

Project Report

Project Title:
Evaluation of Standard Information retrieval

system related to specific queries

Submitted by:
Sindhu Hosamane Thippeswamy

Information and Media Technologies
Matriculation number :46442

sindhu.hosamane@tu-harburg.de

1

ACKNOWLEDGEMENT

My first experience of project has been successfully, thanks to the
support of University with gratitude. I wish to acknowledge
all of them. However, I wish to make special mention of the
following.

I take this opportunity to express my profound gratitude and deep regards
to my guide Prof. Ralf Möller for his exemplary guidance, monitoring
and constant encouragement throughout the course of this project.

I must make special mention of Sylvia Melzer our project
supervisor for giving us her valuable time & attention & for
providing us a systematic way for completing our project.

 I am obliged to staff members of University, for the valuable information
provided by them in their respective fields. I am grateful for their
cooperation during the period of my project.

 Sindhu Hosamane

2

Abstract
The aim of this project is about measuring the effectiveness of standard
Information Retrieval systems. The standard approach to information
retrieval system evaluation revolves around the notion of relevant and
non-relevant documents. Basic measures for information retrieval
effectiveness that are standardly used for document retrieval are Precision
and Recall. So using standard information retrieval systems we define
specific queries and then answer these specific queries. Measure
precision and recall values with the standard information retrieval
systems. For these experiments we use the Boemie Repository.

3

Contents
1 Introduction

1.1 Motivation …….…………………………………………. 07

1.2 Requirements……. ………………………………………. 08

1.3 Outline of the project…… …………………………………10

2 Lucene

2.1 About Lucene…..………………………………………… 11

2.2 Lucene Indexing……………………………..…………….13

 2.2.1 Indexing example using Lucene…………………...14

 2.2.2 Indexing classes of Lucene………………………...15

2.3 Lucene Searching………………………………………….17

 2.3.1 Searching example using Lucene………………….18

 2.3.2 Searching classes of Lucene ………………………19

3 Lucene index structure……………………………………………21

4 Using Lucene with Boemie repository

 4.1 Algorithm for indexing Boemie………………………….. 26

 4.2 Algorithm for searching on Boemie index………………. 28

 4.3 Algorithm for retrieving documents based on
 relevance condition ……………………………………..29
5 Evaluation

 5.1 Steps of evaluation…………………………….…………. 31

 5.2 Basic measures of Evaluation……………………………. 31

 5.3 Results of the experiment……………………..…………. 32

6 Conclusion .………………………………………………………34

4

7 Bibliography ……………………………………………………. 35

Figures

1 Introduction

Fig 1 Typical Information Retrieval task……………………… 07

2 Lucene

Fig 2 A typical application integration with Lucene…………...12

Fig 3 Indexing architecture of Lucene ……………………….13

3 Lucene index structure

Fig 4 Inverted index ……………………………………………21

Fig 5 Lucene index structure …………………………………22

Fig 6 Logical view of index files ..…………………………….23

4 Using Lucene with Boemie repository

Fig 7 Boemie index structure…………………………………...27

5 Evaluation

6 Conclusion

7 Bibliography

5

Tables
1 Introduction

2 Lucene

Table 1 Lucene Analyzers……………………………………..16

3 Lucene index structure

Table 2 Names and extensions of the files in Lucene………….25

Table 3 Structure of fields information file……………………25

Table 4 Structure of the frequency file………………………...25

Table 5 Structure of the position file…………………………..25

4 Using Lucene with Boemie repository

5 Evaluation

6 Conclusion

7 Bibliography

6

Chapter 1

 INTRODUCTION

1.1 Motivation

Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).[1]

There are many Information retrieval systems. Information retrieval has
developed as a highly empirical discipline, requiring careful and thorough
evaluation to demonstrate the superior performance of different novel
techniques used by IR systems on representative document collections.

Fig 1: Typical Information Retrieval task

 7

8

he group of documents over which information retrieval is performed is

ore.
But the performance and quality are not known. The main aim of this

.2 Requirements

roject are:

trieval Systems

) Boemie Repository:

ltimedia repository. Multimedia documents
can be text, images and video. This is public and available at

ages). These Web pages
oncern the collection of information about the domain of athletic events

present multimedia

T
called as collection. It is also called as Document corpus. User submits
query. Query is what the user conveys to the computer in an attempt to
communicate the information need. Information need is the topic about
which the user desires to know more. Documents retrieved by IR systems
are arranged according to their relevance to a given search query. A
document is relevant if it is one that the user perceives as containing
information of value with respect to their personal information need.

There exist many IR systems like Google, Bing, MSN and many m

work is to measure the effectiveness of search engines.

1

he requirements of the pT
a) Boemie Repository
b) Standard Information Re
c) Queries.

a

Boemie repository is a mu

http://repository.boemie.org/BoemieRepository

It contains 693 multimedia documents (web p
c
that includes concepts tournaments, meetings, training, athletes, persons,
faces, etc. In order to make multimedia content like videos or images
searchable the data must be meaningfully annotated. Humans commonly
do this, but it is a hard and expensive task. Using sophisticated algorithms
to extract semantics from multimedia content, BOEMIE annotates
content with semantics automatically and provides valuable knowledge
for both, content providers and content consumers.

Symbolic and holistic content descriptions re

documents such as texts, images, and videos. Symbolic content
descriptions are symbolic representations that use formal languages, such
as description logics (DLs). They consist of Aboxes, which contain

http://repository.boemie.org/BoemieRepository
http://repository.boemie.org/BoemieRepository
http://repository.boemie.org/BoemieRepository

9

 in their raw data format and their
symbolic representation in RDF format. A symbolic content description

) Standard information retrieval systems:

ata repositories has
brought lots of data in our reach. Day by day data is increasing

 retrieval system finds material of an unstructured nature that
satisfies an information need of user from within large collections.

) Queries:

eries to IR systems. Query is what the user conveys to the
computer in an attempt to communicate the information need. Queries

instances and atomic concepts. These Aboxes are the result of an analysis
process and an interpretation process.

Boemie repository contains documents

of a multimedia object is a symbol. Hence symbolic content descriptions
are characterized as atomic and static.

b

The great explosion of Internet and electronic d

exponentially, not only on Internet but also on desktop computers. It is
very impractical to look for a picture or an audio file out of many folders
and subfolders on a desktop. Although user can classify data, crawling
through many categories and subcategories of data, which is not an
efficient way. There is a need for alternate and dynamic ways of finding
information. That’s where Information retrieval systems come into
existence.

Information

c

User defines qu

have an influence on matching result. Queries must match with content
description of multimedia documents.

10

.3 Outline of the project

s.

 features. It also explains indexing
and searching features of Lucene.

ure of Lucene.

sitory with Lucene.

ncluded.

1

This project is structured as follow

Chapter 2 introduces Lucene and its

Chapter 3 describes the index struct

Chapter 4 describes the experiment on Boemie repo

Chapter 5 Results are evaluated.

Chapter 6 Finally the project is co

Chapter 2

LUCENE

2.1 About Lucene

Apache Lucene is a full featured, high performance, scalable text search
engine library. It is written in java. Lucene has been recognized for its
utility in implementation of Internet search engine. It provides full text
indexing and searching. It was originally written by Doug Cutting. It
belongs to Apache Jakarta family of projects.

Lucene is not a complete application and so it is not ready to use
application like web search engine, rather it is code library that can be
easily integrated into any application. It is popular because of its
simplicity. User need not know how it does the indexing and searching,
rather just have to learn few classes of Lucene library for implementation.

There are many applications, which uses Lucene. For example

• Eclipse Lucene: Eclipse IDE uses for searching its documentation
• Nutch: open source web search engine
• Twitter Trends: Twitter analyzing tool
• 7digital: Digital media delivery Company
• Linked In, Apple, IBM and many more [3]

11

Lucene can be seen as layer above which sits the application as shown in
fig 2 .

Fig 2: A typical application integration with Lucene [2]

As seen in above figure Lucene is not only used on web, but also on local
File system, databases, manual input and many other sources of data. It
can index and search any data that can be converted into text. It works on
all data formats like html, pdf, txt, and Microsoft word. It gathers the data
and indexes those documents. And later when user gives a query, it
performs a search on index generated.

Lucene offers many features. It can provide ranked searching which
means best results are returned first .It also provides fielded searching,
i.e. user can search for content in title field, author or content field. It
supports different types of queries like phrase queries, range queries,
wildcard queries. Lucene also supports simultaneous searching and
updating. It is highly flexible and scalable for any number of documents.
It also does sorting, filtering, highlighting search results.

12

2.2 Lucene Indexing

Indexing is the center concept of any search engine. Indexing is the
process of converting original data into an efficient lookup, which helps
for rapid searching.
Suppose if we want to look for a file with a specific word, then we could
have a program that sequentially scans for all the files and look for a file
with a specific word. But this is quite impractical when the file set is
large. Here comes the importance of indexing. In these cases, first the text
must be indexed into a format, which helps for rapid searching and this
process eliminates the slow scanning process and it is called indexing.
And the output of it is called index. Index is a data structure, which
facilitates rapid search for the words present in it.

Lucene converts any format of data to text and then indexes it. Lucene
uses different parsers for different documents like HTML parser for html
documents .HTML parser does some preprocessing by filtering html tags
and so on. The parser outputs text content. Lucene Analyzer extracts the
tokens and other related information and stores it in index files. Like html
there are different parsers for pdf, Microsoft word and text files. Below
figure shows the indexing architecture of Lucene.

Fig 3: Indexing architecture of Lucene

13

2.2.1 Indexing example using Lucene:

Indexer program needs two important command line arguments.

• A path to a directory where Lucene index is to be stored
• A path to a directory which contains files to be indexed

 Running the above Indexer program will create a Lucene index. Indexer
prints the names of files it indexes. It displays the total number of
documents indexed and also time took in milliseconds. This includes time
needed for directory traversal and time needed for indexing.

14

2.2.2 Indexing classes of Lucene:

Here are some indexing classes that are used for indexing process using
lucene.

• IndexWriter
• Directory
• Analyzer
• Document
• Field

IndexWriter:

 It is a central component of indexing process. It creates the index
and also adds documents to the existing index.
It just gives the write access to the index, but does not allow reading or
searching on index.

Directory:

 Directory class represents the location of Lucene index. When
indexing is to be done, then Directory class is given to the IndexWriter so
that IndexWriter creates an index in a location specified by Directory
class. There are different implementations of Directory like FSDirectory,
RAMDirectory. Both have similar interfaces. FSDirectory stores the
index on a disk. But RAMDirectory holds all its data in memory. It can
be destroyed after application terminates. Thus, searching on index
generated by RAMDirectory is faster than index generated by
FSDirectory, because fetching from hard disk is bit more slow than from
memory.

Analyzer:

 IndexWriter specifies analyzer. And this analyzer is responsible for
extracting tokens from the text. There are different implementations of
analyzers. Few analyzers skips stop words like the, is, at. Few other
analyzers index words with case insensitivity. Depending on the
requirement of application, suitable analyzer can be used.

15

Below table shows different analyzers:

Analyzers Description
Standard Analyzer A sophisticated general-purpose analyzer.
Whitespace Analyzer A very simple analyzer that just separates

tokens using white space.
Stop Analyzer Removes common English words that are not

usually useful for indexing.
Snowball Analyzer An interesting experimental analyzer that works

on word roots (a search on rain should also
return entries with raining, rained, and so on).

Table 1: Lucene Analyzers [4]

Other than the above-mentioned analyzers in table, there are also
language specific analyzers for German, French, Russian and others.

Example:

IndexWriter IndexWriter = new IndexWriter ("index-directory", new
StandardAnalyzer (), true);

This example uses all the 3 above-mentioned classes. First parameter for
Index Writer is “index-directory”, this is the location where index has to
be created. Second parameter tells which document analyzer should be
used. In this case it uses StandardAnalyzer.

Document:

 Document is a bundle of data or collection of fields like title,
author, content and so on. For every file that is to be indexed, a
Document class is created, populated with fields and added to the index.
Document can be simple text file, webpage, email or a message.

16

Example:

Document doc = new Document ();
doc.add (new Field ("description", Field.Store.YES,
Field.Index.TOKENIZED));

Field:

Document consists of one or more fields. Upon these fields in index a
search can be done. There are different types of fields.

• Keyword: These are not analyzed but indexed, so that the original
value is preserved

• Unindexed: These fields are not analyzed or indexed, but simply
stored, so that it can retrieved as the way they are during a search.

• Unstored: These are analyzed and indexed but not stored.
• Text: This is analyzed and indexed.

2.3 Lucene Searching

Searching is a process of looking words in an index in order to find out in
which documents they appear in file set. The search term can b

,
e a single

word, phrase query wildcard query etc.
The quality of search is measured using Recall and Precision. Recall tells
how efficiently are relevant documents retrieved and precision tells how
efficiently are the irrelevant documents filtered.

17

2.3.1 Searching example using Lucene:

Searcher program above needs two important command line arguments.

• A path to the index created with Indexer
• A query to use to search the index

Searcher program returns the documents that match the query in the form
of Hits. It also prints number of documents matched. For performance
reasons not all the hits are returned. Only few are printed.

18

public static void searchIndex(String searchString)
throws IOException, ParseException {
 System.out.println("Searching for '" +
searchString + "'");
 Directory directory =
FSDirectory.getDirectory(INDEX_DIRECTORY);
 IndexReader indexReader =
IndexReader.open(directory);
 IndexSearcher indexSearcher = new
IndexSearcher(indexReader);

 Analyzer analyzer = new StandardAnalyzer();
 QueryParser queryParser = new
QueryParser(FIELD_CONTENTS, analyzer);
 Query query = queryParser.parse(searchString);
 Hits hits = indexSearcher.search(query);
 System.out.println("Number of hits: " +
hits.length());

 Iterator<Hit> it = hits.iterator();
 while (it.hasNext()) {
 Hit hit = it.next();
 Document document = hit.getDocument();
 String path = document.get(FIELD_PATH);
 System.out.println("Hit: " + path);
 }

 }�

2.3.2 Searching classes of Lucene:

Here are few classes used for searching using lucene.

• IndexSearcher
• Term
• Query
• TermQuery
• Hits

IndexSearcher:

 IndexSearcher is the main link to index. It opens the index in the
read only mode. It contains many search methods. Few of those are
implemented in its parent class Searcher. IndexSearcher takes query
object as a parameter and returns Hits object.

Example:

IndexSearcher is= new IndexSearcher (FSDirectory.getDirectory
(“/volumes/User/project/index”, false));

Term:

 Term is the basic unit of searching. It consists of pair of string
elements. They are name of field and value of field. Term objects are
together used with TermQuery while searching.
Example:

Query q=new TermQuery (new Term (“title”, “Manning”));
Hits hits=is.search (q);

Query:

 There are different Query classes like PhraseQuery, BooleanQuery
and few others. Query class is the parent of all the above classes.

19

TermQuery:

 TermQuery is Lucene’s basic query type. It is used to search a field
with a specific value. It is mostly used together with Term.

Hits:

 Hits are a set of documents that match the query.

20

Chapter 3

LUCENE INDEX STRUCTURE

Lucene stores its data in the form of inverted index. An inverted index is
an inside-out arrangement of documents in which terms take center stage.
Each term points to a list of documents that contain it. It is an index data
structure mapping terms and the documents that contain it. The purpose
of an inverted index is to allow fast full text searches, at a cost of
increased processing when a document is added.

Example:

 Fig 4: Inverted index [1]

The inverted index as seen above contains two parts - Dictionary and
Postings. Dictionary contains the terms and Postings contains the list of
documents that contain the term.

Lucene index structure is shown in fig 5 .

21

http://en.wikipedia.org/wiki/Full_text_search

 Fig 5: Lucene index structure [6]

Segments:

Lucene index consists of sub-indexes or segments. These are independent
index, and these can be searched separately.
Index is created by:

• Creating segments for newly added documents
• Merging existing segments

Each segment contains the following:

• Field names: Contains set of field names used in the index.
• Stored Field values: Contains attribute-value pairs for each

document. Attribute is the field name.
• Term dictionary: Contains all the terms in all of the indexed fields

of all the documents.
• Term Frequency data: Contain for each term in the dictionary,

number of all documents that contain the term, and also number of
times it occurs in each document.

• Term Proximity data: For each term in the document, it contains
the position of terms in the documents.

• Term Vectors: Contains the term text and term frequency.
• Deleted documents: Indicates which files are deleted. This is

optional.

22

The number of documents to be indexed and the number of documents a
segment can contain determine the number of segments. Below figure
indicates this.

23

Fig 6: Logical view of index files [6]

ocument Numbers

D

ternally Lucene refers to documents with an integer document number.
he first document added to index is numbered zero and subsequent
ocuments are numbered one more than previous.

In
T
d

24

File Naming
dex contains different files with different extensions with different

 summarizes different files.
In
information. Below table

Name Extension Description
Segments File segments.gen,

segments_N
Stores information about segments

Lock File write.lock The Write lock prevents multiple
IndexWriters from writing to the
same file.

Compound File .cfs An optional "virtual" file consisting
of all the other index files for
systems that frequently run out of
file handles.

Fields .fnm Stores information about the fields

Field Index .fdx Contains pointers to field data

Field Data .fdt The stored fields for documents

Term .t Part of the , stores Infos is term dictionary
term info

Term Info Index The index into the Term Infos file .tii

Frequencies .frq
h term along with

Contains the list of docs which
contain eac
frequency

Positions .prx out Stores position information ab
where a term occurs in the index

Norms .nrm Encodes length and boost factors
for docs and fields

Term Vector Index data .tvx Stores offset into the document
file

Term Vector
Documents

.tvd Contains information about each
document that has term vectors

25

Fields
Term Vector .tvf The field level info about term

vectors
Deleted
Documents

.del Info about what files are deleted

 2: Nam nd extensio

Structure of few of the above files is shown below.

Fields information file

Table es a ns of the files in Lucene: [5]

n name ata type Colum D Description

FieldsCount VInt elds. The number of fi
FieldName String The name of one field.
FieldBits Byte

ample, if the lowest bit is 1, it
f

Contains various flags. For
ex
means this is an indexed field; i
0, it's a nonindexed field.

e: [6] Table 3. Structure of fields information fil

Frequency file

mn name Data type Description

Colu
DocDel ment

number and term frequency. If
 term

Freq column determines the term
frequency.

ta VInt It determines both the docu

the value is odd, the
frequency is 1; otherwise, the

Freq VInt If the value of DocDelta is even,
this column determines the term
frequency.

 Table 4 ture of th
Position file

. Struc e frequency file: [6]

Column name Data type Description
PositionDelta n at which

within the documents.

 VInt The positio
each term occurs

Table 5. Structure of the position file: [6]

26

Using Lucene with Bo

First step for using Lucene to index
requires, the necessary Lucene jar files

 project. Since L st
work, java program is done

experiment.

As mentioned sists of 690

st step is to
ultimedia documents. These are .html files, which are

resent different levels of directory tree.

m for ind g Boemie

dex_

ndex_with
 crea
 or
memory, specifies the analyzer to be used, and configures the

TextFiles(){

 closeIndexWriter(){

Chapter 4

emie Repository

or search on Boemie repository
to be added as referenced libraries

to the
frame

ucene is ju
ming

 a library and not a complete
 using this library to conduct the

 in the previous sections Boemie repository con
cuments, which concerns about sports. The firmultimedia do

index these m
p

4.1 Algorith exin

Main(){
 new In

with_TermFreq();
}
I _TermFreq(){

teIndexWriter(){
// Creates the index irectory on hard disk d

index writer
 }
 checkFileValidity(){
 //checks if it is a file or directory .If it is a
directory recursively traverses to find files
 }
 index

 //creates a document for every file and adds
document to index.Also specifies the fields to be indexed
 }
 TotalDocumentsIndexed(){
 //prints the total number of documents indexed
 }

 //closes the index writer
 }
 }

Running the above program , gives the output like below:

INDEXED FILE

27

/url2/edition.cnn.com/2005/index.html

2/n

alkleamington2007.org/ne
=55.html

cument Indexed: 690
otal time 1

he above output shows which documents are indexed, total number of
ocuments indexed and time taken to index. And also it creates a index
lder.

Fig 7: Boemie index structure

ns. All these file extensions are explained in the previous section.

/Volumes/BoemieRepository/url1/www.iaaf.org/athletes/athlete=1
36012/BioPopUpIndoor.html

 INDEXED FILE
/Volumes/BoemieRepository
INDEXED FILE
/Volumes/BoemieRepository/url3/www.iaaf.org/GP02/news/Kind=

44.html ewsId=193
 .
 .
 .
INDEXED FILE

olu s/Bo/V me emieRepository/url690/www.w
ws.php@id

 DoTotal
T

T
d
fo

We see different files in Boemie index structure with different file
extensio

28

.2 Algorithm for searching on Boemie index

ain(){
new.searchIndex("\"high jump\"");

earchIndex(){
 //opens index
 IndexReader reader = DirectoryReader.open();
 IndexSearcher searcher = new IndexSearcher(reader);
 //searches for specific query
 Query query = queryParser.parse(instring);
 //hits for the query
 TopDocs hits = searcher.search(query, 100);
 //prints the hits for the query

unning the above search Index program, gives the output
like below:

newsId=31773.html
olumes/BoemieRepository/url56/www.iaaf.org/news/newsId=31698
rinter.html

 .
 .
 .

/Volumes/SindhuHosamane/IR_project/BoemieRepository/url469/www

his searched “high jump” as a single string with a space in between.
ery as mentioned in the previous section could also be used.

 are explained in the
2.2.2 and 2.3.2

on the query “pole vault”. The result set returned by

4

M

}
s

}

R

Searching for ' "high jump" '
Total no of hits for content: 524
/Volumes/BoemieRepository/url57/www.iaaf.org/WCH05/news/Kind=2
/
/V
p,

.iaaf.org/news/newsId=31109,printer.html

T
Phrase qu
Many of the Lucene classes used in the algorithm
previous sections
Same program is run
this algorithm is said to be R1.

29

h","jump");

m frequency of each term
 Terms terms = reader.getTermVector(i, "content");
 Document doc = reader.document(i);
 IndexableField path =doc.getField("fullpath");

 TermsEnum termsEnum = terms.iterator(null);

 while ((text = termsEnum.next()) != null)
 {
 if(text.utf8ToString().equals(instring1))
 {
 term1 = text.utf8ToString();

 freq1 = (int) termsEnum.totalTermFreq();
 }
 if(text.utf8ToString().equals(instring2))

 freq2 = (int) termsEnum.totalTermFreq();
 }

 }
 if (relevance condition){

documents with term and

 }
 }

unn , outputs the following:

ull f.org/GP03/ne
/Ki : 3

.

ull ne

4.3 Algorithm for retrieving documents based on relevance
condition
Main(){

 Findfreq("hig

}

Findfreq(String instring1,String instring2){

 //opens the index
 IndexReader reader = DirectoryReader.open();
 // Total number of documents in index
 int totalDocs = reader.maxDoc();
 for(int i = 0 ; i< totalDocs; i++)
 {
 //tells the ter

 {
 term2 = text.utf8ToString();

 // Print relevant
frequency

 }

R ing the above program
stored,indexed,tokenized
<f path:/Volumes/BoemieRepository/url13/www.iaa
ws nd=2/newsId=22176.html>--high : 4--jump

 .
 .
stored,indexed,tokenized
<f path:/Volumes/BoemieRepository/url14/www.iaa g/GP03/

f.or
ws/Kind=2/newsId=22213.html>--high : 4--jump : 4

30

he o
n query
ord, it’s

frequency of phrase queries like “high jump”. So using
vance

ndit n are

words of phrase
ery. , a

 is decided. Relevance condition is based on threshold
whose frequency is greater

d

res uses these two result sets R1 and R2 and measures

T utput shows set of documents that are relevant for the query based
g am i run on relevance condition specified. The same pro r s o

“pole vault”. Since Lucene indexes the document word by w
difficult to get the
the individual term frequency of 2 words of phrase query, a rele

. Documents satisfying the relevance conditioco ion is made
printed.

Relevance condition is based on term frequency of
qu Based on ra

y
nge of term frequency of words of phrase query

threshold frequenc
frequency. And consider only the documents
than threshold frequency. The result set returned by this algorithm is sai
to be R2.

Next chapter measu
the effectiveness of Lucene library.

31

hapter 5

EVALUATION

.1 Steps of evaluation

uality and performance of standard IR systems is to be measured.

a) start with a corpus of documents
b) define a set of queries
c) set of relevance judgments.

orpus of documents is Boemie repository. Second step is to define
ecific queries. Queries should be chosen such that tuning them should
t maximize the effectiveness on that corpus. And the last step is to
eate gold standard.

he standard approach to information retrieval system evaluation
volves around the notion of relevant and nonrelevant documents. With
spect to a user information need, a document in the test collection
orpus) is given a binary classification as either relevant or nonrelevant.
his decision is referred to as the gold standard or ground truth judgment
 relevance.

xperts usually do gold standard. Gold standard is prepared for all the
ultimedia documents in e use as gold standard
e of the result set return the previous chapter.

 of an IR system (i.e., the quality of its search
sults), a user will usually want to know two key statistics about the

e returned results are relevant to the
information need?

C

5

Q
Evaluation steps are :

C
sp
no
cr

T
re
re
(c
T
of

E
m Boemie repository. W

ed by the algorithms inon

5.2 Basic measures of Evaluation

To assess the effectiveness
re
system’s returned results for a query:

Precision: What fractions of th

32

ns of the relevant documents in the collection were
turned by the system?

le
ault”.

Recall: What fractio
re

5.3 Results of the experiment

Considering the experiment for specific queries, like “high jump”,” po
v

Query “high jump”

Considering the result set returned by algorithm in section 4.2 as relevant
documents, and result set returned by algorithm in section 4.3 as
retrieved, precision and recall are measured.

R1 ={…..} Set of relevant documents on the query “high jump”

R2 ={…..} Set of retrieved documents based on term frequency of
“high” and “jump”

recision = |R1

As mentioned in the previous section 5.2

 P R2| / |R2| =103/106 = 0.97

There are some documents as an exception because, such documents
tisfy the relevance condition, where the frequency of words of phrase

ontain high jump as a
query are in different positions and

ot next to each other. This is reflected looking at the fraction above

sa
query reaches threshold frequency, but do not c
phrase. It means the words of phrase
n
where the intersection of relevant documents and retrieved documents is
less than the number of retrieved documents.

33

Recall = |R1 R2| / |R1| = 103/269 = 0.39

”Query “pole vault

Considering the same sets as above, but for query pole vault

Precision = |R1 R2| / |R2| =53/54 = 0.98

ecall = |R1 R R2| / |R1| = 53/271 = 0.20

igh values of precision but not

 maintain high values of both precision and recall. Precision values of
0.97 and 0.98 indicate most of the returned results are relevant to the

As we see in the above results, we have h
high values of recall. Trying to increase one reduces the other. It is hard
to

query.

Query “of the”

Lucene does not index stopwords like a, an, is, the, of and many other. So
it is difficult to get the term frequency of these stopwords. So is the
phrase query “of the”.

34

 Conclusion

ent is conducted.

l are the measures for measuring the effectiveness of

ss number of false positives, proving Lucene is
fficient in a way.

recision can be seen as a measure of exactness or quality, whereas recall

is a measure of completeness or quantity. In simple terms, high recall
eans that an algorithm returned most of the relevant results. But in our
sults the recall values are not high, that means not all relevant

ocuments are returned. While high precision means that an algorithm
turned substantially more relevant results than irrelevant.

Chapter 5

The aim of the project was to measure the effectiveness of standard
information retrieval systems using specific queries.
So using the Lucene, an information retrieval library, Boemie repository
that is corpus of multimedia documents, and few specific queries, the
experim

Precision and recal
any information retrieval systems. These two measures are based on
relevant and retrieved set of documents. Looking at high values of
precision it is clear that, most of the returned results are relevant to the
query. Which means le
e

P

m
re
d
re

 35

kar Raghavan, Hinrich Schütze- An

Bibliography

] Christopher D. Manning , Prabha[1
introduction to information retrieval,Cambridge university,England

[2] Gospodnetic, Otis; Erik Hatcher, Michael McCandless (28 June
2009). Lucene in Action (2nd ed.). Manning Publications.

[3] http://wiki.apache.org/lucene-java/PoweredBy

[4] http://oak.cs.ucla.edu/cs144/projects/lucene/

] lucene.apache.org

] http://www.ibm.com

[5

[6

	Project Report
	Abstract
	Contents
	Figures
	Tables
	Chapter 1
	Fig 1: Typical Information Retrieval task
	Chapter 2

	LUCENE
	Table 1: Lucene Analyzers [4]
	Chapter 3

	LUCENE INDEX STRUCTURE
	Fig 6: Logical view of index files [6]
	Table 3. Structure of fields information file: [6]

	Using Lucene with Boemie Repository
	Fig 7: Boemie index structure
	Chapter 5

	EVALUATION
	Chapter 5

