
TUHH

Master Thesis

Exploration of Static and
Temporal Machine Learning

Approaches to Non-Contractual
Churn Prediction

Author:

Natalya Furmanova

Supervisor:

Prof. Dr. Ralf Moeller

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Department or Software, Technology and Systems

October 2013

http://www.tuhh.de
http://www.johnsmith.com
http://www.jamessmith.com
Department or School Web Site URL Here (include http://www.sts.tu-harburg.de)

Declaration of Authorship

I, Natalya Furmanova, declare that this thesis titled, ’Exploration of Static and

Temporal Machine Learning Approaches to Non-Contractual Churn Prediction’

and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

i

Abstract

The Internet Gaming industry is booming. With thousands and millions of users,

the data reflecting user gaming activity is growing exponentially. However, the

nature of non-contractual online gaming is volatile, with multiple, perhaps latent,

factors affecting customer churn. The dependencies and possible factors for churn

can be discovered using Data Mining and Machine Learning methods, with varied

success. Temporal character of non-contractual paid online gaming activity rep-

resents a challenge as well as a valuable source of potential business intelligence

regarding churn. This Master Thesis explores one static and one temporal Ma-

chine Learning approach to analyze the multivariate time series reflecting online

casual micro-gaming user activity. In focus of the thesis is the hypothesis that the

temporal transitions are an important factor for churn prediction, and a method

that takes them into account can be successfully used for this purpose. The thesis

includes an account of methods selection, deep data exploration, theory behind the

algorithms and their implementation as well as evaluation of the methods’ perfor-

mance and effectivity in demystifying the drivers of the non-contractual customers

defection.

Acknowledgements

I would like to thank my family and close friends for being there for me during the

challenging six months that I took to produce this body of work. Additionally, I

would like to thank Professor Ralf Moeller for allowing me to write the thesis in his

department and encouraging me to explore the topic that became of deep interest

to me, and Rainer Marrone for advising me and patiently helping me arrive at the

final draft. On the practical side of things, I would like to thank Martin Kavalar

and Agnes Reissner for supporting my efforts and for the enormous experience I

have achieved in working with the real-life ocean of data.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

Listings ix

1 Introduction 1

2 Review of Current Research in Time Series Knowledge Mining 4

2.1 Introduction . 4

2.2 Prediction and Classification . 5

2.3 Clustering and Other Methods . 6

2.4 Summary . 7

3 Business Problem and Data Understanding 9

3.1 Business Description and CRM Challenges 9

3.1.1 Defining Purchasing and Free User Activity 10

3.1.2 Defining Churn and Lifetime Customer Value in Non-
Contractual Setting . 11

3.2 Exploratory Data Analysis . 13

3.2.1 Finding Relevant Data . 13

3.2.2 Studying Distributions of Aggregate User Activity 14

3.2.2.1 Univariate Distribution Plots 14

3.2.2.2 Pairwise Distribution and Correlation Analysis . . 16

3.2.3 Segmentation of the User Base by K-Medoids Clustering . . 17

3.2.3.1 Preparation of Data for Clustering 17

3.2.3.2 Iterative K-Medoids Clustering 18

3.2.3.3 Totals Clustering Results - Visualizations 20

iv

Contents v

3.2.4 Adding Temporal Variables 21

3.3 Conclusions and Outlooks for Churn Classification 24

4 Churn Prediction Static - Random Forest Classification 26

4.1 Theoretical Framework . 26

4.2 Data Selection and Preparation . 27

4.3 Defining Response Variables . 29

4.4 Modeling Process and Results . 29

5 Temporal Approach - Mixture Markov Modeling 32

5.1 Introduction . 32

5.2 Theoretical Basis: Markov Property,First Order Markov Chains,
Mixtures . 33

5.3 Data Understanding. Determining the Temporal Context 35

5.3.1 Sample Selection . 35

5.3.2 Selecting the Time Axis and Time Units 36

5.3.3 Selecting Features/Dimensions of the Time Series and As-
signing Class Labels . 37

5.4 Time Series Classification . 39

5.4.1 Inferring States via Clustering 39

5.5 Markov Mixture Modeling . 42

5.5.1 Defining a Markov Mixture Model 42

5.5.2 Likelihood and Maximum Likelihood Estimation 44

5.5.3 Bayesian Inference and MAP log-likelihood 46

5.5.4 Dirichlet Conjugate Priors and Calculating the Model Pa-
rameters . 47

5.6 Iterative Algorithm Implementation and Optimizations 49

5.6.1 Programming the Algorithm and Preparing Sample for Mix-
ture Modeling . 49

5.6.2 Initializing the Model . 50

5.6.3 Overcoming Challenges of Implementation - Underflow, Per-
formance . 51

5.6.4 Adding Robustness to the Algorithm via Parallel Processing 53

5.6.5 Iterative Convergence of the Model 54

5.7 Classification of Churn Using Naive Bayes Method 55

6 Algorithms Evaluation 58

6.1 Evaluation . 58

6.1.1 Random Forest Classification - Advantages and Pitfalls . . . 59

6.1.2 Mixture Markov Modeling and Naive Bayes Classifier 60

6.2 Conclusion - Final Thoughts and Future Possibilities 62

A Visualizations 64

Contents vi

B R Code Implementing Incremental Markov Mixture Modeling 68

Bibliography 79

List of Figures

3.1 Histogram of Days Before Conversion 14

3.2 Histogram of Cash and Free Games Total per User 14

3.3 NegBinomialFit . 15

3.4 Distribution/Density Function - Gain (Real Money Gaming, Units
Scaled) . 16

3.5 Box Plot - Gain (Real Money Gaming, Units Scaled) 16

3.6 Pairwise Plot: Real Money Games Played vs Total Gain 17

3.7 Pairwise Plot: Number of Payments vs Total Gain 17

3.8 SilhouetteWidth . 19

3.9 Box Plot - Gain by Cluster . 21

3.10 Box Plot - Real Money Games by Cluster 21

3.11 Box Plot - Net Payments by Cluster (Units Scaled) 21

3.12 Number of Payments vs Gain by Cluster 21

3.13 Number of Games vs Gain . 21

3.14 Number of Payments vs Games Played by Cluster 21

3.15 Histogram - Membership Days Before Conversion 22

3.16 Membership Lengths . 22

3.17 Density Plot - Paid Activity Period Duration (in days) by Class . . 23

3.18 Length of Period Before Conversion vs Length of Paid Activity Pe-
riod Duration . 23

3.19 ClusteringPlayRealGames . 24

4.1 Variable Importance Plot for Experiment 4 31

5.1 Markov Chain . 34

5.2 An Example of a Customer Lifetime as Time Series 39

5.3 Markov Model with Dirichlet Priors 48

5.4 Convergence of the EM MAP log-likelihood algorithm 55

5.5 MAP log-likelihood by number of components 55

5.6 An example of a customer with high risk of churn 56

6.1 Classifier Error Rate and Bias in relation to the Strictness of Pre-
dicted Responses . 59

6.2 Classifier Error Rate and Bias by Class Representation 60

vii

List of Tables

4.1 Predictive Dimensions . 28

4.2 Predictions/ Class Labels . 29

5.1 Time Series Dimensions . 38

viii

Listings

3.1 Scaled and Centered Clustering Data Matrix 17

3.2 Principal Component Analysis Results 18

3.3 Steps of CLARA Clustering Algorithm 19

3.4 Results of CLARA Clustering Algorithm 20

4.1 Classification Results - Random Forest 31

5.1 Time Series Classification/Indexing Algorithm Pseudocode 32

5.2 Classification Dataset . 38

5.3 Scaled Clustering Matrix . 40

5.4 Sample of Derived Univariate Sequences 41

5.5 Example Function - Likelihood . 49

5.6 Initialized Model with One Component 50

5.7 Partial EM-algorithm . 52

5.8 E-step and M-step Execution Times - Simple vs Parallel 54

5.9 Users and Their Risk Index . 56

ix

Chapter 1

Introduction

Data Mining and Machine Learning are currently widely used in many areas of

human activity - medicine, business, finance, security and others. The scien-

tific community has been actively developing approaches to improving knowledge

discovery, including new classification methods, variants and data preprocessing

techniques. The vast field for such research is mining, classifying and clustering

of time-directed processes. Temporal aspect one of the most elusive yet inevitable

characteristics of the todays important data sets. A list of examples employing

sequential data includes gene classification, weather forecasting, financial markets

analysis, speech recognition and many others. The specifics of each such dataset

vary greatly, depending on the nature of the underlying process. The process

can be a sequence of states, elements or symbols, as well as a numeric time se-

ries, defined as a series of measures taken with equal time intervals [1]. While

the majority of research available today concentrates on the static methods, there

has been a lot of scientific interest to creating and applying variants of temporal

methods to model the time dependencies in the data. Markov- and hidden Markov

Models, Dynamic Time Warping, Discrete Fourier Transform, statistical modeling

techniques such as Autoregression have been approaching time-directed data in

different domains and from different perspectives.

One of the areas where sequential data has become ubiquitous, is Customer Rela-

tionship Management. In the age of modern scalable online businesses, customer

purchasing history and accompanying details are stored in databases in the form

of timestamped records. Giga- and terabytes of data containing actions stretching

1

Chapter 1. Introduction 2

years back in time, represent a potential raw material for statistical and Ma-

chine Learning approaches to finding specific patterns symptomatic to previously

unknown segments of customer base. Predicting customer lifetime value and clas-

sification of customer defection are just few of the examples. Information, hidden

in the properties of transitions between the states or events or the changes that

the measured data incurs, frequencies and lengths of events, is the dimension that

is missing from any static characteristics of the customers or aggregated values,

considered in isolation.

The work that I have undertaken in scope of this thesis represents an exploration

of the static and a temporal approaches to the problem of classifying and pre-

dicting customer churn in non-contractual setting. At the core of my effort is

the hypothesis that the customer activity data that is temporal by nature, can

be with greater success modeled using temporal approaches. Having selected an

initial static method, Random Forest Classification, in order to consider the effec-

tivity of the method in predicting behavioral pattern of churning users, I further

take a different approach - modeling time series with mixture Markov models and

analyze the challenges in using the method. This work builds upon my initial ex-

cursion into the world of Data Mining in CRM [2], where I have taken a look at the

static pattern recognition and prediction in order to identify the potential depen-

dencies caused by new product introduction by an online gaming company. This

research contains more in-depth view into the data that represents the company’s

customer base activity, such as purchases and gaming engagement of the users, in

the form of variable length multivariate time series, as well as implementation of

the ensemble of temporal and static methods.

In the thesis I have used recent advances in Machine Learning and stochastic mod-

eling techniques with the nature of the business problem and specifics of data in

mind - a variant of mixture Markov model that allows for various-length sequences,

as well as discretization techniques in order to map a multivariate time series to a

univariate state transition sequence via medoids clustering for large-scale datasets.

A series of other Machine Learning and statistical methods have been used in or-

der to prepare and explore the data. The reader is taken through the end-to-end

process, starting with existing research, via data exploration down to the details

of implementation with statistical language R, returning to the meaning for the

business goals.

Chapter 1. Introduction 3

This paper is structured as following: Chapter 2 gives a thorough overview of

the latest available methods used for temporal data analysis and classification. In

Chapter 3 I give the detailed description of the business problem (churn predic-

tion in non-contractual setting), touch upon the origin of the dataset and perform

exploration of the customer base data in order to understand its nature and pe-

culiarities. Chapter 4 talks about the first churn prediction approach. In this

Chapter I attempt to predict short-term churn risk by using a static classification

method - Random Forest Classification - with the use of multiple static features

which represent statistics of time dimension. Chapter 5 gives an in-detail ac-

count of the application of the temporal approach which involves discretization by

medoids clustering, followed by mixture Markov modeling and concludes with a

naive Bayes classification. In this Chapter, I address overcoming the complexities

of the dataset - such as multivariate character and varying length of the sequences.

At the end of the algorithm, the sequences are represented via probabilistic models

and can be thus classified. Finally, Chapter 6 evaluates the performance of the

methods described in Chapters 4 and 5, as well as looks at the challenges of each

of the methods, followed by concluding final thoughts.

Chapter 2

Review of Current Research in

Time Series Knowledge Mining

2.1 Introduction

Multiple approaches have been developed in the recent years for mining knowledge

in temporal data constructs, including time series. The approaches differ by goal

(such as clustering, sequential pattern mining, classification or forecasting), the

nature of the data (words in the document, audio streams, protein sequences,

temperature measurements), and by method of sequence representation. While

classical approaches are maturing with appearance of the new variants, the novel

approaches arise. The approaches to mining sequential data take their roots in

methods originally developed for static data (such as Association Rule Mining [3]

or k-means[4]). It is, however, clear that the directed nature of such data repre-

sents multiple layers of complexity not present in the static data, most prominent

of which are the problems of multidimensionality and massive size of data, finding

measure to compare sequences or calculate distance between them and represent-

ing the time series (or more precisely, their shapes) [5]. Thus, the initial methods

developed for static data might be partially or completely unfit for mining sequen-

tial data, forcing development of the new variants and method ensembles which

help overcome the challenges mentioned, among others.

Time series distinguish themselves among other kinds of sequences in that the

ordering represents physical time axis and the points are numeric measurements

4

Chapter 2. Review of Current Research 5

taken with equal intervals in time [6]. Time series are often used to represent

underlying physical processes or fluctuations of the financial markets, medical

measurements, sociological observations and other aspects related to natural and

human processes. The researchers generally consider time series in the context

of the specific problem which requires either clustering or classifying the patterns

reflected by the time series, determining missing points based on the existing points

in the time series or predicting (forecasting) future values. Depending on the task,

one or many time series might be considered.

2.2 Prediction and Classification

One of the most common and mature tasks related to time series is prediction or

forecasting, surveyed in [7]. Prediction methods try to find future values of the time

series based on the existing values by fitting a linear model based on minimizing

objective error function. Such methods try to represent the time series via linear

(or nonlinear) formula using specific coefficients. This task will not be described

extensively due to the abundance of the subtopics.

Classification of the time series is another popular task in the area of Time Series

Mining. While Clustering represents an unsupervised learning activity the goal of

which is to find groupings, the groupings in Classification task are known a-priori,

while the goal is to train a system that can distinguish between various classes

based on their distinction features, and assign class labels to the new instances

possessing the same set of features. Since Classification is one of the classical

tasks in Data Mining and Machine Learning, there exist multiple methods and

algorithms (From Naive Bayes Classifier and Decision Trees to Neural Networks

and Support Vector Machines). However, the dimensionality curse of the time

series data poses a question of representation of time series and their features in

order to preprocess the time series for clustering, especially in cases of varying

length time series. One of the most popular methods has been a 1NN Classifier

with DTW [8]. In order to represent the time series, some researchers have used

segmented representation (using information piecewise from the time series [9]),

while others have used discriminative probabilistic models to represent the time

series - such as Hidden Markov Models ([10]). Some of the regressive models

mentioned in the previous sections have been used in the Classification task as

well. It is clear that the appropriate representation of time series has been at

Chapter 2. Review of Current Research 6

the focus of the task of classification of time series: if a time series can indeed

be represented as a combination of discriminative features, coefficients or model

parameters, such collection can be used as an input to any of the existing proven

classifiers. The approaches to finding such features have been proven to suffer

from various problems - from impediments in robustness to overtraining [5].

Thus, classifying the time series can be represented as an ensemble (or a sequential

implementation) of a group of methods.

2.3 Clustering and Other Methods

Clustering is finding latent groupings within the data. In the context of data be-

ing time series, the clustering task is complicated by the search for an appropriate

similarity measure (or the somewhat opposite measure, distance between objects).

Finding a similarity or even density clustering between time series cannot be de-

fined as simply since each point in the time series needs to be compared with the

corresponding point in another time series. Thus, in order to apply even the basic

distance-based methods (such as k-means algorithm) to cluster time series, the

distance/similarity measures need to be modified.

Univariate time series have been frequently approached with Dynamic Time Warp-

ing as a distance measure for clustering [11]. The measure reflects the similarity of

time series and can determine sequences that are similar but sometimes ”stretched”

versions of another. The measure was first used for Image Processing/ Pattern

Recognition. Multiple literature articles point out at the advantage of this dis-

tance measure used for clustering is that it works with the varied length time

series. However, a recent article by Keogh et al. [12] seems to refute this state-

ment. Despite of the method’s popularity, it makes a series of assumptions on

the kind of similarity of the time series in question. Specifically, if the frequency

domain is of importance (i.e. the frequencies of the time series are an important

parameter that distinguishes the classes of time series), DTW will not work well

as a similarity measure, thus leaving the need for other distance measures. Once

the distance is computed, a variety of methods can work with it similar to the

static methods (such as SVM [13] or Self-Organizing Maps [14]).

Chapter 2. Review of Current Research 7

Other ways to determine the similarity of time series are coefficients based on

transformations from time to frequency domains - such as Discrete Fourier Trans-

form [15] and Discrete Wavelet Transform [16]. The coefficients are achieved with

the usage of complex number representations. The subsequent representations can

be later used in order to compare sequences using the above mentioned methods.

As opposed to univariate time series, adding variables to be tracked (multivariate

time series) and varying length of distances represent additional difficulty barriers

that need to be addressed. Methods that apply probabilistic modeling to the time

series set, such as Markov mixtures and Hidden Markov Models or variants of

such, step away from the traditional time domain view and represent the time

series in terms of transition probability between the states ([10] and [17]). Such

methods allow to express varying length of the time series by building a variance to

express conditional probability for each component. However, there are drawbacks

to applying such methods, such as scaling problems while executing EM-algorithm

and an assumption of the presence of the model within the data, while in in reality

it might be not there [5]. The probabilistic models comprise a series of the most

recent advances in the time series clustering.

Other time series mining task areas include segmenting the time series (essentially

a dimensionality reduction problem), anomaly detection (or finding an unusual

subsequence) and motif discovery (or finding a regularly repeating subsequence).

The two latter tasks are closely connected and are used in such areas as security

and biology. The area of motif discovery is currently in a state where a lot of

questions are still unanswered.

2.4 Summary

Given the importance of time series data, the scientists have been working to

extend the static Data Mining and Machine Learning methods in order to accom-

modate the challenges and peculiarities that arise in performing such tasks on time

series. While there have been significant discoveries leading to wide applications

of the temporal/time series methods in the recent years, finding the optimal way

to preprocess the time series for usage with such tasks stays among the developing

areas of Machine Learning and Statistics. The following Chapters of the thesis will

Chapter 2. Review of Current Research 8

illustrate such challenges on the example of a specific dataset related to customer

behavior in online purchasing.

Chapter 3

Business Problem and Data

Understanding

3.1 Business Description and CRM Challenges

The company providing the dataset for the described research is a small online

gaming business, to be called Company in this thesis. The business model in-

cludes both freemium (free-to-play and premium features) and pay-to-play rev-

enue streams (real-money, or cash games). There are others, like merchandise

sales; however, they are out of scope for this research. The freemium revenue

stream can be considered a contractual relationship with the customer: mem-

berships that include additional features - such as tracking gaming statistics and

possibility to form teams - and can be purchased for 1 month. To the opposite,

the pay-to-play component of the business is non-contractual: the games occur in

”micro”-format, and last on average up to several minutes. In order to be able

to play such a game, the gamer deposits the amount of money that exceeds the

minimal limit for playing one game . In case of losing the game, a certain amount

gets deduced from the user account - and to the opposite, in case of winning the

round, a specific amount gets added. It is important to mention that any user

who has deposited money into a gaming account, can withdraw his holdings at

any moment. Thus, the user is not contractually bound and can quit gaming any

point in time - as soon as after one transaction.

Initial findings have shown that the pay-to-play gaming is more volatile to cus-

tomer defection in Company’s case - both due to its non-contractual settings and

9

Chapter 3. Business Problem and Data Understanding 10

its user base. Some of the differences and initial findings are described in [2]. Thus,

the thesis concentrates on the pay-to-play (to be referred to interchangeably as

”paid”,”cash” or ”purchasing”) activity and customers.

3.1.1 Defining Purchasing and Free User Activity

If an online business offers both free and paid services, distinguishing between

activity in the sense of purchasing, and all other activity is the base assumption

in order to define any other principles or rules. In case of the Company, there are

similar versions of the game offered in free, subscription, and cash gaming format

(pay-to-play). Thus, a user can be active on the website while not active in the

sense of purchasing activity. For the purpose of this experiment, the subscription

services have been excluded from the cash activity.

Let us define cash activity as all user activity encompassing gaming that involves

purchasing:

• deposit money into user gaming account

• play a singular cash game

• play a cash tournament

• withdraw money from user gaming account

All the other activities are considered non-purchasing activities. Examples include

playing free and leagues games, tournaments, leaving a comment on the blog post

or adding another player as a friend on the website social network. The user thus

does not contribute to the profit by undertaking such activities despite of being

active in the Web- or Mobile- version of the gaming platform. However, free and

paid activities do not occur strictly in isolation. Rather, they are intertwined (for

instance, a user can play both free and cash games - possibly with correlation).

Free activity might in some cases be a precursor of the first payment, whereas

in other cases such conversion might never materialize - and to the opposite,

a user can start directly with the paid version. Thus, a concept of conversion

arises (a recent business term defined as the change of status from free to paying

customer). These aspects will be further considered during the task of Exploratory

Data Analysis.

Chapter 3. Business Problem and Data Understanding 11

3.1.2 Defining Churn and Lifetime Customer Value in

Non-Contractual Setting

The term churn(defection), when applied to a business’s customer base, is defined

as ”leaving the supplier of services” [18]. Managing churn is one of the important

components of Customer Relationship Management, especially in the scenarios

when customer base growth is slowing down due to reaching the point of saturation

for existing product.

In context of Online Gaming this can happen for a variety of reasons - some

as simple as loss of motivation to spend money on the game due to frustration

with frequent losses and as complex as latent substitute product (for example, a

Football Championship season taking place or fluctuations in discretionary income

of the gamer). Some types of micro-gaming - such as traditional German card

games, the product offered by the Company - have additional nuances: in this case

playing for real money (making micro-bets) represents a realistic approximation

of the traditional game as it occurs when the players participate in person instead

of online. This adds complexity in understanding the motives of the players.

Customer Lifetime Value is the predicted profit that specific user can bring to a

company over the user’s lifetime [19]. Churn, or leaving for good, is one of the

vital components for such prediction: the predictive lifetime value is in direct cor-

relation with the customer’s lifetime duration, alongside with other factors - such

as frequency and amount of purchases. In the Company’s case, the profit per user

can not be calculated in a straightforward way due to the payment model which

makes the cash flow from the loser’s player account to the winner’s player account

(with a small percentage directed as a fee towards the Company). Let us con-

sider two examples. First one is the users who continuously make small payments

into their accounts but lose the games frequently due to more skilled/experienced

opponents or their own playing habits (such as increasing the bets, for example).

They arguably represent the critical, yet volatile segment of the customer base.

Once their account depletes after a gaming session, they are faced with the choice

of depositing more money into their account or stopping the cash gaming alto-

gether. The second example includes a customer who continuously wins the cash

games and, while not contributing to the profit directly, perpetuates the profits

by supporting the overall game-playing activity. These two examples illustrate

how various segments, representing opposite purchasing/behavioral patterns, can

Chapter 3. Business Problem and Data Understanding 12

be equally vital to the Company’s profits. The role of churn prediction becomes

more visible in this context. Using various modeling techniques, it is potentially

possible to discern the behavioral/purchasing patterns that ultimately resolve in

leaving for good as opposed to those that represent more stable, or loyal, customer

segment.

In the context of no-binding relationship where users are free to switch between

free and pay-to-play version of the product at any time, an assumption needs to be

made regarding the period of inactivity of the user which results in being marked

as churned(defector). While some researchers have approached this analytically,

based on the means of interpurchase periods and frequencies of purchases [20],

the consensus between the majority of researches has been that a period of inac-

tivity can be fixed across the customer base according to the business rule. This

particularly applies to the Company’s customer base, due to certain disparities in

activity such as the following example:

• a user who has become active, played games for cash intensely for a few days,

then was inactive for some months; after that , a user becomes active again;

Such an example can be easily misclassified as churned by using the analytical

model with such parameters as mean and variance, although the user is still active.

Thus, following the Occams Razor principle, I have selected two constant values

that define churn and risk of churn, based on comparable practices in the industry.

Definition 3.1. A customer has churned if he/she has not been active in the

purchasing sense for 90 days.

Definition 3.2. A customer is at risk of churning if he/she has not been active

in the purchasing sense for 30 days (4 weeks).

Using these fundamental definitions together with definition of the purchasing

activity, I now have created a basic framework that can be used for churn ex-

ploration, classification and prediction. Exploratory data analysis, together with

basic clustering of the customer base, will further uncover the data properties that

might play a role in the above classification.

Chapter 3. Business Problem and Data Understanding 13

3.2 Exploratory Data Analysis

Exploratory Data Analysis is traditionally a first step in any Data Mining/Machine

Learning Tasks, given a problem is defined in business language. The goal of this

step is an in-depth look at the data available in order to grasp the nature of the

data in the sense of it’s statistical features - such as the distribution, presence of

visible correlations or groupings, extremes, means ,medians and quantiles. Data

exploration guides the scientist from the problem defined in business terms to the

further steps of modeling and evaluation, which involve mathematical, statistical

and Machine Learning concepts rather than business terms. The subtasks of this

step involve evaluation of the relevant tables and fields in the database, extracting

a sample by querying the database, cleansing and slicing the data to see it from

various angles. The importance of this step is difficult to underestimate - after

all, the data and insights provided by this step are to be used in the modeling

experiments and ultimately provide a ground for hypotheses.

In order to understand what the customer base of the company represents, what

features and characteristics (static and otherwise) can be useful in churn prediction

task and finding the most profitable customers, I have performed exploratory

data analysis augmented with some deeper insights such as static clustering by

various dimensions and used graphical tools available in R statistical language in

order to visualize the distribution and other statistical features of various one-

and multidimensional datasets of interest. Static clustering step, although not

traditionally a part of data exploration step , but rather a modeling exercise on

its own, has been necessary in this context, since it furthers the understanding of

the data and its challenges.

3.2.1 Finding Relevant Data

As a first step towards the solution, I have identified the tables of the PostgreSQL

database that contain the information, pertaining to gaming/purchasing activity

of the users:

• users

• payments

Chapter 3. Business Problem and Data Understanding 14

0.00

0.05

0.10

0.15

0.20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Play Money Games Played

D
en

si
ty

Histogram/Density Function
Play Money Games Per User

Figure 3.1: Histogram of Days Before Con-
version

0.00

0.02

0.04

0.06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Real Money Games Played

D
en

si
ty

Histogram/Density Function
Real Money Games Per User

Figure 3.2: Histogram of Cash and Free
Games Total per User

• daily rankings, weekly rankings, monthly rankings, eternal rankings

• games

• tournament users, tournaments, tournament games

• profiles

• aggregated view tables (game stats, payments stats)

While some of them contain static aggregated data (game stats,payments stats),

others contain activity data with time information via timestamps (payments,

daily rankings, etc.). The above tables are the primary sources of data for the

research described in this paper. The datasets have been extracted and cleansed

using PostgreSQL and R languages.

3.2.2 Studying Distributions of Aggregate User Activity

3.2.2.1 Univariate Distribution Plots

As a first step towards understanding the data that I was presented with, I have

explored the distributions of the aggregates per user for the paying customer base.

The data has been extracted from the aggregated view tables, where each line

represents totals corresponding to a user ID. The sample of 1000 users has been

selected at random from over 14000 real-money gamers.

Chapter 3. Business Problem and Data Understanding 15

Figures 3.1, 3.2 show histograms and probability density functions of real-money

and free total games played by each user. Histograms are scaled to 1 in order

to address the distribution in relation to probability density function. As seen

from the histograms, the data is highly concentrated near to zero and extremely

dispersed towards greater values of number of games played. The data has distri-

bution similar to negative binomial model. Figure 3.3 shows density function of

actual data (real-money games) and density function of the fitted negative bino-

mial distribution (with mean = 10264 and dispersion parameter 0.4).

0.00

0.01

0.02

0.03

0 2500 5000 7500 10000

Amount of Real Money Games Played

D
en

si
ty Data Source

Actual

Fit

Real Money Games Played
Actual Data vs Negative Binomial Fit

Dispersion=0.4088,Mean=10264

Figure 3.3: Real Money Games: Actual Data and Fitted Negative Binomial Distribution

Another important dimension is total gain over lifetime. It reflects how successful

the user has been in winning or losing in real-money gaming. Figures 3.4 and

3.5 show distribution of gain across the total base and box plot of gain (the units

are points and are kept to preserve magnitude of differences; actual numbers are

hidden). There are several peaks in the histogram , which could signal a mixture

of distributions. The box plot (another descriptive statistics tool) shows the first

(25%) to third (0.75%) quartiles (Q1,Q3) and indicates dispersion degree inside

the box, median and whiskers that extend to 1.5 IQR (where IQR=1.5(Q3-Q1))

. Points outside of this range are considered outliers.

Figures 3.4 ad 3.5 illustrate two properties of the gain dimension: the potential for

containing groupings (multimodal frequency distribution) and presence of outliers

(points that have very large positive or negative gain in comparison with the most

users). For the Company, this means that there is a small number of exceptional

Chapter 3. Business Problem and Data Understanding 16

0.000

0.002

0.004

0.006

0.008

−60000 −50000 −40000 −30000 −20000 −10000 0 10000 20000 30000

Gain

D
en

si
ty

Histogram/Density Function
Total Gain − Cash Gaming (Units Scaled)

Figure 3.4: Distribution/Density Function -
Gain (Real Money Gaming, Units Scaled)

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

−75000

−50000

−25000

 0

 25000

 50000

ga
in

Total Gain Per User − Boxplot

Figure 3.5: Box Plot - Gain (Real Money
Gaming, Units Scaled)

winners or losers, whereas the whole group of users can potentially be segmented

into separate groups characterized by typical gain values.

3.2.2.2 Pairwise Distribution and Correlation Analysis

In this subsection I explore the possibilities of visible pairwise dependencies be-

tween dimensions. The tools I use are scatterplots and Pearson correlation coeffi-

cient in order to assess the strength of the linear dependency. Exemplary pairwise

scatter plots with corresponding correlation coefficients can be examined on Fig-

ures 3.6, 3.7. The dimensions reflect whether there is a visible linear dependency

between how many games a user plays and gain on the former, and number of

payments vs gain on the latter. As can be seen on the figures, correlation between

real-money games played and the total gain of a user is rather insignificant - the

points appear scattered in both positive and negative directions from the starting

point (0,0). The negative correlation between the number of payments and total

gain seems to be more significant (users with lower gain, have been also depositing

money more frequently into their cash gaming accounts). Both pictures, however,

support the statement that losing the game is a likely outcome for a player.

Additional scatterplots can be seen in Appendix A.

Chapter 3. Business Problem and Data Understanding 17

−500000

 0

 500000

0 25000 50000 75000 100000

Games Played − Real Money

G
ai

n

Pairwise Plot − Number of Real Money Games Played vs Total Gain
(Correlation = −0.28)

Figure 3.6: Pairwise Plot: Real Money
Games Played vs Total Gain

−500000

 0

 500000

0 50 100 150 200

Number of Deposits

G
ai

n

Pairwise Plot − Number of Payments vs Gain
(Correlation = −0.78)

Figure 3.7: Pairwise Plot: Number of Pay-
ments vs Total Gain

3.2.3 Segmentation of the User Base by K-Medoids Clus-

tering

While the analysis of distribution gives an initial picture of the user base according

to spending/gaming frequencies and amounts, visualizations alone cannot spot the

dependencies and data groupings which are not visible to human eye. This is es-

pecially true for multiple dimensions. Unsupervised Machine Learning techniques,

such as Clustering (also referred to as Customer Segmentation in CRM context),

can be helpful in detecting such hidden dependencies.

3.2.3.1 Preparation of Data for Clustering

As a preparation step for clustering I have trimmed the dataset down to a matrix

of 6 dimensions representing aspects of purchasing activity by user. The resulting

matrix contains 14562 rows and 6 columns. Each dimension of the matrix is

discrete and numeric. However, since the dimensions vary greatly in magnitude

(from single digits to 106), in order to avoid the bias towards dimensions with

larger magnitude, I have centered the matrix by subtracting the column’s mean

from each element in the column and scaled it by dividing each element in the

column by the column’s standard deviation. A sample of the resulting matrix can

be seen in Listing 3.1.

1 > head(clusterdata.scaled)

2 real_money gain net_payments num_payments num_payouts max_payment

3 [1,] -0.2476961 -0.2291235 0.2651018 0.6001842 0.1553447 -0.2950053

Chapter 3. Business Problem and Data Understanding 18

4 [2,] -0.3907201 0.3443764 -0.3232097 -0.4632002 -0.3658761 -0.5158714

5 [3,] -0.3910392 0.3371998 -0.3232097 -0.4632002 -0.3658761 -0.5158714

6 [4,] 0.2745709 -0.5662532 0.2231206 2.7269530 4.3251110 -0.1477613

7 [5,] -0.3983001 0.3421823 -0.3501553 -0.4998687 -0.3658761 -0.9576036

8 [6,] -0.3091744 0.3241056 -0.3232097 -0.4632002 -0.3658761 -0.5158714

Listing 3.1: Scaled and Centered Clustering Data Matrix

As an extra step in attempt to reduce dimensions, I have applied the Principal

Components Analysis technique to the scaled and centered data. I have used

princomp() function in R which has returned the result displayed in Listing ??.

1 > summary(princomp(clusterdata.scaled))

2 Importance of components:

3 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

4 Standard deviation 1.8259 1.2511 0.7871 0.59493 0.35349 0.0454675

5 Proportion of Variance 0.5557 0.2609 0.1033 0.05899 0.02083 0.0003446

6 Cumulative Proportion 0.5557 0.8166 0.9198 0.97883 0.99966 1.0000000

Listing 3.2: Principal Component Analysis Results

As seen from Listing 3.2, the number of dimensions can indeed be reduced, since

Component 1 through Component 4 represent a significant percentage of variance

(98%). This supports the previous sections, in which some correlations have al-

ready been discovered. With such evidence, the clustering can now occur in 4

linearly uncorrelated dimensions.

3.2.3.2 Iterative K-Medoids Clustering

The matrix resulting from previous step can be taken as input into CLARA al-

gorithm, first suggested by Kaufman and Rousseeuw in [21]. The algorithm acts

similar to K-Medoids algorithm. The strength of the algorithm is its robustness:

it has been designed specifically for clustering large volumes of data. Partition-

ing around Medoids (or K-Medoids) is a modification of K-means method where

existing points are assumed as cluster centers (medoids) - the points that are lo-

cated closest to all the points in the cluster - instead of calculating means of all

coordinate dimensions. The advantage of the CLARA method over a regular K-

Medoids clustering is that the majority of calculations are not performed on the

whole dataset during each iteration, but rather on a specific sample. The steps of

the iterative algorithm can be seen on Listing 3.3.

Chapter 3. Business Problem and Data Understanding 19

1 Select m samples of size n

2 Perform medoids clustering in each sample with k clusters.

3 Find the best result among all samples (the one which provides the best

partition according to the value of objective function)

4 Place the rest of the points into clusters by calculating distances between them

and cluster centers from previous step.

Listing 3.3: Steps of CLARA Clustering Algorithm

In order to start clustering, an appropriate distance measure needs to be selected.

Euclidian distance metric (square root of sum of squares) has proven to be less

effective in multiple dimensions than alternative metrics, for example Manhattan

metric (sum of differences of each dimension) [22]. Thus, I have chosen this metric

to calculate the distance matrix for the algorithm.

I have performed clustering by using clara() function in R. The function allows to

give parameters m, n, k as tuning parameters. After repeated experiments I have

concluded that combination of m=20 and n=1500 allow for such representation of

the initial matrix that further improvement in the quality of clustering is insignif-

icant. In order to find appropriate k, number of clusters, I have performed the

clustering iteratively and calculated average silhouette width (k=(3..20)),while

keeping m,n fixed. Resulting silhouette widths can be seen on Figure 3.8. The

clear downward trend can be seen as the number of clusters increases.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.4

0.5

5 10 15 20

Number of Clusters

A
ve

ra
ge

 S
ilh

ou
et

te
 W

id
th

0.25

0.30

0.35

0.40

0.45

0.50

avgsilwidth

Totals Clustering −
Average Silhouette Width by Number of Clusters

Figure 3.8: CLARA - Silhouette Widths by Number of Clusters

As a result of iterative clustering experiment, optimal number of clusters was

found to be 3, with average silhouette width of 0.52. This might be signaling

Chapter 3. Business Problem and Data Understanding 20

of the overall low clustering tendency of the data (or absence of natural data

groupings with distinctive characteristics [23]). A look at the distributions of the

dimensions suggests that the only available dimension with visible groupings is

gain.

3.2.3.3 Totals Clustering Results - Visualizations

The CLARA clustering algorithm has identified three clusters of varying length; for

each cluster, the row number of the medoid point has been identified. The results

can be examined in the R output (Listing 3.4).

1 > static.clustering.res$clusinfo

2 size max_diss av_diss isolation

3 [1,] 3467 49.71398 3.4083732 16.010951

4 [2,] 10172 17.13344 0.6081742 5.518019

5 [3,] 953 71.10791 7.9336319 9.064758

Listing 3.4: Results of CLARA Clustering Algorithm

As is seen in Listing 3.4, the clusters vary greatly in size and in the maximal

distance (dissimilarity) between their points.

With clustering results, it is possible to look at the data points in each cluster.

Since there are 6 dimensions in the original dataset, direct approach to visualize

the clusters of points is not necessary possible. However, it is possible to consider

one or two dimensions at a time. Figures 3.9 - 3.14 illustrate the clustering

results. Results show that there is clear division by gain (people who insure

the biggest losses while playing vs medium vs very small losses, with occasionally

users with positive gain). In the other dimensions, such as real money games

played and number of payments, the division is less clear (each cluster has multiple

outliers). The pairwise plots, in their turn, show that there is less correlation in

the dimensions as the values acquire bigger magnitude (specifically, clusters 1 and

3 are more fanned-out and scattered across the coordinate plane, implying low

correlation).

Figures 3.9 - 3.14 show that the customer base indeed can be split into three

groups (least ”losers” to biggest ”losers”). It can be also seen that the separation

is somewhat artificial in the sense that there are no visible distinct groupings that

are well separated. However, it slices the customer base into three parts which

Chapter 3. Business Problem and Data Understanding 21

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●●●●●

●

−200000

−100000

 0

 100000

1 2 3

cluster

To
ta

l G
ai

n cluster

1

2

3

Total Gain by Cluster

Figure 3.9: Box Plot -
Gain by Cluster

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●●

●
●

●

●●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●●

●

●
●
●●

●

 0

 25000

 50000

 75000

100000

1 2 3

cluster

G
am

es
 P

la
ye

d

cluster

1

2

3

Real Money Games by Cluster

Figure 3.10: Box Plot
- Real Money Games

by Cluster

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●●●●

 0

 50000

100000

150000

200000

1 2 3

cluster

N
et

 P
ay

m
en

ts cluster

1

2

3

Net Payments by Cluster (Units Scaled)

Figure 3.11: Box Plot
- Net Payments by
Cluster (Units Scaled)

●

●

●

●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

−500000

 0

 500000

0 25 50 75 100

Number of Payments

G
ai

n

cluster
● 1

2

3

Pairwise Plot − Number of Payments vs Total Gain by Cluster

Figure 3.12: Number
of Payments vs Gain

by Cluster

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

−500000

 0

 500000

0 10000 20000 30000 40000 50000

Real Money Games Played

G
ai

n

cluster
● 1

2

3

Games Played vs Total Gain by Cluster

Figure 3.13: Number
of Games vs Gain

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

● ●
●

●

●
● 0

100000

200000

300000

400000

500000

0 50 100 150 200

Number of Payments

G
am

es
 P

la
ye

d

cluster
● 1

2

3

Number of Payments vs Games Played by Cluster

Figure 3.14: Number
of Payments vs Games

Played by Cluster

can possess certain characteristics (described above). What the clustering does

not show at this point, is the peculiarities within each group, related to churn. In

order to see which users have spent longer time playing (more loyal) and which

ones have churned, we need to introduce new dimensions - the ones that have to

do with the time axis.

3.2.4 Adding Temporal Variables

After review of the results of totals clustering, there are still unanswered questions

regarding churn. As is seen from the previous section, there are three more or less

distinct categories of users , split mostly by total gain over their lifetime as paying

customers. There is a rather strong correlation with games played and negative

gain (which implies that winning a game does not happen more often than losing)

and same for net payments vs gain. However, is losing a lot over time a precursor

of churn? In order to make a step towards understanding churn and its factors,

some new variables need to be introduced,such as:

Chapter 3. Business Problem and Data Understanding 22

• duration of paying customer lifetime: difference (in days) between the first

paid activity and the last paid activity

• duration of pre-conversion period: difference (in days) between the user ac-

tivation date as a free gamer and start of payment activities

• class label - ”Churned” and ”Active”.

These dimensions can be found using definition of churn by Definition 3.1, and

the values of starting dates (activation, first payment) as well as dates of last

purchasing activity. Resulting dimensions are discrete numeric values with time-

units days. In order to examine the subset of paying customer s, I have reduced

the total sample using the following business rules, which have been enhanced with

the results of the previous exploratory steps:

1. a user is taken into sample if he/she made at least one deposit into gaming

account

2. a user is taken into sample if he/she has been active during a period of 3

months as recently as 2012 (activity period) - this does not mean the user

has been active for the whole duration of time

3. a user is taken into sample if he/she has converted to paying customer at least

earlier than 6 months from the current date - this condition was introduced

in order to be able to check the ”churn” condition (3 months of inactivity

in addition to previous 3 months of activity).

 0

 250

 500

 750

1000

0 500 1000 1500 2000

Days before Conversion

C
ou

nt

Histogram −
Days Before Conversion

Figure 3.15: Histogram - Membership Days
Before Conversion

0

100

200

0 250 500 750 1000

Duration

C
ou

nt

Lifetime Length − Pay−to−Play Customers

Figure 3.16: Membership Lengths

Chapter 3. Business Problem and Data Understanding 23

As seen on the Figure 3.15, most users convert almost immediately after becoming

active on the website, reflecting the initial intention of using pay-to-play version of

the game. There is a rapid slowdown in conversion following a certain period, let us

call it ”settling in” period. This can also be read in terms of density or conditional

probability (probability of converting given that a user has been already active

on the website for a given number of days). Figure 3.16 exhibits two peaks in

the histogram: there is a possibility of two rather distinct groups - which can

be translated into the following statement: users have a tendency to either quit

rather quickly, or stay and use paid services for an average of one year, with rarer

exceptions of ”long-living” customers. Now, let us include the churn factor into

the picture: Figures 3.17 and 3.18 show distinction by churn criteria. Here we see

that still active (loyal) customers have indeed longer lifetimes than the churned

customers, while length of period before conversion seems to not affect neither

churn, nor length of paid activity period (we see almost uniform distribution).

Thus, initial analysis shows that duration of before-conversion period, or ”age”

of customer at the time of conversion itself does not seem to affect the further

purchasing activity.

0.000

0.002

0.004

0.006

0 500 1000

Duration

D
en

si
ty User Churned?

FALSE

TRUE

Duration of Purchase Lifetime Churned vs Active

Figure 3.17: Density Plot - Paid Activity Pe-
riod Duration (in days) by Class

 0

200

400

600

0 500 1000 1500 2000

Length Before (in days)

D
ur

at
io

n
of

 L
ife

tim
e

(in
 d

ay
s)

User Churned?

FALSE

TRUE

Length of Membership Before Conversion
vs Duration of Purchasing Lifetime

Figure 3.18: Length of Period Before Con-
version vs Length of Paid Activity Period Du-

ration

The two new dimensions introduced with the use of timestamp information from

the transactional database tables, provide a new view on the customer activity.

Augmented with the class labels (”Churned”, ”Active”), we can see the first corre-

lations (length of paid activity is distinctly distributed across two classes). There

are also some rejected hypotheses: pre-conversion period length seems to not affect

the overall tendency to churn. This evaluation takes us closer to the introduction

of time axis and heterogeneity of user activity across it.

Chapter 3. Business Problem and Data Understanding 24

Armed with the statistical features gathered in the previous sections, I have per-

formed a visualization exercise in order to illustrate activity for individual users

or user groupings over time dimension. The challenge of such visualization is the

innate multidimensional character of the data, as well as choice of slicing and dic-

ing the data and selecting a sample. I have chosen the dimensions of real money

games and points games (total number played per user). Firstly, I have looked

at Figure 3.19, which shows that there is a large spectrum of gaming attitudes

(from avid gaming users to those whose paid activities carry rather accidental

character). In order to get more insight, I have segmented the base and visualized

cash versus free gaming (monthly) in each segment in the form of heat plot, where

cash and free dimensions are juxtaposed in order to see increases and decreases

in the weekly gaming activity. An example of such chart can be examined in Ap-

pendix A, where the reader can observe the variety of activity patterns within one

cluster.

 0

20000

40000

60000

 0 10000 20000 30000 40000 50000

Play Games Played Total

R
ea

l M
on

ey
 P

la
ye

d
To

ta
l

Cluster

1

2

3

Segmentation by Play Games vs Real Money Games per User

Figure 3.19: Segmentation of Paying Customers by Games Played

3.3 Conclusions and Outlooks for Churn Classi-

fication

Exploration of various aspects of purchasing behavior and their correlation has

provided an initial overview on the general patterns and statistical properties of

the data. However, it has still shed minimal light on the motivators and actions

Chapter 3. Business Problem and Data Understanding 25

that lead to users’ churn. Exploration has uncovered that within the total satis-

tics data there are three visible clusters that combine heterogenous behaviors. The

majority of considered dimensions (totals) have no strong correlation with each

other. Moreover, the nature of the data is noisy which prevents from clean (iso-

lated) clustering by standard methods (as seen on Figure 3.19). Most dimensions

have negative binomial distribution pattern, reflecting the real-life pattern: most

of the paying users are short-term customers, and are prone to leaving or settling

for free version - correspondingly, they represent the most volatile segment. The

visualization of gaming activity over time underlines the existence of additional in-

formation that cannot be described by static statistical descriptions, such as mean,

variance of totals. The two methods applied and described in the next chapters

represent an attempt to uncover this information by approaching the temporal

character of the data in two different ways.

Chapter 4

Churn Prediction Static -

Random Forest Classification

4.1 Theoretical Framework

This Chapter describes one of the approaches I have taken to predicting risk of

churn, according to Definition 3.2. This approach follows a similar strategy as the

Random Forest Classification approach that I have taken in my Project Work [2],

with emphasis on additional features that interpret temporal information. This

experiment is intended to test the assertion that static classification algorithm

is capable of predicting with enough sufficiency, when encompassing observations

regarding as many aspects about user’s history and current activities as possible.

In this chapter I also illustrate how the choice of modeling and response variables

affects the outcome of Classification, and concentrate on the assumptions that are

necessary to build the model.

Random Forest Classification is an Ensemble Classification Method which includes

both voting strategy (the method selects a mode of the separate decision trees

results) and bagging strategy (sampling with replacement) for predictive features

at each tree split. More theoretical information on this method can be found in

[2]. I have selected this method due to proven efficiency in many areas, as well as

possibility to compare predictive weight (or importance) of individual variables.

Additionally, this method avoids building parametric models, deals well with the

cases of conditionally dependent predictive variables ([24]) and performs the clas-

sification ”inside the box” - a more-or less automatic process.

26

Chapter 4. Churn Prediction - Static Approach 27

The selection of features for the classifier was partially inspired by the framework

built in [25] and is using a heuristic that extracts static values such as mean and

variance and positive or negative change in amounts over time. It works with

abstract representations of the time series and subsequences, where subsequence

is defined as 4.1.

Definition 4.1. Subsequence is a portion of time series of lesser or equal size,

which preserves the ordering of the sequences states.

While the mentioned article describes early classification of the time series, I have

modified it in order to predict the the user’s propensity to churn - in other words, to

predict the near future activity - by using the most recent activity in combination

with total activity, with addition to some static characteristics of the users. Thus,

the method will consider the very end of the sequences representing user activity

history rather than the beginning. The user lifetime time series per se do not

appear in any of the modeling steps. Rather, they are represented by global and

local properties, which in turn try to preserve the main statistical characteristics,

such as, for example, positive or negative trends, variance, mean.

It is worth mentioning that since this is used to show initial results with basis for

improvements and is not the focal point of this thesis, I have left local optimizations

of the data modification techniques out of scope. The emphasis of this chapter

is to explore a general approach and draw conclusions of its applicability to the

problem at hand.

4.2 Data Selection and Preparation

The task of data selection and preparation consists of defining the potential pre-

dictive features (dimensions) to be used in churn classification and the sample.The

challenge of the task consisted of, among other factors, defining the static predic-

tor variables characteristic of certain time periods by modifying temporal variables

based on their statistical features. This is done in attempt to preserve maximum

amount of temporal information.

For the experiment, I have selected a sample of 2400 user IDs who were active be-

fore the start of test period (to be described in next section). The ID’s themselves

were not used in the exercise in order to preserve anonymity. In order to build the

Chapter 4. Churn Prediction - Static Approach 28

Field Type Extraction Method
total average gain numeric direct
membership length numeric direct

last week - tournaments played boolean direct
currently positive gain real money numeric derived
currently positive gain play money numeric derived

currently average games per week (real money) numeric derived
currently average games per week (play money) numeric derived

gender categorical direct
large intervals between activities boolean derived

assertive gaming style (knockings) numeric derived
difference between leading and lead moves numeric derived

total average games per week numeric derived
total variance in games per week numeric derived

number of friends numeric direct
final score at the end of current period numeric direct

average gain during current period numeric derived
sporadic gaming pattern during current period numeric derived

Table 4.1: Predictive Dimensions

predictor values based on the temporal knowledge, I have split the features into

global characteristics (totals across the whole lifetime), current (most recent four

weeks of activity), very current (most recent week of activity) and future (pre-

dicted activity or class labels) periods. After as many features as possible (a total

of 17 dimensions) were extracted from the data storage based on the experiential

knowledge. As seen in the Table 4.1, the values have been achieved in two ways:

directly extracted or achieved via modification (mostly a linear combination or

statistical feature of a group of timestamped data). Dimensions include some

features described in Chapter2,as well as variables which have been identified as

having potential to affect user’s churn (an example of such is tournaments played,

a variable that I have studied in [2]). Lastly, I have tapped into the gaming style

of users, collecting statistics of their assertiveness and risk-taking in the game.

For timestamped data I have taken weekly frequency of measurements. Predictive

features represent variety of data types (boolean, categorical and numeric).

In order to derive the statistics of user activity, I have relied on selecting the

characteristics that could potentially be relevant to the business case. Some of the

dimensions have been discretized by splitting the axis into intervals (an example is

large intervals between activities which is essentially the opposite to the frequency

parameter; in this case, large intervals represent an interval that is larger than 30

days). An example of usage of business expertise is the use of trend information

for the current gain instead of using the actual value: thus a spectrum of values

representing gain has been reduced to a boolean variable that reflects whether user

has been mostly losing or mostly winning during the current period.

Chapter 4. Churn Prediction - Static Approach 29

Experiment # Hypothesis Class Label
1 user has not played real money during test period Yes (1)/ No (0)
2 user has not played real money during first week of test period Yes (1)/ No (0)
3 user not played real money some or all of the weeks during test period Yes (1)/ No (0)
4 user has played some of the weeks of test period, but not all Yes (1)/ No (0)
5 user has stopped playing real money in the second half of the month Yes (1)/ No (0)
6 user has switched to free gaming Yes (1)/ No (0)

Table 4.2: Predictions/ Class Labels

The resulting sample has been split into training and test subsample by taking

random samples one half each of the total sample. Code for dimensions derivation

can be examined in Appendix B.

4.3 Defining Response Variables

The second task of building a Random Forest Classifier is to assign class labels to

each row of the prediction matrix. For this exercise, I have selected six scenarios

for the test period, each with the boolean outcome (1 or 0). For the purpose

of the first iteration of the experiment, I have selected a period of one month

(according to Definition 3.2). The scenarios test various outcomes for the user in

the first month following predictive period. Table 4.2 illustrates the scenarios for

classification, where the class label is essentially a prediction (Yes or No) of the

question in the left column, or hypothesis. I have gone from strict hypotheses (

such as ”a user has churned during the test period”) to semantically relaxing the

conditions (”a user has been inactive some OR all of the weeks”). The hypotheses

in question pertain mostly to the gaming activity and represent classes of unequal

size.

The classification experiments are an attempt to understand short-term predictive

power of the approach as well as efficacy of the dimensions selected.

4.4 Modeling Process and Results

After completing the groundwork described in previous sections, I have performed

iterative Random Forest Classification exercise - by changing the tuning parame-

ters such as number of trees in the forest (I have settled at setting the n=20000,

which significantly exceeds the number of rows in the sample, and setting number

Chapter 4. Churn Prediction - Static Approach 30

of features being sampled at each split at m=4). Since sampling is done with

replacement, each tree gets a chance to concentrate on certain features for classi-

fication. I omit the details of implementation in this paper due to having already

described them in precision in my previous work ([2]).

In order to train the classifiers, I have used the randomForest() function, the

details of implementation of which can be studied in [26]

Iterative modeling with large forests (20000 trees) has yielded positive results in

some of the experiments, while the others displayed a significant degree of bias,

rejecting the most hypotheses defined in Table 4.2. Listing 4.1 illustrates the

R output of class error for each class label prediction and each experiment. It

is seen that most of the experiments have displayed a great bias (or degree of

misclassification) .

The two experiments that have displayed the lowest average misclassification rate

are experiments 3 and 4 (4.2), with experiment 4 being the one with the most

evenly distributed misclassification rate. Due to relative success of these experi-

ments which implies greater validity of selected dimensions, it is worth to look at

the relative importance of the predictive variables according to the two informa-

tion gain criteria (MDA and Gini) [26]. Figure 4.1 shows such criteria for a list

of 17 parameters, sorted from highest to lowest. It can be seen that such criteria

as games played per week and final score at the end of the predictor period have

higher predictive power, whereas number of friends and positive/negative trends

do not contribute significant information to the classification.

The results of the experiments have shown initial insights into short term predic-

tion, or prediction of customers at risk of churning. The partial effectivity of the

approach and variable selection provides a tentative benchmark for comparison

with application of other methods. Chapter 6 will provide a more complete eval-

uation of the results of applying this method alongside examining the results of

using the temporal method, described in Chapter 5.

Chapter 4. Churn Prediction - Static Approach 31

1 > experiment1$confusion
2 0 1 class.error

3 0 1001 30 0.02909796

4 1 100 55 0.64516129

5 > experiment2$confusion
6 0 1 class.error

7 0 880 58 0.06183369

8 1 126 122 0.50806452

9 > experiment3$confusion
10 0 1 class.error

11 0 275 178 0.392936

12 1 117 616 0.159618

13 > experiment4$confusion
14 0 1 class.error

15 0 401 207 0.3404605

16 1 195 383 0.3373702

17 > experiment5$confusion
18 0 1 class.error

19 0 646 113 0.1488801

20 1 309 118 0.7236534

21 > experiment6$confusion
22 0 1 class.error

23 0 647 112 0.1475626

24 1 311 116 0.7283372

Listing 4.1: Classification Results - Random Forest

friends

week14bal01diff_positive

avg_interval_over30

week14bal2diff_positive

gender

total_variance_games_week

memlen

week4tourn

week14avg_gain

week14bal2sporadic

total_avg_gain

agro

leader_lead_diff

total_avg_games_per_week

week14bal2avg_games_week

week14bal01avg_games_week

week14finalscore

overall_avg_interval_days

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4
MeanDecreaseAccuracy

avg_interval_over30

week4tourn

gender

week14bal2diff_positive

week14bal01diff_positive

week14bal2sporadic

friends

overall_avg_interval_days

week14avg_gain

total_variance_games_week

agro

memlen

total_avg_gain

leader_lead_diff

total_avg_games_per_week

week14bal2avg_games_week

week14bal01avg_games_week

week14finalscore

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 30
MeanDecreaseGini

Variable Importance Plot for Experiment 4

Figure 4.1: Variable Importance Plot for Experiment 4

Chapter 5

Temporal Approach - Mixture

Markov Modeling

5.1 Introduction

This Chapter describes the implementation of an approach to classification of

churning users using the temporal representation of the the user’s lifetime real-

money gaming activity. The effort stands in the focus of my thesis and tests the

hypothesis that considering a time series (or a sequence) as a temporally ordered

collection of observations rather than a collection of its basic statistical features

helps to uncover additional information, hidden in the state transitions across

time. This approach represents a combination of unsupervised machine learning

methods and probabilistic modeling that help modify, preprocess and index the

multivariate time series which represent the users’ activity stories. My algorithm

follows the general approach to a similar problem, described by Yang et al [17],

with added modifications of the algorithm in order to add robustness and account

for the data specifics. The authors of the article propose the solution for churn

classification in non-contractual setting by implementing the sequence of steps

mentioned in Listing 5.1

1 Discretize the multivariate sequences in order to transform them into univariate

state transitions

2 Cluster the sequences by performing Markov mixture modeling

3 Classify/Index the sequences

Listing 5.1: Time Series Classification/Indexing Algorithm Pseudocode

32

Chapter 5. Temporal Approach - Mixture Markov Modeling 33

The reason I have selected the algorithm proposed in [17] is the similarity of the

business case of the Company with Telecom industry: churn of non-contractual

customers. The customer lifetime in both cases can be represented via multivariate

time series of varying lengths (as we have seen earlier in the histogram). While

similar on a general level, the transactional data of the Company has peculiarities

of its own (such as sparsity and the range of sequence lengths) and thus requires

certain modifications in the approach in order to achieve a similar success.

5.2 Theoretical Basis: Markov Property,First

Order Markov Chains, Mixtures

The algorithm, outlined by Listing 5.1, is based on the assumption that the

sequences are stochastic processes that can be presented as the Markov chains.

The Markov property of a sequence is defined in the literature the following way

[?]:

Definition 5.1. A stochastic process has the Markov property if the conditional

probability distribution of future states of the process depends only upon the

present state, not on the sequence of events that preceded it.

Definition 5.1 is also referred to as memoryless property. As it follows form

the name, the process ”forgets” the previous states. This important property has

allowed to develop a probabilistic framework for modeling sequences: the sequence

is represented as an instance of Markov chain, where the chain is defined by the

transition probability distribution from each state to the new one. This touches on

another fundamental concept, that of random variable, which is formally defined

as [?]:

Definition 5.2. A random variable is a variable whose value is subject to varia-

tions due to chance.

Random variable is a powerful concept that allows to define and model uncertainty.

Armed with this definition, we are now able to apply it, together with Markov

property defined earlier, in order to formally define the concept of a first order

Markov chain [27],pp. 606-607:

Chapter 5. Temporal Approach - Mixture Markov Modeling 34

Definition 5.3. A Markov chain is a sequence of random variables X1, X2, ..Xn

with the Markov property, or P (Xn+1 = x|X1 = x1, X2 = x2,Xn = xn) =

P (Xn+1 = x|Xn = xn).

Definition 5.3 represents an abstraction of a sequence using probabilistic notation.

Here, states can represent any objects (such as symbols or collections of values).

Translated to multivariate time series, each state of such time series represents a

collection of measurements at a given time. Thus, such framework can be also

used in order to model multivariate time series. Figure 5.1 depicts an example of

Markov chain of length k.

...v
1

v
2

v
k

Figure 5.1: Markov Chain

So, how is Definition 5.3 useful to classification of times series for churn classi-

fication? In order to answer this question, one more component is needed, and

that is one of mixture modeling. Given a collection of time series, it is possible

to model(parametrize) such collection as a mixture of probability distributions.

We have seen such univariate distributions when we explored the gain variable. It

is, however, possible to represent other (multivariate and even temporal) objects

as such mixture. Thus, mixture modeling is a probabilistic approach to unsuper-

vised learning, or finding groups within a collection. Going back to the question

of churn in non-contractual setting, given two classes - churned and non-churned

- each of the sub collection can be modeled by means of mixture modeling (with

a defined number of components). The multistep algorithm defined in previous

section relies on such modeling in order to overcome the issue of unequal lengths

of the time series.

Final component in the workings of the classification algorithm is the concept of

Bayesian probability, an interpretation of probability that involves the assump-

tions of prior beliefs about the random variable and its outcomes, which later get

updated with the incoming relevant evidence [?]. Definitions 5.1-5.3 lay out the

basic framework for the classification process described in the next sections.

Chapter 5. Temporal Approach - Mixture Markov Modeling 35

5.3 Data Understanding. Determining the Tem-

poral Context

As mentioned and proven in the previous Chapters, the choice of dimensions or

features is of significance to the outcome of the classification. In this section I

describe the motivation of the representation of the data, as well as the process of

variables selection/acquisition.

The motivation of representing the user lifetimes as multivariate sequences stems

from the natural representation of the transactional data in the Company’s

database: gaming activity and payments history is stored in tables that repre-

sent aggregated measurements with daily/weekly/monthly frequencies. It is also

possible to acquire information with second precision. Thus, it is evident that the

user lifetime can be represented with a series of such measurements. There are,

however, some questions to be answered in order to acquire a sample to perform

modeling and classification:

• which users to include into the sample

• how to define the time axis (there are alternative representations possible)

• which specific measurements to include into the dataset

• assigning class labels

The following subsections address these four issues.

5.3.1 Sample Selection

The user base of the Company is extremely heterogeneous. However, for the

purpose of training a churn classifier and noise reduction, not all of the users can

be considered. Thus, certain restrictions had to be included into the SQL queries

according to the business rules that could help weed out noise at the early stage

and avoid reduced effectivity of the classifier and retraining.

The following business rules have been used in order to select the manageable, yet

representative sample of user ID’s :

Chapter 5. Temporal Approach - Mixture Markov Modeling 36

• include users that have started playing cash at least 8 months before the

time of the experiment (in order to allow for significant confidence in churn

- 5 months of activity)

• include users that have started playing paid version of the game after 2012-

01-01 (in order to address the effect of the new paid offering introduced in

2012)

• exclude ”accidental” users with 0 payments

• exclude ”accidental” users who only were active less than a certain amount

of days in cash gaming (1 day)

• exclude test ID’s since they do not correspond to regular gamers

Molding such a sample yielded a total of 2492 user IDs which were used in order

to query the database for transactional (temporal) data.

5.3.2 Selecting the Time Axis and Time Units

Selection of time axis and frequency of measurements for time series definition is

one of the success factors in the classification. There are two possibilities to define

the time axis:

1. use the number of games played as a relative time unit

2. the actual time unit (such as day, hour etc.)

After careful consideration of these two options, I have decided to go with option

2 - to use the actual time units for measurement. The motivation for selecting

the actual time units was the natural correspondence that such definition provides

with the actual data stored in the database, thus providing more consistency.

Another reason for the selection of Option 2 was that by selecting number of

games played as the time-axis and measuring all the other dimensions relative to

this axis removes the number of games played from the tracking uniformly with

all other dimensions.

Having set up the time axis, the second decision concerns selecting the frequency of

measurements used for the time series. While using high-level measurements (like

Chapter 5. Temporal Approach - Mixture Markov Modeling 37

months) can improve algorithm performance by resulting in shorter time series,

there is a great potential loss of information of state transition details due to

aggregation. On the other hand, taking measurements that are too detailed (such

as per hour basis), can lead to overfitting of the model due to noise and significantly

complicate/slow down the algorithm. Considering the lengthy - years magnitude

- histories of some users and micro-gaming format of the game, and taking into

account the results of the experiment in the previous Chapter, it is reasonable to

assume that daily measurements are able to reflect enough information regarding

the user patterns and yet be manageable in size (length up to hundreds of days).

The final aspect of data preparation step is selecting the start date of the sequence:

while the users might have performed gaming activities before becoming a paying

customer, the time series starting day (or first measurement) is considered the day

when any of the paid activities (defined in Chapter 3) have occurred for the first

time, or conversion. This denotes the beginning of the paying customer lifetime.

Likewise, the end of the customer lifetime is denoted by the last purchasing-related

activity. First observations show that a typical starting action is depositing money

into user account.

It should be noticed that the resulting sequences do not yet represent the com-

pletely consistent multivariate time series since they only include the days on which

activities have occurred, but do not deal with the inactive days yet. This will be

addressed in the next section.

5.3.3 Selecting Features/Dimensions of the Time Series

and Assigning Class Labels

Among many possible tracked activities that are recorded in the database tables,

the most relevant ones to the paid activities . The dimensions chosen for the

time series are based on the preceding research and are trimmed down to six vital

dimensions (displayed in table 5.1).

The selected dimensions were extracted from various tables containing daily mea-

surements, and combined into a large dataset of transactions (sorted by user

ID). The resulting dataset was augmented in order to represent days of inac-

tivity with 0’s (in consistency with ”zero-padding” approach) [28]. The resulting

sparse dataset combines all the multivariate time series and represents a sort of

Chapter 5. Temporal Approach - Mixture Markov Modeling 38

Dimension Type
real money games played discrete numeric

average gain per game (real money) discrete numeric
current score (real money games) discrete numeric

payment amount discrete numeric
tournament participation boolean

free/premium games played discrete numeric

Table 5.1: Time Series Dimensions

transactional database organized by User ID and preserving the order/frequency

of measurements for each user. The lengths of sequences vary from just 2 days to

several hundred. An exemplary extract from the fundamental dataset to be used

for classification, (named lifedata) can be seen on Listing 5.2.

1 > head(lifedata ,20)

2 user_id games2 current_score gain payment_amount tournament games01

3 1 a 37 4582 -1 5000 1 14

4 2 a 65 4262 -6 0 0 0

5 3 a 328 8530 -2 5000 0 0

6 4 a 259 4581 -15 0 0 0

7 5 a 181 1742 -17 0 0 0

8 6 a 242 6232 -18 10000 0 0

9 7 a 187 5099 -7 0 0 0

10 8 a 65 2943 -38 0 0 0

11 9 b 55 6371 8 6000 0 0

12 10 b 35 6111 -2 0 0 0

13 11 b 0 0 0 0 0 0

14 12 b 0 0 0 0 0 0

15 13 b 0 0 0 0 0 0

16 14 b 0 0 0 0 0 0

17 15 b 0 0 0 0 0 0

18 16 b 0 0 0 0 0 0

19 17 b 0 0 0 0 0 0

20 18 b 0 0 0 0 0 0

21 19 b 0 0 0 0 0 0

22 20 b 0 0 0 0 0 0

Listing 5.2: Classification Dataset

The purpose of this method application is longer-term churn prediction according

to Definition 3.1. Thus, each user ID has been labeled 1 for users who have

churned (inactive for equal or more than 90 days) , and 0 for those still active (or

inactive less than 90 days). There are 1634 users who have churned and 858 who

are considered still active.

Chapter 5. Temporal Approach - Mixture Markov Modeling 39

5.4 Time Series Classification

This section tells an in-depth account of the classification process, its implemen-

tation and challenges related to it. As defined in Listing 5.1, there are three

main steps in the algorithm, which are driven by the goal of preprocessing the

multivariate time series of unequal length length into standardized objects which

can be later classified using one of the available classification methods. Each step

receives careful consideration and is supported with relevant theoretical concepts.

5.4.1 Inferring States via Clustering

The multivariate sequences sample, acquired in the previous step, provides a

dataset for experiment. An example of one such user time series can be examined

on Figure 5.2. However, in order to be able to represent the time series as a

sequence of states, the set of states needs to be defined. In case of the lifedata

dataset, each record presents a certain combination of measurements 6 measure-

ments. Although there are no truly continuous dimensions, so no discretization is

required for any dimension, the ranges of some of the dimensions are of magnitude

10e+5, which does not allow a possibility of manually assigning a specific state

to each combination. Thus , a different approach of grouping combinations of

measurements is needed. A natural choice is applying a clustering technique in

order to determine groupings within measurements records.

−2

−1

0

1

2

2 4 6 8

Time (days)

V
al

ue
, s

ca
le

d
to

 fi
t

Dimension
Real−money Games
Play Games
Current Score
Payment Amount
Tournament
Gain

Multidimensional Customer Lifetime Time Series

Figure 5.2: An Example of a Customer Lifetime as Time Series

Due to a large volume of data (a total of 535334 transactional records among

all users), a method must be used that can effectively handle such great amount

Chapter 5. Temporal Approach - Mixture Markov Modeling 40

of data. CLARA algorithm, described in detail in previous Chapters, is a good

candidate for clustering large applications and thus was selected to perform this

task.

Arguably the most important aspect of clustering the transactional data is select-

ing the optimal number of clusters. There needs to be as much as possible balance

between sacrificing the quality of clusters which will be used in the next steps of

the algorithm, and keeping their number as low as possible. The reason for the

first constraint is that assigning the point (a combination of measurements) to the

cluster that does not correctly represent it might negatively affect the classification

outcome. The latter condition is important in order to satisfy the performance

requirement: the number of clusters (states) is directly related to the size of tran-

sition matrix (n2 for n states). Since the computational power of the machine is

limited by its architecture - in my case it is 64Bit and memory limitations, as well

as limitations within the statistical software R.

As a final sample preparation step, I have removed user IDs, converted the boolean

dimension into discrete numeric and scaled the resulting 6-column matrix similarly

to the clustering in Chapter 2. Listing 5.3 illustrates the resulting sample.

1 > head(lifedata.staticclustering)

2 games2 current_score.x gain.x payment_amount tournament games01

3 1 37 4582 -1 5000 1 14

4 2 65 4262 -6 0 0 0

5 3 328 8530 -2 5000 0 0

6 4 259 4581 -15 0 0 0

7 5 181 1742 -17 0 0 0

8 6 242 6232 -18 10000 0 0

Listing 5.3: Scaled Clustering Matrix

After iterative clustering attempts with varying sample sizes and number of clus-

ters, the optimal number of clusters was found to be 17 - a minimum available

to create discernible states, with average silhouette width = .62. This indicates

a reasonably good separation of data. As a result of clustering via medoids, we

now have a collection of 17 states which represent the separable combinations of

measurements. Each record in the transactional dataset can be labeled with the

cluster label it was placed in. The collection of multivariate time series can now

be presented via sequences of states, drawn from a distribution of the resulting 17

states. The state labels are the same as cluster numbers, i.e. S={1,...,17} is the

set of possible states. A sample of the resulting sequences is seen on Listing 5.4.

Chapter 5. Temporal Approach - Mixture Markov Modeling 41

1 > sample(lifedata.univar ,3)

2

3 [[1]]

4 [1] 7 7 7 8 7 6 2 6 7 8 4 2 4 4 4 4 4 2 2 2 8 8 6 7 6

8 7 4 4 8 7 6 4 2 2 2 2 8 8 8

5 [41] 8 8 8 7 8 8 10 10 6 4 7 2 8 2 7 2 6 8 8 8 8 8 4 8 6

4 8 2 7 8 7 8 8 8 8 8 8 8 8 8

6 [81] 8 7

4 8 8 8 8 8 8 8 8 8 8 8 8 8 8

7 [121] 8 8 8 8 8 8 6 2 8 8 4 7 8 8 4 8 8 8 8 4 2 2 2 8 2

2 2 6 8 8 8 2 4 3 8 2 8 2 8 8

8 [161] 8 8 8 8 8 8 8 8 8 12 13 8 8 12 8 13 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 [201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 2 8 14 8 13 8 8 12 14

12 8 8 14 12 14 13 8 14 12 12 12 15 15 8

10 [241] 12 13 14 12 13 2 13 8 8 4 4 8 2 14

11

12 [[2]]

13 [1] 6 8 8 8 8 8 8 8 8 8 8 8 8 6 2 2 8 8 8 2 8 8 8 2 8

2 8 8 10 10 2 8 8 8 6 8 8 8 2 10 8

14 [42] 8 13 8 8 6

15

16 [[3]]

17 [1] 5 4 4 2 8 7 2 4 2 2 2 4 4 2 2 2 2 6 8 8 2 4 2 12 13

8 8 8 8 8 8 8 8 8 8 8 13 8 13 8

18 [41] 8 13 12 13 2 13 8 8 13 13 8 8 14 13 8 3 4 2 4 10 8 8 4 6 14

12 13 8 8 8 8 8 8 8 8 8 13 8 12 8

19 [81] 8 8 8 13 8 8 8 8 8 13 8 8 13 8 8 8 8 8 8 7 2 2 10 2 4

2 6 12 8 8 8 13 12 8 8 8 8 8 8 12

20 [121] 13 13 13 8 8 13 12 2 2 8 2 8 2 12 13 13 8 8 8 13 8 13 7 10 8

6 2 2 6 12 8 13 8 8 13 13 13 8 13 8

21 [161] 8 8 8 8 8 8 8 12 8 13 13 7 2 8 4 12 12 8 8 2 6

Listing 5.4: Sample of Derived Univariate Sequences

Chapter 5. Temporal Approach - Mixture Markov Modeling 42

5.5 Markov Mixture Modeling

5.5.1 Defining a Markov Mixture Model

In order to be able to cluster the sequences resulting from the previous step of

the algorithm, the parameterical mixture model needs to be defined in the context

of Markov chains. Informally, such model is a collection of latent (or hidden)

components that are each defined by their parameter values and their marginal

weight in the model. It is easy to notice how such structure correlates to the

concept of clustering. Formally, a mixture model is given in terms of discrete

random variable by Definition 5.4 [27].

Definition 5.4. A parametric mixture model is a probabilistic model given by

the formula:

p(x|Θ) =
K∑
k=1

πkp(x|ck,Θ), (5.1)

where x is a random variable with discrete distribution, and πk, k = 1..K is the kth

component of the model, and p(x|ck,Θ) is the probability of the random variable

given the parameters of model component ck (conditional probability distribution),

πk is the marginal probability of the kth component (cluster).

The πk = p(ck = 1|Θ) satisfy the following conditions: 0 ≤ πk ≤ 1 and
∑

k πk = 1

and are called mixing coefficients. Thus, Equation 5.2 represents the summa-

rization of joint probability distribution of random variable x over all clusters (

components ck) in the model, also called marginal distribution of x.

Definition 5.4 sets up a probabilistic framework for modeling the outcome of a

random variable. However, for the case described in this thesis (Markov chains of

varying length), there is one piece missing and needs to be defined - the conditional

probability p(x|ck). In order to define that, the probabilistic notation of Markov

chain needs to be employed.

The next step is to define the components of a mixture, given that a discrete

random variable is an instance of a Markov chain, and length of this chain needs

to be variable. Using the memoriless property of the first-order Markov chain

Chapter 5. Temporal Approach - Mixture Markov Modeling 43

representation, conditional probability distribution can be defined in terms of start

and transitional probability given by discrete distributions. It can be done via the

following two steps: firstly, present each cluster as a collection of first-order Markov

Chains, each described using sufficient statistics[17]:

Definition 5.5. Each Markov mixture model component is defined by −→v - start

probability vector, and Tp - transition probability matrix:

−→v p =


a1

a2

...

an

 , Tp =


t11 t12 ... t1n

t21 t22 t2n

...

tn1 tn2 ... tnn

 , (5.2)

where

ai =

∑k
t=1 I(ct1 = i)

k
(5.3)

and

tij =

∑k
t=1

∑it−1
s=1 I(cts = i, cts+1 = j)∑k
t=1

∑it−1
s=1 I(cts = i)

, (5.4)

where n is the number of states () k is the number of sequences in a specific cluster

and I(x) = 1 if x is true and 0 otherwise.

The elements of start probability vector sum up to 1, as well as each row of

the transition probability matrix, and are nothing other than discrete probability

distribution with n possible outcomes.

Now, with the content of the clusters defined, we can move on to define the mixture

Markov model as a collection of components defined by probability distribution of

vector v in the model. In order to account for varying lengths of the sequences,

the authors in [17] represent each sequence x as vector v = v1, v2, ..., VL, where L is

the arbitrary length of the sequence, and use Equation 5.2 from definition 5.4 to

define the conditional probability distribution (density) for each model component:

Chapter 5. Temporal Approach - Mixture Markov Modeling 44

p(xi|θj) = p(v|θj) = p(v1|θj)
L∏
i=2

p(vi|vi−1, θj) =
M∏
m=1

(θj0m)γi(m)

M∏
n=1

M∏
m=1

(θjnm)δi(n,m)

(5.5)

where θj is the collection of start probability distribution vector and transition

probability matrix of the model component cj, j = 1...K. Value δi(n,m) denotes

the number of times the transition from state n to state m occurs, and γi(m) ={
1 if = m

0 otherwise
. Equation 5.9 helps describe the characteristics of the sequences

in each cluster, such as starting state and the order of transitions, where each

transition depends only on current state (first-order Markov chain) and the number

of transitions can be arbitrarily.

The definitions above consider the collection of sequences as a corresponding prob-

abilistic model (or a group of those). The next step of the clustering process is

to estimate the model parameters given a collection of sequences, in order then

to ”softly” position every sequence in the cluster defined by a specific component

[27].

5.5.2 Likelihood and Maximum Likelihood Estimation

While the previous section sets up a framework for representing the collection

of sequences, it is only part of the clustering task. Finding the parameters of a

mixture model (start probabilities vector and transition probability matrix for each

of the components) still needs to be performed. Finding parameters is not a trivial

task: they cannot be calculated directly due to creating a system of interlocking

equations. Thus, another approach is needed. Estimating the parameters (or

finding values that are as close as possible to the ”true” values) is the most popular

alternative, with Maximum Likelihood Estimation via Expectation-Maximization

(EM) algorithm being the leader in such estimation algorithms, and I have selected

it for use in this thesis. In order to explain the EM algorithm in the context of

variable-length sequences, the concept of likelihood needs to be introduced [27]:

Definition 5.6.

L(θ|x) = P (x|θ), (5.6)

Chapter 5. Temporal Approach - Mixture Markov Modeling 45

In other words, likelihood of a set of parameters given the outcome of the random

variable is the probability of the outcome of the random variable given the model

parameters.

In case of discrete random variable, specifically, this means the probability of this

discrete variable, X, taking on the value x, when θ is given (or P (X = x|θ)).
The definition thus provides us with a possibility of an objective function for a

clustering algorithm: find such parameters for the model which maximize the like-

lihood of this model, given the data (or outcomes, to preserve the terminology).

We can also write it as a formula: argmax(L(θ|x1,, xn), where x1, ...xn are the

data collection (or outcomes). Now we are getting closer to the definition of Max-

imum Likelihood Estimation. When given a collection of independent outcomes

(or independent data - in our case it is sequences), likelihood of the model given a

collection of data can be rewritten as the joint probability of the collection given

the model , f(x1, x2,, xn|θ) = f(x1|θ)f(x2|θ)...(xn|θ) - due to the conditional

independence of the observed data points. It is customary to take the logarithm

of the product for maximization purposes, because of the similarity of the growth

between any value ant its logarithm (if we increase the value, logarithm also

monotonously increases). Taking a logarithm allows for easier computations (the

product gets replaced by a sum of the likelihood terms, and sum is easier to max-

imize). I denote the likelihood function f(x1, x2,, xn|θ) as L(X|ΘK) for use in

the implementation part, where X is the set of sequences and ΘK is the mix-

ture model. Notation for the logarithm of likelihood function is ”log-likelihood”

function.

As it is seen from the previous paragraph, it is possible to find the parameters

of the model that maximize the likelihood of the model. An iteration algorithm

that is widely used for maximization is Expectation-Maximization, introduced by

Dempster et al [29]. The algorithm finds maximum log-likelihood by repeating

two steps until (local) maximum is reached:

Expectation Step. In the Expectation step, log-likelihood function expected

value is estimated with respect to the conditional distribution of hidden variables

(Z) given the data (X) under the current parameters estimate:

Q(θ|θ(t)) = EZ|X,θ(t){logL(θ;X,Z)} (5.7)

Chapter 5. Temporal Approach - Mixture Markov Modeling 46

Maximization Step. Find the new parameters that maximize the function from

the previous step:

θ(t+1) = arg maxQ(θ|θ(t)) (5.8)

E- and M-steps are iteratively repeated until the maximum is reached. One caveat

of the MLE by EM-algorithm is being stuck in local maxima, meaning it is a non-

deterministic problem. However, for the purpose of this thesis, I will pursue finding

the local maximum.

EM-algorithm itself provides a proven scheme to achieve maximization of log-

likelihood function. However, implementing Maximum Likelihood Estimation the

solution can be analytically hard, due to an integral that arises while maximizing

the estimated function. Bayesian Probability concepts provide tools in order to

be able to find the maximizing model parameters analytically.

5.5.3 Bayesian Inference and MAP log-likelihood

Bayesian Probability is based on the notion of prior beliefs and the fundamental

Bayes formula of conditional probability:

P (A|B) =
P (A|B)P (A)

P (B)
(5.9)

In Bayesian Probability, it is assumed that there exists a prior belief about the

distribution of the model (which can also be parametrized). Posterior probability,

thus, is a prior belief about the distribution updated when incoming evidence is

taken into account, and can be achieved with using formula 5.9:

P (prior|evidence) =
P (evidence|prior)P (prior)

P (evidence)
, (5.10)

whereP (evidence|prior) is likelihood and P (prior|evidence) is posterior proba-

bility, which in relationship to a probabilistic model denotes how probable the

observed data (evidence) is given model parameters [27],p. 22. Denominator is

the ”normalization constant” . Thus, Formula 5.10 can be simplified to the fol-

lowing:

Chapter 5. Temporal Approach - Mixture Markov Modeling 47

posterior ∝ likelihood× prior. (5.11)

With this new notation, we can update the log-likelihood function from the original

MLE algorithm. The function L(X|ΘK) gets augmented the following way [30]:

L(X|ΘK) =
∑
i=1

N log f(Xi|ΘK) +
K∑
j=1

M∑
n=0

log p(θjn|ajn), (5.12)

where the second term denotes the prior probability with respect to the parameters

ajn > 0, defining the distribution of the model according to some prior knowledge

regarding it. These parameters are called hyperparameters. The updated objective

function for maximization bears the name Maximum a Posteriori (MAP) log-

likelihood function [27] .

5.5.4 Dirichlet Conjugate Priors and Calculating the

Model Parameters

The second summation term of MAP log-likelihood function (Equation 5.12) is

prior probability distribution. Since the clusters (or model components) has been

defined in terms of discrete probability distribution -M xM transition probabilities

matrix, with row sums equal 1, and similarly a start probabilities vector of length

M (number of states) - there is a way to parametrize the prior belief regarding

the distribution of the model parameters by using corresponding conjugate prior,

which has the same analytical form as discrete multinomial distribution. Since

posterior probability can be expressed via prior and likelihood (Formula 5.11),

by using conjugate prior it is possible to express posterior using its analytical form.

For discrete multinomial distribution conjugate distribution happens to be Dirich-

let distribution, expiressed via Gamma function and multinomial hyperparameters

αi > 0:

Dir(x|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

(θjn)αi−1 (5.13)

where θjn is the nth row of the matrix defining the multinomial distribution of

the transition probability (and for n = 0, distribution of start vector probability).

Chapter 5. Temporal Approach - Mixture Markov Modeling 48

...v
1

v
2

v
k

A

α

aɣ

Figure 5.3: Markov Model with Dirichlet Priors

Here, the conjugate priors do not necessarily have to reflect an actual belief (non-

informative priors). Figure 5.3 depicts the model with transition probability

matrix A, hyperparameters for A (α), start probabilities vector a and its Dirichlet

prior hyperparameters vector γ, and vector v which is a series of state transitions

(v1 is the first state) of length k.

Now the arg maxL(X|ΘK) can be analytically computed in the M-Step, and the

steps acquire the following form:

E-Step. Calculate the conditional expectation values of the hidden variables [30]:

p(j|Xj) =
π

(t)
j p(Xi|θj(t))∑

j′=1Kp(Xi|θj
′ (t))

(5.14)

M-Step. Maximize the MAP log-likelihood function (by taking first derivative

with respect to each component’s parameters), which result in a series of equations

involving hyper parameters:

Chapter 5. Temporal Approach - Mixture Markov Modeling 49

πt+1
j =

∑N
i=1 z

(t)
ij

N
, θjnm

(t+1) =


∑N

i=1 z
(t)
ij γi(m)+αj

0m−1∑N
i=1 z

(t)
ij +

∑M

m
′
=1

(αj

0m
′−1)

, if n = 0∑N
i=1 z

(t)
ij δi(n,m)+αj

0m−1∑N
i=1 z

(t)
ij

∑M

m
′
=1

δi(n,m
′)+

∑M

m
′
=1

(αj

nm
′−1)

, if n > 0

(5.15)

Equation 5.15 thus provides the updated model parameters for the next iteration.

EM-algorithm which maximizes MAP log-likelihood objective function, finds a

point estimate of the posterior distribution (or its mode).

5.6 Iterative Algorithm Implementation and

Optimizations

5.6.1 Programming the Algorithm and Preparing Sample

for Mixture Modeling

I have implemented the algorithm described in the previous subsection by pro-

gramming the methods in R language. This statistical language provides powerful

architecture for working with multidimensional data. After a thorough assessment

of available libraries for mixture modeling and Markov chains, I have not found a

suitable library to apply directly. Thus, I have made a decision to create a library

of functions and sub-functions which perform step-by-step calculations and define

data structures that store the model components. The functions have been built

in order to interact with the existing data structures derived in previous section.

An example of a function representing likelihood of sequence xi in the model can

be seen on Figure 5.5.The reader can examine the functions in Appendix B.

1 likelihood_function_one_seq <-function(sequence ,modelK ,statescollection){

2 modlen <-length(modelK)

3 p<-0

4 for (i in c(1: modlen)){p<-p+modelK [[i]]$marginal.prob*p_seqi_modj_for_model(

sequence ,modelK [[i]], statescollection)}

5 p

6 }

Listing 5.5: Example Function - Likelihood

Chapter 5. Temporal Approach - Mixture Markov Modeling 50

A mixture model is conveniently represented by list structure available in R which

represents a list of mixture components, each containing three subcomponents:

marginal probability (mixing parameter) , transition probability matrix and start

probabilities vector.

In order to estimate the mixture model parameters, I have used half of the sam-

ple of each class (1 and 0), leaving the other half of the sample for testing and

classification. I have sequentially clustered first class 1, then class 0.

5.6.2 Initializing the Model

As a first step of applying the Markov mixture modeling algorithm which I have

implemented, the model needs to be initialized. I have chosen to start with one

component. A widely accepted way to initialize a Markov model is to set the

transition probability matrix as the sum of all transitions across all sequences in the

sample, and start probability vector as a sum of all occurrences of given state as a

first state in the sequences. After examining the transition probability matrix and

start probabilities vector, I have noticed that they contain 0’s, which could prevent

the algorithm from executing. In order to avoid it, I have selected a smoothing

strategy of adding minimal pseudo counts to the transitions and starting states

which were not represented in the model and then normalizing the matrix to sum

up to 1. The updated initialized model can be seen in Listing 5.6. Another

part of the initialization is setting hyper parameters for the Dirichlet conjugate

priors. I have set all multinomial hyperparameters αjn to be close to 1 (1.001),

thus creating uniform non-informative priors. With initial model parameters set,

I could now perform the iterations algorithm. After reaching local maximum with

one component and proving the concept, I have moved on to work with more than

one component. I have run into several challenges, described in the next section.

1 > modelK

2 [[1]]

3 [[1]]$transition.matrix

4 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] ...

5 [1,] 1.0e-17 1.0e-01 1.0e-01 5.0e-02 1.0e-17 2.5e-01 1.0e-01 1.5e-01 ...

6 [2,] 8.9e-03 2.7e-01 3.0e-03 6.5e-02 1.0e-17 1.5e-01 3.0e-02 3.0e-01 ...

7 [3,] 2.0e-02 1.0e-01 2.9e-01 1.2e-01 6.1e-02 6.1e-02 6.1e-02 1.4e-01 ...

8 [4,] 2.4e-02 2.2e-01 4.9e-02 2.0e-01 8.1e-03 1.1e-01 7.3e-02 1.5e-01 ...

9 [5,] 4.8e-02 4.8e-02 1.9e-01 1.4e-01 9.5e-02 9.5e-02 9.5e-02 4.8e-02 ...

10 [6,] 3.8e-03 1.6e-01 1.5e-02 3.4e-02 1.0e-17 1.5e-01 3.8e-02 4.0e-01 ...

11 [7,] 1.6e-02 1.6e-01 3.1e-02 1.6e-01 2.3e-02 1.3e-01 1.1e-01 2.3e-01 ...

Chapter 5. Temporal Approach - Mixture Markov Modeling 51

12 [8,] 1.5e-03 2.4e-02 9.8e-04 2.9e-03 9.8e-04 2.4e-02 9.3e-03 8.4e-01 ...

13 [9,] 8.7e-03 1.7e-02 2.6e-02 6.1e-02 1.0e-17 1.4e-01 1.0e-17 2.5e-01 ...

14

15 [[1]]$start.vector

16 [1] 2.0e-02 2.0e-02 2.0e-02 4.0e-02 1.6e-01 4.0e-02 5.4e-01 1.0e-17 ...

17

18 [[1]]$marginal.prob

19 [1] 1

Listing 5.6: Initialized Model with One Component

5.6.3 Overcoming Challenges of Implementation - Under-

flow, Performance

Initial sequential mixing of the model has highlighted the issues that arise with

trying to train a mixture model using first order Markov Chains as its components,

given the sparse character of the sequences and sometimes very long sequences. I

need to specifically mention that sparse means sequences containing a lot of inac-

tivity days (denoted by state ”8” in the clustering results). As seen from the pre-

vious steps of implementation, upon clustering of the multivariate measurements

data, it is highly possible that not all states and transitions will be represented in a

sequence, while the others might be overrepresented. This, combined with length,

creates the possibilities of extremely small likelihood values which might cross the

limit of digits that R can store - 321 digits after decimal point. In order to illustrate

this, I will use an example of a sequence that contains a state transition s1→ s2

which has a probability of 1e-10 in the model, 100 times. Using Formula 5.9, we

get a term of magnitude that is rounded to 0 in the software. This is referred to

as ”underflow” and needs to be regularized, otherwise the algorithm will try to

take the logarithm of such value and get a -Infinity value. As an in-process fix,

I have approximated 0 with the smallest possible value: 1e-321. Although in the

mathematical sense such value is the same as 0, the algorithm can still continue

maximization, while sacrificing precision in the very small digits. The discussion

of this problem will continue in the evaluation section.

One of the problems of then EM-algorithm is its slow convergence rate - given a

large collection of states and sequences, the number of iterations needed to achieve

convergence can be high and cannot be determined a-priori. It has been confirmed

with my experiment with the churned sequences - after 80 iterations with just 100

sequences of average length 100 and 17 states, the algorithm still have not reached

Chapter 5. Temporal Approach - Mixture Markov Modeling 52

convergence. I have defined convergence in terms of mathematical limit notation:

I consider algorithm converged when the difference between the new estimate and

old estimate (δ) is less than an arbitrarily small number (ε), which I have set to 1e-

17. Such a slow rate of convergence given just 2 components was not acceptable for

my purposes - knowing from the data exploration, that the other class of sequences

(class 0, or ”non-churners”), consists of sometimes much longer sequences, I have

searched for approaches to improve the algorithm’s robustness

The first step towards improving algorithm robustness is based on ?? . The

authors of the article suggest a novel approach - ”Incremental Mixture Modeling”.

The approach suggests sequentially adding each new component to the mixture

and performing a partial EM-algorithm (only with respect to the parameters of

the new component, while keeping all the other values fixed). This is performed

using the algorithm depicted in Listing 5.7.

1 present the likelihood function as a sum of existing value and the likelihood

of new component

2 maximize the new objective MAP log -likelihood function with respect to the

parameters of the new component

3 adjust the mixing coefficients for existing model according to the new value of

the optimized mixing coefficient of the new component.

4

Listing 5.7: Partial EM-algorithm

The new MAP log-likelihood function can be presented by Formula 5.16.

Lk =
N∑
i=1

log {(1− π∗)f(Xi|Θk) + π∗p(Xi|θ∗)}+
M∑
n=0

log p(θ∗n|an), (5.16)

where Θk is the existing model with k components, θ∗ is the new model component,

π∗ is the mixing coefficient of the new component. With the the maximization

objective defined this way, the E- and M-steps can be expressed in terms of exclu-

sively parameters of the new model.

Another step in order to implement the partial EM-algorithm is to initialize the

new model component (there are thee terms to be initialized: transition probability

matrix, start probabilities vector and mixing coefficient). For my experiment, I

have set each row of the matrix and the vector to be uniformly distributed (i.e.

each parameters is equal 1 divided by the number of states N=17), while setting

Chapter 5. Temporal Approach - Mixture Markov Modeling 53

the mixing coefficient π∗ to 1/(k+1). This allows me to start with values that are

not too extreme (see previous subsection) and make no uninformed assumptions

regarding the distribution in the new component.

Now, with all the inputs ready for the partial EM-algorithm (trained model with

1 component and the new initialized new component), I have run the function

partial em() which I implemented using the same structure as the general EM

function, with adjustments to account for the algorithm modification, which re-

sulted in mixing coefficient π∗ = π2 = 0.049. The mixing coefficient of the first

component has thus become π1 = 1−0.049 = 0.951. This means there are about 5

per cent of sequences in the training collection which have higher likelihood under

the parameters of the second component.

Now, the general EM-algorithm is initialized with the updated (and optimized)

parameters, resulting from the partial step . Convergence with two components

has been reached within approximately 20 iterations, winning over the original

algorithm.

5.6.4 Adding Robustness to the Algorithm via Parallel

Processing

While implementing the algorithm, I have found that the way calculations are

implemented are of utter importance. Calculating matrix parameters with the

sample of 100 sequences involves repetition on multiple levels. In the initial im-

plementation attempt, I have used nested for loops, which have proven to be

extremely slow. As the first optimization, I have replaced all the original loops

with the list calculation functions - such as the function apply(), which works on

lists of objects and delivers speed-up over the original timing. I have iteratively

tested the optimization of each for loop and replaced with apply()-type func-

tions, gaining robustness. However, each iteration with 2 components still stayed

time-consuming, and with 3 components not manageable on my machine (each

iteration took up to 2 hours).

As the final step in optimization of my implementation, I have used the function-

ality of parallel computing in R. I have used the functions of libraries parallel,

doMC and foreach which allows to register the number of workers (processors or

Chapter 5. Temporal Approach - Mixture Markov Modeling 54

cores) and distribute the processing through available resources, using such func-

tions as mclapply,registerDoMC and foreach. By parallelzing the execution

of the algorithm, I have achieved time savings of 50 per cent with the dual core

processor, making iterative testing of the algorithm possible. I have chosen to par-

allelize composite tasks which did not depend on each other and could be executed

in arbitrary order, and left repetitive tasks with less calculations out of scope for

parallelizing, because the overhead on such tasks - to combine results, for example

- exceeds time savings. Further improvements can be potentially achieved with

multiple cores. The comparisons of performance of parallelized algorithms can be

seen in R output in Listing 5.8, with 100 sequences from training sample for class

0 and a model with one component.

1 # non -parallelized e- and m-step

2 > system.time(test <-e_step_z_i_j_t(res1002nq [[1]], worksample100nonquit ,states))

3 User System verstrichen

4 554.109 10.415 1301.476

5 > system.time(testres <-m_step(test ,worksample100nonquit ,alphamatrix ,res1002nq

[[1]],states ,2 ,100))

6 User System verstrichen

7 6425.331 21.502 6480.020

8

9 # parallelized e- and m-step

10 > system.time(test <-estep_par(res1002nq [[1]], worksample100nonquit ,states))

11 User System verstrichen

12 243.886 1.415 566.655

13 > system.time(testres <-m_step_par(test ,worksample100nonquit ,alphamatrix ,res1002nq

[[1]],states ,2 ,100))

14 User System verstrichen

15 3129.008 21.502 3489.221

Listing 5.8: E-step and M-step Execution Times - Simple vs Parallel

5.6.5 Iterative Convergence of the Model

Finally, after the algorithmic and programmatic optimizations of the implemented

EM-algorithm, I have witnessed monotonous convergence of the objective MAP

log-likelihood function to the local maximum. Due to resources and time con-

straints, I have managed to implement a 3-component model describing class =

1 (”churners”) and 1-component model describing class=0 (”non-churners”). The

graphs on Figures 5.4 and 5.5 illustrate the convergence process of the algorithm

with each step and improvement of the objective function with addition of new

clusters.

Chapter 5. Temporal Approach - Mixture Markov Modeling 55

●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

−10828

−10827

−10826

−10825

2.5 5.0 7.5 10.0

Iterations

E
st

im
at

e
(M

A
P

 L
og

−
Li

ke
lih

oo
d)

Convergence of the EM−Algorithm for Markov Chains

Figure 5.4: Convergence of the EM MAP
log-likelihood algorithm

●

●

●

−10860

−10850

−10840

−10830

1 2 3

Number of Components

M
A

P
 L

og
−

Li
ke

lih
oo

d

MAP Log−Likelihood by Number
of Mixture Components, Class=1

Figure 5.5: MAP log-likelihood by number
of components

5.7 Classification of Churn Using Naive Bayes

Method

The last step of the algorithm is to classify the user sequences from test sample

based on the mixture models resulting from the previous step. The authors of [17]

suggest the Naive Bayes Method, which is a natural continuation for the previous

steps, since it uses the notion of likelihood. The implementation of the EM-

algorithm provides the framework and functions for calculating likelihood. The

Furthermore, the method allows not just to classify the test sequences but also to

index them. Translated into business language, this technically allows to calculate

the risk index of a certain customer churning. The risk index can be calculated as

Formula 5.17.

Score =
prob churn

prob churn+ prob nonchurn
, (5.17)

where prob positive and prob negative is the probability of the test sequence given

model parameters for positive and negative model respectively. The test sequence

is labeled as class 1 (”churned”) if prob churn > prob nonchurn, and such proba-

bilities represent the likelihood of the sequence (Formula 5.9). It is also possible

to take logarithm of the equation and measure in logarithmic terms instead.

I have calculated the the likelihoods of sequences from the training sample from

both class Class 1 and Class 0. Initial results returned a high degree of bias

Chapter 5. Temporal Approach - Mixture Markov Modeling 56

towards Class 0 (60 per cent of sequences from Class 1 got misclassified into

Class 0, however such misclassification rate was low for Class 0). After research of

possible factors, I have noticed that due to the non-churners sequences being on

average 3 times longer than the churners sequences, the mixture trained on them

was ”overtrained” compared to the model trained on the shorter sequences. Thus,

a normalizing parameter was needed. For this solution, I have experimentally

arrived at the parameter to be around 1e+3 (or 3 in logarithmic notation). The

argument for correctness of such solution is that the sequences are sparse (meaning,

similar state - the one representing 0 - is repeated many times), it is possible

to scale the likelihood. After multiplying the top part of the formula by the

normalizing constant, I have received significant improvement: misclassification

rate was drastically reduced for Class 1 (75 per cent of the test sequences were

correctly labeled this time), while not significantly reducing the characteristics

for Class 0 (68 percent). While such a normalizing constant has been used as

an ad-hoc measure, it did bring convincing results: the models trained with 100

sequences from training sample have been used to test 817 sequences for Class 1

and 604 for Class 2.

1 > head(quitters.test.risk)

2

3 uid risk.index

4 1 u01 0.6724255

5 2 u02 1.0000000

6 3 u03 0.9975812

7 4 u04 0.0002743

8 5 u05 0.9988836

9 6 u06 0.9994875

Listing 5.9: Users and Their Risk Index

−2

−1

0

1

2

3

2.5 5.0 7.5 10.0

Time (days)

V
al

ue
, s

ca
le

d
to

 fi
t

Dimension
Real−money Games
Play Games
Current Score
Payment Amount
Tournament
Gain

High−Risk Customer's Lifetime

Figure 5.6: An example of a customer with high risk of churn

Chapter 5. Temporal Approach - Mixture Markov Modeling 57

A sample of users with risk indexes, calculated using Formula 5.17, can be seen

in the Listing 5.9. This allows the users to be split into ”high-risk”, ”medium-

risk” and ”low-risk” of churn. Additionally, an example of a multivariate sequence

representing one of the high-risk users, is displayed on Figure 5.6.

This concludes the implementation and testing of the compound algorithm for

long-term churn classification. Further evaluation is discussed in the next chapter.

Chapter 6

Algorithms Evaluation

6.1 Evaluation

In order to evaluate the both algorithms which represent and combine the tem-

poral information in various ways, it is important to distinguish that each of the

algorithms has a different context, such as prediction horizon (short-term vs longer

term prediction), as well as data acquisition was performed differently. Thus, they

will be evaluated in isolation according to the available criteria of classification

goodness regarding their potential usefulness in churn prediction as well as possi-

bilities for improvements for both methods.

It is important to define the ”success” of a classification experience in the context

of customer churn. Here, two factors are at play: the fluidity of the non-contractual

churn definition and the nature of the subjects of prediction. As opposed to,for

example, physical processes that run their course according to certain rules, model-

ing human behavior and intentions is a task that potentially involves multitude of

latent variables. An incomplete list of such factors is change of income, change of

taste, change in family status of the user, illness and other life events that cannot

be recorded in the database. Thus, performance of such prediction/classification

can be considered a success if it presents improvement over random chance (50

per cent) by a certain margin, perhaps 20-30 per cent. The evaluation that fol-

lows takes these considerations into account, and looks at the methods from the

perspective of potential for improving the algorithms in the given context.

58

Chapter 6. Algorithms Evaluation 59

6.1.1 Random Forest Classification - Advantages and Pit-

falls

The method has been used in order to predict the future behavioral pattern of users

with the short horizon (1 month), or predicting users at risk of quitting (Definition

3.2) based on a collection of features which both represented statistical features

collected on a weekly basis. This representation of the features was an attempt

to represent temporal changes in aggregated view (for instance, to represent an

increasing trend as a boolean value) in order to prepare the customer lifetime

characteristics - across the whole lifetime and recent - for input into the classifier.

The performance of such classifier appeared to be mixed, and dependent on how

strict the combination of outcomes for each of the four weeks of the short-term

prediction period is. Figure 6.1 shows such measures as level of bias of the classifier

towards one class, and the average error rate depending on the strictness of the

prediction in the experiment. The experiments are described in Table 4.2.

0.0

0.2

0.4

0.6

1 2 3 4 5 6

Prediction Detail Rank

C
la

ss
ifi

er
 P

er
fo

rm
an

ce

Measure
Average Class Error
Bias

Performance of Short−Term Random Forest
Prediction by Experiment

Figure 6.1: Classifier Error Rate and Bias in relation to the Strictness of Predicted Responses

Another factor in bias is the proportion of each class labels in the response. Figure

6.2 illustrate correlation between the proportion of class label and classifier bias.

The above illustrations show the factors that affect Random Forest Classifier’s

bias. However, seeing that the classifier does perform well in some cases sets basis

for belief that with the help of iterative improvements it is possible to find the

optimal fit of the classifier. Such improvements could potentially be:

• add weights to more influential features

Chapter 6. Algorithms Evaluation 60

0.0

0.2

0.4

0.6

0.4 0.5 0.6 0.7 0.8

Class 0 Proportion in the Response Vector

C
la

ss
ifi

er
 P

er
fo

rm
an

ce

Measure
Average Class Error
Bias

Performance of Short−Term Random Forest
Prediction by Class Representation

Figure 6.2: Classifier Error Rate and Bias by Class Representation

• filter out the features that insignificantly (or even negatively) affect the clas-

sification outcome, according to various information criteria

• rebalance the sample to represent the classes more equally

• select additional features that might have been missed

• change the length of the subsequence of the customer lifetime that is looked

at in greater detail

Given that Random Forest Classifier takes any features that have discriminative

values as an input, there are variations possible in representation of the overall

and current customer lifetime in order to improve the classifier performance.

6.1.2 Mixture Markov Modeling and Naive Bayes Classi-

fier

As mentioned in the previous Chapter, this approach has been marked by it’s

relative success: average error rate of (0.32+025/2=0.285). Such an error rate

has showed that the framework including the churn definition, selected measured

features, granularity of the time axis units and the probabilistic/temporal ap-

proach to classification is indeed a powerful tool to classify customer churn on

non-contractual basis. However, as the implementation and testing of the method

has shown, there are certain challenges in applying the method given the peculiar-

ities of the dataset that I have worked with. The most outstanding shortcoming

of the method can be named ”dimensionality curse” in the following sense:

Chapter 6. Algorithms Evaluation 61

• the variety of combinations might lead to a relatively large number of clus-

ters, needed in order to preserve the meaning of the states,

• varying (from single digits to hundreds of transitions) length of sequences

prevents any simple scaling of the algorithm,

• necessity of the small subsample of the sequences to work with (100) due to

computational resources limitation such as RAM,

• ”sparsity” of sequences - in some cases the ”inactive” state is prevalent

among the transitions; however, it cannot be excluded in the given rep-

resentation, since daily measurements are taken

• working in probability space (very small numbers)

• necessity for approximations and manual decisions for optimal number of

clusters.

These problems, coupled together, make the model prone to create suboptimal

results due to very small likelihood values. Additional factors that affect the

success of model’s precision and recall, are:

• underflow problem as combination of the model and computer architecture

• bias of the model towards smaller sequences (which show to be more ”likely”

in the model than the longer ones)

• relatively slow convergence of the algorithm, even with the iterative improve-

ment outlined in the previous Chapter.

In order to address the above problems and improve the aspects of the model

performance, a number of approaches can be taken. Assuming a Hidden Markov

Model instead of mixture of first-order Markov model might be helpful in working

with longer sequences. Such approach might alleviate the extremities the length of

the sequences cause in some cases, as well as help regularize the sequences. Also,

further understanding and improvement of bias according to the length of the

sequence is needed: while in some cases a simple constant can solve the problem,

there are more complicated scenarios (where the sequences do not represent a

specific sequential pattern in state change). In these cases, an analytical expression

Chapter 6. Algorithms Evaluation 62

needs to be derived to account for more scenarios of the state transitions within

the sequence.

In order to avoid convergence rate problem and complexities of the Expectation-

Maximization algorithm, there is a number of other methods available for finding

the best fit of the probabilistic model: for instance, variational Bayes methods,

which allow to select a gradient of the log-likelihood values instead of the point

estimate. This can potentially increase robustness of the model.

Another way to improve the modeling outcome for probabilistic mixtures is se-

lecting more features with predictive potential while removing noisy features. As

a separate way to improve the Naive Bayes classification, the probabilistic mix-

ture could potentially be an ensemble of both Markov mixture and mixture of

distributions of other static dimensions which are not included in the Markov

modeling. By iteratively determining weights for components of such ensemble,

it is potentially possible to further the possibility of distinguishing between the

classes.

6.2 Conclusion - Final Thoughts and Future Pos-

sibilities

In this thesis I have explored in detail two approaches to the problem of non-

contractual customer churn on an example dataset provided by an online gaming

company with vast and fluid customer base. The outcomes of the experiments have

underlined the importance of defining the context and axiomatic rules in order to

give a meaningful model of a business problem, as well as strengths and weaknesses

of each method. The hypothesis that I have put forward in the beginning of this

paper - that looking for information within temporal transitions adds possibilities

for long-term predictions - has been proven with limitations. Additionally, the

thesis has shown that static representations of temporal features can in some

cases predict if customer is at risk of churn, while probabilistic representation can

be useful in cases where direct numerical values of the features do not provide

much knowledge. Finally, the experiments have been able to prove that various

knowledge engineering methods can work well in ensemble and there is potential

for improvements using a wider variety of tools and methods.

Chapter 6. Algorithms Evaluation 63

The above conclusions provide potential areas for future research. One of the

examples is early churn classification (which bases predictions on the early stages

of customer lifetime). Other areas might include more detailed description of

the role churn plays in overall Customer Lifetime Value, combined with other

characteristics of the customers - and vice versa. The possibilities of creating

sophisticated classifiers addressing these problems create a truly positive outlook

on the help Machine Learning and Data Mining can provide to the companies in

the area of Customer Relationship Management.

Appendix A

Visualizations

 0

100000

200000

300000

400000

500000

0 100 200

Number of Payments

C
as

h
G

am
es

 P
la

ye
d

Pairwise Plot − Number of Real Money Games Played vs Number of Payments

Figure A.1: Pairwise Correlation Plot - Number of Payments vs Real Money Games Played

64

Appendix A. Visualizations 65

 0

10

20

30

40

0 100 200

Number of Payments

N
um

be
r

of
 P

ay
ou

ts

Pairwise Plot − Number of Payments vs Number of Payouts

Figure A.2: Pairwise Correlation Plot - Number of Payouts vs Number of Payments

−500000

 0

 500000

0 10000 20000 30000 40000 50000

Max Payment

G
ai

n

Pairwise Plot − Maximum Payment vs Total Gain

Figure A.3: Pairwise Correlation Plot - Maximum Payment vs Gain

Appendix A. Visualizations 66

 0

100000

200000

300000

400000

500000

−20000 −10000 0 10000 20000

Max Payment

G
ai

n

Pairwise Plot − Average Payment vs Real Money Games Played

Figure A.4: Pairwise Correlation Plot - Average Payment vs Number of Real Money Games Played

Appendix A. Visualizations 67

Figure A.5: Diversity of Activity Patterns in Cluster 2 (Dimensions - Free Games (Balance Type
0+1), Cash Games (Balance Type 2)

Appendix B

R Code Implementing

Incremental Markov Mixture

Modeling

1 #

2 # Incremental_Markov_Mixture_Modeling.R

3 # This file contains functions implementing Mixture Markov Modeling

4 # by means of iterative EM algorithm

5 # Author: Natalya Furmanova , TUHH , #21044449

6 # 10/2013

7 #

8

9 library(parallel)

10 library(foreach)

11 library(doMC)

12

13 # Function to calculate first -order Markov chain transition matrix

14 trans.matrix.proper <- function(X,states_collection , prob=T)

15 {

16 transmat <- mat.or.vec(nr=length(states_collection),nc=length(states_collection)

)

17 #if(is.numeric(X)) {X=matrix(rep(X,2),nrow=2,byrow=T)}

18 for (ii in c(1:dim(transmat)[1])) {

19 for (jj in c(1:dim(transmat)[2])) {

20 transmat[ii,jj]<-0

21 for (kk in c(1:(length(X) -1))) {if((X[kk]==ii)&&(X[kk+1]== jj)){

22 transmat[ii,jj]<-transmat[ii ,jj]+1}}

23 if(is.na(transmat[ii ,jj])){transmat[ii,jj]<-0}

24 }

25 }

26 rs<-rowSums(transmat)

27 rs[which(rs==0)]<-1

28 transmat <-transmat/rs

68

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 69

29 transmat[which(transmat ==0)]<-10^(-17)

30 transmat

31 }

32

33 # Function to calculate transition matrix for a collection of sequences

34 trans.matrix.for.collection <- function(seq_collection ,states_collection , prob=T)

35 {

36 transmat <- mat.or.vec(nr=length(states_collection),nc=length(states_collection)

)

37 #if(is.numeric(X)) {X=matrix(rep(X,2),nrow=2,byrow=T)}

38 for (i in c(1: length(seq_collection))) {

39 for (ii in c(1:dim(transmat)[1])) {

40 for (jj in c(1:dim(transmat)[2])) {

41 #transmat[ii ,jj]<-0

42 for (kk in c(1:(length(seq_collection [[i]]) -1)))

43 {if((seq_collection [[i]][kk]==ii)&&(seq_collection [[i]][kk +1]==jj))

44 {transmat[ii ,jj]<-transmat[ii,jj]+1}}

45 if(is.na(transmat[ii ,jj])){transmat[ii,jj]<-0}

46 }

47 }

48 }

49 rs<-rowSums(transmat)

50 rs[which(rs==0)]<-1

51 transmat <-transmat/rs

52 transmat[which(transmat ==0)]<-10^(-17)

53 transmat

54 }

55

56 # Function to calculate start probabilities vector of a sequence

57 start.prob.vector.sequence <-function(seqi ,states_collection){

58 vec <-sapply(states_collection ,function(x){ifelse(x==seqi [1] ,1 ,10^(-17))})

59 vec

60 }

61

62 # Function to calculate start probabilities vector for a collection of sequences

63 start.prob.many.seq <-function(sequence_collection ,states_collection){

64 vec <-rep(0,length(states_collection))

65 for (i in c(1: length(sequence_collection))) {

66 vec <-vec+sapply(states_collection ,function(x)

67 {ifelse(x== sequence_collection [[i]][1] ,1 ,0)})

68 }

69 vec <-vec/length(sequence_collection)

70 vec[which(vec ==0)]<-10^(-17); vec

71 }

72

73 # Function to build Dirichle conjugate priors matrix

74 build.alphaMatrix <-function(startVector ,probMatrix){

75 alphamat <-mat.or.vec(nr=dim(probMatrix)[1]+1 ,nc=dim(probMatrix)[2])

76 alphamat [1,]<-0.1*startVector

77 alphamat[c(2:dim(alphamat)[1]) ,]<-0.1*probMatrix

78 alphamat

79 }

80

81 # Model initializer with one component

82 initModel <-function(first_component){

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 70

83 mod <-list(first_component)

84 }

85

86

87 # Initializer for a mixture Markov model component

88 initModelComponent <-function(transmat ,startprobs ,marginalprobability){

89 modelcomp <-list(transmat ,startprobs ,marginalprobability)

90 names(modelcomp)<-c("transition.matrix","start.vector","marginal.prob")

91 modelcomp

92 }

93

94 # Helper function to calculate gamma_i_m coefficient

95 gamma_i_m<-function(observationM ,vector_xi){

96 a<-ifelse(vector_xi[1]== observationM ,1,0)

97 a

98 }

99

100 # Helper function to calculate delta_i_n_m coefficient

101 delta_i_n_m<-function(observationN ,observationM ,vector_xi){

102 dd<-0; seqlen <-length(vector_xi) -1

103 for(k in c(1: seqlen)){dd<-ifelse (((vector_xi[k]== observationN)

104 &&(vector_xi[k+1]== observationM)),dd+1,dd)}

105 if(is.na(dd)){dd<-0}

106 dd

107 }

108

109

110 # Function to calculate likelihood of a sequence in the model with K components

111 likelihood_function_one_seq <-function(sequence ,modelK ,statescollection){

112 modlen <-length(modelK)

113 p<-0

114 for (i in c(1: modlen))

115 {p<-p+modelK [[i]]$marginal.prob*p_seqi_modj_for_model(sequence ,modelK [[i]],

116 statescollection)}

117 p

118

119 }

120

121 # Function to calculate log -likelihood function value over a collection of

sequences ,

122 # given parameters of model with K components and a collection of n states

123 log_likelihood_function_all_seq <-function(seq_collection ,modelK ,collection){

124 sum(log(sapply(sapply(seq_collection ,function(x)

125 {likelihood_function_one_seq(x,modelK ,collection)}),function(x)

126 {ifelse(x==0,1e-17,x)})))

127 }

128

129 # Function to calculate log -likelihood function using parallel processing

130 log_likelihood_function_all_seq_par <-function(seq_collection ,modelK ,collection){

131 sum(log(unlist(mclapply(unlist(mclapply(seq_collection ,function(x)

132 {likelihood_function_one_seq(x,modelK ,collection)})),function(x)

133 {ifelse(x==0,1e-17,x)}))))

134 }

135

136 # Helper function to calculate the second term of MAP log -likelihood function

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 71

137 sum_of_dirichlet_priors <-function(modelK ,alphaMatrix ,states){

138 func <-0

139 for (j in c(1: length(modelK))) {

140 for (n in c(1: length(states))){

141 func <-func+log(dirichletPrior(

142 modelK [[j]]$transition.matrix[n,], alphaMatrix[n+1,]))

143 }

144 func <-func+log(dirichletPrior(modelK [[j]]$start.vector ,alphaMatrix [1,]))

145 }

146 func

147

148 }

149

150 # MAP -log -likelihood function

151 map_log_likelihood_function <-function(modelK ,sequenceCollection ,alphaMatrix ,

states){

152 func <-0

153 func <-func+log_likelihood_function_all_seq(sequenceCollection ,modelK ,states)

154

155 for (j in c(1: length(modelK))) {

156 for (n in c(1: length(states))){

157 func <-func+log(dirichletPrior(modelK [[j]]$transition.matrix[n,],

158 alphaMatrix[n+1,]))

159 }

160 func <-func+log(dirichletPrior(modelK [[j]]$start.vector ,alphaMatrix [1,]))

161 }

162 func

163 }

164

165 # MAP log -likelihood function using parallel processing

166 map_log_likelihood_function_par <-function(modelK ,sequenceCollection ,alphaMatrix ,

states){

167 func <-0

168 func <-func+log_likelihood_function_all_seq_par(sequenceCollection ,modelK ,states

)

169

170 for (j in c(1: length(modelK))) {

171 for (n in c(1: length(states))){

172 func <-func+log(dirichletPrior(modelK [[j]]$transition.matrix[n,],

173 alphaMatrix[n+1,]))

174 }

175 func <-func+log(dirichletPrior(modelK [[j]]$start.vector ,alphaMatrix [1,]))

176 }

177 func

178 }

179

180 # Probability of a sequence in a Markov model of another sequence

181 p_seqi_modj <-function(seqi ,modj ,collection){

182 p<-1

183 modj.trans.matrix <-trans.matrix.proper(modj ,collection)

184 for (i in c(1:dim(modj.trans.matrix)[1])) {

185 for (j in c(1: dim(modj.trans.matrix)[2])) {

186 p<-p*((modj.trans.matrix[i,j])^(delta_i_n_m(i,j,seqi)))

187 }

188 }

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 72

189 start.vector <-start.prob.vector.sequence(modj ,collection)

190 for (i in c(1: length(start.vector))) { p<-p*start.vector[i]^(

191 gamma_i_m(i,seqi))}

192 p

193 }

194

195 # Probability of a sequence in a model

196 p_seqi_modj_for_model <-function(seqi ,modj ,collection){

197 p<-1

198

199 for (i in c(1: length(modj$start.vector))) {

200 p<-p*((modj$start.vector[i])^(gamma_i_m(i,seqi)))}

201 for (i in c(1:dim(modj$transition.matrix)[1])) {

202 for (j in c(1: dim(modj$transition.matrix)[2])) {

203 p<-p*((modj$transition.matrix[i,j])^(delta_i_n_m(i,j,seqi)))

204 }

205 }

206 p }

207

208 # Helper function - log -likelihood distance between two sequences

209 log_likelihood_distance <-function(seqi ,seqj ,states_collection){

210 dist <-0.5*(log(p_seqi_modj(seqi ,seqj ,states_collection))+

211 log(p_seqi_modj(seqi ,seqj ,states_collection)))

212 dist

213 }

214

215

216 # Function to calculate Dirichlet prior given a row of TPM and a row of

217 # Hyperparameters

218 dirichletPrior <-function(matrix_row ,alpha_row){

219 dirichl <-((gamma(sum(alpha_row)))/

220 (prod(gamma(alpha_row))))*prod(c(matrix_row^(c(alpha_row -1))))

221 dirichl

222 }

223

224

225 # Function that builds a distance matrix for a collection of sequences

226 build_distance_matrix <-function(list_of_sequences ,states_collection){

227 m1<-mat.or.vec(length(list_of_sequences),length(list_of_sequences))

228 for (i in c(1:(length(list_of_sequences) -1))){

229 for (j in c((i+1):length(list_of_sequences))) {

230 m1[j,i]<-m1[i,j]<-

231 (-log_likelihood_distance(list_of_sequences [[i]],

232 list_of_sequences [[j]],states_collection))

233

234 }

235 }

236 m1[which(is.na(m1))]<-2*max(m1[which(!(is.na(m1)))])

237 m1

238 }

239

240 # Helper function to create a list of sequence from the dataframe

241 create_sequence_list <-function(seq_df){

242 seqlist <-list(NULL)

243 for (i in c(1: length(unique(seq_df$uid)))) {

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 73

244 seqlist [[i]]<-c(seq_df$state[which(seq_df$uid== unique(seq_df$uid)[i])])

245 }

246 seqlist

247 }

248

249 # E-step: calculate conditional posteriors

250 e_step_z_i_j_t<-function(modelK ,sequence_collection ,collection){

251 zposteriors <-list(NULL)

252 zposteriors <-lapply(seq(1: length(modelK)),function(j){ sapply(

253 seq (1: length(sequence_collection)),function(i){

254 numerator <-((modelK [[j]]$marginal.prob)*(p_seqi_modj_for_model(

255 sequence_collection [[i]],modelK [[j]], collection)))

256 denominator <-(likelihood_function_one_seq(

257 sequence_collection [[i]],modelK ,collection))

258 if (numerator ==0) {numerator <-1e-321}

259 if (denominator ==0) {denominator <-1e-321}

260 numerator/denominator

261 })

262 })

263 zposteriors

264 }

265

266 # E-step in parallel

267 estep_par <-function(modelK ,sequence_collection ,collection){

268 zposteriors <-list(NULL)

269 zposteriors <-mclapply(seq (1: length(modelK)),function(j){

270 unlist(mclapply(seq (1: length(sequence_collection)),function(i){

271 numerator <-((modelK [[j]]$marginal.prob)*(p_seqi_modj_for_model(

272 sequence_collection [[i]],modelK [[j]], collection)))

273 denominator <-(likelihood_function_one_seq(

274 sequence_collection [[i]],modelK ,collection))

275 if (numerator ==0) {numerator <-1e-321}

276 if (denominator ==0) {denominator <-1e-321}

277 numerator/denominator

278 }))

279 })

280 zposteriors

281 }

./imm part12.R

1

2 # Helper fuction for M-step - calculate start vector

3 modify_start_vector_j<-function(posteriors_j,sequences_collection ,alphaMatrix ,

4 states_collection){

5 sapply(states_collection ,function(m){

6 (sum((posteriors_j)*(sapply(sequences_collection ,function(x){

7 gamma_i_m(m,x)})))+alphaMatrix [1,m]-1)/

8 (sum(posteriors_j)+sum(alphaMatrix [1,]-1))})

9 }

10

11 # Helper for M-step - calculste start vector using parallel processing

12 modify_start_vector_j_par <-function(posteriors_j,sequences_collection ,alphaMatrix

,

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 74

13 states_collection){

14 unlist(mclapply(states_collection ,function(m){

15 (sum((posteriors_j)*(sapply(sequences_collection ,function(x){

16 gamma_i_m(m,x)})))+alphaMatrix [1,m]-1)/

17 (sum(posteriors_j)+sum(alphaMatrix [1,]-1))}))

18 }

19

20 # Helper for M-step: calculate new transition probability matrix

21 modify_transition_matrix <-function(posteriors_j,sequences_collection ,

22 alphaMatrix ,states_collection ,N){

23 newmatrix <- mat.or.vec(nr=length(states_collection),nc=length(states_collection

))

24 for (ii in c(1:dim(newmatrix)[1])) {

25 newmatrix[ii ,]<-unlist(lapply(c(1:dim(newmatrix)[2]), function(jj){

26 numerator_part1=sum((posteriors_j)*(sapply(sequences_collection ,

27 function(x){delta_i_n_m(ii,jj,x)})))

28 numerator_part2=alphaMatrix[ii+1,jj]-1

29 denominator_part1=sum(sapply(c(1:N),function(i){posteriors_j[i]*(sum(

30 sapply(c(1: length(states)),function(m){

31 delta_i_n_m(ii ,m,sequences_collection [[i]])})

32))}))

33 denominator_part2=sum(alphaMatrix[ii+1,]-1)

34 newmatrix[ii,jj]<-(numerator_part1+numerator_part2)/

35 (denominator_part1+denominator_part2)

36 }))

37 }

38 newmatrix

39 }

40

41 # Helper to calculate new TPM for M-step using parallel processing

42 modify_transition_matrix_foreach <-function(posteriors_j,sequences_collection ,

43 alphaMatrix ,states_collection ,N){

44 newmatrix <- mat.or.vec(nr=length(states_collection),nc=length(states_collection

))

45 newmatrix <-foreach(ii=c(1: dim(newmatrix)[1]) ,.combine=’rbind’) %dopar% {

46 unlist(mclapply(c(1:dim(newmatrix)[2]), function(jj) {

47 numerator_part1=sum((posteriors_j)*(sapply(sequences_collection ,

48 function(x){delta_i_n_m(ii,jj,x)})))

49 numerator_part2=alphaMatrix[ii+1,jj]-1

50 denominator_part1=sum(sapply(c(1:N),function(i){posteriors_j[i]*(sum(

51 sapply(c(1: length(states)),function(m){

52 delta_i_n_m(ii ,m,sequences_collection [[i]])})

53))}))

54 denominator_part2=sum(alphaMatrix[ii+1,]-1)

55 res <-(numerator_part1+numerator_part2)/(denominator_part1+denominator_part2

)

56 }))

57 }

58 newmatrix

59 }

60

61 # Implementation of M-step of EM-algorithm

62 m_step <-function(posteriors ,sequence_collection ,alphaMatrix ,modelK ,states_

collection ,K,N){

63 newmodelK <-modelK

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 75

64 for (j in c(1:K)){

65 newmodelK [[j]]$marginal.prob <-(sum(posteriors [[j]]))/

66 (length(sequence_collection))

67 newmodelK [[j]]$start.vector <-modify_start_vector_j(

68 posteriors [[j]],sequence_collection ,alphaMatrix ,states_collection)

69 newmodelK [[j]]$transition.matrix <-modify_transition_matrix(

70 posteriors [[j]],sequence_collection ,alphaMatrix ,states_collection ,N)

71 }

72 newmodelK

73 }

74

75 # Implementation of M-step of EM-algorithm using parallel processing

76 m_step_par <-function(posteriors ,sequence_collection ,alphaMatrix ,modelK ,states_

collection ,K,N){

77 newmodelK <-modelK

78 newmodelK <-mclapply(c(1:K),function(j){

79 marginal.prob <-(sum(posteriors [[j]]))/(length(sequence_collection))

80 start.vector <-modify_start_vector_j(posteriors [[j]],sequence_collection ,

81 alphaMatrix ,states_collection)

82 transition.matrix <-modify_transition_matrix_foreach(posteriors [[j]],

83 sequence_collection ,alphaMatrix ,states_collection ,N)

84 newmodelK [[j]]<-initModelComponent(transition.matrix ,start.vector ,marginal.

prob)

85 })

86 newmodelK

87 }

88

89 # Implementation of the iterative EM-algorithm with K components Markov mixture

90 emK <-function(seq_collection ,modelK ,states ,alphaMatrix) {

91 map_likl <-map_log_likelihood_function(modelK ,seq_collection ,alphaMatrix ,states)

92 print("original map log likelihood")

93 print(map_likl)

94 iterations <-0

95 eps <-10^(-17)

96 dlta <-1

97 while(dlta >=eps&iterations <15) {

98 print("iteration:")

99 print(iterations)

100 z_posteriors <-e_step_z_i_j_t(modelK ,seq_collection ,states)

101 modelK_new <-m_step(z_posteriors ,seq_collection ,alphaMatrix ,modelK ,states ,

102 length(modelK),length(seq_collection))

103 map_likl_new <-map_log_likelihood_function(modelK_new ,seq_collection ,alphaMatrix

,states)

104 if (map_likl!=-Inf&&map_likl_new!=-Inf) {dlta <-map_likl_new -map_likl}

105 modelK <-modelK_new

106 modelK_new <-NULL

107 map_likl <-map_likl_new

108 map_likl_new <-NULL

109 print("new map log -likelihood:")

110 print(map_likl)

111 iterations <-iterations +1

112 }

113 res <-list(estimate=map_likl ,modelK ,delta=dlta ,iterations=iterations)

114 }

115

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 76

116 # Implementation of the EM -algorithm using parallel processing

117 emK_par <-function(seq_collection ,modelK ,states ,alphaMatrix) {

118 map_likl <-map_log_likelihood_function(modelK ,seq_collection ,alphaMatrix ,states)

119 print("original map log likelihood")

120 print(map_likl)

121 iterations <-0

122 eps <-10^(-17)

123 dlta <-1

124 # perform 1 iteration

125 while(dlta >=eps&iterations <20) {

126 print("iteration:")

127 print(iterations)

128 z_posteriors <-estep_par(modelK ,seq_collection ,states)

129 modelK_new <-m_step_par(z_posteriors ,seq_collection ,alphaMatrix ,modelK ,

130 states ,length(modelK),length(seq_collection))

131 map_likl_new <-map_log_likelihood_function(modelK_new ,seq_collection ,alphaMatrix

,states)

132 if (map_likl!=-Inf&&map_likl_new!=-Inf) {dlta <-map_likl_new -map_likl}

133 modelK <-modelK_new

134 modelK_new <-NULL

135 map_likl <-map_likl_new

136 map_likl_new <-NULL

137 print("new map log -likelihood:")

138 print(map_likl)

139 iterations <-iterations +1

140 }

141 res <-list(estimate=map_likl ,modelK ,delta=dlta ,iterations=iterations)

142 }

./imm part2.R

1 #

2 # Partial_EM.R

3 # This file contains functions implementing partial EM -algorithm

4 # by means of iterative EM algorithm

5 # Author: Natalya Furmanova , TUHH , #21044449

6 # 10/2013

7 #

8

9 source(’Incremental_Markov_Mixture_Modeling.R’)

10 library(parallel)

11 library(foreach)

12 library(doMC)

13

14 # Partial MAP log -likelihood function

15 partial_map_function <-function(modelK ,newComp ,alphaMatrix ,

16 seq_collection ,states){

17 map <-sum(log(sapply(seq_collection , function(x){

18 p1<-p_seqi_modj_for_model(x,newComp ,states)

19 p1<-ifelse(p1==0,1e-321,p1)

20 res <-(1-newComp$marginal.prob)*likelihood_function_one_seq(

21 x,modelK ,states)+newComp$marginal.prob*p1

22 })))+sum(log(sapply(c(1:dim(newComp$transition.matrix)[1]),

23 function(x){dirichletPrior(newComp$transition.matrix[x,],

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 77

24 alphaMatrix[x+1,])})))+

25 log(dirichletPrior(newComp$start.vector ,alphaMatrix [1,]))

26 }

27

28 # Partial E-step (calculate conditional posterior for one component)

29 posterior_newcomp <-function(modelK ,seq_collection ,newComp ,states){

30 numerators <-sapply(seq_collection ,function(x){

31 newComp$marginal.prob*p_seqi_modj_for_model(x,newComp ,states)})

32 denom <-sapply(seq_collection , function(x){

33 (1-newComp$marginal.prob)*likelihood_function_one_seq(

34 x,modelK ,states)+newComp$marginal.prob*p_seqi_modj_for_model(

35 x,newComp ,states)})

36 numerators[which(numerators ==0)]=1e-321

37 denom[which(denom ==0)]=1e-321

38 posteriors_newcomp <-(numerators)/(denom)

39 }

40

41 # Partial E-step using parallel processing

42 posterior_newcomp_par <-function(logLikelihoodFunctionK ,seq_collection ,newComp ,

43 states){

44 numerators <-unlist(mclapply(seq_collection ,function(x){

45 pp<-p_seqi_modj_for_model(x,newComp ,states)

46 newComp$marginal.prob*ifelse(pp==0,1e-321,pp)

47 })

48)

49 denominators <-unlist(mclapply(seq_collection , function(x){

50 temp <-(1-newComp$marginal.prob)*logLikelihoodFunctionK

51 +newComp$marginal.prob*p_seqi_modj_for_model(x,newComp ,sd)

52 ifelse(temp ==0,1e-321, temp)

53 })

54)

55 posteriors_newcomp <-(numerators)/(denominators)

56 }

57

58 # Partial EM - iterative process

59 partial_em<-function(modelK ,newComp ,sequences ,states ,alphaMatrix ,model_length){

60 eps <-1e-17

61 dlta <-1

62 while(dlta >eps){

63 map_likl <-partial_map_function(modelK ,newComp ,alphamatrix ,sequences ,states)

64 print(map_likl)

65 newposter <-posterior_newcomp(modelK ,sequences ,newcomp ,states)

66 print(newposter)

67 newCompnew <-newComp

68 newCompnew$marginal.prob <-sum(newposter)/(length(sequences))

69 newCompnew$start.vector <-modify_start_vector_j(newposter ,

70 sequences ,alphaMatrix ,states)

71 newCompnew$transition.matrix <-modify_transition_matrix(newposter ,

72 sequences ,alphaMatrix ,states ,length(sequences))

73 print(newCompnew$transition.matrix)

74 map_likl_new <-partial_map_function(modelK ,newCompnew ,alphaMatrix ,sequences ,

states)

75 dlta <-map_likl_new -map_likl

76 newComp <-newCompnew

77 }

Appendix B. R Code Implementing Incremental Markov Mixture Modeling 78

78 new_marginal_prob <-1-newComp$marginal.prob

79 for(i in c(1: model_length)) {

80 modelK [[i]]$marginal.prob <-new_marginal_prob*modelK [[i]]$marginal.prob

81 }

82 modelK [[model_length +1]] <-newComp

83 res <-list(modelK ,estimate=map_likl_new ,dlta)

84 }

./Partial EM.R

Bibliography

[1] David R. Brillinger. Time series. Holt, Rinehart and Winston, Inc., New York,

1975. Data analysis and theory, International Series in Decision Processes.

[2] Natalya Furmanova. Data mining in crm. Project work, TUHH, 2013.

[3] Jr. Bayardo, R.J., R. Agrawal, and D. Gunopulos. Constraint-based rule

mining in large, dense databases. In Data Engineering, 1999. Proceedings.,

15th International Conference on, pages 188–197, 1999. doi: 10.1109/ICDE.

1999.754924.

[4] Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algo-

rithm: An improved k-means clustering algorithm. In Intelligent Information

Technology and Security Informatics (IITSI), 2010 Third International Sym-

posium on, pages 63–67, 2010. doi: 10.1109/IITSI.2010.74.

[5] Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput.

Surv., 45(1):12:1–12:34, December 2012. ISSN 0360-0300. doi: 10.1145/

2379776.2379788. URL http://doi.acm.org/10.1145/2379776.2379788.

[6] Fabian Mörchen. Time series knowlegde mining. PhD thesis, Marburg Uni-

versity, 2006.

[7] Jan G. De Gooijer and Rob J. Hyndman. 25 years of time se-

ries forecasting. International Journal of Forecasting, 22(3):443 – 473,

2006. ISSN 0169-2070. doi: http://dx.doi.org/10.1016/j.ijforecast.2006.

01.001. URL http://www.sciencedirect.com/science/article/pii/

S0169207006000021. ¡ce:title¿Twenty five years of forecasting¡/ce:title¿.

[8] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann

Ratanamahatana. Fast time series classification using numerosity reduction.

In Proceedings of the 23rd international conference on Machine learning,

79

http://doi.acm.org/10.1145/2379776.2379788
http://www.sciencedirect.com/science/article/pii/S0169207006000021
http://www.sciencedirect.com/science/article/pii/S0169207006000021

Bibliography 80

ICML ’06, pages 1033–1040, New York, NY, USA, 2006. ACM. ISBN 1-

59593-383-2. doi: 10.1145/1143844.1143974. URL http://doi.acm.org/10.

1145/1143844.1143974.

[9] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An on-

line algorithm for segmenting time series. In Proceedings of the 2001 IEEE

International Conference on Data Mining, ICDM ’01, pages 289–296, Wash-

ington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1119-8. URL

http://dl.acm.org/citation.cfm?id=645496.657889.

[10] Sam Blasiak and Huzefa Rangwala. A hidden markov model variant for

sequence classification. In Proceedings of the Twenty-Second international

joint conference on Artificial Intelligence-Volume Volume Two, pages 1192–

1197. AAAI Press, 2011.

[11] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dy-

namic time warping. Knowl. Inf. Syst., 7(3):358–386, March 2005. ISSN

0219-1377. doi: 10.1007/s10115-004-0154-9. URL http://dx.doi.org/10.

1007/s10115-004-0154-9.

[12] Chotirat (Ann) Ratanamahatana and Eamonn J. Keogh. Three myths about

dynamic time warping data mining. In SDM, 2005.

[13] Huizhi Yang and Jianguo Shi. A three-stage svm ensemble algorithm for

chaotic time series prediction. In Education Technology and Computer Science

(ETCS), 2010 Second International Workshop on, volume 3, pages 345–347,

2010. doi: 10.1109/ETCS.2010.477.

[14] G. Guimaraes. Temporal knowledge discovery for multivariate time series

with enhanced self-organizing maps. In Neural Networks, 2000. IJCNN 2000,

Proceedings of the IEEE-INNS-ENNS International Joint Conference on, vol-

ume 6, pages 165–170 vol.6, 2000. doi: 10.1109/IJCNN.2000.859391.

[15] Shaozhi Wu, Yue Wu, Ying Wang, and Yalan Ye. An algorithm for time series

data mining based on clustering. In Communications, Circuits and Systems

Proceedings, 2006 International Conference on, volume 3, pages 2155–2158,

2006. doi: 10.1109/ICCCAS.2006.284925.

[16] Kin-Pong Chan and A.W.-C. Fu. Efficient time series matching by wavelets.

In Data Engineering, 1999. Proceedings., 15th International Conference on,

pages 126–133, 1999. doi: 10.1109/ICDE.1999.754915.

http://doi.acm.org/10.1145/1143844.1143974
http://doi.acm.org/10.1145/1143844.1143974
http://dl.acm.org/citation.cfm?id=645496.657889
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1007/s10115-004-0154-9

Bibliography 81

[17] Yiming Yang, Qiang Yang, Wei Lu, Jialin Pan, Rong Pan, Chenhui Lu, Lei

Li, and Zhenxing Qin. Preprocessing time series data for classification with

application to crm. In Proceedings of the 18th Australian Joint conference on

Advances in Artificial Intelligence, AI’05, pages 133–142, Berlin, Heidelberg,

2005. Springer-Verlag. ISBN 3-540-30462-2, 978-3-540-30462-3. doi: 10.1007/

11589990 16. URL http://dx.doi.org/10.1007/11589990_16.

[18] Michael Berry and Gordon Linoff. Mastering Data Mining: The Art and

Science of Customer Relationship Management. John Wiley & Sons, Inc.,

New York, NY, USA, 1st edition, 1999. ISBN 0471331236.

[19] Paul W. Farris, Neil T. Bendle, Phillip E. Pfeifer, and David J. Reibstein.

Marketing Metrics: The Definitive Guide to Measuring Marketing Perfor-

mance. Wharton School Publishing, 2nd edition, 2010. ISBN 0137058292,

9780137058297.

[20] Dirk Van Den Poel and Bart Lariviere. Customer attrition analysis for fi-

nancial services using proportional hazard models. Journal of Operational

Research, 157:196–217, 2003.

[21] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: an introduction

to cluster analysis. Wiley, 1990.

[22] CharuC. Aggarwal, Alexander Hinneburg, and DanielA. Keim. On the sur-

prising behavior of distance metrics in high dimensional space. In Jan Buss-

che and Victor Vianu, editors, Database Theory CDT 2001, volume 1973 of

Lecture Notes in Computer Science, pages 420–434. Springer Berlin Heidel-

berg, 2001. ISBN 978-3-540-41456-8. doi: 10.1007/3-540-44503-X 27. URL

http://dx.doi.org/10.1007/3-540-44503-X_27.

[23] James C. Bezdek, Richard J. Hathaway, and Jacalyn M. Huband. Visual

assessment of clustering tendency for rectangular dissimilarity matrices. IEEE

T. Fuzzy Systems, 15(5):890–903, 2007. URL http://dblp.uni-trier.de/

db/journals/tfs/tfs15.html#BezdekHH07.

[24] Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R. Koenig.

Overview of random forest methodology and practical guidance with emphasis

on computational biology and bioinformatics. Wiley Int. Rev. Data Min. and

Knowl. Disc., 2(6):493–507, November 2012. ISSN 1942-4787. doi: 10.1002/

widm.1072. URL http://dx.doi.org/10.1002/widm.1072.

http://dx.doi.org/10.1007/11589990_16
http://dx.doi.org/10.1007/3-540-44503-X_27
http://dblp.uni-trier.de/db/journals/tfs/tfs15.html#BezdekHH07
http://dblp.uni-trier.de/db/journals/tfs/tfs15.html#BezdekHH07
http://dx.doi.org/10.1002/widm.1072

Bibliography 82

[25] Zhengzheng Xing, Jian Pei, Philip S. Yu, and Ke Wang. Extracting in-

terpretable features for early classification on time series. In SDM, pages

247–258, 2011.

[26] Andy Liaw and Matthew Wiener. Classification and regression by random-

forest. R News, 2(3):18–22, 2002. URL http://CRAN.R-project.org/doc/

Rnews/.

[27] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-

mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006. ISBN 0387310738.

[28] A Method for Comparing Multivariate Time Series with Different Dimen-

sions. PLoS ONE, 8(2):e54201+, February 2013. doi: 10.1371/journal.pone.

0054201. URL http://dx.doi.org/10.1371/journal.pone.0054201.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical

Society. Series B (Methodological), 39(1):1–38, 1977. ISSN 00359246. URL

http://dx.doi.org/10.2307/2984875.

[30] Andreas Kakoliris and Konstantinos Blekas. Incremental training of markov

mixture models. Knowledge Discovery from Data Streams, page 47.

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://dx.doi.org/10.1371/journal.pone.0054201
http://dx.doi.org/10.2307/2984875

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Review of Current Research in Time Series Knowledge Mining
	2.1 Introduction
	2.2 Prediction and Classification
	2.3 Clustering and Other Methods
	2.4 Summary

	3 Business Problem and Data Understanding
	3.1 Business Description and CRM Challenges
	3.1.1 Defining Purchasing and Free User Activity
	3.1.2 Defining Churn and Lifetime Customer Value in Non-Contractual Setting

	3.2 Exploratory Data Analysis
	3.2.1 Finding Relevant Data
	3.2.2 Studying Distributions of Aggregate User Activity
	3.2.2.1 Univariate Distribution Plots
	3.2.2.2 Pairwise Distribution and Correlation Analysis

	3.2.3 Segmentation of the User Base by K-Medoids Clustering
	3.2.3.1 Preparation of Data for Clustering
	3.2.3.2 Iterative K-Medoids Clustering
	3.2.3.3 Totals Clustering Results - Visualizations

	3.2.4 Adding Temporal Variables

	3.3 Conclusions and Outlooks for Churn Classification

	4 Churn Prediction Static - Random Forest Classification
	4.1 Theoretical Framework
	4.2 Data Selection and Preparation
	4.3 Defining Response Variables
	4.4 Modeling Process and Results

	5 Temporal Approach - Mixture Markov Modeling
	5.1 Introduction
	5.2 Theoretical Basis: Markov Property,First Order Markov Chains, Mixtures
	5.3 Data Understanding. Determining the Temporal Context
	5.3.1 Sample Selection
	5.3.2 Selecting the Time Axis and Time Units
	5.3.3 Selecting Features/Dimensions of the Time Series and Assigning Class Labels

	5.4 Time Series Classification
	5.4.1 Inferring States via Clustering

	5.5 Markov Mixture Modeling
	5.5.1 Defining a Markov Mixture Model
	5.5.2 Likelihood and Maximum Likelihood Estimation
	5.5.3 Bayesian Inference and MAP log-likelihood
	5.5.4 Dirichlet Conjugate Priors and Calculating the Model Parameters

	5.6 Iterative Algorithm Implementation and Optimizations
	5.6.1 Programming the Algorithm and Preparing Sample for Mixture Modeling
	5.6.2 Initializing the Model
	5.6.3 Overcoming Challenges of Implementation - Underflow, Performance
	5.6.4 Adding Robustness to the Algorithm via Parallel Processing
	5.6.5 Iterative Convergence of the Model

	5.7 Classification of Churn Using Naive Bayes Method

	6 Algorithms Evaluation
	6.1 Evaluation
	6.1.1 Random Forest Classification - Advantages and Pitfalls
	6.1.2 Mixture Markov Modeling and Naive Bayes Classifier

	6.2 Conclusion - Final Thoughts and Future Possibilities

	A Visualizations
	B R Code Implementing Incremental Markov Mixture Modeling
	Bibliography

