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Abstract

Human individuals generally tend to follow several habits during the course of the day. This fact
intuitively allows predicting human behavior to a certain degree based on previous observations.
This thesis focuses on the mobility of human individuals. To be speci�c, a generic algorithm
that uses kernel density estimation and quadratic optimization to provide location predictions is
proposed. There are several imaginable �elds of application for such an algorithm, like for example
location based services or commercials. The proposed algorithm was implemented and tested using
mobility traces of taxis. The test results clearly indicate that the algorithm can extract and exploit
patterns in the data to predict future locations. For instance, the algorithm achieves an accuracy
better than 1000m in approximately 32% of the executed tests using a prediction interval of six
minutes. Moreover, in 13% of these tests the prediction error is smaller than 500m. In addition,
the test results show that the algorithm is able to estimate the reliability of its predictions with an
accuracy of up to 98.75%. As expected, the test results also clearly demonstrate that the prediction
capability of the algorithm strongly depends on the properties of the given location data and the
underlying stochastic process.
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Chapter 1

Motivation

Human individuals generally tend to follow several habits during the course of the day. Thus,
many daily actions and processes in human life are a matter of routine. This fact intuitively al-
lows to predict human behavior to a certain degree based on previous observations. Certainly, the
performance of this task requires to identify recurring patterns in the observed behavior at �rst.
Then, these patterns can be exploited to make an educated guess about the future. The same
approach is basically used in the research �eld of data mining to extract meaningful relations from
large amounts of data. Due to remarkable progresses in computer technology regarding computing
capacity as well as data storage, interest increased in data mining. Numerous research projects
engage in this �eld and are producing promising results.
This thesis focuses on so called location time series data that can be collected by tracing the mobil-
ity of a human individual. Particular data mining techniques are applied to �nd recurrent patterns
in location histories and to predict future locations. To be speci�c, a generic algorithm is proposed
that uses kernel density estimation and quadratic optimization to provide location predictions.
There are several possible �elds of application for this algorithm, like for example location based
services. Since the number of smartphone owners is increasing fast these services become more
and more interesting. Location based services are particular functionalities and information that
are provided to the user with respect to the geographic position (e.g. [1, 2]). For instance, once
a user approaches a subway station, the smartphone could provide him with the timetables of all
related subway lines. Generally, the geographic context allows services to adjust to the needs of the
user. Therefore, one can also think of location based commercials suggesting nearby local stores or
restaurants to the user. Clearly, location based services or commercials would pro�t by a location
prediction engine. This would enable them to provide the user with geographically adapted content
even in advance.
This thesis aims at the development and the subsequent veri�cation of a location prediction algo-
rithm using appropriate existing data mining techniques. This goal is further speci�ed in chapter 2
providing a clearly de�ned hypothesis. Chapter 3 relates this thesis to previous work in the �eld
of human mobility analysis and prediction. In chapter 4 a speci�c representation for location time
series data is described since it serves as a basic principle for the prediction algorithm proposed in
this thesis. In addition, the algorithm uses Gaussian mixture models to estimate probability dis-
tributions. Therefore, chapter 5 brie�y emphasizes some speci�c properties of such models. Based
on this, chapter 6 motivates and describes the actual location prediction algorithm that uses ker-
nel density estimation to learn a probability distribution and quadratic optimization to obtain a
prediction. As no location traces of human individuals were available, the developed algorithm
was tested using a data set containing location histories of taxi cabs. Chapter 7 describes and
discusses the observed test results. Finally, a summary of this thesis with respect to the initially
de�ned goal is given and ideas for further work are described in chapter 8.
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Chapter 2

Goal: Location Prediction

The goal of this thesis is to develop a location prediction technique that identi�es and exploits pat-
terns in location history data. A generic algorithm for this purpose shall be developed and tested.
The algorithm shall base its predictions on a probability density distribution that is derived from
a certain amount of previously observed location time series data. In addition, the prediction tech-
nique shall preferably rely on non-parametric methods to ensure a certain degree of adaptability.
This implies particularly the processing of location data without previous clustering. Hence, the
predictor shall not base on the assumption of a limited set of discrete locations. Moreover, the
prediction technique is required to resolve in time and space and provide a reliability value for
each prediction. Generally, this algorithm should be able to cope with any location data that is
generated by some stochastic process. Nevertheless, this thesis is mainly aimed at prediction of
human mobility. Summarizing, the central hypothesis to be veri�ed is de�ned as follows: Recurring
patterns in location histories can be extracted by non-parametric learning methods and then be
used for prediction.
This hypothesis shall be veri�ed by developing a proof-of-concept algorithm. In particular, the
developed algorithm shall be tested using a real-world data set.
To the best of my knowledge the algorithm that is proposed in this thesis is a new approach that
has not been examined so far.
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Chapter 3

Related Work

A lot of research has been done in the �eld of analyzing human mobility and several studies
have shown that generally certain patterns can be extracted from human location histories (e.g.
[3, 4, 5, 6]). Furthermore, di�erent techniques to predict locations of human individuals based on
such patterns have been proposed and examined (e.g. [7, 8, 9, 10]). Here some important results
are presented brie�y due to their close relation to the approach that is presented in this thesis.
Actually, some parts of the prediction algorithm proposed in this thesis are motivated by the work
presented in the following.

3.1 Human Mobility Analysis

Human mobility has been analyzed at varying geographic scales. In [3] the authors investigate the
location data of 100,000 mobile phone users that have been collected by tracking each person's
position for six months. They were able to show that after some corrective preprocessing the
individual travel patterns of the test persons can be described by a single spatial probability dis-
tribution. Thus the results of this study suggest that humans generally follow simple reproducible
patterns.
In [4] the actual predictability provided by these mobility patterns is examined. The authors of
this article use the data of 50,000 mobile phone users that have been collected over a period of
three months to study the statistical properties of human mobility. They use di�erent entropy
measures to estimate the potential predictability of a user's trajectory. Based on their analysis
they report to have found that the user mobility provides a potential predictability of 93% taking
their whole data base into account. These results are particularly interesting with regard to this
thesis. To be speci�c, the algorithm that is presented here, can be motivated by the notion of
spatiotemporal entropy as de�ned in [4]. This will be described in more detail in chapter 6.

3.2 Prediction of Human Mobility

Di�erent techniques have been applied to the problem of predicting locations of human individuals.
In [7] several di�erent approaches are examined to predict locations of students based on data
collected by Wi-Fi access points. The authors of this paper de�ne a set of discrete locations using
the Wi-Fi cells on a university campus. Furthermore, they limit predictions to the next location
without taking time into account. Two di�erent kinds of location predictors are tested. Namely,
the authors use a k-th order Markov predictor as well as a LZ-based predictor. Based on their
test results they report that the second order Markov predictor with a certain fallback feature1

performed best and provided a median accuracy of 72%2. Basically the approach in this thesis also
assumes a k-th order Markov process as explained in chapter 6. However, the algorithm proposed
in this thesis is more generic since it resolves in time and does not rely on a set of discrete locations.

1They used recursively the �rst order or zeroth order predictor if prediction was not possible.
2This holds only for users that provided a su�cient amount of data.
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3 Related Work

Consequently, its accuracy can be expressed by means of Euclidean distance in meters and depends
on the prediction interval. In contrast, the accuracy metric used in [7], only distinguishes between
wrong and right predictions and does not take the prediction interval into account.
A similar prediction approach is proposed in [8]. There, a sort of extended Markov predictor
is presented. To be speci�c, the authors use delay embedding to extract location sequences of a
certain length from a time series. Then these sequences are directly used to predict a users location.
Actually, a prediction is obtained by comparing the last observed locations to all embedded location
sequences. This technique takes the arrival times and residence times into account. However, it
relies on a �nite set of distinct locations. Thus, it can only predict the user to be or not to be in
one of his most frequented locations3. This approach is basically quite similar to what is presented
in this thesis. Especially, delay embedding is applied, too. Nevertheless, the algorithm proposed in
this thesis does not work with discrete locations but uses coordinate values to estimate a density
distribution and provide predictions. This can be considered as a more general approach.

3These locations need to be extracted from the data in advance.
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Chapter 4

Location Time Series Data

This work is aimed at predicting future locations based on location history data. In this chapter a
particular representation for such data is described as it serves as a basic principle for the prediction
algorithm. Furthermore, map projection is explained brie�y.
Location history data is a particular form of time series data [11]. Generally, a location time series
dataset consists of a sequence of data points that have been measured successively. Each data
point should at least consist of a location4 and a corresponding timestamp. Depending on the data
source additional information can be related to the data points.

4.1 Delay Embedding

There are di�erent possible mathematical representations of location time series data. Maybe, the
most intuitive representation would be a three dimensional vector space with latitude, longitude
and time each being one dimension. With respect to the prediction algorithm that is proposed
in this thesis, the choice of a particular data representation is crucial. The main question to
be considered when choosing a mathematical representation for the data is whether it allows
the extraction of the desired information. Regarding the aim of this thesis, the information in
demand are mobility patterns. In terms of location time series data, mobility patterns are similar
sequences of coordinate pairs that occur repeatedly over time. Hence, to extract mobility patterns
from location time series, subsections of the data series could be compared to each other. If there
are su�ciently many sections that resemble each other, this could be assumed to be a mobility
pattern. However it has to be de�ned how resemblance can be quanti�ed and what amount of
similar sections are needed to assume a pattern.
So the information that need to be extracted from the location time series data are similarities
between di�erent subsections of the time series. A common representation for time series that is
used in nonlinear time series analysis[12] is the delay vector reconstruction. This representation is
obtained by delay embedding :
To embed a time series (s1, s2, ..., sN ) in an m-dimensional space, a delay ν is de�ned and then the
delay vector reconstruction is created for the time series value sn as follows:

δn = [sn−(m−1)ν , sn−(m−2)ν , ..., sn−ν , sn] (4.1)

n ∈ {1, 2, ..., N}
All vectors δn have the dimension m. The m-dimensional space these vectors are de�ned in is
called embedding space. In [8] delay embedding is used to build a predictive model directly based
on the time series data. Namely, the next location is predicted by averaging over similar previously
observed delay vectors. This technique relies on a limited set of possible locations.
In contrast, the algorithm that is described in this thesis uses the delay vectors in the embedding
space to learn a continuous probability density function. Predictions are then based on this density

4E.g. a geographic coordinate de�ned by latitude and longitude values.
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4 Location Time Series Data

function. This approach is motivated by the fact that the similarity between two time series
sections of length m is mapped to the Euclidean distance between the corresponding vectors in
the embedding space. Thus, the density in the embedding space is a measure for the observed
frequency of a particular time series subsequence.
Loosely speaking, this means, similar sequences that are observed multiple times will be mapped
to points that are close to each other in the delay embedding space. The parameter m de�nes
the number of subsequent time series values to be considered and ν is the time interval between
two values. There are techniques that optimize these parameters to exploit redundancies in the
data to the best degree [12, p. 36-39]. Such methods are not used or discussed in this thesis as
they depend on the particular data source. However, in section 7.6 the impact of ν and m on the
prediction quality with regard to the used test data set is analyzed.

4.2 Map Projection

Location data is usually given in terms of latitude and longitude value pairs. These values refer
to angles that de�ne a location on the surface of the earth using a polar coordinate system.
To draw a map using such data, they can be projected to a two-dimensional Cartesian coordinate
system with equally scaled axis. This transformation is called map projection and there are several
di�erent techniques that can be used for this purpose. Clearly, such a projection leads to a loss of
information since not all metric properties can be preserved. However, the algorithm as described
in this thesis, assumes equally scaled coordinates. Therefore, the use of a map projection is
necessary. In the implementation that is part of this thesis the Universal Transverse Mercator
(UTM) system is applied. For a detailed description of the UTM it is referred to the literature
(e.g. [13]). This projection preserves angles and approximates shape but distorts distance and
area measures. However, within a UTM zone the distance measured using the projection does not
deviate more than one meter from the true distance. This is a su�cient accuracy regarding the
algorithm presented in this thesis.
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Chapter 5

Gaussian Mixture Models

The prediction technique described in chapter 6 is based on Gaussian mixture models (e.g. [14])
and relies on some particular properties of such models. Therefore, a short description of these
models and the relevant properties is given in the following.
A Gaussian mixture model is de�ned as a weighted sum of Gaussian mixture components. Each
componentm is a Gaussian distribution with a dedicated mean µm and covariance Σm. The model
describes the probability density distribution of a random vector X:

p(x) =
∑
m∈M

ωmN (x|µm,Σm), (5.1)

x ∈ Rd, µm ∈ Rd, Σm ∈ R(d,d), M = {1, 2, ...,M},
∑
m∈M

ωm = 1, ωm ≥ 0.

5.1 Conditional Distribution of a GMM

It is possible to derive the conditional and marginal distributions from the joint distribution of a
Gaussian mixture model[15, 16]. The following equations are based on [17].
Let p(x) be a multivariate mixture of Gaussians with x being an d-dimensional vector. Then the
conditional distribution of p(x) with respect to the component xk, k ∈ {0, ..., d−1}, of x is de�ned
as

p(x̂|xk) =
p(x̂, xk)

p(xk)
, x̂ = (x0, ..., xk−1, xk+1, ..., xd−1)T , (5.2)

p(xk) =

∫
p(x)dxk. (5.3)

This is directly derived from the de�nition of conditional probability and can easily be extended
to depend on multiple components of x. p(xk) is called the marginal distribution of p(x).
Furthermore, it is possible to express the marginal and conditional distributions of a mixture of
Gaussians in terms of the mixture components:

x =

(
x1

x2

)
, µm =

(
µm1

µm2

)
,

Σm =

(
Σm11 Σm12

Σm21 Σm22

)
, Λm = Σ−1

m =

(
Λm11 Λm12

Λm21 Λm22

)
.

Then the marginal distribution is given by

pm(x1) =

∫
pm(x)dx2 = N (x1|µm1,Σm11). (5.4)
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5 Gaussian Mixture Models

The conditional distribution for each component m is derived as

pm(x1|x2) =
pm(x1,x2)

pm(x2)
= N (x|µm1|2,Λ

−1
m11), (5.5)

µm1|2 = µm1 −Λ−1
m11Λm12(x2 − µm2).

For the entire Gaussian mixture model the conditional distribution is given by

p(x1|x2) =
∑
m∈M

ω′mpm(x1|x2), ω′m =
ωmN (x2)|µm2,Σm22)∑

m∈M ωmN (x2)|µm2,Σm22)
. (5.6)

5.2 The Mahalanobis Distance

The Mahalanobis distance is a distance measure between two points in a multidimensional vector
space. It is de�ned as

d(x,y) =

√
(x− y)TΣ−1(x− y). (5.7)

The Mahalanobis distance between the mean of a particular Gaussian component m and a point x
gives a measure of how much the component contributes to the density p(x) at x. This is helpful to
decide whether a particular component has to be considered during the evaluation of p(x). Thus,
it can save computing time during the evaluation.
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Chapter 6

Prediction of Future Locations

The prediction technique that is presented in this thesis consists of two main parts. The �rst part
is a machine learning method that estimates a probability density distribution from given sample
data. The second part uses the probability distribution and a set of lastly observed locations to
predict a future location. Each of these parts consists of a few subcomponents. In the following,
at �rst a motivation for this prediction technique is given and then the technique is described in
more detail.

6.1 Motivation of the Proposed Technique

Assume that the actual probability distribution that underlies the mobility of some human indi-
vidual is known. Let it be described by the conditional probability Pr[Xt = x|ht−1], where Xt is
the location at time t and ht−1 = {Xt−1 = xt−1, Xt−2 = xt−2, ..., X1 = x1} is the location history
consisting of t− 1 previously visited locations. This notation suggests a statistical dependence of
the future location Xt on the location history ht−1. This property is called serial dependence. The
presence of serial dependence in a location time series generated by human mobility is the main
prerequisite for the algorithm that is described in this thesis. As presented in [4] by means of an
empirical analysis it is legitimate to assume this prerequisite to be ful�lled.
Intuitively, an optimal prediction algorithm that is based on the distribution mentioned above,
would always predict the location that maximizes the probability distribution:

x̂ML = arg max
x
{Pr[Xt = x|ht−1]} (6.1)

This means it would predict the person to be in its most likely location. Actually it is shown in
[18, p. 12] that any prediction algorithm based on an observed location history can not do better
than this.
Hence, to design a powerful prediction technique, the distribution P (Xt = x|ht−1) needs to be esti-
mated from the given location history data. As described in section 4.1, the statistical dependence
of the future location Xt on the location history ht−1 can be extracted from the data by means of
recurring patterns. This approach is also encouraged by the notion of spatiotemporal entropy in
[4]. Entropy is a useful measure to quantify the potential predictability of a time series. In [4] the
entropy of a location time series is de�ned as

S = −
∑
X′⊂X

P (X ′) log2[P (X ′)], (6.2)

where X = {X1, X2, ..., Xt−1} is the observed sequence of locations and P (X ′) is the relative
frequency of the time-ordered subsequence X ′ in X. This de�nition of spatiotemporal entropy
refers to a limited set of discrete locations. The recurrence of a subsequence of locations in the
time series decreases the entropy and thereby increases the predictability. To extend this de�nition
of entropy the locations are now assumed to be de�ned in a two dimensional continuous space by
their Cartesian coordinates. Furthermore, the de�nition of P (X ′) is extended to be the relative
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6 Prediction of Future Locations

frequency of all time-ordered subsequences in X weighted by their similarity to X ′. This matches
well with the idea of extracting mobility patterns by examining similar subsequences in a location
time series as described in section 4.1.
Given this motivation, the prediction of future locations should be based on the entire observed
location history. Hence, a possible prediction algorithm could work like this:

Algorithm 1 : A possible location prediction algorithm that considers all serial correlations in a
location history

1: t← X.length+ 1

2: for m = 3 to X.length do

3: X ′ ← [Xt−1, ..., Xt−(m−1)]

4: for all time-ordered subsequences Xm,i of length m in X do

5: Compare X ′ to Xm,i ignoring the m-th element:
ωm,i ← sim(X ′, Xm,i[1 : m− 1])

6: Estimate the next location by taking the weighted sum of the m-th elements:
Xpred ← Xpred + ωm,iXm,i[m]

7: end for

8: end for

6.2 Markov Assumption

The above algorithm uses all available information and considers every possible correlation to
predict a location. Thus, it should yield reasonable results. However, the time complexity of this
algorithm depends quadratically on the number of observed locations (O(n2)). As the number of
observed locations is increasing and needs to be large to provide su�cient statistics, this is not
a usable algorithm in practice. To derive an algorithm with a signi�cantly smaller complexity it
can be assumed that the next location only depends on a limited number of previously visited
locations:

Pr[Xt = x|ht−1] = Pr[Xt = x|h(t−1):(t−m)], (6.3)

where h(t−1):(t−m) = {Xt−1, Xt−2, ..., Xt−m} are the m previously visited locations. This property
of a stochastic process is called the Markov property and the related process is then called a
Markov process. Assuming this property and the knowledge of the probability distribution Pr[Xt =
x|h(t−1):(t−m)], a prediction algorithm with complexity O(n)5 can be de�ned as follows:

Algorithm 2 : A location prediction algorithm that considers only correlations between m sub-
sequent locations in a time series

1: X ′ ← [Xt−1, ..., Xt−m]

2: Xpred = arg maxx {Pr[X = x|X ′]}

The prediction is derived directly from the lastm observations by maximizing Pr[Xt = x|h(t−1):(t−m)].
Yet, the distribution Pr[Xt = x|h(t−1):(t−m)] needs to be known in advance. In algorithm 1 this
distribution is obtained by assigning a weight to each subsequence in the entire location history
with regard to similarity. Basically, this is what kernel density estimation does when being applied
to the embedding space.
Considering the technique that is proposed in this thesis, an m-th order Markov process is as-
sumed. Furthermore, kernel density estimation is used to estimate the unknown distribution
Pr[Xt = x|h(t−1):(t−m)]. The details of this algorithm are explained in the following sections.

5The complexity depends on the argmax-step.
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6.3 Stationary Process

6.3 Stationary Process

A necessary assumption for the prediction technique that is presented in this thesis is stationarity.
A stationary process is a stochastic process whose probability distribution does not change over
time. Relating to algorithm 2, this means that the distribution Pr[Xt = x|h(t−1):(t−m)] remains
the same over time. Thus, the prediction algorithm described in this thesis relies on patterns in
location time series data that do not change over time.

6.4 The Prediction Algorithm

Taking the above motivation into account, the prediction algorithm can be designed as shown in
the following diagram:

training
data

Learning phase

Prediction phase

Delay
Embedding

ν, m

KDE

compression threshold

Derive
conditional
distribution

Optimization
(search maxima)

last (m-1) locations (with
time interval ν):
h(t−1):(t−m)

prediction
δ̂2̂δ2̂δ2, p(δ2|δ1)

δn p(δ)

p(δ2|δ1)

Figure 6.1: Block diagram of the prediction algorithm

As depicted in �g. 6.1, the prediction algorithm consists of four components that are arranged
successively. During the learning phase, at �rst the given sample data is embedded in an m-
dimensional space using the delay ν. Then a kernel density estimator is used to learn the joint
probability density function p(δ) of the data in the embedding space. Finally the conditional
density function is derived from p(δ) as described in section 5.1. After the learning phase the density
distribution can be used for prediction. To be speci�c, the prediction is then the optimization of the
conditional density function p(δ2|δ1) with δ1 ={delay embedded last (m-1) locations}, assuming
an (m-1)-th order Markov process. Each of these steps is based on existing data mining and
optimization techniques. In the following, the working principle of each step is explained6 and
particular properties or modi�cations with regard to this thesis are emphasized.

6.4.1 Delay Embedding

In section 4.1 delay embedding as a speci�c data representation for time series was explained. In the
algorithm that is presented here, delay embedding is applied to location histories. More precisely,
a location history ht−1 = {xt−1,xt−2, ...,x1} with (t − 1) two-dimensional location coordinate
vectors is given. Each coordinate vector xn = (x1

n, x
2
n)T refers to a location that was observed at

time n ∈ {1, 2, ..., t− 1}. This history is embedded in the embedding space by

δn = [x1
n−(m−1)ν , x

2
n−(m−1)ν , x

1
n−(m−2)ν , x

2
n−(m−2)ν , ..., x

1
n−ν , x

2
n−ν , x

1
n, x

2
n] (6.4)

6For further details it is referred to the cited works.
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6 Prediction of Future Locations

with m being the embedding dimension and ν being the time delay. Thus, the embedding vector
δn contains the coordinates of m locations that were observed using a time interval ν. As eq. (6.4)
shows, the coordinate values of each location are two subsequent elements in the embedding vector.
This can be regarded as a slight modi�cation of the common delay embedding technique where
each element in the embedding vector is related to a di�erent point in time.
In other words, the delay embedding vector is obtained by taking any m subsequent locations that
have a time-lag of ν and writing them successively into a single vector of length 2m. As mentioned
in section 4.1, this data representation is used to map spatiotemporal similarity between two
subsequences of a time series to Euclidean distance. In this way, it is possible to identify patterns
by evaluating density in the delay embedding space.

6.4.2 Estimating a Probability Density Function

The prediction is based on a probability density function estimated from the observed location
data. Hence, the extent to what the density function re�ects the model that underlies the data
is crucial for the �nal prediction quality. In this section the choice of the estimation algorithm is
motivated and the chosen algorithm is described.

Requirements on the Estimation Algorithm

There are di�erent requirements that were considered when choosing an appropriate algorithm for
density estimation:

Continuous distribution: A continuous density function is obtained to avoid the discretiza-
tion of locations.

Non-parametric: The algorithm does not rely on any assumptions concerning the probability
distribution of the observed data.

Incremental: The distribution can be updated as new observations are made and updates
don't need access to previous observations.

Constant memory footprint: The amount of memory used by the algorithm remains the
same as new updates are made.

Gaussian Mixtures and Kernel Density Estimation

A well known approach to estimate a probability density function from given sample data is to
assume a Gaussian mixture model as described in chapter 5. There are several di�erent algorithms
to approximate the parameters of a mixture of Gaussians (e.g. [19, 20]). However, the number of
mixture components is a parameter that has to be de�ned in advance. Regarding location time
series data, it can be very hard to prede�ne this parameter since it is proportional to the number
of dominant patterns in the time series. Actually, this is something that needs to be estimated
directly from the data. Several techniques have been proposed to learn the number of mixture
components from the observed data (e.g. [21, 22]).
Another approach to �t a density function to given sample data is kernel density estimation (KDE)
[23, 24]. KDE is a non-parametric approach as it does not make use of any prede�ned assumptions
about the data distribution. The basic idea is to de�ne a kernel function for each data point in the
sample data. Then the KDE is the weighted sum of all kernel functions smoothed by a so called
bandwidth. This way every data point is incorporated in the distribution and no prior information
is needed. More formally the KDE is de�ned as

p(x) =
1

N

N∑
i=1

ΦH(x, xi), (6.5)

where ΦH(x, xi) is a kernel function and H is the related bandwidth matrix. A common choice for
the kernel function is the Gaussian distribution. The only parameter that needs to be determined
is the bandwidth H. The estimation of H is an optimization problem as it can be obtained by
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6.4 The Prediction Algorithm

minimizing the distance between the kernel density estimation and the true distribution of the
data. However, in this case the actual data distribution is unknown. A common approach to
specify the distance between a KDE and the unknown underlying distribution is the asymptotic
mean integrated squared error (AMISE) [25, pp. 94-99]. Hence, the AMISE is minimized to obtain
the optimal bandwidth.

Online Kernel Density Estimation

In [26] an online variant of kernel density estimation (oKDE) is proposed. This algorithm matches
very well with the requirements speci�ed above. It is an incremental approach that maintains a
non-parametric model of the observed data and allows updating the model as new data-points
arrive. Based on [26] a short description of oKDE is given in the following. For more details see
the original paper.
The main idea of oKDE is to distinguish between the sample distribution ps(x) and the distribution
estimated by KDE pKDE(x). The sample distribution is de�ned as

ps(x) =

N∑
i=1

ωiΦΣsi(x− xi), (6.6)

where ps(x) is the distribution of the sample data. In the standard KDE approach the covariance
matrices Σsi would all be zero and the weights ωi would all be 1

N . In this case ps(x) consists of N
Dirac-delta distributions and each Dirac-delta represents one data-point. Given ps(x), the KDE
can be obtained by the convolution with the kernel function as

pKDE = ps(x) ∗ ΦH(x), (6.7)

where ΦH(x) is a kernel function with the bandwidth H. Note that this equation is the same as
eq. (6.5) if all Σsi = 0 and all ωi = 1

N . So this is only a di�erent notion of eq. (6.5). Yet, it allows
to compress the KDE. To be speci�c, the oKDE method maintains a compressed version of ps(x)
and updates it as new data-points are added. Compression is achieved by approximating clusters
of data points by single Gaussian distributions. The result of the compression is a new sample
distribution ps(x) with not all Σsi necessarily being zero.
The two important parameters for the oKDE algorithm are the compression threshold Dth and the
forgetting factor F . The compression threshold de�nes the maximum error that is accepted during
compression. To measure this error the unscented Hellinger distance is used. The forgetting
factor allows to deal with non-stationary distributions. The factor de�nes the weight of new
data-points compared to old ones. Regarding the prediction algorithm presented in this thesis, a
stationary process is assumed and the forgetting factor is ignored. In �g. 6.2 the oKDE algorithm
is summarized.
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Figure 6.2: A summary of the oKDE algorithm based on a diagram in [26]
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6.4.3 Prediction by Optimization

The output of the KDE is the probability density function of location time series data in the
embedding space. It de�nes a probability value for each embedding vector. Thus, it provides
information about the probability of observing an m-dimensional sequence of locations with ν
being the time di�erence between two subsequent locations. In addition to the KDE, the prediction
algorithm is provided with the current context in form of the (m-1) last observed locations. Based
on this information it has to predict the next (m-th) location. As described in section 6.1, the
most likely position is used for prediction. So the predicted location x̂m is obtained by maximizing
the probability of the location xm given the previously observed locations h(t−1):(t−m) in form of
a delay embedding vector xm−1:

x̂m = arg max
xm

{p(xm|xm−1)} (6.8)

As the KDE approximates only the joint probability density distribution, the conditional distri-
bution p(xm|xm−1) has to be derived from p(x) as explained in section 5.1. The �nal step is then
the maximization of the conditional distribution using nonlinear programming (e.g. [27]). There
are several approaches to search maxima of Gaussian mixture distributions based on nonlinear
programming [28, 29]. A maximum of a probability distribution is called a mode. Gaussian mix-
ture distributions are multimodal distributions since they can have multiple modes. Furthermore,
multivariate Gaussian mixtures with M components can have more than M modes [28]. This is a
challenging property since the available optimization methods rely on the knowledge of the number
of modes. For instance, in [28] a method is proposed that starts a search from each component
of a Gaussian mixture distribution to �nd its modes. The author states that this approach has
been tested extensively and usually �nds all modes of the distribution if there are at most as many
modes as components. Though, regarding the distribution that is used for location prediction in
this thesis, the number of modes is not limited by the number of components. Therefore, using
the components of the model as starting points may not be a reasonable approach. Actually,
there is no meaningful heuristic that helps de�ne the starting points. Hence, a search region is
de�ned and the starting points are chosen using a consistent segmentation of the search region.
Moreover, the properties of location time series data allow to derive a meaningful de�nition of
the search region. To be speci�c, a circular area around the last observed location is used as the
search region. This is suggested by the fact that there is a maximum distance that can be covered
by a human individual during the prediction interval. Of course, this distance depends on the
possible means of transportation and has to be de�ned with regard to a practical use case. There
are several possible segmentations of the resulting circular search region. Regarding the prediction
algorithm that is proposed in this thesis, the segmentation is de�ned as shown in �g. 6.3 since it
is simple and provides a quite uniform distribution of the starting points. Using these starting
points, a quadratic search as described in [28, p. 3] is used to �nd local maxima. The greatest
found maximum is chosen as prediction.

s

s

s

s

Figure 6.3: Segmentation of a circular search region using the segmentation parameter s that
de�nes a distance
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6.4 The Prediction Algorithm

6.4.4 Reliability Measure

Since the algorithm is based on a probability density function, it can easily assign a reliability
value to a particular prediction. To be speci�c, the reliability as implied by the learned density
function is just the cumulative probability around the predicted location. Given an accuracy radius
r, the algorithm can calculate the probability p̂r of the actual location being within a radius of r
around the predicted location. In the implementation that is part of this thesis, the cumulative
probability is approximated using the trapezoidal rule. More precisely, the probability density
function is evaluated at the predicted location as well as at a certain number of points on a circle
around this location. Then the trapezoidal rule is applied using these points. Therefore, the
approximation gets worse as the radius of the circle increases. However, for su�ciently small radii
the provided accuracy is acceptably small (see section 7.6.3).

6.4.5 Integration of Additional Attributes

The described prediction algorithm uses a density distribution of the delay embedded location
time series data. Therefore, it is not possible to directly integrate additional information apart
from location coordinates into the prediction model. As described in section 4.1, similar location
sequences are mapped to points that are close in the delay embedding space by means of Euclidean
distance. If an additional attribute with a di�erent range and scale is added to the delay vectors,
this attribute can distort the distance measure. More speci�cally, the scale can be regarded as a
weight for the attribute regarding the Euclidean distance. Considering the algorithm as presented
here, coordinates are scaled using UTM. Thus, a distance of 1unit between two points in the model
re�ects a distance of approximately 1m in the real world. Now assume that the model shall be
modi�ed to incorporate for instance correlations between observed locations and the time of day.
This poses the problem how to scale the time of day in order to obtain meaningful prediction
results. This is a question that can not be generally answered as it depends strongly on the data.
So, to de�ne a scaling, an appropriate heuristic needs to be found by examining the data. As this
is beyond the scope of this thesis it will not be further discussed. However, this is an interesting
starting point for future investigations.
The algorithm presented and tested in this thesis is solely based on correlations between subsequent
values in location time series. Thus, it disregards any additional attributes that may be associated
with the location data. Nevertheless, such attributes and correlations are taken into account when
analyzing the test results in section 7.6.
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Chapter 7

Testing

To verify the proposed location prediction method it shall be tested using real-world data. There-
fore, the proposed algorithm has been implemented as a Java program (see appendix B) and several
tests have been carried out. In the following, the used testing methodology is described and the
observed test results are discussed.
The general approach used for testing the prediction algorithm is cross validation [30]. Thus, the
available test data is split into parts for learning and for testing. This is described in detail in
section 7.2.

7.1 Testing Metrics

Clearly, the performance of a prediction algorithm can be measured by letting the algorithm predict
a known value and then compare the predicted value to the expected outcome. The di�erence
between the predicted and the actual value is referred to as the absolute prediction error. Actually
this is the basic measure used to asses the prediction algorithm in the following.
Furthermore, as described in section 6.4.3, the output of the prediction algorithm is a location
x̂ and an associated reliability pr. The reliability refers to the accuracy radius r that is de�ned
as an input parameter for the algorithm. Hence pr = p̂ means that the true location lies with a
probability of p̂ within a radius of r around the predicted location x̂. Based on this output, the
distribution of the absolute prediction error and the claimed reliability can be statistically veri�ed
using a test set containing su�ciently many location time series data. For this purpose, prediction
queries with known answers are constructed from the test data. Then the absolute error and the
average success rate with regard to the demanded accuracy can be measured and compared to the
average reliability claimed by the algorithm.

7.2 Test Data

Because of privacy concerns it is very di�cult to gain access to data sets containing location traces
of human individuals. Thus, an appropriate alternative needed to be found. To test the proposed
prediction algorithm, a location data set with a su�ciently high density of measuring points was
needed. In addition, the process that underlies the data should resemble human mobility.
The cabspotting data set [31] provides a large amount of well structured location time series data.
The location histories in this data set correspond to the whereabouts of taxicabs in San Francisco,
USA. To be precise, it contains GPS coordinates of 563 taxis that have been collected in 30 days
in San Francisco. On average the interval between two subsequent measurements is less than 60
seconds. The data set consists of 563 �les and each �le contains data points of a single taxi. Each
data point is speci�ed by a GPS coordinate pair and a related timestamp as well as a bit indicating
if the taxi is occupied. As no appropriate mobility data set of human individuals is openly available
to the best of my knowledge, the cabspotting data is a reasonable alternative. Naturally, the taxi
data has some particular statistical properties that are unlikely to be observed in mobility traces of
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7.2 Test Data

human individuals. For instance, in contrast to human individuals, taxis stay within some bounded
geographic area and they only move along roads or highways. Nevertheless, the cabspotting data
set provides a good basis for testing the proposed prediction algorithm. Actually, the tests that are
described in the following were executed using ten particular �les of the taxi data set. These �les
were chosen since they provide a high density of data points over time and an acceptable amount
of measurement errors. In order to consume an acceptable amount of computing time, the number
of test �les was limited to ten.7

7.2.1 Recurrence

As described in section 6.4.3, the proposed prediction technique relies on recurring patterns in
the given location traces. So, the quality of the test results will re�ect the periodic properties
of the test data, assuming the correctness of the prediction algorithm. Actually, it seems to be
reasonable to assume that the taxi data provides a certain degree of recurrence. Generally, taxis
tend to use similar routes to reach certain destinations. Furthermore, taxis customarily frequent
a few points very often looking for potential clients. For instance, such locations can be airports,
train stations or shopping malls. Indeed, one can identify points that seem to be frequented more
often than others by examining the spatial density distribution of the taxi data. In particular,
the downtown area, as well as the international airport provide a very high density of data points.
This is exemplarily illustrated in �g. 7.1. The degree of recurrence provided by the taxi data set
is further examined during the result analysis in the following sections.

7.2.2 Measurement Errors

Another property of the taxi data set that needs to be considered is measurement uncertainty.
In order to detect measurement errors in the location data a thresholding method is used. Thus,
the �lter exploits the fact that speed and acceleration of a taxi are limited. The current average
speed of a taxi is calculated using each pair of two subsequent measurements. Then, based on
the speed di�erences, the average accelerations are calculated. Given the speed and acceleration
values, a thresholding �lter can be applied to remove measurement errors. The results of this
�ltering method are exemplary shown in �g. 7.4. Actually, there are some taxi �les that contain
signi�cantly more measurement errors than the average amount8. This could be the result of
misplaced or faulty GPS equipment and is dealt with during preprocessing (section 7.4).
Unfortunately, the bits indicating the occupation of a taxi also seem to be unreliable as they
occasionally �ip for a few seconds. However, during the result analysis in the following sections,
the average trip time is a useful value. Therefore, a simple �lter was applied to the occupation data
in order to remove the major part of measurement errors. More speci�cally, the �lter considers a
change of the occupation bit to be a measurement error if the average speed at the particular data
point is greater than 1m/s ( = 3.6km/h). This �ltering approach is motivated by the fact that a
taxi needs to slow down and �nally stop to deposit or to pick up a client. Yet, after �ltering there
are still a considerable amount of trips with a duration of shorter than 60 seconds in the data. As
it is very improbable that a taxi trip takes less than 60 seconds these trip times are most likely
incorrect. Therefore, the average trip times (see table 7.2) that were calculated based on this data
should still be regarded as approximate values providing a low accuracy.

7One test run using a single �le and one particular parameter combination took approximately one hour on average.
8Up to 30% of measurement errors have been observed in a taxi �le.
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3 km

Figure 7.1: This plot9of a taxi mobility trace visualizes the density of data points by opacity. The
downtown area (upper circle) and the airport (lower circle) provide particular high density values.

3 km

(a) 0.6% noise

3 km

(b) 33% noise

Figure 7.2: In these spatial plots of taxi mobility traces red points represent measurement errors.
The considerably larger amount of errors in the right trace suggests faulty measurement equipment.

9This map and all other maps in this thesis were created using the ggmap package for the programming language
R. This package uses map tiles by Stamen Design, under CC BY 3.0 and data by OpenStreetMap, under CC
BY SA.
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7.3 Test Procedure
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Figure 7.3: Block diagram of the test procedure

The test procedure consists of three main steps (see �g. 7.3). At �rst, the test data is preprocessed
using several �lters. Then the preprocessed data is embedded in an m-dimensional space using the
delay ν (see section 4.1). The result of the delay embedding are vectors that contain m subsequent
locations x = {x1, ..., xm}. In the following, these vectors will be referred to as location batches.
One portion of the obtained location batches is used for training and another portion is used for
testing. The actual number of batches per taxi used for training is 3000. For testing, 500 batches
per taxi are used. During the testing phase the �rst m-1 locations of each batch are used as input
for the algorithm and the m-th value serves as a reference value for the prediction veri�cation.

7.4 Preprocessing

As visible in the geographic plots, the taxis actually move within the downtown area most of the
time. Thus, an algorithm that always predicts the taxi to be in the center of this area would
generally provide quite good results. So, prediction tests that are directly based on the taxi data
may produce insigni�cant results since prediction can be a trivial task due to low spatial variance.
To deal with this fact, the delay embedded location data was �ltered before testing in order to
increase the spatial variance. Strictly speaking, location batches with a total travel distance being
smaller than a certain threshold λ were excluded. Given the value of λ is su�ciently large, the
�ltered data exhibit a more uniform spatial distribution. In �g. 7.4 the e�ect of the distance �lter
is exemplarily shown.
Another part of preprocessing is a �lter that removes errors induced at measuring time. Namely,
a thresholding �lter as described in section 7.2 is used. Particularly, taxi �les that contain more
than 5% of erroneous measurements are entirely excluded from the test data assuming faulty
measurement equipment.

3 km

(a) No distance �lter used.

3 km

(b) After applying distance �lter.

Figure 7.4: Two samples of the same size from the same taxi trace �le. The left sample was
extracted without distance-related �ltering. The right sample contains only location batches with
a total travel distance greater than 7000m, resulting in a higher spatial variance.
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7.5 Veri�cation of the Implementation

Before actually testing the prediction capabilities of the proposed algorithm with regard to the
given test data, the implementation was generally veri�ed using an in-sample veri�cation. For this
purpose, the algorithm was given the same data set for the learning phase and for prediction. To
be speci�c, 500 location batches were extracted from each of the ten test �les. Using this data,
one exemplary test run was executed with the delay embedding parameters set to m = 3 and
ν = 6min. Thus, for each test �le the algorithm was executed once using the extracted location
batches as training and prediction test data. As shown by the cumulative error distribution given
in �g. 7.5, the results provide very high accuracies. Namely, more than 60% of the predictions
achieve an error smaller than 500m. This indicates that the implementation of the algorithm
is generally functional. More speci�cally, the algorithm seems to remember previously observed
location sequences and successfully uses them to predict future locations. This is of course no
meaningful test for the prediction technique as it does not show if the algorithm can deal with new
data. However, it is a useful evidence for the overall correctness of the implementation. In the
following, the actual results of the out-of-sample tests as described in section 7.3 are presented.

0 1000 2500 4000

0
.1
0

0
.5
0

0
.9
0

x[m]

P
(e
rr
or
≤

x
)

Figure 7.5: In-sample veri�cation: The cumulative distribution of the absolute error observed using
m = 3 and ν = 6min

7.6 Test Results

As described in chapter 6, the prediction algorithm takes several parameters that need to be
de�ned with respect to a particular use case. The parameters that a�ect the accuracy of the
applied approximate techniques were set to �xed values for all tests. More speci�cally, they were
de�ned such that the runtime of the algorithm was within an acceptable range. Since the actual
values of these parameters are not of much interest regarding the test analysis, they will not be
listed here but can be found in appendix A.1. Rather, the test analysis focuses on the impact of the
delay embedding parameters m and ν. Furthermore, it is investigated what particular properties
of the test data are re�ected in the prediction test results.
To examine the predictive capabilities of the algorithm regarding the near as well as the more
remote future, di�erent prediction intervals were tested. Actually, the interval ν varies from 3.3 to
60 minutes. The value of m that de�nes the assumed Markov order of the underlying process is
varied between 2 and 5. Regarding the preprocessor, the minimum distances λ used for �ltering
the input batches are de�ned with regard to the total time span covered by one batch ttotal = mν.
However, they are also bounded by the data set characteristics. The same number of samples for
learning and testing were used for all tests. Namely, 3000 samples were used for learning and 500
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samples were used for testing. These numbers were chosen with regard to some previously executed
test runs. In the following, the test results are presented and analyzed with respect to the delay
embedding parameters.

7.6.1 Impact of the Time Delay

In this section the impact of the time delay (ν) used for embedding is examined in detail. At �rst,
the relevant test results are presented and then these results are analyzed taking into account the
test data.

Observed Results

A particular group of test sets listed in table 7.1 is considered. These test sets were all executed with
a �xed embedding dimension m = 3. Only the delay parameter was varied from 3.3 to 60 minutes.
Regarding this table, the prediction accuracy obviously decreases as the time delay increases. To
be speci�c, the average error induced by the predictor as well as the variance and the median of
the error seem to depend on the time delay. Interestingly, there seems to be some saturation point
between ν = 10min and ν = 30min. More precisely, increasing ν beyond 30 minutes does not
remarkably worsen the prediction. Similar results are observed using an embedding dimension of
m = 4 as shown in appendix A.2.

ν [min] ttotal [min] ME[m] RMSE[m] Median[m]
3.3 9.9 1130 1585 802
6 18 2252 3153 1561
10 30 4079 5853 2452
30 90 5905 9187 2655
60 180 5911 9314 2776

Table 7.1: Results of �ve test sets with �xed m = 3 and varying ν from 3.3 to 60 minutes.

A more sophisticated perspective on the observed absolute prediction errors in these test sets is
provided by the cumulative error distributions given in �g. 7.6. This plot visualizes the portion
of predictions providing an absolute error smaller than a certain distance x. Taking this plot into
account, the above impressions are con�rmed. It shows quite clearly, that the prediction accuracy
does not decrease much for delays greater than 10 minutes. However, predictions based on smaller
delays provide considerably better results. To understand this e�ect the spatial distribution of
prediction errors is taken into account. Figure 7.7 illustrates the spatial distributions of the absolute
prediction errors. In this graphic the actually observed locations of the taxis are plotted. The
color of each point indicates the error that was made by the predictor when trying to predict the
particular location. Obviously, the good predictions are almost uniformly distributed when using
a small delay (ν = 3.3min). In contrast, the predictions providing a small error are more and more
clustered around two locations as the delay increases. Actually, in the plots for ν ≥ 30min they
are clearly clustered around the downtown area and the airport area.

Interpretation

To explain this e�ect, the properties of the data set as well as the working principle of the prediction
algorithm need to be considered. The algorithm assumes successively observed locations to be
correlated. The degree of correlation is measured by recurrence. To put it simple, a certain
amount of similar observed location sequences are assumed to be a pattern that can be used for
prediction. As described above, taxis tend to use the same routes to approach certain locations.
Therefore, the mobility trace of a taxi provides a considerable amount of short-term recurrences.
However, long-term recurrences are probably very rare since the destinations the taxis are heading
for mainly depend on the clients' demands. To be speci�c, it seems reasonable to assume that
subsequently observed locations in the mobility trace of a taxi are only correlated if they are part
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of the same trip. Each time a new trip starts a new destination is de�ned by the new client.10

Whereas, during a particular trip the destination does not change. Based on this argumentation,
a signi�cant amount of recurring similar location sequences can only be observed in the taxi data
when limiting the overall time covered by each sequence to the average trip time.
This gives a convenient explanation for the observed clustering e�ect and matches with the observed
test results. More speci�cally, the observed saturation for ν > 10min can be explained by the
average length of a taxi trip. In table 7.2 the average trip times as well as the related variance
values are listed for the taxi data �les that were used for testing.11 Considering these values it can
be assumed that most taxi trips in the test data take less than half an hour. Thus, in most cases
three subsequently observed locations with a time interval of 10 minutes are not part of the same
trip. Therefore, they can not be expected to be correlated and to uncover meaningful mobility
patterns. Hence, a predictor that uses an embedding dimension of m = 3 and a delay time of
ν > 10min is not able to make meaningful predictions based on the taxi data set. Actually, it
assumes a second order Markov process to underlie the data whereas the true Markov order is
lower for the major part of the data. So the predictor falls back to a predictor with m = 2 in many
cases. This explains the spatial clustering with regard to the prediction accuracy. Assuming a �rst
order Markov process allows considering the current location to predict the next one. This permits
a more sophisticated guess than just relying on the spatial frequency distribution12 but su�ers
from not being able to recognize trends or directions. Therefore, it seems to be reasonable that
a predictor with m = 2 will tend to predict exclusively a few very frequently observed locations.
So the clustering e�ect observed when increasing the delay time beyond ν = 6min re�ects the fact
that the predictor often has to base its predictions on a second order Markov process.

No.
Average of

Trip Time[min]
Variance of

Trip Time[min]
1 17 8
2 15 6
3 14 6
4 19 10
5 15 7
6 13 9
7 13 8
8 14 6
9 21 842
10 15 10

Table 7.2: The average trip times of the taxis used for testing. The values of taxi no. 9 are
de�nitely unreliable since the variance is implausibly large.

10Here it is assumed that the destinations that are demanded by the clients are distributed randomly.
11These values were calculated using the occupation bits in the taxi data after applying a �lter as described in

section 7.2.2. They should be regarded as approximate values as the data seem to be very unreliable.
12A predictor that assumes zeroth order Markov process would always predict the single most frequently observed

location.
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Figure 7.6: The cumulative distributions of the absolute error observed with �xed m = 3
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Figure 7.7: Spatial distribution plots of the absolute error observed when using a �xed embedding
dimension m = 3. The more accurate predictions are clustered around two locations as ν increases.
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7.6 Test Results

7.6.2 Impact of the Embedding Dimension

The embedding dimension m de�nes the order of the Markov process that is assumed to underlie
the observed location data. In this section the impact of this parameter is examined in detail.
Again, at �rst the relevant test results are presented and then these results are analyzed with
regard to the test data.

Observed Results

To examine the impact of the embedding parameter m on the prediction accuracy several test sets
were executed. Table 7.3 shows the results of four test runs. During these tests the embedding
delay was set to ν = 6min. The embedding dimension m was varied from 2 to 5.13 Considering
these results, a higher embedding dimension generally provides lower average absolute prediction
errors and smaller variances. However, the mean error as well as the root mean squared error do
not change signi�cantly for m ≥ 3. Particularly, the test sets with m = 4 and m = 5 provide very
similar results. Moreover, the average error observed with m = 5 is even slightly greater than the
average error observed with m = 4. This indicates that there is a saturation point at m = 3 or
m = 4.

m ttotal [min] ME[m] RMSE[m] Median[m]
2 12 4018 6047 2438
3 18 2252 3153 1561
4 24 2102 2883 1535
5 30 2146 2981 1528

Table 7.3: Results of four test sets with �xed ν = 6min and varying m from 2 to 5.

The same development is visible in the cumulative distribution plot given in �g. 7.8. This graphic
reveals that the four di�erent error distributions look very similar for 0m ≤ x ≤ 1000m. However,
beyond the point x = 1000m, the slope of the (m = 2)-distribution considerably decreases. So
the prediction with m = 2 induced apparently more large errors than the predictions with greater
embedding dimensions did. The variance that is indicated by the root mean squared errors in
table 7.3 is illustrated in �g. 7.9 by the density plots of the prediction errors. These plots show
that the error of the prediction results observed when m = 2 has two clearly discernible maxima at
approximately x = 1000m and x = 4100m. In contrast, the density distributions for m ≥ 3 have
a single signi�cant maximum14 at approximately x = 1000m. Furthermore, the spatial error plots
shown in �g. 7.10 are considered in the following interpretation of these results. Similar to what
was observed when varying the time delay ν, the plot for m = 2 indicates a clustering of more
accurate predictions around the downtown and the airport area. Whereas, in the plot for m = 3
a clustering is hardly visible.15

13The compression threshold for the oKDE and was slightly varied as well to decrease the computing time (see
appendix A.1).

14The other local maxima are not taken into account since they are comparatively small.
15The spatial plots for m = 4 and m = 5 are not included here since they look very similar to the plot for m = 3.

They can be found in appendix A.2
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Figure 7.8: The cumulative distributions of the absolute error observed with �xed ν = 6min
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Figure 7.9: Density distributions of the absolute error observed for ν = 6min. The dashed lines
indicate the medians. The distributions were obtained using kernel density estimation.
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Figure 7.10: Spatial distribution plots of the absolute error observed when using a �xed embedding
delay ν = 6min. More accurate predictions tend to be clustered around two locations when setting
m = 2.

Interpretation

The results described above match well with the results discussed in the previous section. As also
argued above the taxi data provides mostly short-time recurrences. This explains the saturation
observed when increasing the embedding dimensionm de�ning the order of the assumed underlying
Markov process. Following the above argumentation, increasing m beyond m = 3 while setting
ν = 6min would only provide more accurate predictions if the average trip time in the taxi data
were greater than 24min(= 6min · 4). Else it would fall back to a prediction with m = 3 in many
cases. Actually, this is observed in the density and cumulative distribution plots of the absolute
error.
The clustering e�ect observed for m = 2 was explained in the previous section, too. It results from
the fact that the second order predictor uses only the current location to predict the next one and
is not able to recognize trends or directions.
Summarizing, the results indicate that increasing the order of the assumed underlying Markov
process provides more accurate results. However, the Markov order is certainly limited by the
actual stochastic process that underlies the data and depends on the delay time ν.

7.6.3 Reliability Veri�cation

As explained above, the prediction algorithm provides a reliability value for each prediction output.
This value de�nes the approximate cumulative probability that is calculated using a circle with
radius r around the predicted location. Hence, the algorithm claims that the predicted location
is with a certain probability p̂r within the radius r. To examine the correctness of this claimed
reliability di�erent test sets were executed. At �rst, the reliability radius was set to r = 1000m
and di�erent embedding parameters were used. Secondly, the radius was varied using �xed embed-
ding parameters ν = 6min and m = 3. Table 7.4 shows the average claimed and the statistically
evaluated reliability values provided by the test results. The latter is referred to as the actual reli-
ability. Obviously, for m ≥ 3 and r = 1000m the reliability claimed by the algorithm only slightly
di�ers from the actual reliability. Actually, the maximum di�erence is 15% with regard to the
actual reliability. When using an embedding dimension of m = 2, the claimed reliability deviates
at least by 34% from the actually observed reliability. This matches with the above observations
regarding the prediction accuracy. For the reasons explained above, the density estimated using
m = 2 provides a considerably worse approximation of the true underlying distribution than den-
sity estimations based on greater embedding dimensions. Consequently, the estimated reliability
is less accurate, too. In addition, when the accuracy radius is increased, the algorithm tends to
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overestimate the reliability. For r ≥ 1500m the deviation is greater than 26%. The main reason
for this is most likely the trapezoid rule that is used to calculate the reliability. As explained in
section 6.4.4 this approximation gets worse when increasing the radius. So, a di�erent numerical
integration technique or di�erent approximation parameters would probably yield more accurate
results for radii greater than 1000m.
In summary, these test results indicate that the prediction algorithm provides useful reliability
values with an accuracy of up to 98.75% for radii smaller than 1000m. This con�rms the presump-
tion that the proposed algorithm is able to properly re�ect the actual stochastic process that is
underlying the given mobility data.

m Claimed reliability Actual reliability Percentaged Deviation
2 20.80% 33.20% 37.35%
3 33.22% 32.81% 1.25%
4 35.66% 31.05% 14.85%
5 33.95% 30.30% 12.05%

(a) ν = 6min, varying m

m Claimed reliability Actual reliability Percentaged Deviation
2 13.98% 21.44% 34.79%
3 18.49% 20.83% 11.23%
4 18.77% 18.07% 3.87%

(b) ν = 10min, varying m

r Claimed reliability Actual reliability Percentaged Deviation
500 12.58% 12.54% 0.32%
1000 33.22% 32.81% 1.25%
1500 60.23% 47.59% 26.56%
2000 96.88% 59.37% 63.18%

(c) ν = 6min, varying r

Table 7.4: Comparison of claimed and actual prediction reliabilities for varying embedding dimen-
sions (a, b) and varying radii (c). The percentaged deviation in the last column was calculated in
terms of the actual reliability.
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Chapter 8

Conclusion and Future Work

The central hypothesis of this thesis as speci�ed in chapter 2 states that an appropriate algorithm is
able to extract recurring patterns from location histories and use them to predict future locations.
The proposed algorithm was shown to underpin this hypothesis. Summarizing, the algorithm uses
an online kernel density estimation technique [26] to obtain a probability distribution of the delay
embedded location time series. The resulting mixture of Gaussians is transformed into a con-
ditional distribution and then quadratic optimization [28] is used to provide a prediction. This
algorithm was tested using the cabspotting data set [31] and the tests provided meaningful results.
To be speci�c, the test results indicate that the prediction algorithm proposed in this thesis is able
to extract existing patterns from location time series data by means of a continuous probability
density function. Furthermore, it is shown that the algorithm can exploit these patterns in order
to predict future locations. For instance, the algorithm achieves an accuracy better than 1000m
in approximately 32% of the executed tests using a prediction interval of 6 minutes. Moreover, in
13% of these tests the prediction error is smaller than 500m. As expected, the test results clearly
demonstrate that the prediction capability of the algorithm strongly depends on the properties
of the used location data. Since the algorithm bases its prediction on recurring patterns the de-
gree of recurrence in the data limits the algorithm in its ability to provide accurate predictions.
Moreover, the statistic evaluation of the tests showed that the reliability of the predicted locations
as claimed by the algorithm generally match well with the actual reliability. This con�rms the
proposed algorithm in its ability to properly re�ect the actual stochastic process that is underlying
the given mobility data. Compared to previous work, this thesis uses a more generic approach.
In particular, the prediction interval is varied and the algorithm does not assume a �nite set of
discrete locations.
As the results presented in this thesis are quite promising, a further analysis of the proposed pre-
diction technique using di�erent data sets is expected to provide interesting results. In addition,
there are several imaginable approaches to further improve the prediction algorithm. Currently,
the algorithm is not able to directly integrate additional attributes that are associated with the
coordinate pairs in a location time series into the prediction model. Though, often several such
attributes are available. To add an additional attribute to the delay embedding space used by the
algorithm, clearly it needs to be mapped to one or several scalar values. This can be a trivial task.
However, as described in section 6.4.5, it is crucial to de�ne an appropriate scale for the attribute
as the scale assigns a weight to it.
Another approach to obtain an improved prediction technique based on the proposed algorithm is
to combine multiple predictors each using di�erent embedding parameters.16 Then, the prediction
providing the highest reliability or a weighted combination of all predictions can be used. This
approach takes into account that recurrent patterns in location time series data may generally vary
in scale. Thus, multiple predictors using varied embedding parameters could exploit di�erent pat-
terns in the data. Furthermore, one can think of techniques to iteratively optimize the embedding
parameters with regard to the data. Yet, this would probably require a considerable amount of
additional training data.

16In the �eld of classi�cation this is called boosting.
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Appendix A

Additional Test Parameters and

Results

Here, a detailed listing of the parameter values used for testing is given. Moreover, some additional
results are presented.

A.1 Test Parameters

Component Parameter Value(s)

Density estimation (oKDE)
forgetting factor 1 (

∧
= disabled)

compression threshold
0.03 (for m ≤ 4)
0.05 (for m = 5)

Optimization (Prediction)
search region radius 20000m
segmentation parameter s 500m
no. of segments for reliability estimation 10

Table A.1: Values used for test parameters that determine the accuracy of approximations during
density estimation and optimization

A.2 Test Results

The following tables show some additional test results characterized by mean error, root mean
squared error and median error in meters.

m ttotal [min] ME[m] RMSE[m] Median[m]
2 20 6507 9292 3885
3 30 4079 5853 2452
4 40 3724 5287 2373

Table A.2: Test results for ν = 10min

m ttotal [min] ME[m] RMSE[m] Median[m]
3 90 5905 9187 2655
4 120 6381 9728 3080
5 150 6541 10061 3238

Table A.3: Test results for ν = 30min
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A Additional Test Parameters and Results

m ttotal [min] ME[m] RMSE[m] Median[m]
6 24 2102 2883 1535

7.517 30 2984 4313 2041
10 40 3724 5287 2373
30 120 6381 9728 3080

Table A.4: Test results for m = 4
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Figure A.1: Spatial distribution plots of the absolute error observed when using a �xed embedding
delay ν = 6min. For increasing m, less clustering is observed(compare �g. 7.10).

17In this case only four test �les were used. All others were executed using ten test �les as described in section 7.2.
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Appendix B

Contents of the Attached DVD

The DVD that was added to this thesis contains this thesis as a pdf-�le as well as the Java
source code of the implemented prediction algorithm and the related Javadoc-documentation.
Furthermore, all output �les containing the discussed test results were added. The folder structure
on the DVD is as follows:

� Thesis: this thesis as a pdf-�le

� Implementation

SourceCode: Java source code (two separate projects: oKDE, PrePos)

Executables: executable jar-�les and test scripts

Documentation: compiled Javadoc �les

� Testing: test output �les

� README.txt: Instructions how to execute the Java �les and further information.
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