
Grounding Words to Objects:

A Joint Model for Co-reference and Entity Resolution Using Markov
Logic for Robot Instruction Processing

Diplomarbeit

Florian Meyer

Prüfer der Diplomarbeit: 1. Prof. Dr. rer. nat. habil. Ralf Möller

(TU Hamburg Harburg)

2. Univ.-Prof. Michael Beetz, PhD

(TU München)

Eidesstattliche Erklärung

Ich, Florian Meyer, geb. am 25.10.1985, versichere hiermit, dass ich die vorliegende

Arbeit selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel

angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen

oder anderen Quellen entnommen sind, sind als solche eindeutig kenntlich gemacht.

Die Arbeit ist in gleicher oder ähnlicher Form noch nicht veröffentlicht und noch

keiner Prüfungsbehörde vorgelegt worden.

Hamburg, .

I

Acknowledgements

I would like to thank Daniel Nyga for his support during the creation of this work.

Moreover, I would like to thank everyone of the former IAS group at the TU-München

for their help and for making my stay in their group worthwhile. Letting me learn

about many aspect of the robotic research was rewarding far beyond the scope of

this.

Additionally, I would like to thank my two supervisors Prof. Beetz and Prof. Möller.

Prof. Beetz for accepting me as a student and integrating me flawlessly into his group

and Prof. Möller for supporting the thesis by being the first supervisor.

III

Abstract

This work is concerned with the development of a novel approach to language ground-

ing in the context of autonomous robotics. A probabilistic first order knowledge base

is used to build a database for action specific background knowledge for everyday

manipulation tasks. It is shown that such a knowledge base can be used to find items

in the robot’s current belief state of the world which are necessary for a successful

task execution. This can be achieved for objects that are specifically named in the text

and objects that are expected by an action specific model but that are not explicitly

named. The developed models are tested in several experiments and are critically

analysed.

V

Contents

Eidesstattliche Erklärung I

Acknowledgements III

Abstract V

Contents VII

List of Resources IX

1. Introduction 1

1.1. Motivation . 1

1.2. Problem Description . 3

1.3. Related Work . 7

1.4. Contributions . 10

1.5. Outline . 10

2. Prerequisites 13

2.1. Probabilistic Robot Action Cores . 13

2.2. First Order Logic . 15

2.3. Markov Networks . 17

2.4. Markov Logic . 19

2.4.1. Introduction . 19

2.4.2. Formal Definition . 20

2.4.3. Inference . 21

2.4.4. Learning . 28

VII

Contents

3. Coreference and Entity resolution 33

3.1. The Model . 33

3.1.1. A model for coreference resolution 35

3.1.2. A model for entity resolution . 36

3.1.3. A joint model . 39

3.2. Implementation . 40

3.2.1. Natural Language Processing . 41

3.2.2. Model implementation . 41

3.2.3. Preprocessing . 48

3.2.4. Markov Logic Formulas . 48

3.2.5. Formulas for coreference resolution 49

3.3. Experiments . 51

3.3.1. Coreference experiments . 54

3.3.2. Grounding experiments . 59

3.3.3. Joint experiments . 61

3.4. Discussion of Results . 64

3.4.1. Discussion of coreference results 64

3.4.2. Discussion of entity resolution results 66

3.5. Discussion of the model . 67

4. Conclusion 71

4.1. Future work . 71

4.2. Summary . 72

A. Training Database 75

A.1. Texts . 75

A.2. Action verb models . 78

B. Markov Logic Models 81

B.1. Coreference resolution . 81

B.2. Entity resolution . 82

B.3. Joint model . 82

Acronyms 85

Bibliography 87

VIII

List of Resources

Figures

1.1. PRAC roles for a set of instructions . 4

1.2. Enriched PRAC model . 4

1.3. Relationship between all elements of a set of instructions 6

3.1. Drawback of the used semantic distance 35

3.2. Semantic similarity using taxonomies . 37

3.3. Two drinking mugs on a counter . 40

3.4. System design for instruction processing 42

3.5. Visualisation of the kitchen model from KnowRob 52

3.6. Results for first coreference experiment 55

3.7. Results for second coreference experiment 57

3.8. F1 scores of first and second coreference experiemnt 58

3.9. Precision with and without concepts for grounding experiments 61

3.10.F1 scores for all experiements of the joint model 64

Tables

2.1. The truth table for the FOL connectives. 16

2.2. WCSP variables and corresponding MLN predicates 25

2.3. Grounded ML formulas . 25

3.1. Results for the first coreference experiment 55

3.2. Results for second coreference experiment 56

3.3. Overview of results of the grounding experiments 59

IX

Contents

3.4. Results for the improved grounding model 60

3.5. General results for the joint experiment. 62

3.6. Results for coreference as part of the joint model 62

3.7. Results for grounding as part of the joint model 63

Algorithms

1. SampleSAT(InitialTruthAssignment, MaxSteps, T) 27

2. MC-SAT(clauses, weights, num_samples) 28

X

Chapter 1

Introduction

1.1. Motivation

One of the major challenges in the field of autonomous robotics is the intuitive inter-

action between the operator and the robot. One approach to this problem is to use

natural language and to interact with the robot with regular, everyday instructions. A

scenario for such an interaction could be in a kitchen setting where the robot has to

do tasks that are everyday activities and can be successfully accomplished by humans

without great difficulty, like cooking dishes or setting the table. In order to have a

natural feeling while interacting with the robot, the human operator should be able

to give general, even abstract task instructions like “Set the table” or “Make me some

pancakes”.

For the autonomous robot being able to process such general task instructions it

has to have background knowledge about the instructions. Fortunately, for many of

the everyday tasks that are encountered in a kitchen setting there are detailed task

instructions available on the internet1. These databases include many recipes and

descriptions of many other everyday tasks. This huge amount of data has proven to

be exploitable in the robotics context [1]. Nonetheless, the downside of those tasks

descriptions is the fact that they are intended for other humans. Henceforth, there is

a need to harness these task descriptions by transforming the natural language into

a representation that can directly be used further by robotic execution engines.

Instructions that are intended for humans are inherently underspecified [2]. For ex-

ample, the sentence “Put pasta into a pot.” is lacking a lot of crucial information the

1e.g. www.ehow.com, www.wikihow.com

1

1. Introduction

robot needs in order to successfully accomplish the task. First, the robot needs to

disambiguate what the semantic meaning of all the different words is. For example,

the semantic sense of the word “Mix”: It could either refer to the verb “to mix” that

would be referenced in the context of an instruction like “Mix pasta and water.” or

as the noun “the mix” that could occur in a sentence like “Keep the mix refrigerated.”.

Moreover, not all actions necessary for a robot to execute are explicitly mentioned in

a set of instructions that is intended to be processed by humans. For example, to open

the box of pasta and take out the contents before adding the pasta to a pot. Those

implicit instructions also depend on the state of the world that the robot operates in

and consequently are hard to put in a general web instruction that is intended to be

general enough to be understood by everyone and be applicable in every kitchen.

It has been argued that everyday tasks require a huge amount of background know-

ledge in order to be executed successfully [3]. This background knowledge base

needs to include data on many different levels. On a high level of abstraction this

knowledge base needs to contain data about the preferences of the operator2 or the

habits3 [4]. On a medium level, this knowledge base could include knowledge about

the objects that are usually used for specific tasks4 and on a lower level this could

also include knowledge about the relationships between the different objects in the

context of a specific task, for example, the geometric relationships between objects

in a kitchen setting in the context of a particular task. Consider the following instruc-

tion: ‘Put the cup on the table.’. The instruction expects to use a cup that is present

in the kitchen and not yet on the table. Consequently, there are certain patterns that

are assumed to hold with those instructions and this could also be saved in such a

background knowledge base.

One of the fundamental problems in the context of underspecified instructions is the

identification of the objects that are expected to be used in the context of an instruc-

tion. These can be stated explicitly in the text or implicitly be expected to be used for

certain tasks. This knowledge would be expected to be available in some background

knowledge. The objects that are present in a set of task instructions can be repeatedly

referred to in a text with different names or implicitly within different actions. Being

able to identify, which object is referred to, is therefore a key challenge in processing

2e.g. where does the operator want to sit on the table?
3e.g. how many pancakes does the operator eat?
4e.g. use the middle sized pan to make pancakes

2

1.2. Problem Description

robotic task instructions and make them useful for the autonomous robot. The task of

determining if two words refer to the same real world objects is generally known as

coreference resolution. To find the real world entity that belongs to a word is known

as entity resolution. In the context of task execution the underspecification plays a

central role while developing solutions that can process the instructions. As will be

shown in the next section, current available solutions for coreference and entity res-

olution do not provide mechanisms to handle underspecified instructions.

1.2. Problem Description

Instructions for everyday activities in natural language are highly underspecified [2].
Everyday instructions usually mention objects implicitly because the knowledge of

the human provides the necessary background information about the objects in-

volved. For example in the short set of instructions:

Put pasta into a pot.

Add water.

Cook for 10 minutes.

Serve on a plate.

In the second instruction the verb ‘Add’ requires some knowledge about the place

where to add water. This location is the pot from the first sentence. Consequently, a

model is needed that naturally models this kind of underspecified instructions.

The Probabilistic Robot Action Core (PRAC) [2] formalism tries to resolve this kind

of underspecification by introducing roles. The PRAC formalism is formally intro-

duced in Section 2.1 but the main ideas will be presented here to give the reader the

opportunity to understand the context of this work. For the most important action

verbs there are specific models that have roles which parametrize the action. A role

is defined to fulfil some function in this action. For the above example the resulting

representation is provided in Figure 1.1. Each word is assigned its semantic role in

the context of the action it appears in using probabilistic inference. This is indicated

by the arrows pointing to the green nodes. The sentences can be treated independ-

ently as it is assumed that the information for one action can be found in the sentence

3

1. Introduction

Adding

Water

Serving PuttingCooking

Pasta

Pot

10 Minutes

Goal Duration Theme Theme

Goal GoalTheme

??

?

Figure 1.1.: The PRAC roles for the actions from the example.

Adding

WaterServePlace

AddPlaceServeTheme

Serving PuttingCooking

Pasta

Pot

10 Minutes

Goal Duration Theme Theme

Goal GoalTheme

Figure 1.2.: Three virtual words (orange) are introduced to enrich the model.

that the verb appears in. As can be seen, the presented model in Figure 1.1 is only

a reduced version since in a real application the robot needs a lot more information.

However, the presented information is enough to understand the principles explained

in this work.

Figure 1.1 additionally exemplifies that for three roles, no word in the instruction can

be found. If a role cannot be filled with a word in the sentence then a virtual word

is introduced, i.e. a word that belongs to the sentence but is not explicitly stated.

The role is then assigned to this newly introduced word. Figure 1.2 shows how three

virtual words are introduced and the roles are assigned to those words.

Within the context of this semantically enriched version of the instruction set, this

work aims to address the problem of coreference and entity resolution. Coreference

4

1.2. Problem Description

aims to find all virtual and actual words that represent the same real world entity. En-

tity resolution tries to find all real world representations of the coreference clusters.

This is shown in Figure 1.3. A ‘Coreference’ edge indicates that two words (including

virtual words) are in a coreference relationship. The entity resolution is indicated

by the ‘Grounded’ relationship. The images present objects that exist in the robot’s

current belief state of the world. Moreover, the objects in the world can be in dif-

ferent relationships to each other. In the example the ‘Pasta’ is in a geometric ‘on’

relationship with the ‘kitchen table’.

Coreference and entity resolution in the robotics context are two closely connected

tasks. Both deal with the identification of the objects in a text. Usually, those two

tasks are treated separately as non relational learning methods do not allow the

joint inference over both tasks naturally. Nonetheless, these two task are related in

a way that the information about the existence of one is evidence for the other and

vice versa. One such example for the set of instructions mentioned above could be:

The word ‘pot’ in the first sentence is implicitly referred to in the second instruction

because it represents the location the water is added to. If this coreference can be

inferred then it can also be inferred that they represent the same real world object.

Hence it is beneficial to treat those two tasks together in one model.

In conclusion, the task is to find all coreference relationships between words, whether

they are virtual or explicitly mentioned words. Moreover, to find the most likely

match of an object mentioned in a text with an object in the robot’s current belief

state of the world.

5

1. Introduction

Adding

WaterServePlace

AddPlaceServeTheme

Serving PuttingCooking

Pasta

Pot

10 Minutes

Goal Duration Theme Theme

OnRelational

GroundedGrounded

Grounded Grounded

Coreference

Grounded

Coreference
Goal Goal

Coreference

Theme

Grounded

Figure 1.3.: The relationships of the different entities encountered in a short set of in-
structions.

6

1.3. Related Work

1.3. Related Work

Coreference and entity resolution are both terms that were coined in the context

of classical Natural Language Processing (NLP) tasks. Coreference in this context is

defined as finding the words in a text that refer to the same object. For example,

the sentences: “John puts a glass on the table. Now he drinks from it.” In this short

example a coreference system is to find that the word “he” in the second sentence

refers to the word “John” in the first sentence and the “it” in the second one to “glass”

in the first sentence. A good overview on the history of coreference approaches is

provided in [5]. A recent state of the art implementation is described in [6] where

many syntactic and semantic features are extracted and processed in a sieve like

approach, where the strongest indicators are applied first and less strong indicators

later. This approach includes the use of semantic distances in the WordNet taxonomy,

semantic information from the Wikipedia infoboxes5 and Freebase records6. Clusters

of coreferent words are created and mentions can either be added to a cluster or

be left out. In this fashion a set of 13 sieves are applied sequentially. However, this

system has been trained with annotated newspaper articles and as a result usually ex-

pects grammatically correct sentences. Moreover, certain sentence structures are sel-

dom encountered in such newspaper articles, e.g. imperatives that are frequently en-

countered in robot instructions. In [7] a joint coreference resolution approach using

Markov Logic (ML) is introduced. This approach differs from traditional approaches

as it does not look at the coreference for pairs of mentions but classifies all mentions

jointly. Additionally, this system uses an unsupervised approach and consequently

does not rely on annotated training data. It shows that this unsupervised approach

outperforms existing unsupervised coreference systems and is comparable to super-

vised ones that do not make use of joint models. The work is based on the work

described in [8]. The work described is also unsupervised but lacks a joint approach.

Evidence for this model is also based on syntactic features that can be extracted from

the text.

Entity resolution on the other hand is the task to find entities that exist in the real

world in intra text environments. For example, the fact that “BMW” always refers to

the company “BMW” in multiple independent documents. In this area as well a lot

5www.wikipedia.com
6www.freebase.com

7

1. Introduction

of work has been done. One work [9] uses ML to match entities that reside in dif-

ferent databases. In particular, the work tries to match scientific citations. The model

is an extension to the model proposed by Fellegi and Sunter [10] and uses ML to

do joint entity resolution by eliminating the independent and identically distributed

(i.i.d.) assumption. This is one example on how to approach the classical NLP entity

resolution problem.

Other works focus only on particularly hard to detect features like Noun Genders [11,

12] or to identify the pleonastic “it” [13]. Those works can be beneficial to entity as

well as coreference resolution. It is important to point out, though that determining

the gender of nouns is in general not possible in the English language and is only

applicable to entities like certain humans or animals (in case of animicity). Other

languages like French or German, however, would greatly benefit from those works

in coreference and entity resolution settings. As this describes a problem that funda-

mentally differs from the one dealt with in this work a further evaluation is out of

the scope of this work.

In a robotics setting the robot needs to get information about the meaning of the

words and in particular what those words imply for the robot in its current con-

text, i.e. the world it resides in. Processing natural language and making its content

accessible for robots is also called Semantic Language Processing (SLP) or Language

Grounding (LG). The former parses language in order to extract the meaning of the

text or sentence and its components while the latter goes further and grounds the

language into the capabilities of the robot and its environment. For example, a robot

needs to have knowledge of the intended meaning of a verb in a sentence. But in

addition to having information about what the verb means, it needs to have a map-

ping from the intended meaning of the word to the correct actions in the context that

the robot is in at the moment. The explanations given here are to be used as rough

outlines of the fields as the terms introduced are not strictly defined.

This work is at the intersection of SLP and LG, meaning that the sense of the words

has already been allocated and the goal is finding the object that are referred to in the

sentences, in the perceived world of the robot. In this approach there is no translation

of the sentence into a robot plan or any other plan language but into the PRAC [2]
formalism. This representation can be used to build high level plans that can be used

in an execution engine like the one described in [14].

8

1.3. Related Work

Prior work in LG mostly deals with grounding directions that are given by a human to

a robot. The approach described in [15] accomplishes this by using techniques from

statistical machine translation where parts of the sentence are paired with manually

annotated λ-expressions. In this way entire sets of directions can be translated into a

nested λ-expression. This approach is very limited in its applicability and requires a

lot of manually annotated training data. Moreover, its generalization behaviour over

unknown, i.e. not previously seen objects in the training data, is questionable.

Another approach [16] also deals with directions given by a human to a robot. The

Generalized Grounding Graphs (G3) framework is developed, in which natural lan-

guage instructions are converted into factor graphs, where each factor is connected to

three nodes. One of the nodes corresponds to an expression in the text and one to an

object in the world. The third node is True if the two other nodes match. This factor

graph representation corresponds to a visualisation of the Spatial Description Clause

(SDC) [17]. This extends the schema just presented to spatial relations and hence to

more than just objects, e.g. “verbs” and “places” can be represented. Since the factor

graph can be translated into a Markov Network it is evident that this propositional

approach is rather limited in its expressiveness. For example, the types (e.g. “Place”,

“Objects”, etc.) need to be known in advance and the extension is difficult. How-

ever, the way the different parts of the factor graph can be connected shows some

resemblance with the PRAC approach.

Further, a different work [18] uses a combination of λ-calculus and Combinatorial

Categorical Grammars where combinatorial rules determine how the translation pro-

cess is taking place. For each instruction a goal and an action is expected. Although

the system can run in real-time and can create usable robot plans, it is not able to

handle uncertainty in the interpretation of word senses. It does not generalize over

the words and requires that the semantics of each word are annotated in the database

used.

In case of entity resolution the classical NLP understanding of this problem is not

applicable to grounding the entities of the text into the perceived world of the robot.

Furthermore, the entity resolution problem from the NLP context does not take the

properties of those entities into consideration that are not mentioned explicitly in

texts, like the location of an object. Additionally, only those objects are searched

for that are explicitly stated in the instruction but when dealing with incomplete

9

1. Introduction

information, this is not sufficient. Coreference is mainly dealt with in the classical NLP

context where mostly syntactic information is used. However, in the robotics context

where a lot of semantic information is available and needed, those approaches need

to be further refined in order to find objects in different instructions that are not

explicitly mentioned. In general, all of the presented approaches do not address the

problem of underspecified instructions.

In conclusion, this short summary makes clear that there is a need for new methods

that can solve the problem of underspecification in everyday task descriptions since

today’s methods do not address this problem. This work addresses the problem of

finding a new approach to coreference and entity resolution that naturally handles

underspecified instructions in a robotics context.

1.4. Contributions

This work presents a novel approach to language grounding using a probabilistic first

order knowledge base. The work addresses the problem that underspecified instruc-

tions pose by using virtual words and roles. It is shown how Markov Logic can be

used as a means to provide such a knowledge base and how the formalism can be ex-

ploited to infer missing information. A system for coreference and entity resolution is

developed. Moreover, several experiments will show the applicability of the approach

presented here. This includes to find the words that are in a coreference relationship

within a text and identify the objects that can be used in the current belief state of

the robot.

1.5. Outline

This work is divided into four chapters. It begins with introducing the necessary

prerequisites that are elementary to the understanding of this work. First, First Or-

der Logic and Markov Networks are covered in Section 2.2 and Section 2.3. Those

two methods are needed for the introduction to statistical relational learning in Sec-

tion 2.4 and concluding with Markov Logic in Section 2.4.2 which is the method

mainly used in this work for the implementation. Moreover, a short introduction to

10

1.5. Outline

Probabilistic Robot Action Cores is given in Section 2.1 to explain the context in

which this work has been developed. Chapter 3 provides details on how the differ-

ent models for co-reference and entity resolution are designed. Section 3.2 continues

with the implementation in Markov Logic. Experiments are conducted and results are

being discussed in Section 3.3 and Section 3.4. The model used in analysed in detail

in Section 3.5. The work ends with an outlook on potential improvements and a brief

summary of the results obtained in Chapter 4.

11

Chapter 2

Prerequisites

2.1. Probabilistic Robot Action Cores

This work has been developed in the context of the ongoing effort at the Intelligent

Autonomous Systems (IAS) group at the Technische Universität München (TUM) to

provide knowledge bases for autonomous robots. The PRAC formalism exploits freely

available on-line resources and methods from Statistical Relational Learning (SRL) to

build action specific background knowledge that is available to the robot in order to

be able to execute everyday tasks that are easily handled by humans. The concept of

the PRAC is derived from the concept of the semantic core [19] that was introduced

in psychology to explain how the human mind is able to understand and execute

highly underspecified everyday instructions.

A PRAC is an action specific probabilistic knowledge base that models an abstract

event type by assigning an action role to each entity that is affected by the action

verb. An action verb in this case is a word in the instruction that results in an ac-

tion by the robot. Therefore the knowledge base provides knowledge about all the

information that the robot needs on a high level to successfully execute the task. This

knowledge ranges from identifying the objects that are needed in the instruction to

geometric constraints between these objects. Moreover, a PRAC provides knowledge

about preferences of users and can save knowledge about the environment the robot

acts in. For example the action “to place something somewhere”: In the context of

this instruction it is important to know where something needs to be placed. And of

course what needs to be placed. This is already very context dependent. In the case

that a hot pot is to be placed on a wooden table, the operator would expect the robot

to know that the pot is supposed to be placed on top of same protective layer between

13

2. Prerequisites

the hot pot and the table. Many of those situations arise where a lot of context de-

pendent background knowledge is needed, especially since most natural language

instructions are highly underspecified. In other words, a PRAC is a template for an

action that is parametrized by the context under which the action is to be executed.

Formally a PRAC is defined in definition 2.1.1.

Definition 2.1.1 ([2]) A Probabilistic Robot Action Core is a conditional probability

distribution P(R× T× S| v,�), where

R is the set of all action-specific relations

T is the set of all action verbs

S is the set of all class concepts

v is a taxonomy relation over S

� is a mereological relation over S

The set of class concepts is a set that contains concepts of objects. v defines relation-

ships between all the concepts and thus induces a taxonomy. As will be shown this

is very important for the generalization properties of the PRAC formalism over new

unseen objects, i.e. objects not seen in the training phase. Mereological relationships

can further help make the correct predictions.

Since the PRAC is defined as a Conditional Probability Distribution (CPD) any prob-

abilistic inference is possible given the context of the current instruction and the

currently available knowledge.

To fill the actions specific knowledge base multiple sources of knowledge can be used,

for example:

• Annotated textual data

• Annotated video data

• Simulator data

Each of these sources provides different information about the context of actions.

Video and simulator data could provide geometric relations between objects that are

usually not available in textual data.

14

2.2. First Order Logic

In order to process a natural language instruction and transform it into the PRAC

representation, many different steps are necessary. The details of the implementation

are left for Section 3.2.

2.2. First Order Logic

First Order Logic (FOL) is a powerful method to model knowledge in relational do-

mains. It generalizes propositional logic to a higher level of abstraction where reas-

oning over sets of objects is possible. FOL extends propositional logic with the use of

quantifiers that allow to make a statement over a domain of symbols.

The following short introduction to the basics of FOL is closely inspired by the intro-

duction given in [20].

A set of sentences or formulas in first-order logic is considered a first-order knowledge

base. Formulas are built using four different symbols: constants, variables, functions

and predicates. Constants are symbols that represent the entities that exist in the

domain of discourse and may be typed. This could be words, furniture pieces or

humans. Variables are place holders for objects of an entire domain and they may be

typed, i.e. assigned to one particular domain. A Function symbol is a representation

of an object that is in a relationship to another object without having to name the

former, e.g. ‘FatherOf(Bob)’. Predicates represent relations of objects in the domain

or assign attributes to objects. An interpretation or possible world is used to specify

which symbols are represented by which functions, objects and relations.

Formulas are built using four logical connectives as well as quantifiers and recursively

connecting atomic formulas. An atomic formula is is a predicate symbol applied to a

tuple of terms. A term is a logical expression that refers to an object. Thus, constants

are terms but functions are terms as well. The logical connectives are:

• ‘¬’ - negation

• ‘∧’ - conjunction

• ‘∨’ - disjunction

• ‘⇒’ - implication

15

2. Prerequisites

A B ¬A A∧ B A∨ B A⇒ B A⇔ B

True True False True True True True
True False False False True False False
False True True False True True False
False False True False False True True

Table 2.1.: The truth table for the FOL connectives.

• ‘⇔’ - equivalence

The truth values for the connectives can be taken from Table 2.1.

For quantification, two operators are available

• ‘∀’ - universal quantification

• ‘∃’ - existential quantification

A formula ∀x F1(x) is ‘True’ if F1 is ‘True’ for all objects x in the domain of x . ∃x F1(x)
is ‘True’ iff there exists at least one object in the domain of x where F1 is ‘True’.

A complete grammar of the syntax in the Backus-Naur form is provided in [21]. A

ground term is a term that has no variables. A ground atom is an atomic formula

where each argument is a ground term. A possible world assigns a truth value to each

possible ground atom. A knowledge base intuitively is implicitly conjoint just like a

regular formula. A formula F1 is called satisfiable iff there exists at least one world in

which F1 is ‘True’. A formula F1 is said to entail another formula F2 iff F2 is ‘True’ in

all worlds where F1 is ‘True’ and this is denoted as F1 |= F2.

As can be seen from this short introduction, FOL is a formalism where relationships

between classes and object instances can easily be represented. However, the formu-

las that are defined in the knowledge base are expected to always be ‘True’. In real

applications this is very hard to guarantee, even if noise in the data could be ignored.

As a consequence, models that naturally model uncertainty are desirable.

In the next section, Markov Networks are introduced that belong to the class of prob-

abilistic graphical models and provide an intuitive way of modelling uncertainty.

16

2.3. Markov Networks

2.3. Markov Networks

The Markov Network (MN) formalism is a widely used formalism to model uncer-

tainty. MNs or Markov Random Fields are undirected graphical models of the joint

distribution of a set of random variables. In its graphical form it encodes independ-

ence assumptions and is consequently a tool for engineers to model complex domains

easily.

For variable sets A,B and C, the expression A ⊥ B | C states that the variables A are

independent of the set B if conditioned on set C. With this notation, MNs are defined

in definition 2.3.1.

Definition 2.3.1 ([22]) A Vector XV with random variables as elements, indexed by

a vertex set V, is a Markov Network over an undirected graph G = (V,E), with a set

of edges E, if and only if each random variable X v, conditioned on its neighbours, is

independent of all other elements of Xv with E ⊆ V× V and v1, v2 ∈ V, (v1, v2) ∈ E⇔
∀(v2, v1) ∈ E:

(∀v ∈ V) : X v ⊥ {Xu : u 6= v, (u, v) /∈ E}|{Xu : (v, u) ∈ E} (2.1)

However, definition 2.3.1 lacks an explanation of how a probability distribution is

defined over a MN. For this, the result of a famous theorem in MNs is needed.

Theorem 2.3.1 (Hammersly-Clifford[23]) A probability distribution P over X= {X i, i ∈
V} satisfies the independence assumption made in definition 2.3.1 for a graph G = (V,E)
if and only if P(X) factorizes according to the set of cliques C ∈ C in G, i.e. can be rep-

resented as a proportional product of the cliques in G

P(X)∝
∏

C∈C

φC (2.2)

where φC is a non negative, real valued function that depends only on the variables

XC = {X v1
, . . . , X vn

} and a clique is a fully connected sub graph of G.

17

2. Prerequisites

The potentials φC assign each state of the clique a real, non negative value. In order

to get legal probabilities, the product of the clique potentials needs to be normalized

by the partition function given in Equation (2.3).

Z =
∑

X∈XV

∏

C∈C

φC (2.3)

The computation of the partition function is very hard, as can be seen from the for-

mula. Fortunately it is not always the case that is actually necessary to compute it

exactly. Approximation is often sufficient or in the case of Most Probable Explanation

(MPE) inference no computation is needed, as pointed out in Section 2.4.3.

Defining the probability distribution directly with Equation (2.2) requires to model

each state of the entire distribution explicitly. This ends up in a table of a size that is

exponential in the number of variables in a clique. However, in many cases the MN

structure can be exploited to simplify the modelling of a MN. The clique potentials

can be transformed into one or many feature functions f (X)C with weights wC .

P(X) =
1

Z

∏

C∈C

φC

⇔ P(X) =
1

Z

∏

C∈C

exp(lnφC)

⇔ P(X) =
1

Z
exp

∑

C∈C

ln(φC)

!

(2.4)

A feature fc is defined as

ln(φC(XC)) = wC · fC(XC)

and hence the log-linear model can be formulated as

P(X) =
1

Z
exp

∑

C∈C

wC · fC(XC)

!

(2.5)

18

2.4. Markov Logic

In the simplest case there is one feature function for each state of each clique, but

in the best case, only one feature for an entire clique is needed. Thus modelling a

MN with the log-linear model can save time for the designer as well as save memory

since the value for each state of the clique can be computed on demand and does not

need to be saved explicitly. It is important to note that the feature function can be

any arbitrary function that is defined to create a mapping over a set of variables into

R.

In the next section, this MN formalism is used to combine probabilistic models as

well as FOL models with the use of Markov Logic Networks (MLNs).

2.4. Markov Logic

2.4.1. Introduction

Represent, reason and learn in environments that are characterized by data that has

a complex relational structure is a very active field of research [24]. The research is

motivated by the fact that most data that is encountered in many applications like

NLP has many interdependencies. Methods are needed where this relational structure

can be modelled and where uncertainty can be incorporated naturally.

As an example the semantics of the words can be used. The semantics of the differ-

ent words in texts have strong dependencies to the semantics of other words. For

example, in the sentence “Mix A with B.”. The word “Mix” can have one of mul-

tiple senses, one as the noun “the mix” or the verb “to mix”. The other words of the

sentence specify how the word needs to be interpreted to give meaning in that con-

text. Motivated by the essentially ubiquitous existence of relational data, methods

are needed where relationships can be modelled in a compact and mathematically

sound manner. However, since not all evidence that is needed to make such decisions

can be acquired without any noise, uncertainty needs to be an integral part of the

formalism.

FOL provides a very intuitive way to model absolute statements about the relation-

ships between classes of objects. However, FOL only allows the definition of hard

formulas and is limited in that matter. In the case of uncertainty FOL is not applic-

19

2. Prerequisites

able because the statements made in FOL must not contain any contradictions.

Uncertainty on the other hand is handled very well by probabilistic graphical models

like Bayesian Networks [25] or Markov Networks, as introduced in Section 2.3 [25].
Those models are very popular within the research community due to their easily to

understand semantics as well as the possibility to graphically model the systems.

As a consequence a combination of FOL and graphical models is desirable bringing to-

gether the easy to model relationships and to include uncertainty. One such approach

is ML which is further introduced in this chapter. ML allows to model a system in a

first order language that compiles those first order formulas into MNs. ML is therefore

a template language for MNs. In the next sections ML is introduced as well as some

inference and learning techniques that can be applied with the resulting MNs.

2.4.2. Formal Definition

ML has been developed by Pedro Domingos1 at the university of Washington. A MLN

is defined as follows:

Definition 2.4.1 [20][p.12]

A Markov Logic Network (MLN) L is a set of pairs (Fi, wi) where Fi is a formula in

First Order Logic (FOL) and wi is a real number. Together with a finite set of constants

C= {c1, . . . , c|C|}, it defines a Markov Network (MN) ML,C as follows:

• ML,C contains one binary node for each possible grounding of each predicate ap-

pearing in L. The value of the node is 1 if the ground predicate is t rue, 0 otherwise.

• ML,C contains one feature for each possible grounding of each formula Fi in L.

The value of this feature is 1 if the ground formula is t rue, and 0 otherwise. The

weight of the features is the wi associated with Fi in L.

As can be seen from Definition 2.4.1 there is an edge between two nodes in the

grounded MN if and only if the corresponding predicates appear together in at least

one formula. Moreover, the definition also implies the joint distribution over the set

of possible worlds that is defined as
1http://homes.cs.washington.edu/ pedrod/

20

2.4. Markov Logic

P(X= x) =
1

Z
exp

|L|
∑

i=1

wini(x)

!

=
1

Z
exp

|G|
∑

j=1

bw j
bf j(x)

!

, (2.6)

where X is the set of possible worlds. Equation 2.6 states that the probability of a

world depends on the number of true groundings of all formulas and their weights.

ni(x) is the number of true groundings of the i-th formula. bf j is the j-th grounded

formula from the set G that contains all grounded formulas and bw j the corresponding

weight. A feature is defined for each grounded formula that has the value 1 if the

grounded formula is True.

An algorithm to get the groundings is provided in [20][p.13].

2.4.3. Inference

Working with ML gives rise to the possibility to make use of the entire range of al-

gorithms that have been developed to do inference in MNs. Basically those algorithms

can be categorized into two groups:

• exact algorithms

• approximate algorithms

Due to the fact that all exact inference in MNs is always #P-hard and hence intract-

able [26], usually approximate algorithms are employed. In case that only the most

probable variable configuration is needed, MPE inference can be used. This is also an

NP hard problem but with good heuristics it can often be solved exactly in reasonable

time.

The next section presents how an MLN can be transformed into a Weighted Con-

straint Satisfaction Problem (WCSP) and then how fast MPE inference on the result-

ing WCSP can be applied. This is often sufficient in a robotics setting since the robot

needs absolute statements about the objects to pick up or tools to use. Additionally,

one approximate algorithm, MC-SAT, is presented that approximates the entire dis-

tribution.

21

2. Prerequisites

Most Probable Explanation. MPE inference answers the question to the most prob-

able state of the world Y given some evidence X [20], i.e.

argmax
y∈Y

P(Y |X) =arg max
1

Zx
exp(

∑

i

wini(x , y))

=arg max
∑

i

(wini(x i, yi)) (2.7)

Equation 2.7 follows directly from the definition of the probability distribution of the

MLN provided in Equation (2.6). The ‘Z ’ term can be left out since it is constant and

therefore does not change the ‘argmax’ operation. Moreover, due to its monotonic

nature the exponential operation can be left out as well and the MPE inference re-

duces to maximizing the sum of satisfied formulas. In [27], it has been shown how

to interpret ML as a modelling language for WCSPs and therefore how to transform

the ML formulas into a WCSP. This makes it possible to use optimized WCSP solvers

like Toulbar22.

First the WCSP needs to be formally defined:

Definition 2.4.2 A Weighted Constraint Satisfaction Problem (WCSP) is a tuple

R= 〈Y,D,C〉:

1. Y= {Y1, . . . , Yn} is a set of n variables

2. D = {D1, . . . , Dn} is the collection of the domains of the variables in Y, such that

Di = dom(Yi) is the domain of Yi. For a given variable Yi the domain may be

denoted by Dy . Ds is used to denote the Cartesian product
∏

Yi∈S Di for some subset

of the variables S ⊆ Y. Y := DY denotes the Cartesian product of all domains and

hence represents the set of possible variable assignments.

3. C= {c1, . . . , cr} is a finite set of r soft constraints. A soft constraint ci is a function

on a sequence of variables V from the set Y (V is called the scope of the constraint)

such that ci maps assignments (of values to the variables in V) to cost values

ci : DV → {0, . . . ,>}. If an assignment is mapped to >, it is considered inconsist-

ent.
2http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

22

2.4. Markov Logic

4. A solution to R is a consistent assignment to all variables. An optimal solution

y ∈ Y minimizes the accumulated cost
∑r

i=1 ci(y) over all constraints (we assume

that y is implicitly projected to the actual scope of ci).

The weights of an MLN belong to features and equivalently the costs of a WCSP be-

long to constraints. Henceforth, a transformation from the weights of features that

can also be negative, to the costs of a WCSP, that must be positive, is needed3. For the

successful transformation, it can be exploited that the MLN keeps its semantics when

a formula is negated in conjunction with the negation of the weight of the respective

formula. For the probability distribution that is derived from another probability dis-

tribution over the possible worlds of an MLN by negating one formula and its weight,

it can be shown that the distributions are equal [27]:

PML′ ,C
(X = x) =

exp
�
∑

i,i 6=k wi · ni(x)−wk · (Nk − nk(x))
�

∑

x ′∈X exp
�
∑

i,i 6=k wi · ni(x ′)−wk · (Nk − nk(x ′))
�

=
exp
�
∑

i wi · ni(x)−wk · Nk

�

∑

x ′∈X exp
�
∑

i wi · ni(x ′)−wk · Nk

�

=
exp
�
∑

i wi · ni(x)
�

∑

x ′∈X exp
�
∑

i wi · ni(x ′)
� ·

exp(−wk · Nk)
(exp−wk · Nk)

= PML,C
(X = x)

where Nk is the total number of groundings(‘True’ and ‘False’) for the k-th formula.

Since in this form all weight are wi ∈ R+0 there is a need to scale them to match

natural numbers. This operation will change the probability distribution but it keeps

the set of most probable states intact [27].

In [27] it is shown that there is a non injective mapping from the grounded predicates

of the MLN to the variables of a WCSP. Moreover, there is a bijective mapping from

the states of the grounded MLN to the states of the WCSP. In addition each feature
bfi of the grounded MLN can be interpreted as a constraint ci [27]

3This is implementation specific for the solver used in this work and in general this is not necessarily
the case

23

2. Prerequisites

ci =

bw : if bfi(x) = 0

0: if bf (x) = 1

= (1− bfi(x)) · bw (2.8)

The constraint ci is defined over a set of variable assignments. Equation (2.8) shows

that in case that a grounded formula from the MLN cannot be resolved to True then

the corresponding weight can be interpreted as a cost in the WCSP. After the trans-

formation is complete, efficient solvers for WCSPs like the Toulbar2 solver can be

used.

Example. In this section, a simple example is presented that shows the transforma-

tion. For the topic of this work one might want to capture the intuition that if two

words do not resemble the same real world objects that they should not be in a

coreference relationship. This intuition can be captured with the Formula (2.9). The

weight is just some arbitrary negative weight and the exact value is not important to

show the principle of the transformation.

− log2 coreference(w1, w2)∧ isGrounded(w1, i)∧¬isGrounded(w2, i) (2.9)

With the predicate definitions

isGrounded(word, object!)

coreference(word, word)

that are defined over the domains word ∈
�

Cup,Mug
	

and object ∈
�

Mug1, Cup1
	

.

First, negating the formula and its weight yields Formula (2.10). To get the set Y

of WCSP variables all predicates are grounded and the outcome of this operation

is provided in Table 2.2. Since for each grounded formula there is one feature and

features correspond to constraints, the grounded formulas of the MLN are provided

in Table 2.3.

24

2.4. Markov Logic

Yi Grounded Predicate

Y0 isGrounded(Cup, Mug1)
Y1 isGrounded(Cup, Cup1
Y2 isGrounded(Mug, Mug1)
Y3 isGrounded(Mug, Cup1
Y4 coreference(Mug, Mug)
Y5 coreference(Mug, Cup)
Y6 coreference(Cup, Mug)
Y7 coreference(Cup, Cup)

Table 2.2.: WCSP variables and the corresponding grounded MLN predicates

log 2 ¬ coreference(Cup,Cup) ∨ ¬ isGrounded(Cup,Cup1) ∨ isGrounded(Cup,Cup1)
log 2 ¬ coreference(Cup,Mug) ∨ ¬ isGrounded(Cup,Cup1) ∨ isGrounded(Mug,Cup1)
log 2 ¬ coreference(Mug,Cup) ∨ ¬ isGrounded(Mug,Cup1) ∨ isGrounded(Cup,Cup1)
log 2 ¬ coreference(Mug,Mug) ∨ ¬ isGrounded(Mug,Cup1) ∨ isGrounded(Mug,Cup1)
log 2 ¬ coreference(Cup,Cup) ∨ ¬ isGrounded(Cup,Mug1) ∨ isGrounded(Cup,Mug1)
log 2 ¬ coreference(Cup,Mug) ∨ ¬ isGrounded(Cup,Mug1) ∨ isGrounded(Mug,Mug1)
log 2 ¬ coreference(Mug,Cup) ∨ ¬ isGrounded(Mug,Mug1) ∨ isGrounded(Cup,Mug1)
log 2 ¬ coreference(Mug,Mug) ∨ ¬ isGrounded(Mug,Mug1) ∨ isGrounded(Mug,Mug1)

Table 2.3.: The grounded formulas from the example

log2 ¬coreference(w1, w2)∨¬isGrounded(w1, i)∨ isGrounded(w2, i) (2.10)

The domains for the WCSP variables are defined to be dom(Yi) = {0, 1} that rep-

resent the truth values of the corresponding ground predicates. Each grounded MLN

formula can now be represented as a constrained with the assigned cost that is com-

puted with Formula (2.8).

In the example so far each ground predicate corresponds exactly to one WCSP vari-

able. The problem can be reduced in its complexity when applying the following

rationale. Each ‘word’ in this example must be grounded to exactly one ‘object’. Con-

sequently, a world where a ‘word’ that is grounded to two ‘objects’ is inconsistent

with this assumption. A predicate where this assumption needs to hold is also called

a functional predicate. In the example the ‘isGrounded’ is defined to be functional

which is indicated by the ‘!’ in the predicate definition.

25

2. Prerequisites

Inconsistent assignments can be eliminated in a WCSP by combining the relevant

grounded predicates to a single variable. In this example the variables Y0 and Y1

as well as Y2 and Y3 can be combined to two variables reducing the total variable

count from |Y| = 22 + 22 = 8 to |Y| = 22 + 2 = 6. Generally speaking the number of

variables for the ‘ isGrounded’ predicate is reduced from 2n variables to 2 variables

with n values, linearising the problem.

The new representation can be handed over to existing solvers for WCSPs and hence

inference in ML can profit for many decades of research that has been done in the

field of WCSPs.

Slice Sampling. Slice sampling [28] is a technique to generate a Markov Chain with

the characteristic that it samples very uniformly. It is additionally favoured because it

works with any random distributions and there is no need for additional knowledge

about the distribution. As this procedure is very simple it is not presented here in

detail but mentioned since it is used in the MC-SAT algorithm described later in this

chapter(p. 27).

SampleSAT. In this section, the SampleSAT algorithm is presented that uses a hybrid

strategy of Simulated Annealing and the GSAT algorithm and is further used in the

MC-SAT algorithm presented on page 27.

GSAT [29] is a very simple way of finding assignments of variables to maximize the

number of satisfied Conjugate Normal Form (CNF) formulas. It starts with a random

truth assignment, afterwards greedily samples variables that will maximize the num-

ber of clauses to be satisfied by a single variable flip. This of course will make other

formulas False again and so this algorithm continues to run until all formulas are

satisfied or a maximum number of iterations is reached [30].
A problem with this simple approach is that it can easily run into local minima and

the performance of any algorithm that belongs into this category of algorithms is de-

termined by how well it can ‘escape’ those plateaus [31].
A solution to this problem is to combine GSAT with simulated annealing. In [30] it is

shown that using a probability p to determine whether to do a simulated annealing

or a GSAT step helps to get a more uniform sampling of solutions. More specifically,

in each step of the algorithm a GSAT step is performed with probability p and a sim-

ulated annealing step is performed with probability 1 − p. The temperature in the

26

2.4. Markov Logic

simulated annealing step is defined as T = 0.1 but is subject to fine tuning of the

parameters. More interesting is the actual simulated annealing step: If a neighbour

that is defined as a truth assignment that differs only in one variable from the cur-

rent assignment, satisfies the same or more clauses than the current assignment, the

algorithms makes that move. If the neighbour satisfies fewer clauses the algorithm

makes that move with probability pm = e
−δCost

T . Otherwise the algorithm stays on the

current assignment.

The SampleSAT algorithm has shown to produce very promising results in finding

optimal solutions to SAT problems.

Algorithm 1 SampleSAT(InitialTruthAssignment, MaxSteps, T)

A← Ini t ialRandomTruthAssi gnment
p← 0.5
MAX ← MaxSteps
for i← 1 to MAX do

if probability p is True then
do WalkSAT step

if probability 1− p is True then
n← neighbour
Cost ← number of decrease of satisfied clauses
if Cost ≤ 0 then

A← n
if Cost > 0 then

A← n with probability p = e
−δCost

T

MC-SAT. In this section, the MC-SAT algorithm is introduced [32]. Classical Markov

Chain Monte Carlo (MCMC) methods which use Gibbs sampling or other MCMC

sampling methods are problematic because in the case of near deterministic con-

straints the Markov Chain is not ergodic any more as the transition probabilities

between states become very low [32]. As a consequence another approach is needed

and MC-SAT has shown to guarantee producing a Markov chain that satisfies ergodi-

city and detailed balance, even in the presence of deterministic dependencies.

The basic idea underlying MC-SAT is to use slice sampling to sample a set of aux-

iliary variables that are introduced for each ground clause. The resulting set M

contains clauses that are currently satisfied and are also satisfied in the next step.

SampleSAT [33] is used to sample a new state that satisfies all the states in M . The

27

2. Prerequisites

initial state is found with the help of the hard formulas in the network. Pseudo code

for the algorithm is provided in Algorithm 2.

Algorithm 2 MC-SAT(clauses, weights, num_samples)
[[32]]

x (0) ← Satisfy(hard clauses)
for i← 1 to num_samples do

M ← ;
for ck ∈ clauses satisfied by x (i−1) do

With probability 1− e−wk add ck to M
Sample x (i) ~SampleSAT (M)

2.4.4. Learning

Learning in ML is only feasible in terms of weight learning instead of structure learn-

ing, i.e. learning the entire formula because structure learning presents too many

challenges to be handled in real applications up to now. Structure learning uses a

second order ML that can naturally reason about predicates. Two approaches are

presented in [20].

Log-Likelihood learning. Weight learning means to maximize the likelihood of the

relational databases that are provided by adjusting the weights of the formulas. The

original problem is to find the vector of weights ~w that satisfies

~w = arg max
~w

P(~w|d), (2.11)

given some training database d.

Exact learning is intractable and hence approximate methods need to be used. One

such a approach exploits the likelihood principles that states that all the information

that is needed, is contained in the likelihood. Applying the likelihood principle to

Equation (2.11) yields

28

2.4. Markov Logic

~w = arg max
~w

P(d|~w) (2.12)

An analytic computation of Equation (2.12) is in general not always possible [34], but

the weight function is convex, i.e. there is at least one global minimum. Consequently,

optimization methods can be applied that are based on gradient descent [35]. Those

methods use the information of the first and second derivatives to find the global

maximum of a function. In order to further simplify the computation the log function

can be used due to its strictly increasing nature.

L(D = d) = log P(D = d)

=
∑

i

wi · ni(d)− log

∑

d ′∈D

exp

∑

k

wk · nk(d
′)

!!

(2.13)

∂

∂ wi
L(D = d) = ni(d)−

∑

d ′∈D

ni(d
′) ·

exp
�
∑

k wk · nk(d ′)
�

∑

d ′′∈D exp
�
∑

k wk · nk(d ′′)
�

= ni(d)−
∑

d ′∈D

ni(d
′) · P(D = d ′) (2.14)

Equation (2.13) shows the log of Equation (2.12) and Equation (2.14) the partial

derivative for the weight vector. D denotes the set of all possible databases and ni(d)
the number of ‘True’ groundings of the i-th formula in the data d. As it is evident,

solving Equation (2.14) requires to do inference over the model and this requires

counting the groundings which has been shown to be #P-complete in the length of

the clauses [20]. As an alternative to do exact learning, Pseudo-Likelihood Learning

has been developed.

While learning the weights of formulas there are some assumptions that are made in

the algorithm presented here.

29

2. Prerequisites

1. Closed World Assumption

The closed world assumption states that all ground atoms that are not in the

database are assumed to be False. With this assumption the database specifies

a full assignment for one world.

2. Sets of constants are known

The assumption states that the set of constants are finite and known. It is there-

fore possible to enumerate all symbols and this in turn means that the FOL

syntax is a mere abbreviation for a prepositional model.

3. Variables are typed

Typed variables help to reduce model complexity as the number of possible

groundings is dramatically reduced.

4. Training databases are independent

This assumption is important since weights can be learned from multiple data-

bases. Assuming independence between them is natural as otherwise relation-

ships need to be considered that never happen in the domains of discourse.

Pseudo-Likelihood learning. The Pseudo-Likelihood is given by Equation (2.15).

P∗(D = d) =
|D|
∏

k=1

P(Dk = dk|MBd(Dk)) (2.15)

The Pseudo-Likelihood approximates P(D = d) by making independence assump-

tions. Dk is a ground atom and dk its truth value. MBd(Dk) is the Markov Blanket

for the k-th ground atom. In [34] it is shown that the log-pseudo-likelihood is given

by Equation (2.16) and the t-th component of the gradient by Equation (2.17). n̄i,k

denotes the number of true groundings for the i-th formula where the truth value of

the k-th ground atom, i.e. Dk, has been inverted. FDi
is the set of indices of all the

formulas where at least one grounding contains Di.

30

2.4. Markov Logic

logP∗(D = d) =
N
∑

k=1

− log

1+ exp

∑

i∈Fdk

wi · (n̄i,k(d)− ni(d))

(2.16)

∂

∂ wi
log P∗(D = d) =

=
N
∑

k=1

�

n̄i,k(d)− ni(d)
�

·

1

1+ exp
�

∑

j∈FDk
w j · (n̄ j,k(d)− n j(d))

� − 1

(2.17)

With the Equations (2.16) and (2.17) an optimizer can be used that often results

in a good approximation. However, as [34] points out the simplification might be

too strong depending on the model at hand and consequently the results need to be

carefully analysed.

In order to combine multiple learning databases the assumption is made that the

databases are independent which is a valid assumption as the instances in the data-

base might only occur in the context of the database and not with the instances of

others. In the case of the log-likelihood the problem is simply solved by the sum of

the individual log-likelihoods. Further details can be found in [34].

31

Chapter 3

Coreference and Entity resolution

3.1. The Model

In this section, two approaches are presented where one is a model of coreference and

the other of entity resolution. In both models the underlying predicates are mostly

the same and henceforth are introduced first.

A basic assumption of this work is that a sentence given in natural language can be

transformed into a logical representation that captures the semantics of the sentence

in the context of instructions. Consequently, a symbolic representation is introduced

where symbols represent the different entities that can be found in the instructions.

Predicates are used to represent the relationships between them or assign attributes

to the entities.

The evidence that is used to generate the predicates can be roughly divided into the

following groups:

Syntactic relationships. Syntactic relationships are relationships between words in

the text or assignments of properties to those words. First of all, each word is assigned

its Part-of-Speech (POS) tag. Moreover, several syntactic dependencies between the

words in a sentence can be identified. For example, in the sentence ‘Put the red cup on

the table.’ there is a dependency of the word ‘red’ and the word ‘cup’ that states that

the first is the adjectival modifier of the second. Moreover, it can be identified that

the ‘Put’ is connected to the ‘table’ via a prepositional modifier. External tools can be

used to generate this evidence and it was not part of this work to come up with rules

to deduce it. See Section 3.2 for implementation details.

33

3. Coreference and Entity resolution

Taxonomy relationships. Taxonomy relationships refer to the relationships that ex-

ist between the concepts of objects. For example, the concept ‘container’ is in a

hyponomy relationship with the concept ‘cup’ since the ‘cup’ is some form of ‘con-

tainer’. Deriving these relationships for the objects in a text defines a taxonomy of

concepts.

Semantic roles. Semantic roles refer to evidence that is created in order to identify

the semantics of a word in a text in the context of the action verb in the sentence.

In the previous example the ‘cup’ is the object being moved by the ‘put’ action and is

therefore called the theme of the action.

Distance relationships. Distance relationships are established between each word

pair to determine the sentence distance between each word. In [36] it has been

shown that within three sentences roughly 90% of all coreference relationships can be

found. The research focused on newspaper articles but in this work it is assumed that

the general influence is the same in both contexts even though the exact influence

might be slightly different. This suggests that the distance needs to be taken into

account when inferring coreference.

Object relationships. Object relationships refer to the relationships between in-

stances of object concepts in the real world. These could be geometric relationships

or colour properties. For example, the colour of a ‘cup’ or the fact that the ‘cup’ is

located on top of a ‘kitchen table’. This kind of knowledge also has to be captured in

the knowledge base about the objects that are used.

As can be seen from the previous elaborations there are several types of entities. More

specifically there are the following types that need to be considered: Senses refer to

the sense of a word from the ‘words’ domain. The sense is in a hyponomy relation with

several concepts from the ‘word concepts’ domain. Moreover, each word is assigned

a semantic role from the ‘roles’ domain. The objects that exist in the robot’s current

belief state of the world are ‘instances’ of ‘object concepts’.

34

3.1. The Model

A

B C

Figure 3.1.: Concept A and B are as similar as B and C with the chosen metric.

3.1.1. A model for coreference resolution

Coreference resolution in this model assumes that no grounding information is avail-

able. Additionally, it is important to note that this model is not supposed to replace

existing coreference systems that were developed in the NLP community but to com-

plement them as it identifies coreference that cannot be determined by the existing

systems as has been elaborated on in Section 1.2.

Several semantic features are taken into consideration when inferring coreference.

The word sense and the path through the taxonomy of two words are among the

most important ones. Two words are more probable to be in coreference if the se-

mantic distance is small. If the semantic distance is zero, two concepts are exactly the

same. Different similarity measures for the semantic distance exist like the WUP met-

ric [37]. Despite the abundance of available metrics, in this work another approach

is used. This is chosen due to the fact that every metric that gives a numeric value

of similarity needs to be further discretized in the implementation that is chosen.

An alternative that can be modelled very naturally in ML, counts the common edges

in the taxonomy. This approach has the drawback that all concepts that have the

same direct parent have the same similarity score to each other and to the parent

concept. This is exemplified in Figure 3.1. The concept A and concept B are as similar

as the concepts B and C. As the evaluation in Section 3.4 will show this drawback is

a reasonable compromise.

A big difficulty arises in the case that not all the word senses are available or even no

word sense is available at all. In this case another great feature to determine corefer-

ence is the use of semantic roles and their relationship to each other in dependency

of the distance they appear in. For example, in the set of instructions:

35

3. Coreference and Entity resolution

Mix the fruits. MixPlace

Serve. ServeTheme

The ‘theme’ of the ‘serve’ action and the ’place’ of a ‘mix’, if appearing in directly

consecutive tasks are very likely to be in coreference.

An additional difficulty with coreference exists when identifying individual objects

and a word occurs multiple times in a set of instructions but they refer to different

object entities. For example, the instruction set:

Add fruits to a bowl.

Mix. MixPlace

Serve in a bowl.

One interpretation of the instructions could be that the word ‘bowl’ in the first sen-

tence refers to a mixing-bowl where the ingredients are mixed. The word ‘bowl’ in the

third sentence on the other hand refers to an eating-bowl that is used for serving. This

is difficult to handle and particularly difficult to handle only with syntactic features.

Consequently, the semantic information is a key element in the correct identification

of the coreference. For example: in the given example the word sense would reveal

that the word ‘bowl’ in the first sentence has the sense of a ‘Mixing-Bowl’ and the

‘bowl’ from the last sentence the sense of a ‘Eating-Bowl’. This already indicates that

these two are not the same real world object. Moreover, even in the absence of the

senses, the roles of the two words can indicate whether it is probable that they are in

coreference or not.

3.1.2. A model for entity resolution

In order to ground words to objects, the most important indicator is the hyponomy

relationship between the sense and the concept of the word and the relationship of

the objects and the concepts of the objects. If the correct sense is known as well as the

object’s concepts, then a semantic distance can be calculated that picks the objects in

the world that is closest to the word sense.

36

3.1. The Model

Entity

Dairy Product

Entity

Dairy Product

CheeseCheese

‘Cheese’

is-a

isGrounded

Figure 3.2.: A word is matched to an object instance based on the taxonomy of both
entities.

Since the semantic distance between the concept of the word and the concept of the

object is to be computed they must exist in the same taxonomy. Figure 3.2 shows

an example of the word ‘cheese’ that has a path through the taxonomy for a specific

sense. The cheese object defines the same path through the taxonomy and therefore

the semantic similarity will be very high. It is important to note that any more specific

concept than ‘Cheese’ will receive the same similarity score as has been pointed out

in the previous section. This is a desirable property because if an instruction sates

to ‘Put cheese on the table.’ it is not specified whether to take ‘Goat Cheese’ or maybe

‘Gouda’. At this point other features could be used to select the correct cheese, like

the operator’s preference.

Using a taxonomy has several positive implications. First, if a concept is encountered

that is not a member of the current knowledge base, then the taxonomy provides

good generalization properties. This is achieved by the fact that the semantic distance

will select the object that is closest to any object that exists in the real world. Of course

this assumes that the concept of a word is known.

Furthermore, the situation where a specific object is referenced in the text that is not

available in the world is very common, like a missing cooking utensil. It is therefore

important to be able to find appropriate alternatives. Using a taxonomy and the se-

37

3. Coreference and Entity resolution

mantic distance is a very effective way of choosing those: if there is no object in the

world that is expected, the object with the closest semantic distance is chosen. For a

example if an instruction expects a ‘Mug’ but no ‘Mug’ is available then a ‘glass’ could

be chosen that offers the same features as a ‘mug’, i.e. it can hold a substance. This

assumes that objects that have a close semantic distance, share such core properties.

This cannot always be guaranteed but is assumed in this work and will be further

elaborated on in Section 3.5.

As this work has been developed in the context of the PRAC and its goal is to build

a knowledge base of action specific background knowledge, it is desirable to capture

the relationship between objects and their use in actions. For example, the instruc-

tion ‘Put cheese on the table.’. In the case that the robot needs to choose from multiple

different ‘cheeses’, it would be desirable if the robot performs a lookup in the know-

ledge base which cheese is usually the right choice in this situation with this kind of

action. There are multiple parameters that can trigger a different selection. First, the

availability of different types of cheese but also the preference of the current operator

is a parameter that could be taken into consideration. Yet, this last method has not

been implemented in this work but leaves room for improvement.

Additionally, if two words refer to the same object instance they are in a ‘coreference’

relation and this needs to be used when grounding objects. In the grounding model

it is assumed to be given the ‘coreference’ evidence about the words. The ‘coreference’

relation is essential when multiple instances of the same object are present and two

words need to be grounded to the same instance and not just to the right class of

objects. Moreover, it makes it possible to use information about one word for the

grounding of another. Moreover, if the ‘coreference’ relationship can be used to infer

missing word senses by using the word sense of the referenced word.

On top of the features discussed so far it is important to consider other attributes of

objects that set them apart in a set of objects of the same concept. For example, in

order to be able to pick the ‘cup’ on the ‘table’ the geometric relationship between

the objects needs to be taken into account. Moreover, the attributes of objects are of

interest as well. For example, in order to be able to picks the ‘red cup’ the knowledge

base needs to include this colour information about the object. In the scope of this

work not a complete list of possible relationships between objects and attributes of

them can be taken into account but only a small subset. However, this is enough to

38

3.1. The Model

show the applicability of this approach and the underlying principles.

Syntactic dependencies can provide additional evidence about the relationships that

are to hold between the objects. For example, in the instruction

‘Put the red cup on the table.’

‘Grasp the green cup on the table.’

The ‘red’ is an adjectival modifier of the noun ‘cup’. This additional evidence needs

to be exploited in order to be able to pick a ‘red cup’ in the world that is not already

on the referenced table. Contrary, in the second instruction the ‘green cup’ needs to

be chosen. The problem is visualized in Figure 3.3. Furthermore, the roles of the

entities in the text provide information about the relationships between the objects.

In the example the roles infer that the theme of a ‘put’ action should not be located

on the goal of that action. This information is very valuable in case the word senses

are not present. Again, contrary in the second instruction, the ‘grasp’ action requires

the ‘cup’ to be located on the ‘table’. However, all of this requires to have a very good

knowledge about the objects in the world.

To find a suitable model for entity resolution, instruction dynamics pose an especially

difficult modelling problem. The objects that appear in the text do not necessarily

exist in the belief state of the robot at the point of text processing. Especially objects

that are created by manipulation of the environment. For example, ‘dough’ that is a

mix of different ingredients cannot be located in the world at the time of instruction

processing. Those words, virtual or actual words, are grounded to some unnamed vir-

tual object instance. This is helpful because this could trigger the perception system

of the robot as a new object is expected that needs to be located and identified. The

knowledge base could be updated with this information and processing could con-

tinue. More on this problem can be found in the model evaluation in Section 3.5.

3.1.3. A joint model

A joint model is combining coreference and entity resolution into one model. The idea

is that the information of one model is giving evidence to the other and vice versa,

such that overall prediction quality increases. One example is already used in the

39

3. Coreference and Entity resolution

Figure 3.3.: Two drinking mugs exist in the world.

model for the grounding in the fact that words that are in a coreference relationship

ground to the same objects. The feature could be used the other way around as well

stating that two items are in a coreference relationship exactly if they ground to the

same object.

In order to accomplish this, it will be shown that the two models can simply be

combined into one model by joining the sets of rules.

3.2. Implementation

In the following section an overview of the core components of the implementation of

the coreference and entity resolution model is provided. First, a brief overview over

the entire processing pipeline for natural language is given. Afterwards, the different

components that are used for the implementation are presented. Furthermore, the

details of the implementation of the ML formulas are provided.

40

3.2. Implementation

3.2.1. Natural Language Processing

The entire system design is provided in Figure 3.4 and shows the pipeline of pro-

cessing steps. First, the system has to disambiguate what the instruction generally

refers to. The next step is to download a set of instructions from the internet and

make it available for further processing1 [1]. Step 3 performs syntactic parsing using

the Stanford parser [38], a probabilistic first order grammar that reveals all syntactic

relationships between the words and the syntactic features of the words, like the part

of speech tag. The fourth step involves identifying which action verbs are used in

which sentence. In step 5, word sense disambiguation and role labelling in the con-

text of PRAC [2] is performed as elaborated on in Section 2.1. The next step is the

topic of this work. The collected evidence produced by steps 1-5 is passed into the

next component that identifies the coreference relationships and grounds the objects

identified in the text into the perceived belief state of the robot. In the last step the

instructions are passed into the execution engine of the robot.

3.2.2. Model implementation

In a first step the provided text is transformed into a symbolic representation. This

is achieved by introducing symbols for each word so that the word symbol identifies

the word in the text. The encoding is as follows:

«WORD»_«ID»_S_«SentenceID»

The word-ID is chosen based on the parse tree that is generated by the Stanford parser

and identifies the word in its sentence. The sentences are numbered in ascending

order. For example, the word symbol ‘Pasta_1_S_0’ means that this symbol represents

the word ‘pasta’ with the id ‘1’ in the parse tree in the first sentence of the text.

WordNet [39] is used as the taxonomy of the words. It is a lexical database of Eng-

lish and words are grouped into sets of cognitive synonyms(synsets), where each set

represents a distinct concept. This means that words are grouped by their semantic

1e.g. from wikihow.com or ehow.com

41

3. Coreference and Entity resolution

Identify instruction

ID of instruction set

Downloading of
instruction sets

Set of instructions

Syntactic parsing

POS, syntactic relationships

Identification of
action verbs

Action core reference

PRAC inference
(Word sense

disambiguation and
role labelling)

Virtual words, Roles

Robot Knowledge base Corefernce and entity
resolution

Mapping from words to objects

Task execution

Figure 3.4.: System design for instruction processing. The arrow specifies what is added
in information in each step. Coreference and entity resolution(red box) is the
topic of this work.

42

3.2. Implementation

meaning. Between the synsets exist relationships that span a taxonomy of concepts.

Naturally, this leads to different taxonomies for verbs and nouns. In the following

only the taxonomy for nouns is used as identifying the correct verb sense is part of

another project [2]. The relationship between synsets that is used in the context of

this work is hyponomy (also called ‘is-a’ relation). The hyponomy relation is exactly

the one described in Section 3.1. Access to WordNet can easily be gained using the

NLTK2 toolbox for the Python3 programming language.

The system is implemented with Python and as a Robot Operating System (ROS)

node4. ROS is a middleware system to run on autonomous robots. ROS makes inter

process communication over the network easy. In this work it is mainly used to com-

municate with the robot’s belief state of the world.

To get a list of objects in the world that are available in the belief state of the ro-

bot, the KnowRob [1] knowledge base is used that has been developed by Moritz

Tenorth5. KnowRob is essentially an ontology that stores all high level knowledge of

the robot. This includes information about the objects in the world and the envir-

onment but also about the actions taken by the robot. KnowRob stores relationships

between objects, like geometric relationships between objects and object properties,

like the colour. The layout of the upper levels of the ontology is inspired by the Open-

Cyc [40] ontology that is used to store general knowledge. In the context of this work

only the ability to extract information about the objects in the environment is used.

Despite KnowRob’s own taxonomy, in the context of this work a direct mapping from

KnowRob concepts to WordNet concepts has been created. Ontology mapping is an

entire new research area and out of the scope of this work. The mapping consists of

54 lower level concepts. Those concepts are mostly part of the training database that

has been used for the experiments. The creation of a mapping for other concepts is

a work in progress. Moreover, a list of relationships that are taken into consideration

needs to be provided by the user(e.g. on(object,object) or in(object,object)). This has

the benefit that the system can be configured quite easily to new requirements.

2http://nltk.org/
3http://www.python.org/
4http://www.ros.org/wiki/
5http://ai.uni-bremen.de/team/moritz_tenorth

43

3. Coreference and Entity resolution

The roles that are used in the context of PRAC are inspired by the Berkeley Frame-

Net [41]6 corpus. FrameNet is a lexical database based on frame semantics. The sense

of a word invokes a frame that describes the situation in which the sense occurs in.

For example, the word ‘to put’ in the context of ‘To put something somewhere’ invokes

the frame ‘placing something somewhere’. It is important to understand that multiple

words can trigger the same frame. Within a frame, the different words of the sentence

get semantic roles assigned. In the example frame the word ‘something’ has the role

‘Theme’ of the frame. In this work the roles that are used by the FrameNet form the

basis for the role labelling.

As the modelling language for the system ML is used as described in Section 2.4. The

ProbCog7 toolbox by Dominik Jain8 is used for inference and learning as it imple-

ments the algorithms described in Section 2.4.3 and in Section 2.4.4.

In order to implement the model from Section 3.1, rules for ML need to be defined

that capture the intuitions that are described above. In the ProbCog modelling lan-

guage, predicates are written in lower case letters. Variables appear as parameters of

predicates and are also written lower case. Constants start with capital letters. The

modelling language used in the ProbCog toolbox additionally allows to use some ab-

breviations when defining formulas: a ‘+’ before a variable name indicates that this

variable will be expanded over the entire domain. Hence, for each domain element

a new formula will be created for which the weight can be assigned or learned. For

example, for the rule

hasPOS(w,+pos)

with the domain pos ∈ {NN , V B}, the following formulas are created

hasPOS(w, NN)

hasPOS(w, VB)

Functional predicates are indicated with the ‘!’ operator after the variable name. For

the predicate definition

6https://framenet.icsi.berkeley.edu/fndrupal/home
7https://github.com/opcode81/ProbCog
8http://ias.in.tum.de/people/jain

44

3.2. Implementation

isGrounded(word,instance!)

the word functionally determines the instance to which it is grounded. In other words

the word needs to ground to exactly one instance.

For the functional grounding predicate ‘isGrounded’ a domain element, ‘NULL’, is in-

troduced. This is needed since functional predicates require that exactly one ground-

ing is ‘True’ for the predicate. This does not always make sense but the computational

benefits of functional relationships should be exploited. Hence, if the predicate can-

not find a domain member to be ‘True’ then it assigns the value ‘NULL’. For example

for the grounding predicate ’isGrounded(word,instance!)’, if no instance for the word

can be found in the world then the word is grounded to the ‘NULL’ symbol.

Syntactic relationships consist of two types of predicates: the part of speech tag,

‘hasPOS(word,pos!)’, and syntactic dependencies between words. For example,

‘amod(word,word)’ which states that the second word is an adjectival modifier of the

first. There are several more syntactic dependencies that the Stanford parser gen-

erates but for brevity only one is presented here9. ‘hasPOS(word,pos!)’ assigns each

word a part of speech tag. For example the relationship ‘hasPOS(Pasta_1_S_0, NN)’

states that the word ‘pasta’ has the part of speech ‘Noun’.

Taxonomic relationships induce the taxonomy of the concepts of word senses. The

predicate ‘hasSense(word,sense!)’ assigns each word exactly one sense ID. The sense

itself defines a path in the taxonomy. The ‘isaW(sense,concept)’ predicate provides a

relationship between the sense of the word and the concepts in the taxonomy. For

example, the word ‘Shaker’, in the sense of a cocktail shaker has the following block

in the resulting MLN:

9for a complete list, see: http://nlp.stanford.edu/software/dependencies_manual.pdf

45

3. Coreference and Entity resolution

hasSense(Shaker_10_S_0, Shaker_n_03)

isaW(Shaker_n_03, Shaker_n_03)

isaW(Shaker_n_03, Physical_Entity_n_01)

isaW(Shaker_n_03, Artifact_n_01)

isaW(Shaker_n_03, Entity_n_01)

isaW(Shaker_n_03, Object_n_01)

isaW(Shaker_n_03, Instrumentality_n_03)

isaW(Shaker_n_03, Container_n_01)

isaW(Shaker_n_03, Whole_n_02)

Semantic roles identify the role a word has in the context of an action. For this work

only roles that identify the roles of objects are needed and consequently all other

roles are ignored. The predicate ‘hasRole(word,role!)’ is used to state that a word has

a certain role. For example, in the sentence:

Add ice to the glass.

The word ‘glass’ is the goal of the ‘Add’ action. Therefore the predicate

‘hasRole(Glass_5_S_0, AddGoal)’ is ‘True’. It is important to note that the name of the

role encodes the verb that the role belongs to. For example, for the role ‘AddGoal’,

where it is clear from the role name that the role defines the ‘Goal’ of an ’Add’ action.

This has strong implications and is further discussed in Section 3.5.

Sentence distance relationships are established between each word in the text. Four

different predicates are created where each predicate represents a distance. For ex-

ample, the predicate ‘distance0(word,word)’ states that, if true, the two words are in

the same sentence. There are distances from ‘0-3’ and one for distances greater than

‘3’.

Object relationships capture knowledge about the objects present in the robot’s belief

state of the world. In order to be able to ground objects into this perceived world

there needs to be a ML representation of it. This is accomplished by having instances

of object concepts. Various relationships can then be represented by predicates that

are defined over two object instances. For a refrigerator the MLN representation looks

as follows:

46

3.2. Implementation

isInstanceOf(Refrigerator1, Refrigerator)

isaI(Refrigerator, Appliance_n_2)

isaI(Refrigerator, Physical_entity_n_01)

isaI(Refrigerator, Refrigerator_n_01)

isaI(Refrigerator, Home_appliance_n_01)

isaI(Refrigerator, Artifact_n_01)

isaI(Refrigerator, Entity_n_01)

isaI(Refrigerator, Consumer_goods_n_01)

isaI(Refrigerator, Object_n_01)

isaI(Refrigerator, Durables_n_01)

isaI(Refrigerator, White_goods_n_01)

isaI(Refrigerator, Commodity_n_01)

isaI(Refrigerator, Whole_n_02)

‘isInstanceOf(instance, conceptID)’ instantiates a concepts.

The ‘isaI(conceptID, object_concept)’ relationship is the equivalent of the

‘isaW(word_sense, word_concept)’ relationship in the object taxonomy. The taxonomy

of the object concepts is independent of the taxonomy for word concepts. From a

knowledge engineering point of view they are two separate independent taxonom-

ies. However, in this work it is decided that both use the WordNet taxonomy. Nev-

ertheless, two different relationships are created to be able to have the mentioned

distinction. Geometric relationships are relationships between the instances which

indicate some geometric relationship between two instances. For example the rela-

tionship ‘on(instance, instance)’ states that the object that is represented by the first

instance is physically located on top of the other instance.

The query predicates used are ‘coreference(word,word)’ and ‘isGrounded(word,instance)’.

‘coreference’ is ‘True’ if two words represent the same real world object. ‘isGrounded’ is

‘True’ if a word represents an object in the perceived world of the robot as explained

in Section 1.2.

47

3. Coreference and Entity resolution

3.2.3. Preprocessing

When processing a text, many parts of the texts are not absolutely necessary for the

inference. Despite the fact that learning from negative examples adds information to

the model, the model complexity needs to be reduced in order to be able to learn

the models in proper time. The following describes some optimizations that were

applied.

Verbs. Verbs are provided with a sense, the taxonomy of the sense and the part of

speech tag. However, the verb itself is not necessary for the resolution of the objects

that are contained in the text since the roles have the action verb encoded in their

name. Consequently, no connection needs to be made between a role and its verb. If

the verb is needed as part of any syntactic dependency then the sense of the verb is

set to “NULL” in order to further reduce the model size.

Stop words. Stop words in this context are words that have no semantic meaning

for the action and are not needed in any syntactic dependency.

Syntactic Dependencies. Some syntactic dependencies can be deleted from the evid-

ence. The Stanford parser produces many dependencies that are not used in any

formula and as a consequence are not needed.

3.2.4. Markov Logic Formulas

The predicates presented in Section 3.2.2 are used to create formulas that capture the

information that is needed to resolve the ‘coreference’ and ‘isGrounded’ query predic-

ates. While designing the formulas it is important that the total number of formulas

does not grow too large as this will slow down learning. Additionally, the number

of groundings of a formula needs to be kept low to reduce the needed amount of

memory. As a result the formulas presented are always a trade-off between express-

iveness and performance and should be evaluated as such.

48

3.2. Implementation

3.2.5. Formulas for coreference resolution

The ‘coreference’ relation as it has been described earlier has the transitivity property

which can be implemented as a hard formula, i.e. a formula that always needs to

hold.

coreference(w1,w3)⇒ (coreference(w1,w2)⇔ coreference(w2,w3))

Moreover, certain combinations of part of speech tags usually are not in a coreference

relationship, e.g. a noun with an adjective. As a result, the following formula assigns

a weight to each possible combination

coreference(w1, w2) ∧ hasPOS(w1,+pos1) ∧ hasPOS(w2, +pos2)

If a word is assigned the sense ‘NULL’, then it is assumed that this word cannot be

in any coreference relationship. This does not include the case where the sense of a

word is unknown as for that case the ‘hasSense’ is defined to be ‘NONE’. Learning the

weight of the following formula leads to a large negative weight. This makes worlds

where ‘coreference’ between two words is ‘True’, less probable if one of the words has

the sense ‘NULL’.

hasSense(w1,NU LL)⇒ coreference(w1,w2)

Coreference between two words can be inferred with the help of the roles, senses and

the distance between the words. This relationship is captured in the next formula.

hasRole(w1, +r1) ∧ hasRole(w2, +r2)∧ coreference(w1,w2) ∧ distance(w1,w2,+d)

This formula expands over the roles of the words and consequently making the roles

a part of the model. As a result, the model size increases quadratically in the number

of roles.

49

3. Coreference and Entity resolution

3.2.5.1. Formulas for entity resolution

Grounding words to objects that reside in the robot’s belief state requires to have

knowledge about the objects that exist in this belief state. This work assumes that

there exists a mapping from objects in the world to WordNet concepts and hence

the ‘isaI(«Object_Concept_ID», «Object_Concept»)’ predicate is defined over WordNet

concepts. This allows to semantically compare the sense of a word with an object in

the world.

isGrounded(w,i) ∧ hasSense(w,sid) ∧ isaW(sid,c) ∧ isInstanceOf(i,cid) ∧ isaI(cid,c)

This formula is ‘True’ whenever the real world item and the word have a concept in

common. This is particular powerful since this formula alone can be interpreted as

a semantic distance between two items in the taxonomy. When the number of true

groundings is large, i.e. the number of common edges in the taxonomy is large, then

the world is more probable since each time the weight of the formula adds to the

overall weight of the world. Of course this assumes the weight to be positive.

Moreover, it is evident that the part of speech tag of a word is important for the

grounding. Usually only nouns are grounded to objects and as a result the next for-

mula captures the relationship of the part of speech tag with the grounding to the

‘NULL’ entity.

hasPOS(w, +pos)⇒ isGrounded(w, NULL)

Additionally, it is intuitive that words where no sense can be allocated cannot be

grounded with this model since no semantic information is available and therefore

the basis for a grounding decision is missing. The resulting formula is shown below.

hasSense(w, NULL)⇒ isGrounded(w, NULL)

In order to capture knowledge about the objects in the belief state, two more rela-

tionships are introduced. ‘on(instance, instance)’ and ‘in(instance, instance)’. To make

a grounding based on these properties two additionally formulas are to be intro-

duced.

50

3.3. Experiments

hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ isGrounded(w1,i1) ∧ isGrounded(w2,i2) ∧ on(i1,i2)

and

hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ isGrounded(w1,i1) ∧ isGrounded(w2,i2) ∧ in(i1,i2)

To learn the weights of the formulas a training database has to be created that con-

tains the annotated data. With the training database the weights of the formulas are

learned in a supervised fashion and the model can then be used for inference. This

has the benefit that the engineer does not need to know the extent to which the for-

mulas hold, hence he does not need to know the hardness of the constraint. This is

determined by the learning algorithms based on the annotated training data. With the

described formulas several experiments have been conducted which are presented in

the next section.

3.3. Experiments

The following experiments are all carried out in a kitchen environment that is in-

spired by the kitchen which is assembled in the lab of the IAS group. An accurate

model of the kitchen is available for the KnowRob software containing all elements

that are used in the kitchen and hence known to the robot. Figure 3.5 shows the

empty kitchen model without a robot and kitchen utensils.

Since the full model of the kitchen is very complex, a reduced version is used for the

experiments. The training data only consists of a ‘Kitchen-table’ and a ‘Refrigerator’

where the objects mentioned can be stored, i.e. they are in a geometric relationship

with those objects. Each object that is needed for a text is at least once appearing in

the kitchen environment. Most of the time multiple instances with different properties

are present to force non trivial grounding decisions.

For the experiments, multiple training databases are needed. Samples from the ehow

corpus are not a feasible option at this point for a couple of reason. First, the length of

the sets is too long to be processed by the current implementation. The average length

of the 8783 recipes is approximately 17310. Additionally, the different recipes include
10based on the simplification that words are always separated by a “ ”(space)

51

3. Coreference and Entity resolution

Figure 3.5.: The empty kitchen model from KnowRob.

many verbs for which no models exists at this point. A more detailed discussion of

the limitation of the current model is provided in Section 3.5. Consequently, for the

experiments, a total of 20 short texts, containing a total of 57 sentences, have been

manually annotated by the author. Each set of instructions contains an average of 12

words. Instruction sets that are this short have to be chosen due to the complexity the

words introduce in the model. The texts can be found in the Appendix A. The texts

contain the verbs: ‘to put’, ‘to add’, ‘to mix’, ‘to fill’ and ‘to serve’ and each sentence only

has one verb. Each text contains of a new set of objects that do not exist in the other

texts. In all texts a total of 67 different objects are named. For inference all predicates

that are part of the evidence are assumed to fulfil the closed world assumption, i.e. if

they do not appear in the evidence, they are assumed to be ‘False’.

Different metrics are to be taken into account when evaluating how well the different

models perform. To find appropriate ways to measure the performance of the models

it is necessary to keep the goal in mind: To select the correct objects for the right

words. In this case, precision, recall as well as the F1 score are useful metrics.

‘Precision’ indicates how accurately the model works. Precision is the fraction of

correctly identified results of all the results. It is computed as provided in Equa-

tion (3.1).

52

3.3. Experiments

precision=
t p

tp+ f p
(3.1)

‘tp’ are the number of ‘true positives’. ‘fp’ are the false positives.

The recall measures the fraction of relevant predictions made. Is is computed as

provided in Equation (3.2).

recal l =
t p

tp+ f n
(3.2)

Usually, if the recall increases, then the precision decreases and if the precision in-

creases the recall decreases. This in general makes it necessary to trim the model

used in order to get a good trade-off between recall and precision.

The F1-score combines precision and recall and gives the harmonic mean of the two.

It is computed from precision and recall as given in Equation (3.3).

F1= 2 ·
precision · recal l

precision+ recal l
(3.3)

Although the three metrics just introduced are standard machine learning evaluation

methods, in case of functional predicates not all three need to be computed. This is

due to the fact that precision and recall are equal for functional query predicates. This

is easy to see: For a result predicate ‘isGrounded(Word1, Instance1)’ which is wrongly

grounded to ‘False’ a false-negative is counted. Since the predicate is functional it

is necessary that exactly one other grounding of the predicate is found to be ‘True’.

Hence creating a false-positive count. On the other hand, if the predicate is wrongly

grounded to ‘True’, then a false-positive is counted. This will create an additional

false-negative since this is the only possible grounding for the actual object. This

leads to the result that the counts of false-positive and false-negatives have equal

numbers. As a result, since precision and recall only distinguish in these two counts

53

3. Coreference and Entity resolution

the metrics lead to the same results. Ergo, the F1 score has the same value as well

and one of the metrics needs to be sufficient.

Each experiment follows the same structure: The set of annotated data is randomly

split into a training set and a query set. The set sizes vary in the different experiments.

For each query the precision, recall and F1 score are computed. This procedure is

repeated 10 times and an overall average is computed. To get statistically relevant

data this entire procedure is again repeated 10 times and the average scores are

computed. As a result, for each experiment, a total of 100 models are learned and

the number of queries varies according to the set sizes.

Subsequent to the description of the conducted experiments and the presentation of

the results possible interpretations are provided in Section 3.4. A critical analysis of

the chosen model is provided in Section 3.5.

3.3.1. Coreference experiments

For the coreference model two sets of experiments are conducted.

Experiment 1. In the first experiment, all word senses are provided in the query

databases and no grounding information. The database is split in sets of different

sizes. The results are provided in Table 3.1a. As to be expected the results show that

the run with 18 training databases receives the highest scores for recall as well as

precision and the lowest for the run with only two training databases. Figure 3.6

visualizes the learning curves for precision and recall. It is interesting to observe

that the difference between the highest and the lowest value for recall is only 0.09

points whereas the difference for precision is 0.205. Especially interesting is the large

increase of the precision in the runs from 2 to 10 training databases which indicates

good generalization properties while keeping the recall nearly constant.

The ‘coreference’ relationship is defined to be symmetric and consequently each object

is in relation with itself. The author considers these symmetric relationships as easy

to predict and consequently the scores in Table 3.1a do not express the quality of

the model in the best possible manner. Table 3.1b shows the scores for the same

experiment without the symmetric predictions. The table shows that especially the

54

3.3. Experiments

∅# of formulas # Queries # Training DBs ∅F1 ∅ Precision ∅ Recall

1635 2 18 0.793 0.774 0.865
1615 10 10 0.727 0.737 0.814
1183 15 5 0.660 0.680 0.772
1021 17 3 0.640 0.617 0.826
816 18 2 0.592 0.569 0.799

(a) Experiments for coreference where all senses are provided as evidence.

∅# of formulas # Queries # Training DBs ∅F1 ∅ Precision ∅ Recall

1635 2 18 0.690 0.617 0.851
1615 10 10 0.600 0.522 0.762
1183 15 5 0.558 0.473 0.782
1021 17 3 0.513 0.428 0.778
816 18 2 0.442 0.363 0.752

(b) Results if symmetric results are filtered out of the result set for the first exper-
iment

Table 3.1.: Results for the first experiment, including all word senses

2 3 5 10 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall

Number of training DBs

Figure 3.6.: The precision and recall learning curves for coreference. Almost constant
recall when all senses are provided as evidence.

55

3. Coreference and Entity resolution

∅# of formulas # Queries # Training DBs ∅F1 ∅ Precision ∅ Recall

1651 2 18 0.805 0.781 0.873
1612 10 10 0.722 0.729 0.817
1184 15 5 0.613 0.620 0.748
1008 17 3 0.578 0.558 0.774
788 18 2 0.561 0.533 0.787

(a) Results where symmetric relations are taken into account.

∅# of formulas # Queries # Training DBs ∅F1 ∅ Precision ∅ Recall

1651 2 18 0.733 0.656 0.888
1612 10 10 0.593 0.514 0.755
1184 15 5 0.450 0.368 0.733
1008 17 3 0.407 0.333 0.719
788 18 2 0.399 0.324 0.738

(b) Results not including symmetric predictions.

Table 3.2.: Experiments for coreference where no senses are provided as evidence.

precision is a lot lower with this reduced look at the results. Recall is still very high

but decreases a bit stronger with less training databases.

Experiment 2. As a second experiment it is tested how well the model performs

when no word senses are provided as evidence in the query databases. The predic-

tion then mainly relies on the relationship of the roles in the text. The same setting as

in the previous experiment is applied and the results are provided in Table 3.2a. As in

the previous experiment the recall is nearly constant as can been seen in Figure 3.7.

The increase in precision with more training databases is stronger and consequently

the difference between highest and lowest precision value is 0.248. Again the re-

duced results are presented where symmetric relations are filtered out in Table 3.2b.

Table 3.2b shows that the model performs a lot worse than in the first experiment

when the number of training databases is small.

Comparing the two models, the F1 score is helpful as precision and recall both in-

fluence it. Figure 3.8a shows the F1 score for both experiments. As can be seen, not

including the senses yields even better results for small training sets when symmetric

relations are part of the analysis. Figure 3.8b shows that if the symmetric predictions

are left out the model that includes the senses perform a lot better than the one not

56

3.3. Experiments

2 3 5 10 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall

Number of training DBs

Figure 3.7.: Precision and recall learning curves for coreference if no senses are given as
evidence.

including senses. However, this is not the case for the set where 18 training databases

are provided.

57

3. Coreference and Entity resolution

2 3 5 10 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1 with senses F1 without senses

Number of training DBs

(a) The F1 score for coreference with senses and without senses as evidence.

2 3 5 10 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1 with senses F1 without senses

Number of training DBs

(b) The F1 scores for coreference with sense and without sense without symmetric predictions.

Figure 3.8.: Comparing the F1 scores of both experiments.

58

3.3. Experiments

3.3.2. Grounding experiments

For the grounding problem two more runs of experiments are conducted. Coreference

information is assumed to be provided as evidence and all senses are provided as well.

As a metric, only the precision is provided as discussed above.

The same procedure as with the coreference experiments is followed. The set of data-

bases is split into two sets of varying sizes. The results of the experiments are provided

in Table 3.3

The first experiment shows satisfying results with a steady increase of precision with

an increasing number of training databases.

Despite the fairly good results in the first experiment a second round of experiments

is executed where the model is changed by introducing the formula:

isGrounded(w,i) ∧ hasSense(w,sid) ∧ isaW(sid,+c) ∧ isInstanceOf(i,cid) ∧ isaI(cid,+c)

The formula is created due to the very low weight that the semantic distance formula

receives during training. The effect of this new formula is that for all groundings that

appear in the training data the formula will create a large positive weight. If a new

object, one that didn’t appear during training, is encountered, then the old semantic

distance formula still provides it’s generalization property. But for objects that haven’t

been previously seen, the chance of finding correct groundings increases. The results

provided in Table 3.4 reflect this intuition in increasing the precision for models that

∅# of formulas #Queries #Training DBs ∅Precision

660 2 18 0.786
661 10 10 0.731
486 15 5 0.724
427 17 3 0.673
319 18 2 0.653

Table 3.3.: Overview of the grounding experiments. The model shows very good gener-
alization properties for even two training databases show good results for the
small training corpus.

59

3. Coreference and Entity resolution

∅# of formulas #Queries #Training DBs ∅Precision

843 2 18 0.838
787 10 10 0.801
564 15 5 0.716
505 17 3 0.657
396 18 2 0.605

Table 3.4.: Better results by making the concepts part of the model

contain a lot of concepts(runs with more than 5 training databases). The learning

curves for the two models are provided in Figure 3.9.

60

3.3. Experiments

2 3 5 10 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision with concepts Precision without concepts

Number of training DBs

Figure 3.9.: Precision with concepts in the model versus precision without concepts. The
inclusion of concepts only pays off with more training databases.

3.3.3. Joint experiments

In a third round of experiments the models from coreference and entity resolution

are combined into a joint model. The joint model has a much larger complexity since

the number of formulas increases dramatically. As a result, not the same amount of

data that was obtained. It is indicated how many iterations of the experiments were

run in each result table. A single run indicates that 10 models are learned.

Since learning is difficult only one experiment has been conducted for the joint

model where ‘coreference’ and ’isGrounded’ are query predicates. In the experiment the

senses are provided and the concepts are part of the model as in the second ground-

ing experiment. Table 3.5 provides an overview over the obtained data. Table 3.6a

and Table 3.7 show the results for the individual queries. Table 3.5b shows the gen-

eral results if the symmetric predictions for ‘coreference’ are removed from the result

set.

The data shows that the recall is dramatically reduced compared to the individual

experiments. Moreover, there now is a relationship between the number of training

61

3. Coreference and Entity resolution

∅# of formulas #runs # Queries # DBs ∅F1 ∅ Precision ∅ Recall

2500 1 2 18 0.800 0.862 0.753
2393 2 10 10 0.610 0.624 0.649
1790 10 15 5 0.566 0.636 0.548
1564 10 17 3 0.561 0.632 0.534
1224 10 18 2 0.545 0.547 0.595

(a) General results for the joint experiment including symmetric predictions.

∅# of formulas # runs # Queries # DBs ∅F1 ∅ Precision ∅ Recall

2500 1 2 18 0.826 0.827 0.817
2393 2 10 10 0.561 0.558 0.622
1790 10 15 5 0.542 0.574 0.550
1564 10 17 3 0.516 0.552 0.510
1224 10 18 2 0.443 0.437 0.496

(b) General results without the symmetric predictions from coreference.

Table 3.5.: General results for the joint experiment.

runs # Queries # Training DBs ∅F1 ∅ Precision ∅ Recall

1 2 18 0.727 0.835 0.655
2 10 10 0.602 0.620 0.678
10 15 5 0.489 0.583 0.504
10 17 3 0.520 0.638 0.519
10 18 2 0.554 0.569 0.690

(a) Results for the coreference predicate with symmetric predictions.

runs # Queries # Training DBs ∅F1 ∅ Precision ∅ Recall

1 2 18 0.721 0.784 0.689
2 10 10 0.513 0.478 0.621
10 15 5 0.380 0.447 0.399
10 17 3 0.370 0.451 0.364
10 18 2 0.338 0.354 0.422

(b) Results for the coreference predicate without symmetric predictions.

Table 3.6.: Results for the coreference predicate.

62

3.3. Experiments

runs # Queries # Training DBs ∅ Precision

1 2 18 0.836
2 10 10 0.597
10 15 5 0.611
10 17 3 0.548
10 18 2 0.488

Table 3.7.: Results for the isGrounded predicate.

databases and the recall, i.e. the recall increases with the number of training data-

bases. Figure 3.10 shows all F1 scores for the ‘coreference’ experiments where the

word senses are available. As is described above, the first experiments do not include

the ‘isGrounded’ predicate. Those models tend to show better generalisation proper-

ties for less training databases. However, in case of many training databases the joint

model seems to outperform the other models.

63

3. Coreference and Entity resolution

2 3 5 10 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1 joint incl. symmetric F1 joint excl. symmetric F1 incl. symmetric F1 excl. symmetric

Number of training DBs

Figure 3.10.: All F1 scores for the different experiments when word senses are avail-
able. Experiments that do not include any grounding information tend to
generalize better.

3.4. Discussion of Results

The results obtained in Section 3.3 generally can be interpreted as a success. The

generalisation over the objects in some of the experiments is very promising. Unfor-

tunately, comparison to other models is not possible as models presented in other

works are usually tested on different data sets and solve different problems. This is

despite the fact that they all deal with language grounding as elaborated on in Sec-

tion 1.3. However, in this section the strengths and weaknesses of each of the learned

models are analysed and the performance compared to each other. Interpretation of

the results are provided and ideas for improvement discussed.

3.4.1. Discussion of coreference results

Coreference resolution has been tested with three different models. The first includes

the word senses, the second left the word senses out and then again was tested as part

64

3.4. Discussion of Results

of the joint model where the word senses are present again. Due to time constraints

it was not possible to run further tests as they take up very long time(more than a

week in case of the joint model).

Despite the fact that comparisons are not directly feasible the author believes that

providing the performance metric of at least one reference model is useful as this

helps to evaluate the obtained scores. As has been pointed out, state of the art im-

plementations are mostly used with test data from newspaper articles. The imple-

mentation described in [6] won the CoNLL-2011 shared task competition. Average

F1 scores over different test sets vary between 0.57 and 0.74. Hence, the numbers

that were obtained in the course of this work seem at least to be competitive. How-

ever, it is important to stress that the systems actually test a different tasks and hence

cannot be compared directly. The message is that a F1 score of 0.7 can be regarded

as a good result.

Some particular interesting results are presented in the last section. First, the al-

most constant recall that seems to be nearly independent of the number of training

databases in the first two experiments. Especially in the case that the symmetric pre-

dictions are part of the results. If the symmetric predictions are filtered out then the

recall shows greater variance. This is due to the fact that the symmetric predictions

are mostly accurate and consequently the number of true positives is reduced when

filtering them out. Moreover, the influence of false negatives on the recall increases.

The high recall values indicate that ‘coreference’ is in general detected when it should

be detected. The precision indicates that in case of a lower number of training data-

bases the number of false positives is too high. One way of reducing the number

of false positives is introducing more criteria for ‘coreference’. Syntactic relationships

that are used in traditional coreference systems could be a start. Nevertheless, this

only works for the objects named in the texts and not for the virtual words.

Low precision results for few training databases are most likely obtained due to the

fact that not enough possible role combinations are encountered in the data. Many

different combinations are required as no generalization mechanism for roles exists

in this model which is further discussed in Section 3.5.

Additionally, in the second experiment, where no word senses are provided, the res-

ults for many training databases are even better than for the experiment that includes

65

3. Coreference and Entity resolution

word senses as can be seen in Figure 3.8. This is possibly due to the fact that the se-

mantic distance between two concepts does not provide a secure mechanism to pre-

dict ‘coreference’ but is just one indicator. In the case that multiple object instances of

the same object concept are present the semantic distance does not provide enough

information to make a prediction about coreference. This results in an increased num-

ber of false positives and hence a lower precision and F1 score.

What is evident from Figure 3.8 is that with five training databases and less, the ex-

periment that excluded word senses shows a weaker results. This in particular the

case if symmetric predictions are excluded. This basically shows the powerfulness of

the semantic distance relationship which is used for resolving the ‘coreference’ predic-

ate.

Although Figure 3.8 indicates a generally lower F1 score for the joint model the

model performs fairly well. The low F1 score is mainly due to a much lower recall

than in the first experiments. The precision is even higher in the joint approach.

3.4.2. Discussion of entity resolution results

For the entity resolution problem there are two classes of errors. First, errors that

happen are mostly caused by selecting the wrong entity in the right class of objects.

For example, in the instruction

‘Put the mug on the table.’

In this case the ‘mug’ is the ‘PutTheme’ of the ‘put’ action. The training data suggests

that the ‘PutTheme’, should never be already on the ‘PutGoal’ which is in this case the

‘table’. A wrongly selected item in the right class would be a ‘Mug’ that is already loc-

ated on the table. These kind of errors happen when one sentence requires the object

to have certain geometric relationship, e.g. to not be on a table, and all subsequent

instructions have a different requirement. This makes sense since the dynamics of the

recipe need to be taken into consideration when grounding the objects. However, in

the current model, where all sentences are jointly grounded this cannot be accounted

for. A possible solution to this approach is discussed in Section 3.5.

66

3.5. Discussion of the model

The second class of errors happens where misclassification predicts an entirely differ-

ent class of objects and is lesser a problem, however, still present. This results from

the roles that are part of the model. Since no generalisation mechanism exists it is

important to have all roles already in the training data so that they can become a part

of the model. New roles are not being handled well by the model. Moreover, if the

weight for a rule that indicates the grounding of a specific role to a specific concept

is very high, then it might overrule the semantic similarity measure.

Making the concepts part of the model improves the precision significantly. This is

because for known concepts this boosts the impact of the semantic similarity. The

results for the joint experiments are slightly worse than the other ones. It has to be

considered that for the first experiment, the coreference relationships were provided

as evidence. In the joint approach coreference is part of the inference. Consequently,

it is expected that the joint model does not outperform the others. The almost similar

precision for 18 training databases suggest that the impact of wrong coreference

decisions is low for that many training databases.

3.5. Discussion of the model

The formulas used in the different models are based on the assumptions made in

Section 3.2. Consequently, the models can only work within the constraints of the

assumptions made. In this section, some of the limitations that are consequences of

those assumptions are presented.

The models for coreference as well entity resolution as they are currently implemen-

ted and tested in Section 3.3 have several drawbacks that limit the applicability to and

scalability to real world scenarios. The most eminent fact is that the current training

base only comprises data for five different verbs. This is a big problem although, as

mentioned in [2], roughly 50% of all actions can be executed with only 15 different

verbs. Even if those 15 verbs are explicitly modelled with roles it is hard to find real

world examples where only those instructions appear. To overcome this limitation a

generalization mechanism is needed that is able to generalize over different verbs.

One such approach could be to use a taxonomy for the frames. Such a taxonomy is

provided by the FrameNet and could be exploited without having to develop a new

taxonomy. However, it is up to new experiments to see if such an approach can still

67

3. Coreference and Entity resolution

be modelled in ML due to complexity problems when introducing another domain

of concepts. In order to handle real-world examples such an approach is necessary

and consequently should have a high priority when developing future version of this

model.

Moreover, currently the model encodes the action verb that is present in a sentence

in the name of a role. This implies that an action verb may only exist once per set of

instructions. For example, for the two instructions

Put the cup on the table.

Now put the plate on the table.

The ‘table’ in the first and second instruction both would get assigned the role ‘Put-

Goal’. Hence, it is not possible to decide to which verb(‘put’ in the first or second

sentence) the annotated roles belong to. A solution to this problem is to introduce a

predicate that takes three parameters. It assigns the roles and also includes the verbs

to which the labelled word belongs to.

hasRole(word,word,role!)

Thus, this provides a mechanism to have the role, the action verb and the role as-

signee in one relation. This has implications for the rest of the model since the com-

plexity of the model will dramatically increase. The modified formula from the core-

ference model looks like

hasRole(w1, w2,+r1) ∧ hasRole(w3, w4, +r2) ∧ coreference(w1, w3) ∧
distance0(w1,w3)

Now, four different word variables are needed, instead of the two that were needed

previously. For a moderately short example with 16 words and 16 roles this will lead

to

162 · 162 · 162 = 16,777, 216

68

3.5. Discussion of the model

different groundings compared to

16 · 16 · 162 = 65,536

in the current model.

Furthermore, the current model will grow, i.e. the number of formulas, with the

number of roles and number of concepts that are present in the training data as

pointed out before.

These examples show why it is so hard to create models in ML. Despite the power-

fulness of the formalism the exponential growth of the model size is permanently a

barrier. Every formula developed in this formalism is generally a trade-off between

complexity and expressiveness. This is a big problem when dealing with real world

examples where the texts are longer and hence many more words need to be taken

into account.

The current model is limited to words that appear in the WordNet taxonomy and

therefore dependends on a different project that is outside of the direct influence

of the author of this work. However, as has been stated earlier the corpus of objects

that is used in everyday manipulation tasks are usually common and can therefore be

expected to be part of the taxonomy. To have a more general model for more complex

and less mundane tasks the model needs to be changed to be able to handle those

unknown objects.

As mentioned in Section 3.1.2 the dynamics of the instructions pose a big challenge

for the design of the model. The fact that objects can change their state, can be

destroyed or new objects can be created is particularly difficult. In the current model

the knowledge about transitions is encoded in the roles of the verb. For example,

for a ‘mixing sth. with sth.’ action the roles need to include the knowledge that two

entities are mixed together and that a resulting entity is created. The problem is

that this approach is very inflexible. First, the number of entities that can be mixed

together can vary, making it hard to predict the number of parts. Even if the parts

can be correctly predicted the next question is if the resulting entity should be in a

69

3. Coreference and Entity resolution

coreference relationship with its parts. The author argues that for this task a new

mereological(part-of) relationship needs to be introduced. Coreference should not

be used for this relationship. This is one of the reasons why the problem has been

excluded from the current work.

70

Chapter 4

Conclusion

4.1. Future work

This work lays the basis for further research in the field of language grounding and

ML. Many ways to improve the current system and new fields of research have been

suggested and are substantiated in this section.

Instruction dynamics. As has been pointed out the transitions that objects undergo

in the course of executing a recipe pose a difficult problem. To additionally introduce

a new mereological or a more general transformation relationship creates new chal-

lenges and the prediction of these relationships in a text is suggested to be tackled in

a new project. Moreover, in order to make correct grounding decision in instructions

that include these new relationships, it is suggested to process a set of instructions

on a per instruction basis. As a consequence, it is suggested to split the joint model of

grounding and coreference again into two separate models. This is supported by the

data obtained in the experiments as no big improvements could be identified using a

joint approach. Moreover, the coreference system should be exploited as evidence for

the word sense disambiguation system.

Markov Logic. The algorithms that are available for ML are limited in the applicab-

ility in running real world systems. MPE inference is a very fast procedure and gives

results even for networks with thousands of variables in only a few seconds. However,

learning can take up to several days for big networks and thus hinders the design of

bigger models. Each model needs to be tested, refined and relearned several times.

Having to wait for several days is not an option for a productive use. Moreover, incre-

mental learning algorithms need to be developed to be able to integrate new know-

71

4. Conclusion

ledge into an existing model without the need to learn over all the historic data. Such

algorithms should use already learned weights and incorporate this knowledge into

their learning. If a new concept is seen and annotated data is available, the model

should be able to integrate a new formula into the existing model without having to

recompute the entire model. With this method, constant learning could be achieved

and make the use in productive environments more realistic. Even if learning takes

up several hours, the robot could do this overnight.

Training data. The lack to annotated training data is a big problem. Despite the fact

that the models generalize fairly well, lots of training data is needed to stabilize the

system in real world scenarios. Although an annotation tool has been created that

makes annotating texts and exporting them to the ML format easy, it takes some

training for the annotator to consistently annotate the data. Especially annotating

the roles requires a deep understanding of the semantics of the roles and experi-

ments need to be conducted in order to see if crowd sourcing, e.g. with Amazon’s

mechanical Turk is feasible.

4.2. Summary

This work presents a novel approach to language grounding using background know-

ledge. Section 1.2 approaches this new concept introducing virtual words and how

action specific models can be used to identify the needed items necessary for a suc-

cessful task execution on an autonomous robot. Chapter 2 equips the reader with

the necessary background information to understand the models that are developed.

Specifically, the PRAC formalism is introduced in Section 2.1 that is used as the basis

of this work. ML is used as a probabilistic first order knowledge base that can be quer-

ied in order to infer missing information. Models for coreference as well as for entity

resolution are developed in Section 3.1. A joint model combines the two models into

a single model. In order to run several experiments a set of training databases is cre-

ated. Several experiments with the different models are conducted and the results

presented in Section 3.3. The results prove the general applicability of the chosen

approach in a limited setting with a reduced complexity of the environment as well

as short instructions. A critical analysis of the results is given in Section 3.4. The

model for coreference achieves in the best case an F1 score of 0.793. The model for

72

4.2. Summary

entity resolution achieves an F1 score 0.805 in the best case on the provided test

set. The joint model achieves an F1 score of 0.80 for the combined task. Moreover,

general model assumptions are analysed in Section 3.5 and implications of modelling

decisions ascertained. It is further shown in Section 4.1 how this work is the basis

for future research in the area of language grounding for autonomous robots. The

natural handling of instruction dynamics is among the most relevant issues for future

work.

In conclusion, this work provides new ideas for language grounding and additionally,

it provides a new approach to classical NLP problems. Due to the positive results

of the experiments conducted in the scope of this work, the author expects more

research being conducted using semantic knowledge for instruction processing and

NLP tasks in general.

73

Appendix A

Training Database

The CD-ROM submitted with this work includes all experimental data. See “readme.txt”

for an explanation of the file structure.

A.1. Texts

Text 1.

1: First mix orange juice with vodka in the shaker.

2: Add a straw.

3: Serve.

Text 1.

1: Add Whiskey and ginger ale to a highball glass.

2: Start mixing.

3: Serve cold.

Text 3.

1: First mix the pepper with the salad.

2: Serve.

Text 4.

1: Add oatmeal and cinnamon to a bowl.

2: Now mix.

3: Serve.

Text 5.

1: Add coca cola to a glass.

2: Afterwards mix with ice.

75

A. Training Database

3: Serve on a tray.

Text 6.

1: Put the fork on the napkin.

Text 7.

1: Put the saucepan on the stove.

2: Add spaghetti and salt.

3: Serve on a plate.

Text 8.

1: Add cheese and toast on a platter.

2: Now put the platter on the table.

Text 9.

1: Put rice in a steamer.

2: Add water.

3: Mix.

4: Serve.

Text 10.

1: Put the cup on the table.

2: Add coffee to the cup.

3: Mix with milk.

4: Serve.

Text 11.

1: Put couscous into a pot.

2: Add double the volume of water.

3: Serve when finished.

Text 12.

1: First mix strawberries with cereal with yoghurt.

2: Add milk.

3: Serve.

Text 13.

1: Put a vase on the table.

2: Add flowers to the vase.

76

A.1. Texts

3: Then mix with fertilizer.

4: Serve.

Text 14.

1: Fill a coffee mug with water.

2: Add instant-coffee.

3: Serve.

Text 15.

1: Fill beer in a jug.

2: Put a beer glass on the bar.

3: Add beer to the beer-glass.

Text 16.

1: Fill a bottle with soda-water.

2: Add lime.

3: Serve.

Text 17.

1: Put smoked-salmon and bread on a buffet.

2: Fill a jar with cookies.

Text 18.

1: First put a mug and a spoon on the kitchen table.

2: Fill the mug with apple-juice.

Text 19.

1: Fill dark chocolate in a chocolate-fountain.

2: Add cherries.

3: Serve.

Text 20.

1: Mix apple, bananas and oranges in a bowl.

2: Add sugar.

3: Serve in a bowl.

77

A. Training Database

A.2. Action verb models

to mix.

• MixPart

Identifies one of the parts mixed

• MixWhole

The resulting entity of the mixing operation

• MixPlace

The location where the mixing occurs

to add.

• AddPlace

The place where the AddNewMember is added into an existing group

• AddNewNewMember

An item that becomes part of the AddGroup

• AddGroup

Anything that can be conceptualized as a complex collection of parts or ingredi-

ents. Can also be empty.

• AddExistingMember

An existing member of the AddGroup

to serve.

• ServeTheme

The object that is served

• ServeMeans

The means by which the ServeTheme is served

to put.

78

A.2. Action verb models

• PutTheme

The object that is moved

• PutGoal

The location where the PutTheme is relocated to

to fill.

• FillTheme

The entity that is filled

• FillGoal

The location the FillTheme is filled into

79

Appendix B

Markov Logic Models

The ML models are provided here. Predicate definitions are left out.

B.1. Coreference resolution

1: coreference(word,word)

2: hasSense(word,sense!)

3: hasRole(word,role!)

4: isaW(sense, concept)

5: distance0(word,word)

6: distance1(word,word)

7: distance2(word,word)

8: distance3(word,word)

9: fardistance(word,word)

10:

11: 0 hasSense(w1,sid1) ∧ hasSense(w2,sid2) ∧ isaW(sid1,c) ∧ isaW(sid2,c) ∧
coreference(w1,w2)

12: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧distance0(w1,w2)

13: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧distance2(w1,w2)

14: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧distance3(w1,w2)

15: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧fardistance(w1,w2)

16: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧distance1(w1,w2)

17: coreference(w1,w3) => (coreference(w1,w2) <=> coreference(w2,w3)).

18: 0 coreference(w1,w2) ∧ hasPOS(w1,+pos1) ∧ hasPOS(w2, +pos2)

19: 0 hasSense(w1,NULL) => coreference(w1 ,w2)

81

B. Markov Logic Models

B.2. Entity resolution

1: isGrounded(word,instance!)

2: hasSense(word,sense!)

3: hasRole(word, role!)

4: coreference(word,word)

5: isaW(sense,concept)

6: isaI(cid,concept)

7: isInstanceOf(instance, cid)

8: on(instance,instance)

9: in(instance,instance)

10: distance0(word,word)

11: distance1(word,word)

12: distance2(word,word)

13: distance3(word,word)

14: fardistance(word,word)

15:

16: 0 isGrounded(w,i) ∧ hasSense(w,sid) ∧ isaW(sid, c) ∧ isInstanceOf(i,cid) ∧
isaI(cid, c)

17: 0 isGrounded(w,i) ∧ hasSense(w,sid) ∧ isaW(sid, +c) ∧ isInstanceOf(i,cid) ∧
isaI(cid, +c)

18: 0 isGrounded(w1,i1) ∧ isGrounded(w2,i2) ∧ hasRole(w1,+r1) ∧ hasRole(w2,+r2)

∧ on(i1,i2)

19: 0 isGrounded(w1,i1) ∧ isGrounded(w2,i2) ∧ hasRole(w1,+r1) ∧ hasRole(w2,+r2)

∧ in(i1,i2)

20: coreference(w1,w2) => (isGrounded(w1,i) <=> isGrounded(w2,i)).

21: hasSense(w,NULL) => isGrounded(w,NULL).

22: 0 hasPOS(w, +pos) => isGrounded(w,NULL)

23: 0 !(hasPOS(w,+pos) => isGrounded(w,NULL))

24: 0 hasRole(w,+r) => isGrounded(w,NULL)

B.3. Joint model

1: isGrounded(word,instance!)

2: hasSense(word,sense!)

82

B.3. Joint model

3: hasRole(word, role!)

4: coreference(word,word)

5: isaW(sense,concept)

6: isaI(cid,concept)

7: isInstanceOf(instance, cid)

8: on(instance,instance)

9: in(instance,instance)

10: distance0(word,word)

11: distance1(word,word)

12: distance2(word,word)

13: distance3(word,word)

14: fardistance(word,word)

15:

16: 0 hasSense(w1,sid1) ∧ hasSense(w2,sid2) ∧ isaW(sid1,c) ∧ isaW(sid2,c) ∧
coreference(w1,w2)

17: 0 isGrounded(w,i) ∧ hasSense(w,sid) ∧ isaW(sid, c) ∧ isInstanceOf(i,cid) ∧
isaI(cid, c)

18: 0 isGrounded(w,i) ∧ hasSense(w,sid) ∧ isaW(sid, +c) ∧ isInstanceOf(i,cid) ∧
isaI(cid, +c)

19: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧ distance0(w1,w2)

20: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧ distance2(w1,w2)

21: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧ distance3(w1,w2)

22: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧ fardistance(w1,w2)

23: 0 hasRole(w1,+r1) ∧ hasRole(w2,+r2) ∧ coreference(w1,w2) ∧ distance1(w1,w2)

24: 0 coreference(w1,w2) ∧ hasPOS(w1,+pos1) ∧ hasPOS(w2, +pos2)

25: 0 hasSense(w1,NULL) => coreference(w1 ,w2)

26: 0 isGrounded(w1,i1) ∧ isGrounded(w2,i2) ∧ hasRole(w1,+r1) ∧ hasRole(w2,+r2)

∧ on(i1,i2)

83

B. Markov Logic Models

27: 0 isGrounded(w1,i1) ∧ isGrounded(w2,i2) ∧ hasRole(w1,+r1) ∧ hasRole(w2,+r2)

∧ in(i1,i2)

28: coreference(w1,w3) => (coreference(w1,w2) <=> coreference(w2,w3)).

29: coreference(w1,w2) => (isGrounded(w1,i) <=> isGrounded(w2,i)).

30: hasSense(w,NULL) => isGrounded(w,NULL).

31: 0 hasPOS(w, +pos) => isGrounded(w,NULL)

32: 0 !(hasPOS(w,+pos) => isGrounded(w,NULL))

33: 0 hasRole(w,+r) => isGrounded(w,NULL)

84

Acronyms

G3 Generalized Grounding Graphs

CNF Conjugate Normal Form

CPD Conditional Probability Distribution

FOL First Order Logic

i.i.d. independent and identically distributed

IAS Intelligent Autonomous Systems

LG Language Grounding

MCMC Markov Chain Monte Carlo

ML Markov Logic

MLN Markov Logic Network

MN Markov Network

MPE Most Probable Explanation

NLP Natural Language Processing

POS Part-of-Speech

PRAC Probabilistic Robot Action Core

ROS Robot Operating System

SDC Spatial Description Clause

85

Acronyms

SLP Semantic Language Processing

SRL Statistical Relational Learning

TUM Technische Universität München

WCSP Weighted Constraint Satisfaction Problem

86

Bibliography

[1] Moritz Tenorth. Knowledge Processing for Autonomous Robots. PhD thesis, Tech-

nische Universität München, 2011.

[2] Daniel Nyga and Michael Beetz. Everything robots always wanted to know

about housework (but were afraid to ask). In 2012 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October,

7–12 2012.

[3] John Eric Anderson. Constraint-directed improvisation for everyday activities.

PhD thesis, The University of Manitoba (Canada), 1995. AAINN99082.

[4] Dejan Pangercic, Moritz Tenorth, Dominik Jain, and Michael Beetz. Combining

Perception and Knowledge Processing for Everyday Manipulation. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1065–

1071, Taipei, Taiwan, October 18-22 2010.

[5] Vincent Ng. Supervised noun phrase coreference research: The first fifteen

years. In Proceedings of the 48th Annual Meeting of the Association for Com-

putational Linguistics, pages 1396–1411, 2010.

[6] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai

Surdeanu, and Dan Jurafsky. Stanford’s multi-pass sieve coreference resolution

system at the conll-2011 shared task. In Proceedings of the Fifteenth Conference

on Computational Natural Language Learning: Shared Task, CONLL Shared Task

’11, pages 28–34, Stroudsburg, PA, USA, 2011. Association for Computational

Linguistics.

87

Bibliography

[7] Hoifung Poon and Pedro Domingos. Joint unsupervised coreference resolu-

tion with markov logic. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, EMNLP ’08, pages 650–659, Stroudsburg, PA,

USA, 2008. Association for Computational Linguistics.

[8] Aria Haghighi and Dan Klein. Unsupervised coreference resolution in a non-

parametric bayesian model. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics, pages 848–855, Prague, Czech Repub-

lic, June 2007. Association for Computational Linguistics.

[9] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In Pro-

ceedings of the Sixth International Conference on Data Mining, ICDM ’06, pages

572–582, Washington, DC, USA, 2006. IEEE Computer Society.

[10] Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage. Journal of the

American Statistical Association, 64(328):1183–1210, 1969.

[11] Shane Bergsma, Dekang Lin, and Randy Goebel. Glen, glenda or glendale:

unsupervised and semi-supervised learning of english noun gender. In Proceed-

ings of the Thirteenth Conference on Computational Natural Language Learning,

CoNLL ’09, pages 120–128, Stroudsburg, PA, USA, 2009. Association for Com-

putational Linguistics.

[12] Heng Ji and Dekang Lin. Gender and animacy knowledge discovery from web-

scale n-grams for unsupervised person mention detection. In Olivia Kwong,

editor, PACLIC, pages 220–229. City University of Hong Kong Press, 2009.

[13] Yifan Li, Petr Musilek, Marek Reformat, and Loren Wyard-Scott. Identification

of pleonastic it using the web. J. Artif. Int. Res., 34(1):339–389, March 2009.

[14] Michael Beetz, Lorenz Mösenlechner, Moritz Tenorth, and Thomas Rühr. Cram –

a cognitive robot abstract machine. In 5th International Conference on Cognitive

Systems (CogSys 2012), 2012.

[15] Cynthia Matuszek, Dieter Fox, and Karl Koscher. Following directions using

statistical machine translation. In Proceedings of the 5th ACM/IEEE international

conference on Human-robot interaction, HRI ’10, pages 251–258, Piscataway, NJ,

USA, 2010. IEEE Press.

88

Bibliography

[16] Thomas Kollar Stefanie Tellex, Steven Dickerson, Matthew R. Walter, Ashis Go-

pal Banerjee, Seth Teller, and Nicholas Roy. Approaching the symbol grounding

problem with probabilistic graphical models. AI Magazine, 2011.

[17] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward understand-

ing natural language directions. In Proceedings of the 5th ACM/IEEE interna-

tional conference on Human-robot interaction, HRI ’10, pages 259–266, Piscat-

away, NJ, USA, 2010. IEEE Press.

[18] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn. What

to do and how to do it: Translating natural language directives into temporal

and dynamic logic representation for goal management and action execution.

In Proceedings of the 2009 IEEE International Conference on Robotics and Auto-

mation (ICRA ’09), Kobe, Japan, May 2009.

[19] Friedhart Klix. Über Wissensrepräsentation im menschlichen Gedächtnis, pages

9–73. VEB: Deutscher Verlag der Wissenschaften, 1984.

[20] P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial In-

telligence. Synthesis lectures on artificial intelligence and machine learning.

Morgan & Claypool, 2009.

[21] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2 edition, 2003.

[22] Nathan Srebro and David Karger. Learning markov networks: maximum

bounded tree-width graphs. In In Proceedings of the 12th ACM-SIAM Symposium

on Discrete Algorithms, pages 392–401, 2001.

[23] Pradeep Ravikumar. Approximate inference, structure learning and feature

estimation in markov random fields: thesis abstract. SIGKDD Explor. Newsl.,

10:32–33, December 2008.

[24] Ben Taskar, P. Abbeel, M. Wong, and Daphne Koller. Relational markov net-

works. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational

Learning, Adaptive Computation and Machine Learning, chapter 6, pages 174–

200. MIT Press, 2007.

89

Bibliography

[25] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[26] Gregory F. Cooper. The computational complexity of probabilistic inference

using bayesian belief networks (research note). Artif. Intell., 42(2-3):393–405,

March 1990.

[27] Dominik Jain, Paul Maier, and Gregor Wylezich. Markov Logic as a Modelling

Language for Weighted Constraint Satisfaction Problems. In Eighth Interna-

tional Workshop on Constraint Modelling and Reformulation, in conjunction with

CP2009, 2009.

[28] Radford Neal. Slice sampling. Annals of Statistics, 31:705–767, 2000.

[29] Bsart Selman, Hector Levesque, and David Mitchell. A new method for solving

hard satisfiability problems. In AAAI, pages 440–446, 1992.

[30] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: ex-

ploiting random walk strategies. In Proceedings of the 19th national conference

on Artifical intelligence, AAAI’04, pages 670–676. AAAI Press, 2004.

[31] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satis-

fiability testing. In DIMACS SERIES IN DISCRETE MATHEMATICS AND THEOR-

ETICAL COMPUTER SCIENCE, pages 521–532. American Mathematical Society,

1995.

[32] H. Poon and P. Domingos. Sound and efficient inference with probabilistic and

deterministic dependencies. In AAAI, 2006.

[33] P. Damlen, J. Wakefield, and S. Walker. Gibbs sampling for bayesian non-

conjugate and hierarchical models by using auxiliary variables. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 61(2):331–344,

1999.

[34] Dominik Jain. Probabilistic Cognition for Technical Systems: Statistical Relational

Models for High-Level Knowledge Representation, Learning and Reasoning. PhD

thesis, Technische Universität München, 2012.

90

Bibliography

[35] Matthew Richardson and Pedro Domingos. Markov logic networks. Mach.

Learn., 62(1-2):107–136, February 2006.

[36] A. McEnery, I. Tanaka, and S. Botley. Corpus annotation and reference resol-

ution. In Proceedings of a Workshop on Operational Factors in Practical, Robust

Anaphora Resolution for Unrestricted Texts, ANARESOLUTION ’97, pages 67–74,

Stroudsburg, PA, USA, 1997. Association for Computational Linguistics.

[37] Z. Wu and M. Palmer. Verbs semantics and lexical selection. Proceedings of the

32nd conference on Association for Computational Linguistics, pages 133–138,

1994.

[38] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-

ceedings of the 41st Annual Meeting on Association for Computational Linguistics

- Volume 1, ACL ’03, pages 423–430, Stroudsburg, PA, USA, 2003. Association

for Computational Linguistics.

[39] George A. Miller. Wordnet: A lexical database for english. Communications of

the ACM, 38:39–41, 1995.

[40] Douglas B. Lenat. Cyc: a large-scale investment in knowledge infrastructure.

Commun. ACM, 38(11):33–38, November 1995.

[41] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley frame-

net project. In Proceedings of the 36th Annual Meeting of the Association for

Computational Linguistics and 17th International Conference on Computational

Linguistics - Volume 1, ACL ’98, pages 86–90, Stroudsburg, PA, USA, 1998. As-

sociation for Computational Linguistics.

91

	Eidesstattliche Erklärung
	Acknowledgements
	Abstract
	Contents
	List of Resources
	Introduction
	Motivation
	Problem Description
	Related Work
	Contributions
	Outline

	Prerequisites
	Probabilistic Robot Action Cores
	First Order Logic
	Markov Networks
	Markov Logic
	Introduction
	Formal Definition
	Inference
	Learning

	Coreference and Entity resolution
	The Model
	A model for coreference resolution
	A model for entity resolution
	A joint model

	Implementation
	Natural Language Processing
	Model implementation
	Preprocessing
	Markov Logic Formulas
	Formulas for coreference resolution

	Experiments
	Coreference experiments
	Grounding experiments
	Joint experiments

	Discussion of Results
	Discussion of coreference results
	Discussion of entity resolution results

	Discussion of the model

	Conclusion
	Future work
	Summary

	Training Database
	Texts
	Action verb models

	Markov Logic Models
	Coreference resolution
	Entity resolution
	Joint model

	Acronyms
	Bibliography

