates synchronization between the processes,
independent of the communication of the sound particles.

Forbidding the simulation of particles that are not fully reunified induces a time
index interval that particles might be read from for simulation. The size of the interval
is the minimum travel distance between any two patches located on different processes.
Reading particles from this interval ensures that no particle is read from the buffer

19

and simulated while another process might still write to that coordinate in the buffer.
Due to technical limitations, see Section 4.4, the time index particles are read from
is the same for all processes; all processes synchronize after simulating all particles
stored in one time index.

Throughout the rest of the thesis it is assumed that the data dependencies of all
particles are properly observed using synchronization.

3.4.2. Requirement for Data Partitioning

When a particle is simulated it is split-up into S particles, which are written back into
the buffer. S is the split-up of a particle on simulation, it is a simulation parameter of
the SPR simulation. Reunification of sound particles is achieved by repeated adding
of the particles energy to the appropriate coordinates in the buffer. If particles are
reunified, they are written to multiple times, but always read from only once, at the
time of simulation.

In the worst case one read to the buffer causes S writes to it. The only instances
where less than S are written is, if the energy of a resulting particle is below the
specified minimum, or the starting time of the particle above the maximum simulation
time. Both cases are rare, therefore, most often a read to the buffer causes S writes.

The data parallel algorithm reads the particles for simulation from the local buffer
and writes the generated particles back to the buffer. Reads to the buffer are guaran-
teed to be local, but writes are remote, if the resulting particle is owned by another
process. For näıve decompositions the probability that a write is remote increases with
the number of processes, since the buffer is evenly distributed among the processes.

For P processes, each process simulates up to N2 particles per time index, which
cause as many reads to the buffer. Every simulated particle is split into S particles,
so N2 ·S particles have to be written back into the buffer. If a näıve decomposition is
used, only N2

P · S of these writes are local, the rest require message passing. For large
P there are S remote accesses to the buffer for every local access, which is a major
source of overhead.

One way to mitigate the problem, is to make ensure that many writes to the buffer
are local. By definition näıve decompositions do not consider the behavior of the sim-
ulation, and are therefore unlikely to reduce the number of remote writes. A decompo-
sition is required that reduces the remote writes, by analyzing the data dependencies
of the rows in the buffer. Chapter 4 introduces a data partitioning algorithm that
produces such data decompositions.

3.5. Memory Requirements

Keeping the memory overhead to a minimum is an important part of the parallelization
objectives. Therefore, this section examines the memory requirements of the parallel
SPR algorithm and evaluates the resulting overhead.

There are three objects that take up significant memory in the parallel SPR algo-
rithm: the reunification buffer, the mappings required for the decomposition of the

20

buffer, and the communication buffers. This section will examine the memory require-
ments of all three in turn. Let N be the number of patches in the scene and P the
number of processes.

The global reunification buffer has a size in O(N3). Evenly dividing the rows of the
global buffer among the processes yields size of the local buffer in O(N3/P).

The mapping C, from local to global buffer coordinates, is of size N2/P as each
process owns that many rows. This mapping is different for each processor, and each
processor requires only its own mapping. However, constant time look-up in both
directions requires a separate data structure for each direction. The look-up from
local to global buffers has a size of N2/P , but the look-up from global to local has a
size of N2.

The mapping of rows to processors is of size N2. Each processor requires this map-
ping, and constant time look-up is only required in the direction of rows to processors.

The algorithm does not specify how remote writes to the buffer are to be imple-
mented. Sending a single large communication is generally more efficient than sending
multiple smaller ones. When sending large communications, however, the sizes of the
sending and receiving buffers can become quite large.

It would be possible to send each particle that requires a remote write directly and
as a single particle without buffering. For this option, the memory requirements are
practically none, however, a very inefficient one, as there will be a latency delay for
every particle.

The other extreme would be to simulate multiple time indices before synchroniza-
tion, buffering remote particles all the while. As part of the synchronization all par-
ticles would be sent to the owning processes and written to the local buffers. Unfor-
tunately, this approach would require very large buffers, and complex synchronization
between the processes to ensure the data dependencies are respected.

A good trade-off between communication time and memory overhead is to simulate
all particles in one time index. Particles that require remote writes are sent to their
owner processes after all the particles in a time index have been simulated. One time
index holds N2/P particles per process in the worst case. Given a split-up of S, the
maximum number of particles that can be written while simulating one time index is
S ·N2/P . Thus, the send buffers are quite large, but still in O(N2).

To summarize, the proposed parallel SPR algorithm divides the reunification buffer,
and with that the workload, evenly among the processes. The memory overhead of each
process for the mappings is in O(N2+N2+N2/P) = O(N2). When buffering particles
from one time index before exchanging particles, the size of the communication buffers
is in O(N2), also for each process. Therefore, the memory overhead of each process is
in O(N2), which fulfills the parallelization requirements. The total memory overhead
is the memory overhead of all processes combined, and thus in O(N2 · P).

21

4. Data Partitioning Algorithm for SPR

Chapter 3 introduced a parallel SPR algorithm that decomposes the buffer by rows.
The message passing requirements of the algorithm depend strongly on the buffer
decomposition used. In this chapter the data dependencies between the rows are
examined, and formalized in a graph. The resulting graph is then partitioned to
obtain a data decomposition that reduces message passing requirements.

4.1. Graph Model of Data Dependencies

With the work of the previous chapter, the term data dependency can be refined
for the purpose of this thesis: The data dependencies of a datum are the data that
must be processed before that datum can be safely evaluated. In the context of SPR
and the reunification buffer, a particle must be fully reunified before it can safely be
evaluated. Thus, the data dependencies of a particle are all the particles that generate
that particular particle on simulation.

One way to approximate the data dependencies of a particle is to assume it is
dependent on all particles that could still write to that particle, see Section 3.4.1.
While this is a correct approximation, it is a very broad one. A better approximation
is desirable, because the model of the data dependencies will be used for the data
partitioning, and a more accurate model will result in a better decomposition.

The rows of the reunification buffer encode the origin and destination patch of a
ray, while the column encodes the starting time of a ray. Section 3.3 introduced a
row-based decomposition of the buffer for distribution among the processes. A model
of the data dependencies at a row level is appropriate, because the decomposition is
also row-based. Let R be the set of rows in the reunification buffer. Data dependencies
between rows can be expressed by a “on simulation writes to” relation R ⊆ R × R.
(p, q) ∈ R if the simulation of a particle in the row p results in write of a particle
into the row q. It is possible to generate the information for this model by inspecting
only one time index without loss of information, because the reflection properties of
patches are time invariant.

Using the rows as vertices and R as the set of edges, the data dependencies between
rows can be expressed as a graph (R,R). Throughout the thesis this graph will be
called graph model.

Figure 4.1 is the graph model for the example room in Figure 2.2. The graph model
is generated from the reunification buffer, which has all patch to patch combinations
as rows. Patch combinations which do not occur in the example room are present as
vertices but do not have incoming or outgoing edges. Given a particle in the row A→C,

22

D→A

A→D

D→B

B→C

C→A

A→C

C→B

B→D

D→D

D→C

C→C

C→D

A→A

A→B

B→A

B→B

Figure 4.1.: Graph model of the data dependencies of the rows in the example room

indicated in blue, the graph model predicts that the simulation of that particle will
cause writes to the rows C→A and C→B, indicated in red.

4.2. Using Graph Partitioning

This section takes a look at the graph model developed in the previous section and
argues why graph partitioning of that model produces an efficient data decomposition.

As a preparation step, the graph model can be used to measure the quality of
existing decompositions. Assume a row mapped to a processor has an outgoing edge
in the graph model that is incident to a row that is mapped to another process. Then
the simulation of a sound particle from that row requires massage passing to write the
resulting particle to the buffer at owner process. Application of the graph model to a
data decomposition of the buffer yields all possible remote writes.

An efficient decomposition is one that has few edges that are incident to vertices
mapped to different processes, because fewer remote writes can occur. This is exactly
the definition of an edge cut. Thus, partitioning the graph model should yield a
mapping of rows to processes that reduces message passing requirements.

Such a mapping does not influence the workings of the algorithm. All writes to the
buffer are still done, but the buffer is distributed in such a way that as many of the
expected writes as possible are local.

4.2.1. Existence of Good Decompositions

Conceptually, for a dense reunification buffer, sound particles go from every part of the
room to every other part. It is, therefore, not obvious that data decompositions exist
that reduce the data dependencies between processes. Indeed, if the decomposition
would be on a patch level all decompositions would be equally bad, as statistically

23

B→D

D→A

A→C

C→B

A→D

D→B

B→C

C→A

edgecut: 4

B→D

D→A

A→C

C→B

A→D

D→B

B→C

C→A

edgecut: 16

Figure 4.2.: Two different edge cuts for the graph model of the example room

every patch communicates with every other. This section establishes, that the graph
model can be used to evaluate the quality of a decomposition.

For a partitioning on a row basis, however, there are good decompositions, because
the data dependencies between the rows are time invariant and fairly few in number.
Indeed, as split-up is a constant factor S, the number of edges is N2 · S. The linear
growth indicates a sparse graph.

For complete graphs, every partition has the same edge cut. For sparse graphs,
partitions with different edge cuts exist. Sparseness of a graph does not guarantee
good decompositions, as the edge cut might only be slightly better, or the heuristics
might not actually find the best solution.

Figure 4.2 illustrates the existence of good and bad decompositions for the graph
model of the example scene. For the sake of simplicity the figure does not show the
vertices that have no incident edges. A red line indicates the edge cut that partitions
the set of vertices into two subsets, with the vertices marked in green and blue. Shown
on the left is a partitioning with an edge cut of four, which is the minimum edge
cut for four partitions. The minimal edge cut for two partitions is zero and can be
obtained by partitioning the vertices without incident vertices in one partition and the
vertices shown in the figure in the other. The partitioning shown on the right, with an
edge cut of 16, is an application of the graph model to the näıve decomposition from
Figure 3.3.

Good row-based decompositions of the reunification buffer exist. Decompositions
that yield a low edge cut when the graph model is applied to it are good partitions.
Moreover, the graph model can be used to obtain good partitions by applying graph
partitioning to the graph model.

24

4.2.2. Load Balancing

The communication behavior of a parallel program may change as the simulation pro-
gresses [4]. If these changes are significant and happen often, the algorithm may need
to change the data decomposition on-the-fly. This is known as dynamic load balanc-
ing. Performing data partitioning on a problem once to obtain a data decomposition,
and maintaining that decomposition throughout the program execution, is known as
static load balancing.

SPR undergoes such a change in communication behavior, because the reunification
buffer changes its degree of occupation. The reunification buffer starts out sparse,
changes to dense and, in the end phase, back to sparse. As the model focuses on the
dense case the obtained mapping is likely not to be optimal for the entire simulation.

Once the buffer is dense, it will remain dense until the end phase of the simulation.
In the entire dense phase the communication behavior will not change. For every time
index, every possible particle will be simulated, generating the maximum number
of particles, all of which need to be written to the buffer. Hence, a mapping that
optimizes for the dense case does not need to change mid-simulation. The entire data
decomposition can be computed in a preprocessing step and, from then on, does not
need to change.

It is possible to calculate efficient mappings for early steps of the simulation, if
the starting rays are taken into account. Then, the propagation of the starting rays
through the rows can be modeled; such an approach will likely yield a mapping that
assigns all rows active in the early steps of the simulation to one process.

As discussed, obtaining a mapping for sparse reunification buffers is more complex
than for dense reunification buffers. Switching partitioning schemes is even more
complicated, because the optimal time to switch from one mapping to the other is
hard to determine. Therefore, this thesis concentrates on static load balancing.

4.3. Data Partitioning Algorithm

k-way graph partitioning of the graph model returns k partitions that minimize the
edge cut. If the k partitions are used to assign the rows to processes, the resulting
decomposition reduces the data dependencies between the processes. The idea of the
data partitioning algorithm is, therefore, to generate the graph model and to partition
it to obtain a data decomposition.

The data partitioning algorithm must also be parallel, in order to scale well with the
number of processes. Section 2.4 introduced ParMETIS, a parallel graph partitioning
library. The generation of graph model in parallel is treated in the next subsection. As
previously mentioned, graph partitioning is generally done on undirected graph. The
conversion of the directed graph model to an undirected one in parallel is discussed in
the second subsection. This section concludes with a full presentation of the algorithm,
that uses graph partitioning of the undirected model to obtain a data decomposition.

25

D→A

A→D

D→B

B→C

C→A

A→C

C→B

B→D

D→D

D→C

C→C

C→D

A→A

A→B

B→A

B→B

1

11

2

1

2

1

1

1

2

1

2

Figure 4.3.: Undirected graph model of example room, with weighted edges

4.3.1. Parallel Generation of the Directed Graph Model

For sequential SPR the directed model can be generated by simulating a particle
in every row of the buffer and observing the rows that are written to. Because the
algorithm uses the simulation routines to observe the data dependencies between rows,
which ensures the data dependencies are recorded correct. The simulation of a single
particle in a row suffices, because the reflection behavior is time invariant.

The distributed algorithm for generating the directed model is data parallel, just
as the parallel SPR algorithm. First, the buffer is distributed using a näıve decom-
position. Then, each process generates the graph model of its own rows, using the
sequential algorithm just described. No synchronization is required, because the par-
ticles do not need to be written to the buffer, only the row coordinated need to be
observed. Thus, each process generates the outgoing edges for its own rows. Since
every row is owned by one of the processes, the entire graph is generated.

4.3.2. Parallel Generation of the Undirected Graph Model

The graph partitioning software takes the undirected graph as an distributed adjacency
list. Each edge in the graph must be represented in the adjacency lists for both incident
vertices. The undirected graph can be generated from the distributed directed graph
in the following manner.

First, the directed model has to be generated in parallel. For each edge (e, f) a
process has in its local directed graph model, it adds the flip edge (f, e). Now, each
process has a sub-graph of the undirected graph model, which contains all edges that
are incident to a vertex it owns.

Then, the processes send edges that are not outgoing from vertices it owns to the
owner process. Each process receives its new edges and adds them to the adjacency
lists. Now each process has the complete adjacency lists for all vertices it owns.

26

A special case occurs if the directed graph model contains an edge and its flip edge,
so that the graph contains cycles of size 2. This is the case in the example graph model
in Figure 4.1 between, for example, the vertices C→A and A→C. Both edges are in the
directed model already, so adding the flip edge to the model introduces duplicates to
the adjacency lists. As the undirected model is not a multigraph, duplicates in the
adjacency lists are illegal.

In the directed model an edge indicated that exactly one sound particle may be
written to the row that is the head of that edge. If duplicates in the undirected model
are deleted, the model predicts only one particle written, when both rows may be
written to. Fortunately, ParMETIS allows graph to be weighted. To compensate for
the duplicate edge, the remaining edge is assigned the weight 2, all other edges are
assigned a weight of one.

In the end, the graph model is undirected, weighted, and each process owns all
outgoing edges for its own vertices.

Figure 4.3 shows the undirected graph model for the example room, with weights
on the edges. Wherever there was a loss in edges in the conversion from the directed
graph, the remaining edge was assigned a weight of 2.

4.3.3. Description of the Algorithm

Now everything is in place for presenting the actual graph partitioning algorithm.
Algorithm 4.1 provides the pseudo-code of the algorithm.

First, the reunification buffer is distributed using the näıve decomposition, and all
possible fields on the lowest time index are filled. Then, the adjacency lists for the
graph model are initialized as a graph, the default value for edge weights is one.
Vertices are not weighted.

All particles in the buffer are simulated. For each simulated particle, the resulting
particles are saved as edges in the graph. The particles that result from the simulation
are not written back to the buffer, as only one time step is to be simulated. Once
all particles have been simulated, and the appropriate edges added to the graph, the
distributed directed graph is completed. Each process has generated all outgoing
outgoing for the vertices it owns.

Next, for each edge in the graph, the flip edge is added, effectively making the local
graph undirected. At this point the distributed graph model can contain outgoing
edges that do not belong to the process that owns them. Thus, all edges are iterated
over, and the “foreign” edges are sent to the appropriate processes and deleted from
the local graph model.

Then, the processes receive the edges that were sent to them in the previous steps.
The newly arriving edges are added to the graph. Duplicates are then detected and
deleted, while the weights of the remaining edges is set to two. The default for edge
weights is one.

Now, the distributed undirected graph model and its weights are complete and
graph partitioning can begin. The resulting mapping is returned only for the vertices
a process owns. To obtain a complete P mapping, the local mappings have to be

27

Algorithm 4.1 The Data Partitioning Algorithm

function dataPartitioning
allocateLocalBuffer()
fillLowestTimeIndexOfLocalBuffer()
LocalGraph g ← {}
initWeights(g, 1)
for all Particle p in localBuffer do

List<Particle> ps = simulateParticle(p)
for all Particle q in ps do

Row e = getRowCoordiante(p)
Row f = getRowCoordinate(f)
addEdge(e, f, g)

for all Edge (e, f) in g do
addEdge(f, e, g)
if isNotLocal(f) then

sendEdgeToOwningProcess(f, e)
removeEdge(f, e, g)

List<Edge> es = receiveEdgesFromProcesses()
for all Edge (e, f) in es do

addEdge(e, f, g)

List<Edge> es = retrieveDuplicates(g)
for all Edge (e, f) in es do

removeEdge(e, f, g)
setWeight((e, f), 2, g)

LocalMapping<Row,Process> lm = partitionGraph(g)
return Mapping<Row, Process> assembleMapping(lm)

concatenated. Generating the C mappings from a given P mapping is trivial and not
part of the pseudo-code.

The graph partitioning can be done as a preprocessing step, and from the resulting
mapping of rows to processes, each process can easily calculate a mapping of the
distributed coordinate it owns to local coordinates of the buffer.

Figure 4.4 gives the mappings produced by the data partitioning algorithm for four
processes. The mappings returned by the graph partitioning library for each process
is indicated on the P table. For example, the first process own the first four rows, and
thus receives the mapping for all the rows of the form A→*. This is a partitioning
shown in Figure 4.2 on the left. The C mappings are only given for processes 0 and 1.
In this example the mappings for the processes 2 and 3 are only unusable rows.

28

P
Row Process ID

A→A 2
A→B 3
A→C 0
A→D 1

B→A 2
B→B 3
B→C 0
B→D 1

C→A 0
C→B 0
C→C 2
C→D 3

D→A 1
D→B 1
D→C 2
D→D 3

C
Process 0 Process 1

Global Local Global Local

A→A 1 A→B 1
A→C 2 A→D 2
B→A 3 B→B 3
B→C 4 B→D 4
C→A 5 C→D 5
C→B 6 D→A 6
C→C 7 D→B 7
D→C 8 D→D 8

Figure 4.4.: Mapping of rows to processes (left) and mappings from local to global
buffer coordinates (right) for the example room

4.3.4. Discussion

A data decomposition can only be as good as the model it is based on. The developed
graph model makes some assumptions that influence the resulting decomposition.

First, the graph model assumes a dense reunification buffer. The model assumes,
and the partitioning optimizes for, every possible communication taking place for each
time index. As was previously discussed, this is not true for the entire simulation, but
it is a safe over-approximation.

The second potentially problematic assumption is that the graph model predicts
actual communication costs correctly. Assuming a dense reunification buffer, the graph
model makes accurate predictions about communication amounts, because the number
of particles to be sent is modeled, and the size of a particle is constant and known.
The cost of communication is, however, not only a function of communication amount,
but also factors such as congestion of the inter-connect. As discussed in Section 2.3.1,
a model that predicts actual communication costs is out of scope.

29

4.4. Memory Requirements

Just as in Section 3.5 this chapter discusses the memory overhead of the data parti-
tioning algorithm.

The directed model contains N2 ·S edges, and each process owns its outgoing edges,
so the total number of edges is N2 · S/P . The undirected model adds flip edges for
all edges in the undirected model. If the newly generated edge is foreign, it is sent to
the owner process. In the worst case every process sends all its edges to one process.
Hence, the size of the undirected model is (1 + 1/P) · S ·N2 in the worst case.

The P mapping has a size of N2, because—by definition—the mapping assigns a
process to every patch to patch combination Therefore, the memory requirements of
the data partitioning algorithm is in O(N2) in addition to the memory requirements
for the graph partitioning.

30

5. Evaluation

This chapter conducts an analysis of the parallel SPR and the data partitioning algo-
rithm presented in this theses. The evaluation is based on empirical data gathered by
executing an implementation of the algorithm on a cluster with multiple parameter
sets. Some hints as to the procedure for empirical analysis in computer science were
taken from Jedlitschka, Ciolkowski, and Pfahl [5].

The first section contains an explanation of the hypotheses tested in this evaluation
as well as the variables of the test runs. The second section lays out the test setup
for the test runs. The third section contains the analysis of the data obtained from
the test runs. In the fourth section threats to validity are discussed. Section 5 draws
inferences from the data.

5.1. Hypotheses and Variables

There are two questions of interest regarding the algorithms presented in this thesis,
which are now formed into two hypotheses.

The first hypothesis that is to be checked in this chapter is, whether the paral-
lelization objectives are met by the implementation. In order for this hypothesis to
hold, the program must show modest memory overhead, and scale well in memory and
runtime to large number of processes. A large number of processes is 64 in this case.
Thus, the program must not allocate excessive memory for communication buffers or
mapping tables, and attain speedups up larger than one for multiple processes. Where
applicable, preprocessing time must be a small fraction of the runtime.

The second hypothesis is: The presented data partitioning algorithm lowers the
amount of message passing and runtime compared to a näıve data decomposition.
Message passing requirements can be measures by the total communication amount
of the processes in bytes.

The experiment has four independent variables: First, the patches per mean free
path length is a simulation parameter that controls the accuracy of the simulation.
SPR scales in O(N3) in both space and runtime for this variable. All runs have 200
patches per mean free path length.

The second independent variable controls the data decomposition used for the re-
unification buffer. The experiments compare the näıve data decomposition with the
data partitioning algorithm from Chapter 4.

The third independent variable controls whether main memory usage should be
measured during execution. These measurements increase the runtime of the program
and must, therefore, be made separately. Observing memory usage is an indication
for memory overhead.

31

The fourth independent variable is the number of processes that execute the program
in parallel. By fixing all other independent variables and varying this one, the scaling
behavior of the implementation can be observed.

The dependent variables are the runtime of the implementation, the total amount
of communication between the processes, the total amount of RAM used, the time
preprocessing time, and the edge cut of the graph partitioning.

The first variable is the overall runtime of the program. If the processes have
different runtimes, the longest runtime is taken. The runtime of the data partitioning
algorithm if it has been used, is measured explicitly. The overall runtime includes the
runtime of the data partitioning algorithm. Measurement of all time variables is in
seconds.

The third dependent variable is the total amount of communication between the
processes, which is measured by the MPI library directly. These measurements are
given in megabytes. As a third variable, the edge cut of the graph model is given, if
the graph partitioning algorithm is used.

The RAM usage of the program is the fourth variable, measurements are only taken
if the ram measurement variable is set accordingly, The result of the measurement is
not only the peak memory usage, but a detailed profile of allocated heap memory over
time.

For multiple executions with the same independent variable set, the runtime and
the preprocessing time vary. The main memory usage, communication amount, and
edge cut do not vary for multiple executions.

Table 5.1 shows all runs done for evaluation. A line separates the independent
variables on the left from the dependent variables on the right.

5.2. Experiment Design

This section contains an description of the experiment design. First the experiment
setup, then the test process is described.

Experiment setup

The implementation under test is developed from a reference implementation of the
SPR algorithm. Because the implementation is written in C++, the reunification
buffer, the communication buffers, and the mapping tables are STL vectors. The
implementation supports only scenes with one room at this point, so only convex
scenes can be tested. Non-convex scenes are broken down into convex rooms by SPR,
so non-convex rooms are not supported at this point.

For all test runs the same scene with one set of parameters are used. ParMETIS,
version 4.02, is used as the graph partitioning library.

The implementation is compiled with the Intel compiler 11, run with Intel MPI
version 3. Resource allocation and scheduling is done by the clusters’ batch system,
PBS Pro version 10.

32

Allocated heap memory usage is measured with Valgrinds’ massif tool. In the Ap-
pendix A the version numbers and the program flags used are described in more detail.

The simulations were run on the cluster “Apis” at the Hamburg University of Tech-
nology [3]. The cluster is an SGI Altix XE with a Gigabit Ethernet interconnect.
Cluster nodes used for the runs are equipped with 2 Intel X5560 CPUs (Quad Core,
Nehalem (2.8GHz)) and 48GB RAM each. A cluster node may run as many processes
as it has core, in this case a cluster node may run up to 8 processes. Running a simu-
lation with eight processes requires one cluster node, while 64 processes require eight
cluster nodes.

Test process

Let a run be an execution of the program on a cluster, with one fixed set of independent
variables. The results of each test run are recorded. All runs have 200 patches per
mean free path length. Let a test batch be a set of test runs with 1,2,4,8,16,32 and 64
processes. To accurately observe the variation on the dependent variables, each test
run is repeated five times. The rest of the independent variables remain fixed.

Hypothesis testing, for both hypotheses, requires three test batches. The first batch
uses the näıve data partitioning, and does not measure memory usage. The second
batch uses the data partitioning algorithm, and also does not measure memory usage.
The third and last batch uses the data partitioning algorithm, but this time does
measure memory usage.

A test batch for measuring the memory usage of the the näıve partitioning is not
required. The used memory mapping buffers are identical; the only difference will be
the memory requirements of the data partitioning algorithm. No additional insight
over the memory overhead can be gained by measuring the memory usage by the näıve
decomposition.

5.3. Analysis of Experiment Results

An overview of the results are given in Table 5.1. A full table of all runs is B.2. The
first column indicates the number of processes in the run, the second column the data
decomposition used. “Decomp.” indicates use of the data partitioning algorithm,
while “näıve” indicates use of the näıve data decomposition. The third row, labeled
“Data Prt” gives the time required for the data partitioning algorithm in seconds. The
next column “Runtime” gives the runtime of the run. “Runtime” is median values of
five runs, and “Data Prt.” is the data partitioning time from the same run. The fifth
column gives the edge cut of the graph model, if graph partitioning was used. The
next column, “Comm. Amnt” contains the total communication volume of the run.
The last column, “RAM usage”, gives of main memory used in the run in gigabytes.

The test results are now analyzed in turn.

33

Proc Decomp. Data Prt. Runtime Edge Cut Comm. Amnt Ram usage
(S) (H:MM:SS) (MiB) (GiB)

1 näıve n.a. 0:18:39 n.a. 0 n.a.
2 näıve n.a. 0:10:44 n.a. 11184 n.a.
4 näıve n.a. 0:06:21 n.a. 15520 n.a.
8 näıve n.a. 0:03:30 n.a. 15520 n.a.

16 näıve n.a. 0:03:06 n.a. 15521 n.a.
32 näıve n.a. 0:20:32 n.a. 15523 n.a.
64 näıve n.a. 0:16:40 n.a. 15528 n.a.
1 data part. 35 0:18:49 0 0 n.a.
2 data part. 36 0:11:09 230219 2377 n.a.
4 data part. 28 0:06:37 327014 3557 n.a.
8 data part. 26 0:03:52 395961 4501 n.a.

16 data part. 37 0:02:24 431881 5721 n.a.
32 data part. 56 0:02:30 702507 8026 n.a.
64 data part. 70 0:02:01 906848 11598 n.a.
1 data part. 654 2:42:28 0 0 25.530
2 data part. 538 1:29:18 230219 2377 28.080
4 data part. 481 0:58:37 327014 3557 30.159
8 data part. 509 0:36:51 395961 4501 33.915

16 data part. 567 0:24:07 431881 5721 40.889
32 data part. 658 0:19:14 702507 8026 55.580
64 data part. 762 0:17:43 906848 11598 84.457

Table 5.1.: An overview of the test results, test batches are separated by lines

0

10

20

30

40

50

60

70

80

90

R
A
M

u
sa
g
e
[G

iB
]

1 2 4 8 16 32 64

Number of processes

RAM usage

Figure 5.1.: Accumulated maximum RAM usage vs. number of processes

34

0

2

4

6

8

10

12

14

R
am

U
sa
g
e
[G

iB
]

0 20 40 60 80 100 120 140 160

Billions of instructions

0 200 400 600 800 1000 1200

One of two processes

One of eight processes

Figure 5.2.: Allocated memory over time of two processes, one from a run with two
processes (blue) and the other with a run of eight processes (green).

Analysis of Memory Usage

Figure 5.1 plots RAM usage against the number of processes. Clearly, the required
memory is proportional to the number of processes. All the runs indicated in the figure
have the same number of patches per mean free path length, so the size of the global
reunification buffer is the same for all these processes. A run with one process requires
25.5 gigabytes of memory, while a run with 64 processes requires 84 gigabytes. Thus,
for a run with 64 processes has at least 59 gigabytes of memory overhead. However,
the amount of memory gained by additional processes is higher than the memory
overhead. The run with 64 processes runs on 8 cluster nodes with 384 gigabytes of
RAM total.

Figure 5.2 shows the output of the massif profiler for test runs with two and eight
processes. The graph shows the allocated memory on the heap against the number of
instructions executed for one of the processes in the run. Let p2 be the process of the
run with two processes, and p8 be the process of the run with eight processes. The
upper x axis belongs to the blue graph, representing p2 The green graph, for p8, is
drawn relative to the lower x axis.

As the reunification buffer, and with it the workload is evenly divided among pro-
cesses, processes that collaborate with fewer other processors must hold more of the
reunification buffer and execute more instructions. This can be seen in the Figure 5.2,
the process that collaborates with only one other process, p2, requires 12 gigabytes of
main memory and executes 10 trillion instructions. The green graph indicates, that
p8 only requires 3 GiB of memory on average and 140 billion instructions.

The RAM usage shows the same pattern for both processes. Both processes allocate
memory up to a certain point, 3 GiB for the process in the run with eight processes,
and 12GiB for the other process. After the initial initialization follows a short peak
in RAM usage for both processes. Then, the allocated memory falls to the previous

35

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

E
d
g
e
C
u
t

0

2000

4000

6000

8000

10000

12000

C
o
m
m
.
A
m
o
u
n
t
[M

iB
]

1 2 4 8 16 32 64

Number of processes

Edgecut

Communication Amount

Figure 5.3.: Communication amount and edge cut on a proportional scale
vs. number of processors

point and remains there until the end of the execution.

The memory profiles indicates, that the height of the initial plateau is the memory
requirement of the reunification buffer, while the peak at the beginning is the memory
allocated during the graph partitioning. For both processes the peak has a height of
about one gigabyte. The memory usage stagnates after the preprocessing is done, as
the simulation routines mainly read and write from the buffer.

All test runs run with 200 patches per mean free path length. Increasing this
simulation parameter increases the accuracy of the results, but the memory overhead
scales in N2 for this parameter. At some point the overhead per process will grow
larger than the amount of RAM gained by adding a cluster node. Thus, this approach
does not scale to arbitrarily accurate simulations.

Communication Amount and Edge Cut

Unfortunately, the graphs produced by the data partitioning algorithm are too large for
convenient visualization. The graph quickly contains millions of vertices. Therefore,
no figures of the partitioned graphs are shown, and the edge cut must suffice.

Figure 5.3 is a graph that shows the edge cut and total communication volume
plotted against the number of processes. Edge cut and communication volume are
drawn on proportional axis scales. The plot shows that the amount of communication
occurring during the simulation correlate.

Strictly speaking, the correlation between communication amount and edge cut, if
there is any, is not proportional. Most edges have a weight of one, but Section 4.3.2
discussed a case where edges get a weight of two. So the number of edges cut cannot
be a proportional predictor of communication amount.

The edges with a weight of two are, however, only a small fraction of the edges.
Additionally, the graph partitioning will avoid cutting these edges. Edges with a

36

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

 1 2 4 8 16 32 64

R
u

n
ti
m

e
 [

M
in

u
te

s
]

Number of processes

Data Partit.
Naive

Figure 5.4.: Runtime vs. number of processors

weight of two should be the exception.

Unfortunately, there is no edge cut for the näıve data decompositions. As seen
in Table 5.1, the runs with the näıve data decomposition have significantly higher
communication amounts.

Analysis of Runtime

One question of interest is, how well the original parallelization algorithm attains
passable speedups for multiple processes. Figure 5.4 plots the runtime in relation to
the number of processes, for both the test runs with the graph partitioning algorithm
and the näıve data decomposition. Each run was repeated five times and the variation
is indicated as error bars.

Both algorithms display steady speedups for up to 16 processors. The runs with the
näıve data decomposition are faster than the runs with the data partitioning algorithm.
The variation of the runtimes is very low.

For the runs with 32 processes the two graphs show very different runtimes. The
run with the data partitioning displays a slight increase of runtime, while the näıve
decomposition causes the runtime to increase to a median value of 21 minutes, which
is double the runtime of the run with one processor. Both of these runs show large
relative variation in runtime.

For 64 processes the runtime of the runs with the data partitioning algorithm de-
crease slightly in comparison to 32 processors. The run with the näıve data decompo-
sition require about 10 minutes of runtime, which is faster than for 32 processes, but
still slower than for 1 process.

As seen in Table 5.1, the näıve data decomposition produces 15 GiB of traffic for
all runs from four to 64 processes. The amount of communication does increase with
the number of processes, but only a by megabytes in the single digits. The only case
where further subdivision of decompositions does not increase the amount of commu-

37

nication is, if the decomposition is maximally bad to start with. As demonstrated
by the example in Section 3.3, näıve decompositions tend to produce bad results. In
the experimental runs, a näıve decomposition into four parts appears to produce a
decomposition that is very close to the worst one.

Given that the required communication amount is close to constant for the runs
with four to 64 processes, the runtime behavior is surprising. The runs with 4 and
8 processes are executed on one cluster node. The processes sharing a cluster node
appear to communicate faster than over the Ethernet interconnect between nodes.

Even so, the the run with 16 processes requires two cluster nodes but still requires
only 3 minutes runtime. 32 processes take place on four cluster nodes, and require
20 minutes runtime. The runtimes is then reduced for the run with 64 processes.
All these have the same memory requirements, and—of course—the same simulation
parameters. This phenomenon could be caused by the interconnect. If the interconnect
is a torus, the two nodes running the 16 processes may be connected directly. If then,
some of the nodes that run the 32 processes are not directly connected communication
would be very inefficient. For 64 processes this would be less of a problem, because
each process communicates less that in a run with 32 processes.

Moreover, Table 5.1 shows that runtime of the data partitioning algorithm seems
to increase with the number of processes. For runs with 64 processes, that only have
a complete runtime of 2 minutes, the preprocessing alone requires a minute. This is a
limit to the parallelism of the parallel SPR algorithm.

Analysis of Resulting Echograms

During the simulation each process generates its own echograms. After the simulation
is completed, the echograms are added to form the complete echogram. Figure 5.5
shows these cumulative echograms for runs with eight processes. Both cumulative
echograms add up to the reference echogram.

The processes with the ranks 1 and 5 do not contribute any energy to the echograms.
There are two reasons why a process may not contribute energy to the echogram. As
already discussed, parts of the buffer are empty, and entire processes might receive
parts of the buffer that cannot be filled with particles. The second reason is, that a
process only simulates particles that are not registered by receivers.

If a processor simulates a sound particle and a receiver is in the line segment between
the origin and the destination patch, the process will register the energy of that particle
in its histogram. Therefore, the echograms of the individual processes are dependent
on the data decomposition. The data decomposition produced by the data partitioning
algorithm and the näıve decomposition assign different rows of the reunification buffer
to the processes. Figure 5.5 shows that the different decompositions produce different
cumulative echograms.

For a simulation with the same parameter the echogram is always the same, because
sound propagation through scenes is deterministic. Thus the cumulative echograms
always adds up to the same values, independent of the data decomposition.

38

Figure 5.5.: Cumulative plot of the echograms predicted by each process from a run
with eight processes. The upper echogram is produced by the näıve data
decomposition, the lower one by the data decomposition.

These echogram can be used as a test of the implementation. Both, the paral-
lel version with the näıve decomposition and the version with the data partitioning
algorithm yield the reference echogram.

5.4. Threats to Validity

This section mentions threats to the validity of the simulations results or the conclusion
drawn therefrom. Threats to internal validity will be addressed first, and after that
threats to external validity.

5.4.1. Threats to Internal Validity

Most threats to internal validity for experiments on cluster computers concern the use
of the hardware. This section will address hardware issues that may influence runtime
and a threat caused by the implementation of the algorithms.

The nodes that make up the cluster are not identical. If the processes run on ma-
chines with different amounts of RAM or different CPUs it will influence the runtimes.
Runs from cluster nodes with different hardware are not comparable. To produce re-
sults that are comparable with each other, only all runs were made with cluster nodes
with identical hardware.

Indeed, even of the used cluster nodes have the same hardware, the interconnect

39

Processes Cluster Nodes

1 1×n001
2 2×n001
4 4×n001
8 8×n001
16 8×n001, 8×n002
32 8×n001, 8×n002, 8×n003, 8×n004
64 8×n001, 8×n002, 8×n003, 8×n004 8×n005, 8×n006, 8×n007, 8×n010

Table 5.2.: The mapping which nodes are used for a given number of processes

between nodes might be different. Most clusters do not have a fully switched inter-
connect, so some cluster nodes have direct connections, but others do not. Hence,
the available bandwidth between any two cluster nodes are not identical. Every run
is repeated five times to determine runtime variance. If these runs occur on different
cluster nodes, the nodes might have different available bandwidth, which would cause
different runtimes. This threat was controlled by using the same cluster nodes for
every run with the same number of processes. Table 5.2 contains the cluster nodes
used for runs with a given number of processes, a complete specification of the cluster
is available [3]. Every runs uses the cluster node “n001”. Runs with eight processes
require two cluster nodes so “n001” is used and “n002” is added. For the other nodes
further nodes are added until the required number is met.

The cluster nodes run a Linux, which us in essence a time sharing system. In this
case time sharing is undesirable, because other running processes might block the CPU
or poison the case, which would falsify the runtimes. To ensure nothing interferes with
the running of the program the batch system is instructed to schedule all used nodes
exclusively to that task. No other dedicated task is scheduled on the cluster nodes
in involved in a run, so the SPR implementation can make full usage of the available
RAM, CPU, and available bandwidth. Thus, free resources, such as CPU cores that
are not used by the simulation, remain unused.

The exclusive scheduling of the cluster nodes for all runs is a best effort to ensure
accurate runtime results. However, the cluster nodes and the traffic on the interconnect
from other nodes cannot be fully controlled for.

Another threat to validity is the implementation of the algorithms. A faulty im-
plementation of the algorithms would invalidate the data. The results of the imple-
mentations and of all test runs were checked against a reference. Section 5.5 contains
echograms of two runs, compared to the reference. The same compiler and libraries
were used for the reference echogram.

All the experiment data is saved and available for review. Some information, such
as exact version numbers and the command line flags used are in the appendix.

40

5.4.2. Threats to External Validity

Only one test scene with one set of test parameters has been used for all runs. One
might think that this threatens external validity, because other scenes or simulation
parameters might cause the implementation to show different behavior than the scene
and parameters chosen for this run. This different behavior could then manifest in
different efficiencies of the data partitioning algorithm or the parallel SPR implemen-
tation itself.

Simulation parameters, used in the test runs, are realistic and not particularly chosen
for their influence on the program execution. The choice of scene or simulation param-
eters does not influence functionality of the parallel SPR algorithm, or significantly
alters its efficiency compared to the sequential version. The scene and simulation pa-
rameters only influence the size and the occupancy behavior of the buffer, none of
which impacts the functionality of the parallel SPR algorithm. The only simulation
parameter that has a significant influence on the efficiency of the SPR algorithm in
comparison to the serial version is the split-up factor. Very large split-up factors lead
to many writes operations to the buffer, which are potentially remote, and thus slow.

The graph model is not influenced by the simulation parameters, either. Indepen-
dent of the split-up factor, the graph remains sparse for large numbers of vertices. The
simulated scene is a convex room, thus a non-convex room is a significant change not
analyzed by the experiment. For dense buffers, sound propagates from each patch to
each other possible patch. If the simulated scene is non-convex some patches do not
have a line of sight. The data partitioning algorithm models the fact that no sound
can travel between those patches, thus the graph model should be even more efficient.

5.5. Inferences

This describes inferences drawn from the data; whether and why the data uphold the
hypotheses. We will examine the hypotheses in turn.

5.5.1. Parallelization Objectives

The first hypothesis is the fulfillment of the parallelization requirements, both on the
memory usage and the runtime behavior. First the memory usage, and then the
runtime behavior, of the parallel SPR algorithm and the data partitioning algorithm
will be examined.

Memory Usage Requirements

The data parallel approach to SPR is successful in lowering the memory requirements
for individual processes by distributing the buffer among multiple processes.

Although the memory usage test runs include the data partitioning algorithm, the
memory usage pattern without the data partitioning can be inferred from the data.
Since parallel SPR with a näıve data decomposition does not have memory intensive

41

preprocessing steps, such as graph partitioning, the memory usage is dominated by the
reunification buffer. The size of the communication buffers and the mapping tables is
less than 1% per process. For 32 and 64 processes the size of the local reunification
buffer becomes less than one gigabyte per process, and is not the largest memory
structure.

The graph partitioning requires a significant amount of memory per process. This
is problematic, especially because the data partitioning was supposed to help scaling
to large number of processes. In that respect the data partitioning algorithm fails the
memory aspect of the parallelization requirements, at the moment.

In the implementation the entire reunification buffer is allocated for the generation of
the graph model, and remains allocated during the graph partitioning. The generation
of the graph model only requires the buffer to have one time index. The observed
memory peak can effectively be eliminated by allocating a buffer with one time index
for the data partitioning, and extending the buffer after the data partitioning algorithm
completed.

For both data decompositions, the näıve one, and the decomposition obtained from
the data partitioning algorithm, some processes store no particles throughout the entire
simulation. This is to be expected for both decompositions. As already discussed,
some rows of the buffer can never hold particles, because the physics of the simulation
forbids them. Due to technical issues, the reunification buffer allocated by the SPR
introduces even more overhead. Thus, for the scene and parameter set used in the
simulation 70% of the reunification buffer can not be occupied.

A näıve partitioning is likely to decompose the buffer in a way that leaves some
processes with permanently empty buffer rows.

The data partitioning algorithm actually proactively produces decompositions, be-
cause the algorithm aims to reduce the edge cut. If, for example, all occupy-able rows
can be mapped to one process, the graph partitioning should do so, as it will reduce
the edge cut to zero.

Runtime Requirements

The runtime requirement part of the parallelization objectives is concerned with the
scaling of the algorithms to large process numbers. First, the runtime of the parallel
SPR algorithm, then of the data partitioning algorithm will be examined.

Parallel SPR simulations with näıve data decomposition on multiple nodes have
mixed runtimes. For eight processes on two cluster nodes SPR still attains speedups,
but for more processes the test runs take longer than the runs with one process.
The test runs with using the data partitioning algorithm on the other hand, display
speedups even for the runs with higher number of processors.

The parallelization objectives demand a speedup for large numbers of processes.
Data partitioning computes a data decomposition that, as required, produce these
speedups even for 64 processes.

Technically, the data partitioning fails the requirements set by the parallelization
objectives, because the algorithm requires a significant portion of the runtime. How-

42

ever, the runtime of the data partitioning algorithm seems to pay off, as the näıve
data decomposition requires 16 minutes for 64 processes.

The runtimes of the data partitioning algorithm do not scale well. The data is not
conclusive on whether there is a speedup at all, but if there is one it is too small.
Thus, the data partitioning algorithm also fails the runtime requirement part of the
parallelization objective.

5.5.2. Effectiveness of the Data Partitioning Algorithm

The second hypothesis is, that the data partitioning decreases the required message
passing and the runtime of the parallel SPR algorithm in comparison to a näıve data
decomposition.

It was previously established, that the occurring traffic correlated with the edge cut
of the graph model. The runs with the näıve data decomposition have significantly
higher communication volumes, than the runs with the data partitioning algorithm.
Thus, the data partitioning algorithm does what it was supposed to, namely to produce
data decompositions that reduces communication requirements.

The data decomposition computed by the data partitioning algorithm does not
improve the runtime of the parallel SPR algorithm for the runs with eight or less
processes, although it reduces the communication amount. These runs take place on
a single cluster node, and the communication costs are very low.

The runs with more than eight processes show that the data partitioning algorithm
works very much better than the näıve data decomposition. Although the runtimes
are not significantly decreasing after 16 processes, the runs using the data partitioning
sustain the low runtimes. The reunification buffer is too small to distribute well to
64 processes. A more accurate simulation would require a larger buffer and would
probably show better speedups for processes with very high numbers of processes.

The experimental data supports the claim, that the data partitioning algorithm
reduces the required communication amount, and with it, the runtime.

One anomaly remains: The communication amount for the runs with 64 processes
are 11.5 GiB for the version with the data partition algorithm, and 15.5 GiB for
the näıve data decomposition. This is an indicator that the buffer does not really
decompose well into 64 parts. Indeed, if one considers the small difference in the
occurring traffic it is surprising that the runtime for the two runs are so different. The
data from the runs do not indicate anything that could explain this phenomenon.

43

6. Future Work

First, the implementation must be extended to provide support for non-convex scenes.
The simulation non-convex scenes is important, because SPR explicitly models diffrac-
tion, which only occurs in multiple rooms.

More research into the runtime behavior of the parallel SPR algorithm is required.
Since RAM usage scales with the number of processes the number of processes should
be kept as small as possible. The available RAM can be maximized by placing each
process on a dedicated cluster node, instead of having multiple processes per node,
which was done for the evaluation.

The maximum number of cluster nodes used in the evaluation was 8 nodes for 64
processes. The runtime for the parallel SPR version with näıve data decomposition
exemplifies that scaling the number of nodes can yield unexpected results.

Running only one process on a cluster node that has 8 or even more CPU cores is a
large waste of resources. Runtimes can be further improved by using shared memory
parallelism, such as OpenMP.

Memory overhead is another problem that requires more attention. The memory
peak during the execution of the data partitioning algorithm can be eliminated by
running the preprocessing before allocating the entire reunification buffer.

Even with the memory peak, the memory overhead increases linearly with the num-
ber of processes, and quadratically with the number of patches. Indeed, memory over-
head always must scale linearly with the number of processes, because every process
requires the entire mapping of rows to processes.

A possible way to mitigate the memory overhead is to use the graph model that is
constructed as part of the data partitioning algorithm, to identify the rows that cannot
hold particles. Rows with no incoming edges can be completely discarded, because
they will never be reached. Rows with incoming but no outgoing edges cannot be
discarded, as there might be a receiver on the path of the particle.

The existence of unused rows also causes workload imbalance. Because the number
of unusable rows is possibly larger than the usable rows, can cause entire processes
to be rendered useless because they only own unusable rows. The data partitioning
algorithm can further aggravated this issue. Graph partitioning can decrease the edge
cut, by assigning a process only unusable rows. Elimination of unusable rows during
the data partitioning would eliminate this issue.

Adding cluster nodes increases RAM linearly, but the memory overhead per process
is in O(N2). Thus, for high accuracies the overhead for a process may be higher
than the RAM available on a cluster node. To scale SPR to arbitrary accuracies, the
memory overhead will need to scale linearly.

44

7. Conclusions

The thesis presented a data parallel SPR algorithm, that decomposes the reunification
buffer by distributing the rows among the processes This approach lowers the RAM
and computation requirements for processes running the SPR simulation. Lower re-
quirement on processes make bigger and more accurate simulations feasible.

Additionally, the thesis introduced a data partitioning algorithm that minimizes
message passing requirements. The algorithm generates a graph that models the data
dependencies between the rows of the reunification buffer. Partitioning the graph
yields a decomposition of the reunification buffer that reduces inter-process communi-
cation.

Empiric measurements show that the parallel SPR algorithm scales well as long as
communication costs are cheap. For large numbers of processes parallel SPR with
näıve decompositions require up to twice the sequential runtime. With the data parti-
tioning algorithm, SPR simulations consistently attain speedups for all tested number
of processes.

The runtime of the data partitioning algorithm does not display speedup, indeed
the runtimes become linger for larger number of processes. 64 processes the data
partitioning requires 71 seconds, while the runtime of the entire execution is only 2
minutes. This is a significant portion of the runtime, but it is still a consistent speedup,
while the version with the näıve data decomposition does not attain speedup. Thus,
the long runtimes of the data partitioning algorithm pay of for many processors.

Measurements of the memory usage indicate linear growth of RAM overhead with
the number of processes. For the simulation run on the experiments an additional
processes required one gigabyte of memory overhead.

All in all, the data parallel approach to SPR increases overall available RAM. When
used with a data partitioning algorithm that takes the inter-dependencies between the
parts of the reunification buffer into account, the runtime can be reduced even for
large numbers of processes.

45

8. Bibliography

[1] Chevalier, C., and Pellegrini, F. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel Computing 34, 6–8 (2009), 6–8.

[2] Foster, I. Designing and Building Parallel Programs. Addison-Wesley, 1995.

[3] Hamburg University of Technology. Linux Cluster “Apis”. http://www.

tu-harburg.de/rzt/tuinfo/ausorg/para/apis/index.html. Accessed: 2012/07/20.

[4] Hendrickson, B. Load balancing fictions, falsehoods and fallacies. Applied Mathematical
Modelling 25, 2 (2000), 99–108.

[5] Jedlitschka, A., Ciolkowski, M., and Pfahl, D. Reporting Experiments in Soft-
ware Engineering. In Guide to Advanced Empirical Software Engineering, F. Shull,
J. Singer, and D. I. K. Sjøberg, Eds. Springer London, 2008, pp. 201–228.

[6] Karypis, G., and Kumar, V. A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. SIAM Journal on Scientific Computing 20, 1 (1998), 359–392.

[7] Karypis, G., and Kumar, V. Parallel Multilevel k-way Partitioning Scheme for Irreg-
ular Graphs. Journal of Parallel and Distribtributed Computing 48, 1 (1998), 96–129.

[8] Karypis, G., and Schloegel, K. ParMETIS, Parallel Graph Partitioning and Sparse
Matrix Ordering Library. http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/

manual.pdf. Acessed: 2012/07/30.

[9] Kosten, C. W. The mean free path in room acoustics. Acustica 10 (1960), 245–250.

[10] Kuttruff, H. Akustik: Eine Einführung. S. Hirzel, 2004.

[11] Message Passing Interface Forum. MPI2: A Message Passing Interface standard.
International Journal of High Performance Computing Applications 12, 1–2 (1998), 1–
299.

[12] Pohl, A., and Stephenson, U. A Combination of the Sound Particle Simulation
Method and the Radiosity Method. Building Acoustics 18, 1 (2011), 97–122.

[13] Siltanen, S., Lokki, T., and Savioja, L. Room Acoustics Modeling with Acoustic
Radiance Transfer. International Symposium on Room Acoustics 18, 1 (2011), pages not
available.

[14] Vorländer, M. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algo-
rithms and Acoustic Virtual Reality (RWTHedition). Springer, 2007.

[15] Walshaw, C., and Cross, M. JOSTLE: Parallel Multilevel Graph-Partitioning
Software—An Overview. In Mesh Partitioning Techniques and Domain Decomposition
Techniques, F. Magoules, Ed. Civil-Comp Ltd., 2007, pp. 27–58.

46

http://www.tu-harburg.de/rzt/tuinfo/ausorg/para/apis/index.html
http://www.tu-harburg.de/rzt/tuinfo/ausorg/para/apis/index.html
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf

A. Experiment Setup Data

Problem File

Figure A.1 is the problem file that was used for all experiment runs. The figure gives
the simulation parameters, such as the patches per mean free patch length. Also
included is the simulated scene; two of the walls in the room are made of the material
“Holzboden” with has an absorption factor of 0.1. The “Holzboden” relfects all sound
particles geometrically. The two other walls are made of the material “Ziegelwand”,
with an absoprtion factor of 0.5. “Ziegelwand” refelcts 50% of the impacted sound
energy via scattering and the other 50% geometrically.

Figure A.2 is a rendering of the scene by the GUI version of the SPR implementation.
The walls are indicated by a black frame and the receiver is the small red dot, while
the big blue circle is the receiver.

[Global]

PatchesPerMfpl = 200

SplitScattering = 10

SplitDiffraction = 0

TMax = 1

TSample = 0.001

NumberOfRays = 1000

FrequencyMode = 0

FrequencyBand = 17

Dapdf = 0

Eds = 2

Normalization = 1

Lambda = true

[Polygons]

NumberOfPolygons = 1

[Geometry]

PointsX_0 = 0, 0, 30, 30

PointsY_0 = 10, 0, 0, 10

Material_0 = Holzboden, Holzboden, Ziegelwand, Ziegelwand

[Sources]

NumberOfSources = 1

PointsX = 5.0704

PointsY = 2.434

Power = 1

[Receivers]

NumberOfReceivers = 1

PointsX = 25.1338

PointsY = 3.45477

Radius = 2

Figure A.1.: The SPR problem file used for all runs

47

Figure A.2.: Scene used in test runs, as rendered by GUI version of SPR.
The red dot is the sound emitter, and the blue cricle is a sound receiver.

Program Versions and Flags

Operating System

Operating System: SUSE Linux Enterprise Server 10 (x86 64)
OS version: VERSION = 10 PATCHLEVEL = 2
Kernel version: Linux kernel version 2.6.16.60, gcc

Compiler

Compiler used: Intel Compiler version intel/11.0.069 64 bit
Compiler arguments: -O2 -falign-functions=16 -ansi-alias -fstrict-aliasing -w1 -Wcheck
-wd654,1572,411,873,1125,2259

MPI Library

MPI library used: Intel MPI
MPI version: mpi-intel/3.2.0.011-run 64 bit
MPI arguments: I_MPI_DEVICE sock causes MPI to use socket interfaces for message
passing (i.e., the shared memory interface is not used if multiple processes share a
cluster node), I_MPI_STATS 2 the MPI library will collect the occuring communica-
tion traffic, and -n with the number of processes specified

Batch System

PBS version: PBSPro 10.1.0.91350
PBS options: place=free:excl

48

Measurements

Runtime Measurements: GNU time 1.7
Memory profiles: Valgrind/massif (version: 3.7.0)
Memory profile options: --tool=massif --detailed-freq=1 --max-snapshots=150

49

B. Complete Run Results

Run ID Runtime # Proc. Comm Amount
(MM.SS.ss) (MiB)

B8BEDEF4 18:21.72 1 0
C418F250 18:22.29 1 0
6B56C1D3 18:39.19 1 0
3CCD592B 18:39.62 1 0
2CB70FCA 18:48.45 1 0
8AC18E55 10:42.23 2 11183.88500
11AC575E 10:42.53 2 11183.88500
2286E224 10:44.44 2 11183.88500
8838DF9A 10:46.78 2 11183.88500
D0CF9C54 10:48.78 2 11183.88500
F9316FED 6:15.62 4 15519.72280
49768736 6:18.96 4 15519.72280
7A8A7D9B 6:21.25 4 15519.72280
1F0371A2 6:24.68 4 15519.72280
A2805263 6:29.90 4 15519.72280
01DBB0E3 3:28.51 8 15520.09644
64D93846 3:29.31 8 15520.09644
C32A00A6 3:29.68 8 15520.09644
78B366A1 3:29.88 8 15520.09644
AA5DEF7D 3:30.26 8 15520.09644
87CC7AB1 3:04.23 16 15521.02268
911E4337 3:05.10 16 15521.02268
556B2594 3:06.31 16 15521.02268
17BFA5F6 3:07.08 16 15521.02268
1F407EB1 3:08.06 16 15521.02268
F8E3721E 19:46.37 32 15523.23025
5EEC40C3 22:20.22 32 15523.23025
13A7EC29 20:31.50 32 15523.23025
D9E015DF 20:43.15 32 15523.23025
CA63397C 20:57.23 32 15523.23025
8A4ADCA0 16:25.92 64 15528.35245
F71F0CEE 16:32.95 64 15528.35245
27CB80D1 16:39.66 64 15528.35245
7C40041D 16:41.57 64 15528.35245
A3DAB999 16:54.71 64 15528.35245

Table B.1.: Results of test batch with näıve data decomposition

50

Run ID Runtime # Proc. Edge Cut Comm. Amount Data Part.
(MM:SS.ss) (MiB) SS.ssss

93197DF4 18:47.91 1 0 0 34.8626
8E8B1A29 18:48.91 1 0 0 34.9695
DF82005C 18:49.15 1 0 0 34.8413
78688710 18:50.73 1 0 0 35.0530
24995857 19:13.28 1 0 0 35.0915
A8FE5D74 11:08.71 2 230219 2376.60500 35.6890
6834DC18 11:08.89 2 230219 2376.60500 35.6816
B360C8CB 11:08.93 2 230219 2376.60500 35.7127
063DF954 11:10.65 2 230219 2376.60500 35.6578
77540CA0 11:16.72 2 230219 2376.60500 35.8029
692DEFE0 6:31.42 4 327014 3557.1709 27.7493
6D2BB532 6:33.20 4 327014 3557.17090 27.7468
62AFE2DE 6:36.28 4 327014 3557.17090 27.7591
6F84A6CC 6:36.33 4 327014 3557.17090 27.7492
466DC0E9 6:46.04 4 327014 3557.17090 27.7979
C7B5381D 3:50.15 8 395961 4500.71732 25.7310
096A937D 3:50.46 8 395961 4500.71732 25.8040
91DC8016 3:51.52 8 395961 4500.71732 25.6873
B37E0FD4 3:54.61 8 395961 4500.71732 25.6936
AF26C3B4 3:55.49 8 395961 4500.71732 25.7199
6C940993 2:18.10 16 431881 5720.83372 30.7317
6C05B8E9 2:19.53 16 431881 5720.83372 30.8090
423AC7BC 2:23.55 16 431881 5720.83372 32.6441
B6C89AC6 2:30.27 16 431881 5720.83372 30.7745
48C43C90 2:23.97 16 431881 5720.83372 30.9646
61A7F87F 2:18.52 32 702507 8025.70155 57.3009
AA6C2CBB 2:22.04 32 702507 8025.70155 57.4523
A5F05083 2:30.24 32 702507 8025.70155 55.6954
9D769B3F 3:13.78 32 702507 8025.70155 56.8929
BBB8D82D 3:16.86 32 702507 8025.70155 56.0789
78FE53A3 1:57.84 64 906848 11598.31652 71.2071
0B25B95A 1:58.60 64 906848 11598.31652 69.4990
4A415420 2:00.91 64 906848 11598.31652 69.9213
2F804E86 2:03.64 64 906848 11598.31652 70.9078
6E0F6C20 2:04.04 64 906848 11598.31652 69.3577

Table B.2.: Test batch for data partitioning algorithm

51

Run ID Runtime # Proc. Edge Cut Comm. Amount Ram Data Part.
(H:MM:SS.ss) (MiB) (GiB) (S.sss)

B59B1C33 2:41:56.00 1 0 0 25.530 653.737
706648B8 2:42:16.00 1 0 0 25.530 653.533
7450F406 2:42:28.00 1 0 0 25.530 653.933
40BFD122 2:42:40.00 1 0 0 25.530 653.326
2BE1F889 2:43:09.00 1 0 0 25.530 656.706
CA1DF5CD 1:28:54.00 2 230219 2376.60500 28.080 537.946
1E440ABA 1:29:12.00 2 230219 2376.60500 28.080 538.634
BB3C5975 1:29:18.00 2 230219 2376.60500 28.080 537.609
A3368527 1:29:19.00 2 230219 2376.60500 28.080 537.459
DF5DB319 1:29:26.00 2 230219 2376.60500 28.080 538.334
41F773F6 0:58:25.42 4 327014 3557.17090 30.225 479.505
3A76921A 0:58:31.28 4 327014 3557.17090 30.292 481.025
1EAAEDA1 0:58:37.02 4 327014 3557.17090 30.159 480.565
9CD77A6F 0:58:52.83 4 327014 3557.17090 30.159 480.399
A59E5667 0:58:58.90 4 327014 3557.17090 30.159 478.776
954B29C8 0:37:13.28 8 395961 4500.71732 33.915 508.806
FCFE3298 0:36:44.68 8 395961 4500.71732 33.904 507.253
B2862C35 0:36:51.00 8 395961 4500.71732 33.929 509.382
AC5E9992 0:36:53.33 8 395961 4500.71732 33.954 508.972
D5D17B79 0:36:55.17 8 395961 4500.71732 33.904 508.684
3A57793D 0:24:03.23 16 431881 5720.83372 40.889 567.965
12BCDC65 0:24:03.32 16 431881 5720.83372 40.889 567.166
DBBC42B1 0:24:06.62 16 431881 5720.83372 40.889 567.232
A79A188F 0:24:07.70 16 431881 5720.83372 40.889 564.988
1E15A4A1 0:24:13.24 16 431881 5720.83372 40.889 569.989
AD50AE75 0:19:09.27 32 702507 8025.70155 55.580 656.612
4050FF4B 0:19:10.02 32 702507 8025.70155 55.580 657.110
691F3CBE 0:19:14.19 32 702507 8025.70155 55.580 657.758
4E7AD6A4 0:19:30.89 32 702507 8025.70155 55.580 660.339
135EF9C3 0:19:44.61 32 702507 8025.70155 55.580 661.362
E2E5DCF4 0:17:21.12 64 906848 11598.31652 84.457 755.939
95B98C4D 0:17:39.58 64 906848 11598.31652 84.457 761.918
BCF90DC1 0:17:43.39 64 906848 11598.31652 84.457 762.245
E8344836 0:17:44.82 64 906848 11598.31652 84.457 761.388
82B8AE55 0:17:54.61 64 906848 11598.31652 84.457 760.240

Table B.3.: Test batch for measuring RAM. This batch uses the data partitioning
algorithm

52

	Introduction
	Basics
	Geometrical Acoustics Simulation Methods
	Radiosity Method
	Sound Particle Method
	Sound Simulations

	Sound Particle Radiosity
	Sound Particle Reunification
	Sound Particle Radiosity Algorithm
	Example

	Parallel Computing
	Parallel Computing
	The Message Passing Interface

	Graph Partitioning
	Definition
	Data Partitioning using Graph Partitioning
	Software: ParMETIS

	A Data Parallel SPR Algorithm
	Parallelization Objectives
	Analysis of Reunification Buffer
	Decomposition of Reunification Buffer
	A Data Parallel SPR Algorithm
	Synchronization
	Requirement for Data Partitioning

	Memory Requirements

	Data Partitioning Algorithm for SPR
	Graph Model of Data Dependencies
	Using Graph Partitioning
	Existence of Good Decompositions
	Load Balancing

	Data Partitioning Algorithm
	Parallel Generation of the Directed Graph Model
	Parallel Generation of the Undirected Graph Model
	Description of the Algorithm
	Discussion

	Memory Requirements

	Evaluation
	Hypotheses and Variables
	Experiment Design
	Analysis of Experiment Results
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Inferences
	Parallelization Objectives
	Effectiveness of the Data Partitioning Algorithm

	Future Work
	Conclusions
	Bibliography
	Experiment Setup Data
	Complete Run Results

