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1 Introduction

Nowadays a lot of environments are monitored by sensors. With the measured sensor
data, the current status of systems should be analysed and future failures should be
predictable. The status of a system depends on the previous events in terms of sensor
data and its current changes. The sensors are able to produce a stream of data, which
represents their measurements. The stream that represents the status of the system is
a sequence of intervals that contains the measurements of the sensors. Each interval
represents a time slot that comprehends measurements of sensors.
To analyse the status of the system, one can create queries that describe specific

behaviour of the system and checks whether the system behave in this described way.
A query should be able to move over the sequence of intervals and should be queried
against specific sensor data in the intervals. Queries in the context of Temporal Query
Answering are queried against a temporal knowledge base that contains two parts. The
first part is a sequence of A-Boxes. Each A-Box can represent an interval with sensor
data. The sensor data is described by assertions. An A-Box is a set of assertions. The
second part is the T-Box, also called ontology. It contains inclusions of assertions. An
inclusion describes the definition of assertions based on other assertions.
The algorithm [1], [2] defines the Answering of Temporal Queries. It uses Conjunctive

Queries (CQs) to query against single A-Boxes. To move over the sequence of A-Boxes it
uses the operators of the Linear Temporal Logic (LTL). The combination of the operators
and the Conjunctive Queries forms the Temporal Conjunctive Query (TCQ).
The operators can be divided into two types: The first type moves by one step over

the sequence. The next or previous operator are of this type. They move only by one
A-Box or interval. The second type moves over the sequence depending on the current
sequence and position of the query. The operator always in the past uses all previous
A-Boxes and calculates their intersection. Depending on the position of the query, the
query evaluates the always in the past operator over all previous A-Boxes. If a given
system runs a long time, the operator always in the past uses all sensor data to query the
status of the system. Not always the status of the system is depending on the entire run
time. Sometimes only a specific amount of time of the past is important. To describe the
status of a system in a limited past, one can rewrite the always in the past to a construct,
which uses the previous operators and conjunctions. The new query size depends on the
size of the limited past. With a sliding window, the always in the past operator can be
used and the handling of a limited past is done by the rewriting algorithm for the sliding
window. This simplifies the creation of queries with limited history.
A sliding window is a window moving over the sequence of A-Boxes. The window

has a fixed size. Furthermore it is moving over the sequence with a specific step size,
also called sliding. The sliding window not only simplifies the creation of queries with a
limited past, it is also needed to implement specific operations that need all individual
data to calculate their result. The paper [6] classifies operations into classes that need
different information at a time to evaluate a result. The classes holistic and context-
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1 Introduction

sensitive can only be calculated by knowing all individual assertions of the sequence of
A-Boxes at once. The median and the histogram are examples for these classes. Due to
this fact, a sliding window is needed to use this operations.
In this thesis, two different approaches to establish a sliding window are discussed.

The first approach is the rewriting of the TCQ to meet the boundaries of the window and
using the algorithm [1] to evaluate the query. The Chapter 2 describes the fundamentals
of Temporal Query Answering in DL-Lite. I introduce the theory of the Sliding Window
Algorithm in Chapter 3. It contains the rewriting of a TCQ to meet the boundaries
of the sliding window and it represents an optimised version of the Sliding Window
Algorithm for the case that the sliding is larger than the range.
The second approach is to consume the entire window at once. Therefore the input is

a sequence of batches. Each batch is a sequence of A-Boxes and represents a window.
The original algorithm can be queried over each batch to establish TCQ Answering with
a sliding window. In Chapter 4, I introduce my approach of the Vector Algorithm. It
calculates only intermediate results that are used to evaluate the query for a given batch.
Furthermore I represent a rewriting algorithm to transform a TCQ into a Vector Algo-
rithm Query. Chapter 5 contains my definition of the Optimised Rewriting Algorithm
and the Optimised Vector Algorithm. It is an optimised version of the Vector Algorithm
that re-uses already intermediate results, if the windows are overlapping.
I implemented all algorithms in Java. In Chapter 6, I represent the benchmark re-

sults of my implementations and discuss the optimal algorithm to be used. The Vec-
tor Algorithm should be used to establish a sliding window that supports holistic and
context-sensitive operations. At the end, there is a conclusion of this thesis.
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2 Temporal Query Answering in DL-Lite

The Temporal Query Answering Algorithm [1] answers queries against a stream of data.
This data is represented by an Temporal Knowledge Base. The Temporal Knowledge
Base consists of two parts. The first part is a sequence of A-Boxes. Each A-Box repre-
sents assertions for a specific point in time. Therefore the sequence of A-Boxes describes
the change of the environment over time. The second part is the T-Box, also called
ontology. It holds at all points in time and contains inclusions. An inclusion describes
the entailment between two assertions. It represents that one assertion is a subset of a
more general assertion.
Temporal Conjunctive Queries are queried over the sequence of A-Boxes. The algo-

rithm [1] answers Temporal Conjunctive Queries by moving over the entire sequence.
To achieve this, the algorithm defines four functions. The first function is the Initial
Answer Formula, which calculates the first intermediate answer for the first A-Box of
the sequence. The Next Answer Formula and the Update Formula are called for each
next A-Box in the sequence, till the end. To get a result for a Temporal Conjunctive
Query at the current position, the Evaluation Function is called. The project work [5]
describes the implementation of the Temporal Query Answering Algorithm in detail.

2.1 Example

A Temporal Conjunctive Query (TCQ) uses Conjunctive Queries (CQs) to query against
an A-Box. Every CQ is a TCQ. The combination of the temporal operator strong next
(◦) or strong previous (◦−) with an TCQ is also a TCQ. The result of the strong previous
operator is the empty set, if there exists no previous A-Box. Otherwise the result is the
result of the sub-query queried against the previous A-Box. The result of the strong
next operator is the result of the sub-query queried against the next A-Box, if there
exists such an A-Box. Otherwise it is the empty set. Let Ψ = ◦−(◦(hasV al(S1, x))) be
a TCQ. Ψ has following sub-formulas:

• ψ0 = hasV al(S1, x)

• ψ1 = ◦(hasV al(S1, x))

• ψ2 = ◦−(◦(hasV al(S1, x)))

The sub-formulas are ordered. A sub-formula of another sub-formula has always a
lower index. By calculating the sub-formulas in this order, every sub-formula has already
calculated sub-formulas. Let the Temporal Knowledge Base be the following sequence of
A-Boxes (Figure 2.1) and an empty ontology. The next Figure 2.2 shows all intermediate
results as nodes. The call of the Initial Answer Formula Φ0 calculates the results of all
sub-formulas for the first ABox ABox0.
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2 Temporal Query Answering in DL-Lite

ABox0
hasVal(S1,3.0)

ABox1
hasVal(S1,2.0)

ABox2
hasVal(S1,3.5)

ABox3
hasVal(S1,4.0)

Figure 2.1: Finite Sequence of A-Boxes

Initial Next1/Update1 Next2/Update2 Next3/Update3

Φ0(ψ2)

Φ0(ψ1)

Φ0(ψ0)

Φ1(ψ2)

Φ1(ψ1)

Φ1(ψ0)

Φ2(ψ2)

Φ2(ψ1)

Φ2(ψ0)

Φ3(ψ2)

Φ3(ψ1)

Φ3(ψ0)

ψ2 = ◦−(ψ1)

ψ1 = ◦(ψ0)

ψ0 = hasV alue(S1, x)

p p p

u u u

Figure 2.2: Intermediate Results

The Initial Answer Formula calculates the result for Φ0(ψ0) at first. The result is a
mapping of free variables to fixed values. The sub-formula ψ0 = hasV al(S1, x) has the
free variable x. The first ABox has the role assertion hasV al(S1, 3.0). The result of this
sub-formula queried against the ABox0 is the mapping {{x← 3.0}}.
The second sub-formula is ψ1 = ◦(ψ(0)). It uses the strong next operator, which result

will be the achieved by querying the sub-formula ψ0 against the next ABox ABox1. This
will be done in the next ABox. Therefore a placeholder represents the result and will
be replaced in the next step by the Update Function. The placeholder variable x◦ψ0

0
denotes a placeholder variable introduced at point in time zero with the sub-formula ψ0.
The last sub-formula is ψ2 = ◦−(ψ1). It uses the strong previous operator. The result

for this operator is the empty set, because there is no previous result for the sub-query
ψ1. This is always the case for the Initial Answer Formula and operators using results
of the past.
The entire result for the Initial Answer Formula are three answer formulas represented

by yellow nodes in the Figure 2.2. The answer formulas are Φ0(ψ0) = {{x ← 3.0}},
Φ0(ψ1) = xψ0

0 and Φ0(ψ2) = ∅, where the empty set is equal to false.
To calculate the next set of answer formulas, represented by the green nodes in Figure

2.2, the Next Answer Formula is needed. It is like the Initial Answer Formula but
uses also answer formulas of the previous ABox. This was not the case for the Initial
Answer Formula, because there was no previous set of answer formulas. The first sub-
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2.2 DL-Lite

query ψ0 = hasV al(S1, x) queried against the ABox1 has the result {{x← 2.0}}. This
mapping is equal to the first one of the Initial Answer Formula, but is the result of the
sub-query queried against the second ABox ABox1. The second sub-query ψ1(◦(ψ0))
introduces a placeholder variable x◦ψ0

1 as in the Initial Answer Formula, but the point in
time is changed to 1. The last sub-query ψ2 = ◦−(ψ1) uses the strong previous operator.
This time there is a set of previous answer formulas. Therefore the result is ψ1 of the
previous set of answer formulas, which is the placeholder variable x◦ψ0

0 . The arrow with
p for previous denotes the use of previous sets of answer formulas in the Figure 2.2.
The Next Answer Formula has calculated three new answer formulas like the Initial

Answer Formula. The only difference is the use of the previous calculated answer for-
mulas. The previous answer formula in this example is a placeholder variable x◦ψ0

0 ,
which is introduced by the Initial Answer Formula. After the execution of the Next
Answer Formula, the result of the sub-query ψ2 is equal to this placeholder variable.
This placeholder variable represents a set of answer formulas of the current point in
time. Therefore it can be replaced by the actually set of answer formulas. In this exam-
ple, the placeholder variable x◦ψ0

0 is equal to Φ1(ψ0). The task of replacing placeholder
variables of the previous step is done by the Update Formula. The Update Formula is
always called after the Next Answer Formula. Therefore at every step of execution, there
are only placeholder variables of the current and the previous point in time. All other
placeholder variables are already replaced. Figure 2.2 represents the update function as
an arrow with the label u. The execution of the Next Answer Formula and the Update
Formula is repeated till the end of the finite sequence of A-Boxes at ABox3.
The result of the algorithm is the set of answer formulas of the sub-query ψ2. This

set of answer formulas can contain placeholder variables, which are introduced by the
Initial or Next Answer Formula. The placeholder variables are placeholder for sets of
answer formulas in the next point in time. The current point in time is the last point,
that means no set of answer formulas for the next point in time exists. The Evaluation
Function replaces all placeholder variables with the specific values. In case of a strong
next it would be the empty set. A weak next would result in a set of all possible solutions.
This example shows the main idea behind the algorithm [1]. In the next section, we

introduce the syntax and semantics of a few more operators.

2.2 DL-Lite

A Temporal Conjunctive Query (TCQ) uses Conjunctive Queries (CQs) to query against
a single ABox. A Conjunctive Query (CQ) has the form φ = ∃y1, . . . , ym.ψ, where ψ
represents a conjunction of atoms. An atom is either a concept or a role. A concept
has a predicate and subject. A role has an additional object. In the example above,
hasV al(S1, 3.0) is a role with the predicate hasV al and the subject S1, which stands for
sensor one. Furthermore there is an object 3.0, which is a double value of the temperature
of the sensor. A CQ has also a scope for the variables. y1, . . . , ym are bounded variables,
which are bounded to the CQ.
CQs are described by the description logic DL-Lite. This description logic can be built
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2 Temporal Query Answering in DL-Lite

on top of classical relational databases to retrieve the data as ABox assertions. The use
of DL-Lite to query databases with ontology-based data access is described by [3].

2.2.1 Syntax

An ABox contains a finite set of assertions in terms of concepts and roles. This assertions
can contain individual names. For instance S1 is an individual name for sensor one in
the concept isSensor(S1) or in the role hasV al(S1, 3.90). DL-Lite has sets of symbols
to represent the different names. The set NC is the set of concept names, NR is the
set of role names and NI is the set of individual names. These sets are not empty and
pairwise disjoint.
DL-Lite has two types of concepts. The general concepts and the basic concepts. A

basic concept has the form A ∈ NC or ∃R ∈ NR. A general concept is a basic concept
or the negation of it. A role expression is a role name P1 ∈ NR or the inverse of a role
P−1 = P2 with P2 ∈ NR. A concept inclusion is of the form B v C, where B is a basic
concept and C a general concept. A finite set of concept inclusions is a T-Box also called
ontology.

2.2.2 Semantics

The non-empty set ∆I is called domain. Together with the assignment function ·I it
forms an interpretation I = (∆I , ·I). The assignment function ·I assigns to every concept,
role and individual name a subset of the domain ∆I . To every concept A ∈ NC it assigns
a subset AI ⊆ ∆I . To every role P it assigns a binary relation P I ⊆ ∆I ×∆I and every
individual name a ∈ NI gets an element aI ∈ ∆I . Furthermore an interpretation of
an inverse role (P−)I is the inverse of all pairs in P I . This set of binary relations is
defined as (P−)I := {(e, d)|(d, e) ∈ P I}. A concept of the form ∃R ∈ NC is interpreted
as all individual names that have an outgoing relation R. This set is defined as (∃R)I :=
{d| there is an e ∈ ∆I such that (d, e) ∈ RI}. The interpretation of a negated concept
is the interpretation of the entire domain without the interpretation of this specific
concept. This is defined as (¬C)I := ∆I \ CI .
The interpretation I is a model of an axiom α iff:

• BI ⊆ CI if α = B v C

• aI ∈ AI if α = A(a)

• (aI , bI) ∈ P I if α = P (a, b)

Iff the interpretation I is a model of an axiom α, then I models α (I |= α) is true.
Iff the interpretation I is a model for all assertions in the ABox A, then I |= A is
true. Iff I is a model for all concept inclusions in the T-Box T , then I |= T is true.
Assuming that the interpretations of ABox and T-Box have unique individual names
and two individual names have two different interpretations, then the union of both
interpretations is consistent.
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2.3 Temporal Conjunctive Queries

2.3 Temporal Conjunctive Queries

In the previous section, the syntax and semantics of DL-Lite were introduced. With
this knowledge, interpretations for a given ABox and T-Box can be created and checked
against their correctness. An interpretation is correct, iff the interpretation models the
ABox and T-Box. In Temporal Conjunctive Query Answering, the queries are temporal
and queried against a Temporal Knowledge Base. A Temporal Knowledge Base is a
sequence of A-Boxes and one T-Box. Let K = 〈(Ai)0≤i≤n, T 〉 be a Temporal Knowledge
Base, then T is a T-Box and (Ai)0≤i≤n is a finite sequence of n A-Boxes, which describes
the changes over time. This section extends the interpretation and correctness checks of
a single ABox and T-Box to a Temporal Knowledge Base.

2.3.1 Syntax

A CQ is limited to query against a single ABox. With a Temporal Conjunctive Query
(TCQ) a query over a sequence of A-Boxes is achieved. A TCQ uses CQs to query
against one ABox. Every CQ is a TCQ. The set of all variables of a TCQ φ is denoted
as V ar(φ). The set FV ar(φ) denotes the set of all free variables. A free variable is a
placeholder for a substitution without a specific value. A variable is bounded, if a value
is assigned to it. A TCQ is boolean, if the set of free variables is empty.
The temporal part of TCQs is achieved by the Linear Temporal Logic (LTL). The

LTL operators specify the A-Boxes, a CQ is queried against. They can define ranges
and specific points in time. The combination of a TCQ with an LTL operator is also a
TCQ. Let φ1 and φ2 be TCQs, then the following expressions are also TCQs:

- φ1 ∧ φ2 (conjunction)

- φ1 ∨ φ2 (disjunction)

- ◦φ1 (strong next), •φ1 (weak next)

- ◦−φ1 (strong previous), •−φ1 (weak previous)

- �φ1 (always), �φ1 (eventually)

- �−φ1 (always in the past), �−φ1 (history)

- φ1Uφ2 (since), φ1Sφ2 (until)

2.3.2 Semantics

To introduce the semantics, ψ defines a boolean CQ. A boolean CQ has a boolean result
and the set of bounded variables through the exists operator is equal to the set of all
free variables of the atoms. Let V ar(ψ) be the set of all variables of ψ, ∆ the domain,
NI the set of all individual names and I = (∆, ·I) be an interpretation, then there is a
homomorphism π : V ar(ψ) ∪NI → ∆ of ψ iff:

7



2 Temporal Query Answering in DL-Lite

• π(a) = aI for all a ∈ NI

• π(z) ∈ AI for all A(z) ∈ ψ

• (π(z1), π(z2)) ∈ rI for all r(z1, z2) ∈ ψ

If there is such a mapping π, then I is a model for the boolean CQ ψ and the mapping
π is an answer. Let φ be a boolean TCQ and J = (Ii)0≤i≤n a sequence of interpretations,
then J, i |= φ is defined by induction as follows:

- J, i |= ∃y1 . . . ym · ψ iff Ii |= ∃y1 . . . ym · ψ

- J, i |= φ1 ∧ φ2 iff J, i |= φ1 and J, i |= φ2

- J, i |= φ1 ∨ φ2 iff J, i |= φ1 or J, i |= φ2

- J, i |= ◦φ1 iff i < n and J, i+ 1 |= φ1

- J, i |= •φ1 iff i < n implies J, i+ 1 |= φ1

- J, i |= ◦−φ1 iff i > 0 and J, i− 1 |= φ1

- J, i |= •−φ1 iff i > 0 implies J, i− 1 |= φ1

- J, i |= �φ1 iff for all k with i ≤ k ≤ n i have J, k |= φ1

- J, i |= �φ1 iff there is a k such that i ≤ k ≤ n and J, k |= φ1

- J, i |= �−φ1 iff for all k, 0 ≤ k ≤ i i have J, k |= φ1

- J, i |= �−φ1 iff there is some k, 0 ≤ k ≤ i such that J, k |= φ1

- J, i |= φ1Uφ2 iff ∃k, i ≤ k ≤ n such that J, k |= φ2 and J, j |= φ1 for all j, i ≤ j < k

- J, i |= φ1Sφ2 iff ∃k, 0 ≤ k ≤ i such that J, k |= φ2 and J, j |= φ1 for all j, k < j ≤ i

In TCQ Answering, the answer to a specific TCQ at the last point in time n is
interesting, under the assumption that no point in time is before 0 and after n. A
sequence of interpretations J is a model of the TCQ φ w.r.t. a Temporal Knowledge
Base K, if J |= K and J, n |= φ. The TCQ φ is called satisfiable, if such a model exists.
The answering of a TCQ φ w.r.t a given Temporal Knowledge Base K is the answering

of a compiled TCQ φ′ against the sequence of interpretations of the database. These
sequence is 〈DB(A)〉0≤i≤n. Each DB(Ai) represents an interpretation of an ABox in
the Temporal Knowledge Base. Every interpretation DB(A) := (NI , ·DB(A)) is defined
as follows:

• aDB(A) := a for all a ∈ NI

• ADB(A) := {a|A(a) ∈ A} for all A ∈ NC

• PDB(A) := {(a, b)|P (a, b) ∈ A} for all P ∈ NR

8



2.4 CQ Rewriting

ABox0
hasVal(S1,3.0)
hasVal(S2,2.3)
isSensor(S3)

TBox
isSensor v ∃ hasVal

Figure 2.3: An ABox and a TBox

2.4 CQ Rewriting
In the last section, the TCQs are introduced. They use CQs to query against single
A-Boxes, represented as interpretations of a database. This mappings only contain the
assertions of A-Boxes, not the concept inclusions of the ontology. To include the ontology
into the query, the query has to be rewritten. In this section, the rewriting algorithm
for TCQs is presented.

2.4.1 Example

Let ψ(x) ← hasV al(x, y) be a CQ with a bounded variable x and a free variable y.
Then this query should return all possible mappings for x. In this case the result
is the set of all sensor names. Given the following ABox and T-Box in Figure 2.3,
then the ABox has three assertions. The result of the CQ ψ(x) ← hasV al(x, y) is
a mapping {{x ← S1}, {x ← S2}}, but it does not consider the TBox. This would
be the correct result, if the TBox is empty. But the query should query all sensor
names and S3 is a sensor name, because the TBox defines that every concept isSensor
is an inclusion of the role hasV al. In other words, every individual is a sensor with
the concept isSensor, if there exists a measurement hasV al of this sensor. Therefore
the knowledge of the TBox has to be compiled into the CQ. Due to the fact that the
CQ φ has the free variable y and this variable is not used in other parts of the CQ,
the variable is replaced by a wildcard. The new CQ is φ(x) ← hasV al(x,_). Using
the concept inclusion of the TBox, the concept isSensor(x) can be retrieved from the
query. The new query φ(x) = ψ′(x)← hasV al(x,_) ∪ ψ′′(x)← isSensor(x) is a union
of conjunctive queries (UCQ). The first part of the UCQ has the same mapping as
result as before. The second part has the mapping {{x ← S3}}. The union of both is
{{x← S1}, {x← S2}, {x← S3}} and contains all available sensor names.

2.4.2 Perfect Rewriting Algorithm

The main idea of the algorithm Perfect Rewriting [4] is to generate new CQs that express
the same query with different atoms. The result is an Union of Conjunctive Queries
(UCQs) that is queried against the Temporal Knowledge Base. Every CQ in this UCQ
represents the query with different knowledge of the TBox.
The Perfect Rewriting algorithm (Algorithm 1) takes a UCQ and return a rewritten

UCQ. Every CQ is also a UCQ. The returned UCQ can be represented as TCQ, which
represents a union of all CQs of the UCQ. To rewrite a CQ with a TBox, the TBox has
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to be satisfiable. If the ontology is not satisfiable, the result of the CQ will be always
true.

Algorithm 1 The algorithm PerfectRef of [4]
Input: UCQ q, DL-LiteA TBox T
Output: UCQ pr
pr := q;
repeat
pr′ := pr;
for each CQ q′ ∈ pr′ do
(a) for each atom g in q′ do

for each PI α in T do
if α is applicable to g
then pr := pr ∪ {q′[g/gr(g, α)]};

(b) for each pair of atoms g1, g2 in q′ do
if g1 and g2 unify
then pr := pr ∪ {anon(reduce(q′, g1, g2))};

until pr′ = pr;
return pr;

The algorithm has two main parts. The first part (a) is the generation of new CQs.
It takes CQs and replace the atoms of it with new atoms that are derived from positive
inclusions. The replaced version of the CQ is added to the UCQ. The UCQ contains
the CQ with no modification and the modified CQ. An atom can only be replaced, if a
concept inclusion is applicable to this atom. A concept inclusion α is applicable for an
atom g, if there is a rule that matches the concept inclusion α and the atom g. In Table
2.1 are all rules for replacing listed.

Atom g Positive inclusion α gr(g, α)
A(x) A1 v A A1(x)
A(x) ∃P v A P (x,_)
A(x) ∃P− v A P (_, x)
P (x,_) A v ∃P A(x)
P (x,_) ∃P1 v ∃P P1(x,_)
P (x,_) ∃P−1 v ∃P P1(_, x)
P (_, x) A v ∃P− A(x)
P (_, x) ∃P1 v ∃P− P1(x,_)
P (_, x) ∃P−1 v ∃P− P1(_, x)
P (x1, x2) P1 v P or P−1 v P− P1(x2, x1)
P (x1, x2) P1 v P− or P−1 v P P1(x2, x1)

Table 2.1: Replacing rules of [4]

The second part (b) of the rewriting algorithm is reduction and simplification of CQs

10
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and their atoms. For each pair of atoms in the CQ, the algorithm checks whether both
atoms can be unified. In a CQ all atoms are connected by conjunction. This means that
two atoms can be reduced to one atom, if both has the same predicate and the unification
of the subject and object is possible. A unification of two subjects is possible, if both
has the same value or one of them is a wildcard. The unification of objects is done in
the same way. Given the two atoms g1 = hasV al(x, y) and g2 = hasV al(x,_), then
both atoms are nearly the same. Only g2 has a wildcard instead of the variable y. The
unification of both results in g3 = hasV al(x, y).
The anon function replaces variables with wildcards. A variable of an atom can be

replaced, if the variable is not free and no other atom in this CQ uses the variable. If the
atom g3 = hasV al(x, y) is used in a CQ and the variable y is not free, then the result
would be g′3 = hasV al(x,_).
Both parts of the algorithm are executed for each CQ in the UCQ. This entire process

is repeated until the UCQ is unchanged after the loop.

2.4.3 Execution of Perfect Rewriting
The CQ of the example above is ψ(x)← hasV al(x, y). In this subsection, the execution
of the Perfect Rewriting Algorithm with this query is shown. The TBox has only one
concept inclusion isSensor v ∃ hasVal.
The TBox is satisfiable and therefore a rewriting possible. The input UCQ is q =

ψ(x)← hasV al(x, y). The first step is the execution of the first part (a) of the algorithm,
which checks each atom in the CQ for a replacement. No inclusion is applicable to the
atom hasV al(x, y), because it has two variables and the TBox has no inclusion of one
role with two variables. The next step is the unification of pairs of atoms in the second
part (b) of the algorithm. The atoms g1 and g2 can be the same. Therefore the reducing
of hasV al(x, y) with itself results in hasV al(x, y). The anon function introduce the
wildcard for y, because only x is free and y is not used elsewhere in the CQ. The UCQ
is pr = ψ0(x) ← hasV al(x, y) ∪ ψ1(x) ← hasV al(x,_) now. The UCQ is changed
and triggers a second execution of the loop. This time, the atom hasV al(x,_) and the
positive inclusion isSensor v ∃ hasVal results into a application of the inclusion to the
atom. The fourth rule of the Table 2.1 is used and results into isSensor(x). Afterwards
the UCQ is pr = ψ0(x)← hasV al(x, y)∪ψ1(x)← hasV al(x,_)∪ψ2(x)← isSensor(x).
The reduction and anon function do not change this result of the UCQ, but the UCQ is
changed during the execution of part (a) and (b). Therefore the loop is executed a third
time. This next run results into the same UCQ and therefore the algorithm returns the
UCQ.

2.5 Temporal Query Answering Algorithm
In the previous sections, the fundamentals of Temporal Query Answering were intro-
duced. In this section, the functions of the Temporal Query Answering Algorithm are
described. To answer a TCQ, each CQ in the TCQ is rewritten and afterwards integrated
into the TCQ. Each UCQ can be written as a TCQ with unions of CQs.
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The main idea is query answering over a stream of data. This stream of data is a
sequence of A-Boxes and an ontology. Both together form a Temporal Knowledge Base.
Due to the fact that the query rewriting compile the ontology into the query, only the
sequence of A-Boxes is needed.
Temporal Query Answering over a sequence has three different tasks: The first task

is the start of the answering at the begin of the sequence. This is done by the Initial
Answer Formula. The second task is the consuming of the rest of the elements one by
one. This is done by the Next Answer Formula and Update Formula. The last task
is the evaluation of the result at the end of the sequence to answer the query. This
task is done by the Evaluation Function. The Evaluation Function can also return the
current intermediate result of a query. It can be called every time expect during the
Next Answer Formula and the Update formula. Both functions have to be called at once
in an atomic way.

2.5.1 Initial Answer Formula
The first main function of the algorithm is the Initial Answer Formula. This formula
generates the first answer formulas for all sub-queries. The Initial Answer Formula is
denoted by Φ0, where 0 stands for the first element of the sequence of A-Boxes. An
answer formula is a mapping of bounded variables to specific values. A sub-query has a
set of answer formulas as solution. The Initial Answer Formula is recursively defined as:

• Φ0(ψ1) := Ans(ψ1, J
(0)) if ψ1 is a CQ

• Φ0(ψ1 ∧ ψ2) := Φ0(ψ1) ∩ Φ0(ψ2)

• Φ0(ψ1 ∨ ψ2) := Φ0(ψ1) ∪ Φ0(ψ2)

• Φ0(◦ψ1) := x◦ψ1
0 , Φ0(◦−ψ1) := ∅

• Φ0(•ψ1) := x•ψ1
0 , Φ0(•−ψ1) := ∆NV

• Φ0(ψ1Uψ2) := Φ0(ψ2) ∪ (Φ0(ψ1) ∩ xψ1Uψ2
0 )

• Φ0(ψ1Sψ2) := Φ0(ψ2)

If the sub-query is a CQ, then the answer formulas for the CQ queried against the
first ABox are returned. The conjunction of two TCQs is the intersection of both results
of the two TCQs. Therefore it is important that sub-queries are calculated first. The
disjunction is treated the same way as the conjunction. The future operators strong
next (◦), weak next (•) and until (U) introducing placeholder variables of the form xop0 ,
where 0 denotes the current point in time, which is the first ABox. The op denotes the
operation to distinguish the different types of placeholder variables. The placeholder
variables will be replaced by the the Update Formula or Evaluation Function later. The
past operators strong previous (◦−), weak previous (•−) and since (S) using already
calculated answer formulas of the previous ABox. This is the first ABox, therefore the
since operator only uses the current ABox and strong previous and weak previous use
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default answer formulas. The answer formula for the strong previous operator is an
empty set of mappings, because no previous ABox exists. The set of answer formulas
for the weak previous operator is the set of all mappings. The set of all mappings is
represented as ∆NV .

2.5.2 Next Answer Formula

To calculate the answer formulas for the sub-queries of the next ABox, the Next Answer
Formula is used. Φ0

i denotes the Next Answer Formula for a point in time i, which is in
the sequence of A-Boxes, expect the first ABox. The first ABox is always only used by
the Initial Answer Formula.
The Next Answer Formula is defined in nearly the same way as the Initial Answer

Formula. The difference is the treatment of the previous operators. The Initial Answer
Formula uses default values for strong and weak previous. The Next Answer Formula
uses for both operators the already calculated answer formulas, because there is always
a previous ABox. In the Initial Answer Formula, the since is calculated by the set of
answer formulas of the second sub-query, because there is no previous point in time with
a not empty set of answer formulas for the second sub-query. The Next Answer Formula
uses the previous calculated set of answer formulas of the since operator and the answer
formulas of both sub-queries to calculate the next answer formula.
The Next Answer Formula is defined as:

• Φ0
i (ψ1) := Ans(ψ1, J

(i)) if ψ1 is a CQ

• Φ0
i (ψ1 ∧ ψ2) := Φ0

i (ψ1) ∩ Φ0
i (ψ2)

• Φ0
i (ψ1 ∨ ψ2) := Φ0

i (ψ1) ∪ Φ0
i (ψ2)

• Φ0
i (◦ψ1) := x◦ψ1

i , Φ0
i (◦−ψ1) := Φi−1(ψ1)

• Φ0
i (•ψ1) := x•ψ1

i , Φ0
i (•−ψ1) := Φi−1(ψ1)

• Φ0
i (ψ1Uψ2) := Φ0

i (ψ2) ∪ (Φ0
i (ψ1) ∩ xψ1Uψ2

i )

• Φ0
i (ψ1Sψ2) := Φ0

i (ψ2) ∪ (Φ0
i (ψ1) ∩ Φi−1(ψ1Sψ2))

All operators expect the previous operators are defined the same way as in the Initial
Answer Formula. In the Initial Answer Formula, the answer formulas can contain place-
holder variables of the current point in time. The Next Answer Formulas uses previous
answer formulas and introduces placeholder variables, too. Therefore an answer formula
can contain placeholder variables of the current and the previous point in time. The
placeholder variables of the previous point in time are placeholder for answer formulas
of the current point in time. To replace the previous introduced placeholder variables,
an Update Formula is needed.
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2.5.3 Update Formula

The Update Formula replaces previous introduced placeholder variables with already
calculated answer formulas. The Update Formula only replaces placeholder variables of
the previous point in time. Placeholder variables of the last run of the Next Answer
Formula are not replaced, because their answer formulas will be calculated in the next
run of the Next Answer Formula.
The Update Formula replaces all placeholder variables with answer formulas right

after their calculation. Therefore the algorithm only need to keep track of the answer
formulas of the sub-queries of the current and previous point in time. All other answer
formulas of the past will not be needed in the next steps to answer the query. All needed
answer formulas are stored in the structure of the TCQ.
The Update Formula replaces all placeholder variables xψ

j

i−1, where i−1 is the previous
point in time and ψj the sub-query. The Next Answer Formula is denoted by Φ0

i , where
i is the point in time and 0 is the set of answer formulas calculated by the Next Answer
Formula. The Update Formula uses the answer formulas of the Next Answer Formula
to update each placeholder variable of the previous point in time. The update of the
placeholder variables uses the same order of sub-queries as the Initial or Next Answer
Formula to replace all placeholder variables.

update(xψ
j

i−1) :=
{

Φj−1
i (ψ1) if ψj = ◦ψ1 or ψj = •ψ1

Φj−1
i (ψj) if ψj = ψ1Uψ2 or ψj = �ψ1 or ψj = ♦ψ1

An answer formula for a query contains only placeholder variables of its sub-queries.
The Update Formula starts with the set of answer formulas Φ0

i . After the update of the
set of answer formulas of the first sub-query, the set of all answer formulas is denoted by
Φ1
i . If there are k sub-queries, the update sequence would be Φ0

i ,Φ1
i , . . .Φk

i = Φi. The
result of the Update Formula is the set of answer formulas Φi, which equals to the set
of answer formulas of the last update.
The Update Formula replaces placeholder variables of strong next and weak next with

the answer formulas for the sub-query of the query element. For the until, always and
eventually operator, the placeholder variable is replaced by its set of answer formulas of
the current point in time.
The algorithm queries over a Temporal Knowledge Base by executing the Initial An-

swer Formula followed by the loop of the Next Answer Formula and Update Formula till
the end of the sequence of A-Boxes. The result of a query is Φn, if An is the last A-box
in the sequence of the temporal knowledge base. The set of answer formulas Φn can
contain placeholder variables introduced by the current point in time. To get a correct
result for the query, the Evaluation Function replaces this placeholder variables.

2.5.4 Evaluation Function

The Evaluation Function replaces placeholder variables, which are present in the set of
answer formulas representing the query result. In general, the result of the query at
the end of the sequence of A-Boxes is interesting. To give a complete definition of the
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Evaluation Function, also the evaluation of a query in the middle of a sequence is defined.
The Evaluation Function is denoted by evaln, where n is the length of the sequence of
A-Boxes. The Evaluation Function is defined as:

• evaln(A) := A if A ⊆ ∆NV

• evaln(xψj ) :=



Ans(ψ1, J
(n), j + 1) if j < n and (ψ = ◦ψ1 or ψ = •ψ1)

Ans(ψ, J (n), j + 1) if j < n and ψ = ψ1Uψ2
Ans(ψ, J (n), j + 1) if j < n and (ψ = �ψ1 or ψ = ♦ψ1)
∅ if j = n and (ψ = ◦ψ1 or ψ = ψ1Uψ2)
∅ if j = n and ψ = ♦ψ1
∆NV if j = n and (ψ = •ψ1 or ψ = �ψ1)

• evaln(α1 ∩ α2) := evaln(α1) ∩ evaln(α2)

• evaln(α1 ∪ α2) := evaln(α1) ∪ evaln(α2)

The evaluation of a subset A of all mappings ∆NV is the subset A, because the
Evaluation Function has a set of mappings as result. Furthermore its task is to eliminate
placeholder variables, intersections and unions. The evaluation of placeholder variables
is treated in two different ways: The first one is the evaluation of a placeholder variable
in the middle of the sequence. The answer formulas for the replacement are given in the
next point in time. The Next Answer Formula at point in time j + 1 for a sub-query
ψ with the sequence of interpretations J and a sequence of A-Boxes with a length n
is denoted by Ans(ψ, J (n), j + 1). The second one is the evaluation of a placeholder
variable at the end of the sequence. The Evaluation Function uses default values for
placeholder variables. The placeholder variables for the weak next and always operators
are replaced by the set of all mappings ∆NV . The placeholder variables for strong next,
until and eventually are replaced by the empty set of answer formulas.
The evaluation of an intersection of two sub-formulas is the intersection of the evalua-

tions of both set of answer formulas. The union of two sub-formulas is treated the same
way.
In the previous sections, the terms answer formula and mappings are used. To get a

deep understanding, how answer formulas are represented and two answer formulas can
be intersected or unified, the next section introduces the definition of answer formulas.

2.6 Answer Formulas
An answer formula is a set of mappings, which represents a solution for a query. A
mapping is a set of bounded variables. A bounded variable is an assignment of a free
variable to a specific value. Given the role assertion hasV al(S1, 3.0) and the TCQ
Q(x)← hasV al(x, 3.0), then a result for the query against this role assertion is a map-
ping of the free variables. In this example the TCQ has only the free variable x. The
mapping is {x← S1}, also called answer formula. If the TCQ is Q(x, y)← hasV al(x, y),
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then the answer formula has two mappings {x ← S1, y ← 3.0}, because two variables
are bounded.
Both answer formulas represent a solution for a given TCQ and the given role assertion

hasV al. An ABox can contain more than one role assertion and there might be more
than on possible mapping. Therefore every result of a query is a set of answer formulas.
Given the ABox A with the role assertions hasV al(S1, 2.0) and hasV al(S2, 3.0), then
the result for the query Q(x, y) ← hasV al(x, y) is the set of answer formulas {{ x ←
S1, y ← 2.0}, { x← S2, y ← 3.0}}.
A query is a boolean query, iff there are no free variables. The result of a boolean

query is an empty set of answer formulas or the set of all possible answer formulas ∆NV .
The answer formula > denotes an solution that contain all possible mappings.
A union of two sets of answer formulas is the union of the sets. Given the answer

formulas {{ x← S1, y ← 2.0}, { x← S2, y ← 3.0}} and {{ x← S3, y ← 4.0}}, then the
union of both sets is {{ x← S1, y ← 2.0}, { x← S2, y ← 3.0}, { x← S3, y ← 4.0}}. If
one answer formula of both sets contains the answer formula >, then the union of both
is the set of all possible answer formulas {>}, because > represents all possible answer
formulas.
An intersection of two answer formulas is the set of all intersections of all combinations

of answer formulas of both sets. An intersection of an answer formula with another one
is empty, if one of the answer formulas is empty or both contain the same bounded
variable with different values. Given the answer formulas {{ x ← S1, y ← 2.0}, { x ←
S2, y ← 3.0}} and {{ x← S3, y ← 4.0}}, then the intersection of both sets is ∅, because
the combination of each answer formula contains different values for x and y. Given
the answer formulas {{ x ← S1}, { x ← S2}} and {{ x ← S1, y ← 2.0}}, then the
intersection of both is the set of answer formulas {{ x ← S1, y ← 2.0}}, because there
is an answer formula in both sets with the same values for the same bounded variables.
In this case the bounded variable x has the same value in both answer formulas and the
mapping of the bounded variable y is only present in one answer formula. If one of the
sets contains an answer formula >, then the result of the intersection is the other set.
A special case is given, if both sets contain an answer formula >, then the result of the
intersection is {>}.

2.7 Infinite Sequences

In Temporal Conjunctive Query Answering, the example of a Temporal Knowledge Base
with a finite sequence of A-Boxes was shown. In this section, the query answering against
an infinite sequence of A-Boxes will be explained.
To answer a query against an finite sequence of A-Boxes, the Initial Answer Formula

for the first ABox and both next step functions, the Next Answer Formula and Update
Formula as loop till the end of the sequence, are called. The result of the query is eval-
uated with the Evaluation Function at the end of the sequence. In the semantic context
the result is the query queried against the last point in time. For infinite sequences of A-
Boxes, there is no final end of the sequence. Therefore all consumed A-Boxes are treated
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ABox0
hasVal(S1,0.0)

ABox1
hasVal(S1,1.0)

ABox2
hasVal(S1,2.5)

ABox3
hasVal(S1,3.0)

ABox4
hasVal(S1,4.5)

. . .

Figure 2.4: Infinite sequence of A-Boxes

as finite sequence. For every new ABox the Next Answer Formula and the Update For-
mula are called. If the Evaluation Formula is called, it takes the answer formulas of the
entire query and replaces the placeholder variables. The original answer formulas stay
the same to use them for future A-Boxes in terms of the Next Answer Formula. The
result is the query over a finite sequence. At every new ABox, this sequence is extended.
Due to the placeholder variables, the algorithm only need to touch the new A-Boxes.
Every ABox is only needed once.
The semantics of an infinite sequence treated as a finite sequence is changing over

time by extending the sequence. The semantic of the past operators stays the same,
but the future operators change, because there is new information in terms of new A-
Boxes. Given a sequence with the length n and a TCQ Q(x)← ◦hasV al(x, y), then the
result is ∅. If the same TCQ is queried against the same position after the extension,
the sequence would have the length n + 1 and may be there is an ABox with the role
assertion hasV al that results into a not empty set as result.

Algorithm 2 The algorithm of Temporal Query Answering
Input: A TCQ φ and an infinite sequence J = (Ii)i≥0 of interpretations
Output: Ans(φ, J (i)) for i ≥ 0

for i← 0, 1 . . . do
if i=0 then
compute Φ0; // Initial Answer Formula

else
compute Φ0

i from Φi−1; // Next Answer Formula
compute Φ1

i , . . . ,Φk
i = Φi; // Update Formula

end if
output evali(Φi(φ)); // Evaluation Function

end for

Therefore, the query is always evaluated at the end of the sequence and the results are
temporal, because future information can change the result, if they use future operators
that operates over the end of the sequence.
The Algorithm 2 implements Temporal Query Answering over an infinite sequence and

returns a stream of results. For each ABox in the sequence, it returns a set of answer
formulas. Given the TCQ Q(x)← hasV al(S1, x) and a Temporal Knowledge Base with
an empty ontology and the infinite sequence of A-Boxes in Figure 2.4, then the result of
the TCQ Q is the infinite sequence of sets of answer formulas:

{{x← 0.0}}, {{x← 1.0}}, {{x← 2.5}}, {{x← 3.0}}, {{x← 4.5}}, . . .
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In Temporal Query Answering, the current status of the system is important. The
queries for analysing the status of the system should only query with a limited history.
Only the current status in terms of a limited history like a hour is interesting.
A limited history can be achieved by a window, representing a sub-sequence of A-

Boxes with a fix size. At every extension of the sequence of A-Boxes, the window can
slide one ABox by adding the new ABox and dropping the oldest one. This idea is called
sliding window, where only the A-Boxes of the window are queried. A sliding window
has two parameters. The first one is the range. The range defines the length or size
of the window. The second one is the sliding. In the algorithm, there is only a sliding
of one possible. To support sliding, the algorithm evaluates only at the points in time,
which are a multiple of the sliding. Furthermore the first point in time of the evaluation
is reached, if the length of a complete window is consumed.

3.1 Temporal Query Answering with Sliding

Algorithm 3 Sliding Window Algorithm
Input: A TCQ φ and an infinite sequence J = (Ii)i≥0 of interpretations
Output: Ans(φ, J (i)) for i ≥ 0 ∧ i mod s = 0

for i← 0, 1 . . . do
if i=0 then
compute Φ0; // Initial Answer Formula

else
compute Φ0

i from Φi−1; // Next Answer Formula
compute Φ1

i , . . . ,Φk
i = Φi; // Update Formula

end if
if (i+ 1− r) mod s = 0 ∧ i+ 1 ≥ r then
output evali(Φi(φ)); // Evaluation Function

end if
end for

The first step is the algorithm with a sliding s and a range r. This sliding defines
the frequency in which the algorithm returns results. The Algorithm 3 describes a
Temporal Query Answering with a TCQ φ and infinite sequence of interpretations of
the Temporal Knowledge Base. It returns only a result, if the current position is at the
end of a window. The next evaluation is in s steps. The first evaluation of the first
window with the range r is at position r − 1. Therefore to evaluate the window, the
position i has the condition i + 1 ≥ r. The next evaluation is at i + 1 − r + s. The
equation (i + 1 − r) mod s = 0 defines all evaluation points that are larger or equal
than i − r. Given a Temporal Knowledge Base with an empty TBox and the infinite
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ABox0
hasVal(S1,3.0)

ABox1
hasVal(S1,2.0)

ABox2
hasVal(S1,3.5)

ABox3
hasVal(S1,4.0)

ABox4
hasVal(S1,4.5)

. . .

Figure 3.1: Infinite sequence of A-Boxes

sequence of A-Boxes in Figure 3.1, then the TCQ Q(x)← hasV al(S1, x) is queried over
this sequence with a range of one and a sliding of two. A range of one is a window that
contains only the current ABox. The TCQ Q only queries against the current ABox,
therefore the result with or without window sliding should be the same in terms of the
range parameter. The sliding parameter is two. With a sliding parameter of one, the
result equals the algorithm without sliding window. In this case the sliding parameter
is two, which represents that only every second result should be returned. By querying
the TCQ Q against the infinite sequence, the result is the infinite sequence:

{{x← 3.0}}, {{x← 3.5}}, {{x← 4.5}}, . . .

This result is correct and represents the idea of sliding. The sliding defines the fre-
quency of calling the Evaluation Function, it does not change the implementation of
Evaluation Formula, the Update Formula, the Initial and Next Answer Formula. The
Algorithm 3 implements the frequency of calling the Evaluation Function, but not the
handling of the range. A query is queried over the whole sequence, not only the sliding
window. To achieve a binding of the query to the sliding window, the query has to
be rewritten. The next section describes the rewriting of a TCQ to handle the range
correctly.

3.2 Temporal Query Answering with Range

In the last section, the TCQ Q(x)← hasV al(S1, x) is queried against a infinite sequence
of A-Boxes with a sliding of two and a range of one. The sliding defines the frequency of
calling the Evaluation Function. It does not change the way, how the query is queried
over the sequence of A-Boxes. Therefore the range of the window is not handled. To
handle the range, the query has to be rewritten to contain the information of the range.
The sliding window always ends at the current position of evaluation. The introduced

placeholder variables for the future operators are evaluated the same way with the range.
The only difference is the handling of past operators. The past operators are since, strong
previous, weak previous, always in the past and history. They have to stop at the left
border of the sliding window and uses the default value for the ABox before. Therefore
after rewriting of the query, the algorithm should threat the sliding window as finite
sequence and should not touch the A-Boxes outside of the window.
Given the TCQ Q(x) ← ♦−hasV al(S1, x), which is queried against an infinite se-

quence with a sliding window of range 2 and slide 2. The infinite sequence is shown
in Figure 3.2. The sliding always starts at the end of the first window of the infinite
sequence. In this case this is the point in time i = 1. This point is a solution for the
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ABox0
hasVal(S1,3.0)

ABox1
hasVal(S1,2.0)

ABox2
hasVal(S1,3.5)

ABox3
hasVal(S1,4.0)

ABox4
hasVal(S1,4.5) . . .

Sliding Window 0 Sliding Window 1 Sliding Window 2

Figure 3.2: Sliding Window with range of 2 and sliding of 2

equations i + 1 ≥ r and (i + 1 − r) mod s. The start point is always r − 1. Therefore
the point in time of the evaluation depends on the range.
The Evaluation Function is always called for the next points, if (i + 1 − r) mod s

holds. In this example the function is called at position 1, 3, 5, . . . .
The result of the query is a stream of sets of answer formulas. The first set of answer

formulas is {{x ← 3.0}, {x ← 2.0}}, which represents the result for the sliding window
0. The result of the sliding window 1 is: {{x← 3.0}, {x← 2.0}, {x← 3.5}, {x← 4.0}}.
This would be the correct result for a TCQ without sliding window, because this result
contains also the first sliding window. The result contains the first sliding window,
because the history operator ♦− is not bounded to the range. The range r = 2 defines
the range of the sliding window. Each query should query only inside a sliding window.
To achieve this, TCQs with history operators have to be rewritten. The history operator
is defined as ♦−(ψ) = ψ∪◦−(♦−ψ). To bound the history operator, the rewritten version
of it uses the strong previous operator. Using the definition, the following equations can
be retrieved:

♦−(ψ) = ψ ∪ ◦−(ψ ∪ ◦−(ψ ∪ ◦−(ψ ∪ ◦−(. . . ))))

The rewritten TCQ Q for a range r = 2 is Q′(x)← hasV al(S1, x)∪ ◦−(hasV al(S1, x)).
With the new TCQ Q′ the result of the second sliding window is {{x← 3.5}, {x← 4.0}}.
For the rewriting, the function Ri is defined. i represents the position in the range. The
rewriting function starts always at the position Rr−1, where r is the range. If the range
is 2, the range is from 0 to 1. The Evaluation Function evaluates at range position 1. In
this example, the equation Q′ = R1(Q) holds.
The base case of the Rewriting Algorithm is the CQ. The rewriting of a CQ is also

the same CQ. The definition of the rewriting function for CQs and the history operator is:

Ri(ψ) = ψ if ψ is a CQ

Ri(♦−ψ) :=
{

(◦−Ri−1(♦−ψ)) ∪Ri(ψ) if i > 0
R0(ψ) if i = 0

With this two definitions, a rewriting of the TCQ Q to Q′ is done. A TCQ can also
contain other operators. The always in the past operator is analogously to the history
operator:

Ri(�−ψ) :=
{

(•−Ri−1(�−ψ)) ∩Ri(ψ) if i > 0
R0(ψ) if i = 0

The weak previous and strong previous are past operators, that can also exit the range
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3 Sliding Window

and query against A-Boxes outside of the range. To limit the operations to the range,
the previous operators weak and strong previous have default values for the first point
in time of the range. For a strong previous R0 the set of all possible answer formulas is
∆NV and the weak previous of R0 is the empty set. Both definitions are as follows:

Ri(◦−ψ) :=
{
◦−Ri−1(ψ) if i > 0
∆NV if i = 0

Ri(•−ψ) :=
{
•−Ri−1(ψ) if i > 0
∅ if i = 0

The since operator is the last past operator. It uses also previous results and is not
bounded to the range. The definition of the since operator is ψ1 S ψ2 = ψ2 ∪ (ψ1 ∩
(ψ1 S ψ2)). This operation can also represented by a sequence with the help of the
strong previous operator:

ψ1 S ψ2 = ψ2 ∪ (ψ1 ∩ ◦−(ψ2 ∪ (ψ1 ∩ ◦−(ψ2 ∪ (ψ1 ∩ ◦−(. . . ))))))

This rewriting of the since operator is recursively done by the Rewriting Algorithm as
follows:

Ri(ψ1 S ψ2) :=
{

(◦−(Ri−1(ψ1 S ψ2)) ∩Ri(ψ1)) ∪Ri(ψ2) if i > 0
Ri(ψ2) if i = 0

With the Rewriting Algorithm an exact position of the query elements in terms of the
range is introduced. The rewritten query defines exactly at which position of the range,
the CQs are evaluated. With this knowledge the rewritten TCQ returns default values
for CQs that are queried outside of the range. Every TCQ with past operators and CQs
can be rewritten to such a TCQ.
Given the TCQ Q(x) ← ◦−(�(♦−hasV al(S1, x))) and the sequence defined above,

then the strong previous and history operator can be rewritten by the rewriting func-
tion. If the always operator (�) stays the same, the postion of the history operator can
be 0 or 1. To get an exact position, the always operator has to be transformed into
a query that uses the weak next operator. With this step, the new expression for the
always operator has for each position of the range an sub-query. This means that there
are two sub-queries for the history operator. One starts at the position 0 and one at the
position 1. It implies that future operators have to be rewritten. The definitions for the
future operators are:

Ri(◦ψ) :=
{
◦Ri+1(ψ) if i < r
∆NV if i = r

Ri(•ψ) :=
{
•Ri+1(ψ) if i < r
∅ if i = r

Ri(�ψ) :=
{

(•Ri+1(�ψ)) ∩Ri(ψ) if i < r
Rs(ψ) if i = r
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3.3 Temporal Query Answering with Sliding Window

Ri(♦ψ) :=
{

(◦Ri+1(♦ψ)) ∪Ri(ψ) if i < r
Rs(ψ) if i = r

Ri(ψ1 U ψ2) :=
{
Ri(ψ2) ∪ (Ri(ψ1) ∩ ◦Ri+1(ψ1 U ψ2)) if i < r
Ri(ψ2) if i = r

The rewriting of the conjunction and disjunction operators are:

Ri(ψ1 ∧ ψ2) = Ri(ψ1) ∧Ri(ψ2)
Ri(ψ1 ∨ ψ2) = Ri(ψ1) ∨Ri(ψ2)

With all given rewriting definitions, the rewriting of the TCQQ(x)← ◦−(�(♦−hasV al(S1, x)))
has the following steps:

R1(Q)

= R1(◦−(�(♦−hasV al(S1, x))))

= ◦−(R0(�(♦−hasV al(S1, x))))

= ◦−(R0(♦−hasV al(S1, x)) ∩ (•R1(�(♦−hasV al(S1, x)))))

= ◦−(R0(hasV al(S1, x)) ∩ (•R1(♦−hasV al(S1, x)))

= ◦−(hasV al(S1, x) ∩ (•(◦−R0(♦−hasV al(S1, x)) ∪R1(hasV al(S1, x)))))

= ◦−(hasV al(S1, x) ∩ (•(◦−R0(hasV al(S1, x)) ∪R1(hasV al(S1, x)))))

= ◦−(hasV al(S1, x) ∩ (•(◦−hasV al(S1, x) ∪ hasV al(S1, x))))

The rewritten TCQ is queried against an infinite sequence with the Algorithm 3.
This algorithm with the rewritten TCQ represents Temporal Query Answering with a
sliding window. The algorithm contains the sliding information and the rewritten TCQ
contains the range information. The syntax and semantics are the same, if there is a
finite sequence of A-Boxes representing the sliding window.

3.3 Temporal Query Answering with Sliding Window
To query a TCQ against an Temporal Knowledge Base with an infinite sequence, the
first step is the rewriting of the TCQ to include the ontology into the TCQ. This is done
by the Perfect Rewriting Algorithm (2.4.2). The next step is the second rewriting of
the TCQ to bound the query to the range of the sliding window. This is done by the
Rewriting Algorithm (3.2). The last step is to run the Algorithm (3.1), which calls the
Evaluation Function in the given frequency.
An advantage of the rewriting algorithm to establish a sliding window is the unchanged

definition of the original functions. The Initial Answer Formula, the Next Answer For-
mula, the Update Formula and the Evaluation Formula stayed untouched. Only the TCQ
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and the frequency of calling the Evaluation Function is changed. As before, the algorithm
consumes an ABox a time and only has to keep the sets of answer formulas of the current
and the previous point in time. On the other hand, the structure of the TCQ stores the
intermediate sets of answer formulas. By rewriting the query in terms of eliminating
operators by replacing them with previous and next operations, the rewritten TCQs
have more operations. Each temporal operator saves its own set of answer formulas.
That means the performing of querying with sliding window needs more memory space.
Given a sliding window with a range of 1000 and the TCQ Q(x) ← ♦−hasV al(S1, x),
then the rewritten TCQ would contain 999 strong previous operators. Each of them
has its own set of answer formulas. The original algorithm without window sliding has
only one set of answer formulas for the history operator. Furthermore there are more
sub-formulas, the Next Answer Formula and Update Formula have to treat every time.

3.4 Reducing the Overhead

The previous algorithm is well for calculating results for a sliding window with slow
sliding value. Given a Temporal Knowledge Base with an infinite sequence, the TCQ
Q(x) ← hasV al(S1, x) and the sliding window has the range 1 and a sliding value
of 1000. Then, the Evaluation Function evaluates the sets of answer formulas at the
positions 0, 1000, 2000, . . . . The TCQ Q only uses the current point in time, therefore the
query should only query against the points in time, the Evaluation Function evaluates.
Given the example above, for the first three results, the query touches 2001 A-Boxes
and queries the TCQ Q against each of them. Each query against an ABox results into
a set of answer formulas. This operation produces a lot of memory input, which can be
reduced by ignoring all A-Boxes that are outside the range. Therefore the overhead of
calculating intermediate results that are not used in the evaluation process should be
reduced.
The Algorithm 4 reduces the overhead by skipping needless A-Boxes. It has two main

parts: The first part has no skipping, because the range of the sliding window is greater
or equal than the sliding parameter. That means that every ABox of the infinite sequence
is part of a sliding window. Furthermore there is overlapping if r 6= s. For this case the
part one has the same implementation as the algorithm above.
If the sliding parameter is greater than the range, there are A-Boxes, which are no

members of a sliding window. To calculate these A-Boxes is an overhead. To reduce the
overhead, the A-Boxes are skipped by not calculating the Next Answer Formula and the
Update Formula. At the beginning of a new sliding window, the Initial Answer Formulas
has to be called, because the previous ABox was skipped and no previous set of answer
formulas exists. The algorithm defines this skipping in the second part. The first ABox
of a sliding window with the point in time i solves the equation i mod s = 0. The last
ABox of the window always solves the equation i+1− r mod s∧ i+1 ≥ r. The indexes
of the other A-Boxes in the sliding window are a multiple of the indexes i in the range
s− r + 2 ≤ i < s− 1.
Both parts of the algorithm evaluate the result at the end of the sliding window. The
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last ABox of the sliding windows always has an index of the multiple of s with an shift
of the range. The second part of the algorithm is a special case of the first part. It uses
the fact that A-Boxes can be skipped. The results of the second part are always the
same to the calculated one of the first part. The first part uses the rewritten TCQ. The
second part can use the original or the rewritten TCQ, because it always calls the Initial
Answer Formula at the beginning of a window.

Algorithm 4 The algorithm with sliding window and ABox skipping
Input: A TCQ φ and an infinite sequence J = (Ii)i≥0 of interpretations
Output: Ans(φ, J (i)) for i ≥ 0 ∧ i mod s = 0

if s ≤ r then
for i← 0, 1 . . . do

if i=0 then
compute Φ0; // Initial Answer Formula

else
compute Φ0

i from Φi−1; // Next Answer Formula
compute Φ1

i , . . . ,Φk
i = Φi; // Update Formula

end if
if (i+ 1− r) mod s = 0 ∧ i+ 1 ≥ r then
output evali(Φi(φ)); // Evaluation Function

end if
end for

else
for i← 0, 1 . . . do

if i mod s = 0) then
compute Φi; // Initial Answer Formula

else
if 1 ≤ i mod s < r then
compute Φ0

i from Φi−1; // Next Answer Formula
compute Φ1

i , . . . ,Φk
i = Φi; // Update Formula

end if
end if
if (i+ 1− r) mod s = 0 ∧ i+ 1 ≥ r then
output evali(Φi(φ)); // Evaluation Function

end if
end for

end if
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In the previous chapter, the algorithm with a sliding window by rewriting the TCQ and
changing the frequency of calling the Evaluation Function was shown. As mentioned
before, the rewriting of the TCQ always results into a TCQ that has a larger or equal
number of operators. This has influence to the performance. In this chapter a new
algorithm is presented that reduces the computation by optimisation of the operations
and the calculation of intermediate results by introducing caching and elimination of
needless intermediate results.

4.1 The needless Computations
The previous algorithm (Algorithm 4) skips all A-Boxes that are outside of all sliding
windows and are not important to calculate the result. In this section, an example shows
that there are a few more calculations that are needless.
Given a sliding window with the range 5, then the TCQ

Q(x, y, z)← (♦−hasV al(S1, x)) ∧ hasV al(S2, y) ∧ hasV al(S3, z)

would produce intermediate results that are not used by the Evaluation Function at the
last point in time of the sliding window. The sub-queries of Q are the following ones:

- ψ0 = hasV al(S1, x)

- ψ1 = ♦−ψ0

- ψ2 = hasV al(S2, y)

- ψ3 = hasV al(S3, z)

- ψ4 = ψ2 ∩ ψ3

- ψ5 = ψ1 ∩ ψ4

The Figure 4.1 shows that a lot of intermediate results are not used. There are 6 sub-
queries and the range of the sliding window is 5. Therefore, the algorithm calculates 30
results but only 14 results are needed. The green nodes represent the needed intermediate
results to answer the TCQ at the end of the sliding window. The red ones are needless
sets of answer formulas, because they are not used by the last point in time. Each row
represents a sub-query and each column represents the set of answer formulas for a given
ABox.
In this chapter the main idea is that the range of sliding windows are small enough

such that the entire finite sequence of a sliding window is handled at once. In other
words, the algorithm starts to calculate the result for a sliding window, if the entire
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0 1 2 3 4

Φ0(ψ5) Φ1(ψ5) Φ2(ψ5) Φ3(ψ5) Φ4(ψ5)

Φ0(ψ4) Φ1(ψ4) Φ2(ψ4) Φ3(ψ4) Φ4(ψ4)

Φ0(ψ3) Φ1(ψ3) Φ2(ψ3) Φ3(ψ3) Φ4(ψ3)

Φ0(ψ2) Φ1(ψ2) Φ2(ψ2) Φ3(ψ2) Φ4(ψ2)

Φ0(ψ1) Φ1(ψ1) Φ2(ψ1) Φ3(ψ1) Φ4(ψ1)

Φ0(ψ0) Φ1(ψ0) Φ2(ψ0) Φ3(ψ0) Φ4(ψ0)

ψ5

ψ4

ψ3

ψ2

ψ1

ψ0

p p p p

Figure 4.1: Intermediate results for the TCQ Q(x,y,z)

ABox0
hasVal(S1,3.0)

ABox1
hasVal(S1,2.0)

ABox2
hasVal(S1,3.5)

ABox3
hasVal(S1,4.0)

ABox4
hasVal(S1,4.5)

Figure 4.2: Finite sequence of A-Boxes of a window with range 5

sliding window is present. With the knowledge of the range of a sliding window, a TCQ
can be rewritten to calculate only the needed intermediate results. The next section
introduces the Vector Algorithm that redefines a TCQ to handle a finite sequence at
once.

4.2 The Vector Algorithm

The Vector Algorithm is based on the fact that the range and the sliding of the sliding
window is known. It queries the TCQ as vector expression against the complete sliding
window at once and calculates the results of it.
A first element of a sliding windows has the index p and the last element of the sliding

window the index q. A sub-sequence of the sliding window is denoted by j and k, where
j represents the start element of the sub-sequence and k the end.
Let v1 be a CQ, then Vj,k(v1) = {Φi(v1)}j≤i≤k denotes a sub-sequence of sets of answer

formulas that are results of querying the CQ v1 against the sub-sequence of the sliding
window. Let be given the finite sequence of A-Boxes in Figure 4.2, then the result of the
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vector query V1,3(hasV al(S1, x)) is the following sequence of sets of answer formulas:

{{x← 2.0}}, {{x← 3.5}}, {{x← 4.0}}

The conjunction of two vectors is defined as Vj,k(A ∧ B) = {Ai ∩ Bi}0≤i≤k−j . A and B
represent sequences of sets of answer formulas calculated by other vector operators. The
variables j and k defines the sub-sequence of the sliding window, for which this sequence
is a result. The disjunction is defined as Vj,k(A ∨ B) = {Ai ∪ Bi}0≤i≤k−j analogously.
By definition, both sets A and B always have the same length.
The history operator is defined as Vj,k(♦−A) =

⋃
Ai, where j = k. It gets a sequence

of sets of answer formulas and build an union of all sets. With this 3 definitions, the
previous example with the TCQ

Q(x, y, z)← (♦−hasV al(S1, x)) ∧ hasV al(S2, y) ∧ hasV al(S3, z)

can be rewritten to the following vector query:

Q(x, y, z)← V4,4(ψ0 ∧ ψ1)

where
ψ0 = V4,4(♦−V0,4(hasV al(S1, x)))

ψ1 = V4,4(V4,4(hasV al(S2, y) ∧ V4,4(hasV al(S3, z))

This new query calculates only needs results to answer the query against the sliding
window. All green nodes of the Figure 4.1 are calculated and all red nodes are left
out. The history operator can only be called at a subsequence with range of one. The
next step is to define all operators of the vector algorithm and to provide a rewriting
algorithm to transform a TCQ into a vector query.
The definition for the conjunction, disjunction and the querying of CQs stays the same.

The history operator and all other operators are defined to deal with ranges larger or
equal than one. The vector operators are defined as:

- Vj,k(v1) = {Φi(v1)}j≤i≤k if v1 is a CQ

- Vj,k(A ∧B) = {Ai ∩Bi}0≤i≤k−j

- Vj,k(A ∨B) = {Ai ∪Bi}0≤i≤k−j

- Vj,k(◦1A) = A

- Vj,k(◦2A) = A, ∅

- Vj,k(•1A) = A

- Vj,k(•2A) = A,>

- Vj,k(◦−1 A) = A
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- Vj,k(◦−2 A) = ∅, A

- Vj,k(•−1 A) = A

- Vj,k(•−2 A) = >, A

- Vj,k(�A) = {
⋂
i≥hAi}0≤h≤k−j+1

- Vj,k(�−A) = {
⋂
i≤hAi}0≤h≤k−j+1

- Vj,k(♦A) = {
⋃
i≥hAi}0≤h≤k−j+1

- Vj,k(♦−A) = {
⋃
i≤hAi}0≤h≤k−j+1

- Vj,k(A S B) = {Si}j≤i≤k with S0 = B0, Si = Bi ∪ (Ai ∩ Si−1)

- Vj,k(A U B) = {Ui}0≤i≤k−j+1 with Uq−j+1 = Bq−j+1, Ui = Bi ∪ (Ai ∩ Ui+1)

The next and previous operators have two different versions in each case. The first
version represents the temporal move, where each element is in the sliding window. The
second version is the case, that one element is outside the sliding window and therefore
a default value is added to the sequence of sets of answer formulas. The strong next
operator Vj,k(◦1A) = A with version one returns the sequence. It does not change the
sequence A. Only the indexes j and k are different to the sub-query, because a strong
next moves the sub range of j, k by on to the right. If k is equal to the last point in time
q of the sliding window, there will be one index outside of the sliding window. Therefore
the second version is used. It uses the empty set as a result for the none existing ABox.
The weak next, strong previous and weak previous operators are treated analogously.
The always operator Vj,k(�A) gets as input the sub-sequence of sets of answer formulas

A. This sequence has the range (j, q), because the always operator is evaluated till the
end of the sequence. The task for setting the sub-query to this range is done by the Vector
Rewriting Algorithm, presented in the next section. To calculate the sub-sequence of
sets of answer formulas representing the results for the always operator, the Algorithm
5 that only needs q − j intersections is used.

Algorithm 5 The algorithm for the always operator
Input: A sequence of sets of answer formulas A, j, k, q
Output: A sequence of sets of answer formulas R
R = Aq
for i← q − 1, . . . , k do
R = Ai ∩R

end for
R = {R}
for i← k − 1, . . . , 0 do
R = Ai ∩R0, R

end for
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The result of the Algorithm 5 is a sequence of sets of answer formulas. This sequence
has a length of k − j + 1. A result in terms of a set of answer formulas for an always
operator at a specific point in time is the current set of answer formulas of the sub-
query intersected with the set of answer formulas of itself at the next point in time. By
calculating the next point in time at first and using this result to calculate the current
result, only one intersection for every next point in time is used.
The algorithm for the operators history, eventually and always in the past are to be

implemented analogously. All of them only need n− 1 intersections or unions, where n
is the length of the sub-sequence. The since and until operations also need only n − 1
steps, but each step needs an intersection and one union.
The Vector Algorithm calculates over finite sequence of A-Boxes. The sequence is

received at once and therefore no placeholder variables are used. Furthermore the al-
gorithm knows which sub-sequence of the sliding window should be queried by a given
TCQ. The operators of the vector algorithm have a range (j, k), but this is only important
for the case that a CQ is queried against the sliding window. The other operators can
check the length of the incoming sequences of sets of answer formulas and can perform
their calculations without the range (j, k).

4.3 The Vector Rewriting Algorithm

The Vector Rewriting Algorithm (RV ) rewrites a TCQ into a new form that can be
processed by the Vector Algorithm. The main idea is to specify the needed sub-sequences
of the sliding window and only calculate the results of this sub-sequences. The Vector
Rewriting Algorithm starts at the last point in time of the sliding window. Let Q be
an TCQ, then the rewriting algorithm starts with RVj,k(Q), where j and k are the range
boundaries for the sub-sequence. The TCQ is always evaluated at the end of the sliding
window, therefore j = q and k = q. q is the last index of the sliding window and p is
always the first A-Box. The first ABox always has index 0 in an finite sequence and
therefore p has always the value 0.
The Vector Rewriting Algorithm is called recursively. Each operator can move or

resize the sub-sequence j, k. The operator strong next moves the queried sub-sequence
one to the right. This means it moves each point in time one forward to the next point
in time. If the last point in time of the sub-sequence is already at the end of the sliding
window, the sub-sequence is minimised by 1.
The always operator always queries till the end of the sliding window, therefore the

sub-query always has an sub-sequence, which ends at the end of the sliding window.
The vector rewriting algorithm has the following definitions:

- RVj,k(v1) = Vj,k(v1) if v1 is a CQ

- RVj,k(v1 ∧ v2) = Vj,k(RVj,k(v1) ∧RVj,k(v2))

- RVj,k(v1 ∨ v2) = Vj,k(RVj,k(v1) ∨RVj,k(v2))
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- RVj,k(◦v1) =


Vj,k(◦1RVj+1,k+1(v1)) if k < q

Vj,k(◦2RVj+1,k(v1)) if j < k ∧ k = q

{∅} otherwise

- RVj,k(•v1) =


Vj,k(•1RVj+1,k+1(v1)) if k < q

Vj,k(•2RVj+1,k(v1)) if j < k ∧ k = q

{>} otherwise

- RVj,k(◦−v1) =


Vj,k(◦−1 RVj−1,k−1(v1)) if p < j

Vj,k(◦−2 RVj,k−1(v1)) if j < k ∧ p = j

{∅} otherwise

- RVj,k(•−v1) =


Vj,k(•−1 RVj−1,k−1(v1)) if p < j

Vj,k(•−2 RVj,k−1(v1)) if j < k ∧ p = j

{>} otherwise

- RVj,k(�v) = Vj,k(�RVj,q(v))

- RVj,k(♦v) = Vj,k(♦RVj,q(v))

- RVj,k(�−v) = Vj,k(�−RVp,k(v))

- RVj,k(♦−v) = Vj,k(♦−RVp,k(v))

- RVj,k(v1 U v2) = Vj,k(RVj,q(v1) U RVj,q(v2))

- RVj,k(v1 S v2) = Vj,k(RVp,k(v1) S RVp,k(v2))

The next and previous operators have a third case in the Vector Rewriting Algorithm.
They have a default value as result, if the entire sub-sequence is outside of the sliding
window. For the other operators, the Vector Rewriting Algorithm only adjusts the
ranges of the sub-queries. In the next chapter, this algorithm will be improved in terms
of overlapping.
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The previous presented Vector Algorithm gets the entire window as input. The input
is a infinite sequence of batches. Each batch represents a window as sequence of A-
Boxes. It calculates the result for a given query of the Vector Algorithm by calculating
all sub-queries. For the next window, it starts from the beginning to calculate the result.
If the two windows are overlapping, the subsequence of A-Boxes of the overlapping

is processed twice. At the first window, it is located at the end of the window and in
the second window, the same sequence is located at the beginning of the window. By
processing the sliding window, a reuse of already calculated answers for the overlapping
part is useful. The intermediate results of the first window of the last part can be used
in the first part of the second window.
To achieve a reusing of the overlapping part, the Vector Rewriting Algorithm has to

calculate the number of reused results for each operator. Furthermore each operator has
to store its results to reuse them as needed. The storage is a finite buffer, which handles
new elements as first in first out principle.
The vector operator Vj,k(v1) has the following definition:

Vj,k(v1) = {Φi(v1)}j≤i≤k if v1 is a CQ

It always returns the set of answer formulas for the entire subsequence with the range
(j, k). Given a sliding window (Figure 5.1) with range r = 2 and a sliding of one over an
infinite sequence of A-Boxes. For the first sliding window the vector operator V0,1(v1)
has to return the sequence of sets of answer formulas for ABox0 and ABox1. The idea
is to return only new sets of answer formulas for the sliding window 1. In this case the
vector operator returns the sequence of sets of answer formulas for ABox2. The result
for ABox1 is already known for the next operator that receive the results.
To establish the behaviour of the vector operator for CQs, the new algorithm has two

parts: The first function is the Initial Function. This function calculates the sequence
of answer formulas for the entire range (j, k). The second part is the Next Function.
This function calculates only a sub-sequence of the range (j, k) that contains only sets
of answer formulas for the none overlapping part of the sliding window in terms of the
previous window.

ABox0
hasVal(S1,3.0)

ABox1
hasVal(S1,2.0)

ABox2
hasVal(S1,3.5)

ABox3
hasVal(S1,4.0)

. . .

Sliding Window 0

Sliding Window 1

Sliding Window 2

Figure 5.1: Sliding Window with a range of 2 and a sliding of 1
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Figure 5.2: Sliding window with range r = 5 and a sliding of 3

The notion V I
j,k,u(v1) defines a vector operator, where (j, k) is the range, I denotes

the Initial Function and u is the overlapping parameter. The overlapping parameter
defines the number of overlapping A-Boxes between two subsequences of the window.
The optimised vector operator for CQs is defined as:

- V I
j,k,u(v1) = {Φi(v1)}j≤i≤k

- V N
j,k,u(v1) = {Φi(v1)}j+u≤i≤k

The Next Function V N
j,k,u only calculates results for the none overlapping part of the

subsequence. Given a sequence and a sliding window with the range r = 5 and a sliding
of s = 3, then the following Figure 5.2 is an example for the first three windows. Each
window has the range r = 5. The sliding of s = 3 is less than the range, therefore
overlapping exists. Given the vector operation Vj,k,u of above and the query needs the
result for the entire window, then the Initial Function returns the set of answer formulas
for the complete first window. That is the range (0, 4). The Next Function only returns
the sets of answer formulas for the subsequence with the range (2, 4), because the receiver
already knows the sets of answer formulas for the points in time 0 and 1. They are equal
to the previous window points 3 and 4. In this case the overlapping parameter is u = 2.
The equation u = max{0,min{(r− s)− (q− (k− j)), (r− s)− j}} with r > s calculates
the overlapping parameter for the vector operator of CQs. The overlapping parameter
in this example is 2.
Given a TCQ Q(x)← ◦−hasV al(S1, x) and the sliding window above, then the query

only uses the ABox3 of the windows. The vector operator for the hasV al role has the
form V I

3,3,0(hasV al(S1, x) with j = 3, k = 3 and u = 0, because u = max{0,min{(5 −
3)− (4− (3− 3)), (5− 3)− 3}} = 0.
Given a query that uses the A-Boxes 0 till 3, then the overlapping parameter is u = 1,

because the result of the ABox3 can be reused in the next window as result for ABox0.
If the query touches the ABox 1 till 3, then there is no overlapping and u = 0 holds.
The main idea of the Optimised Vector Algorithm is to introduce intermediate results.

In the same way as querying CQs against A-Boxes and reusing their sets of answer
formulas to reduce the calculations for the next window, the operators can store the
results for a sub-sequence and reuse them at the next window. The next section presents
the complete Optimised Vector Algorithm that uses intermediate results to reduce the
overhead in terms of overlapping.
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5.1 The Optimised Vector Algorithm

5.1 The Optimised Vector Algorithm
The Optimised Vector Algorithm tries to reduce the calculations of sets of answer for-
mulas in terms of union and intersection. It has two parts. The first part is the Initial
Function. This function is always called for the first window. The second part is the Next
Function. It evaluates all other windows and uses the previous calculated intermediate
results to calculate its results.

5.1.1 Initial Function
The vector operator for CQs in the Initial Function is the same as in the previous vector
algorithm. The definition is as follows:

- V I
j,k,u(v1) = {Φi(v1)}j≤i≤k

The conjunction and disjunction use a storage S to store their result and pass it after-
wards. The storage S is a sequence of sets of answer formulas. It has the finite length
k− j + 1. The conjunction and disjunction operator for the Initial Function are defined
as:

- V I
j,k,u(A ∧B) = S where S = {S(A)i ∩ S(B)i} and S(A) = A,S(B) = B

- V I
j,k,u(A ∨B) = S where S = {S(A)i ∪ S(Bi)} and S(A) = A,S(B) = B

To reduce the overhead and calculations the algorithm introduces different definitions for
the same operators. Each definition is for a special case. Each previous and next operator
has two special cases: The previous and next operators are moving the subsequence of
the window by one. The first case handles that the new subsequence is also in the
boundaries of the sliding window. The second case introduces a default set of answer
formulas for the point in time that is not in the boundaries of the window anymore.
The first case forwards the sets of answer formulas. The second case introduce a

storage to store the complete subsequence and returns the subsequence with the default
set of answer formulas. It has to store the sequence, because at each step the result of
the second case is a complete new sequence of answer formulas, due to the default set
of answer formulas. A reusing is not possible by using the a buffer with first in first out
principle. Therefore the overlapping parameter of this operators is always 0.

- V I
j,k,u(◦1A) = A

- V I
j,k,0(◦2A) = S, ∅ where S = A

- V I
j,k,u(•1A) = A

- V I
j,k,0(•2A) = S,> where S = A

- V I
j,k,u(◦−1 A) = A

- V I
j,k,0(◦−2 A) = ∅, S where S = A
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5 Optimising the Vector Algorithm

- V I
j,k,u(•−1 A) = A

- V I
j,k,0(•−2 A) = >, S where S = A

The always operator has three cases: The first case is the general case. It is used
to calculate the results for always operators, which have a range larger than one or
have a sub-query that has an overlapping parameter equals zero. The second case deals
with always operators, which have a range of one and the range of the sub-query has a
minimum size of twice this overlapping parameter. The third case is for always operators
that have a range of one and the range of the sub-query is less than the twice of the
overlapping parameter. The cases are defined as:

- V I
j,k,0(�1A) = {

⋂
i≥h Si}j≤h≤k where S = A

- V I
j′,j′,0(�2Vj,k,u(A)) =

⋂
Si where S =

⋂
A0≤i<u,

⋂
Au≤i≤k−j+1−u,

⋂
Ak−j+1−u<i<k−j+1

- V I
j′,j′,0(�3Vj,k,u(A)) =

⋂
Si where

S = {
⋂
i∗y≤i<(i+1)∗y Aj}0≤i<(k−j+1)/y
x = ((k − j + 1)%u)

y = gcd(x, u)

0

0
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1
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Figure 5.3: Always operator with case 2
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Figure 5.4: Always operator with case 3

In the first case the size of the storage S has the length k−j+1, because no intermediate
results for a range larger than one can be created. A range larger than one has a sequence
of sets of answer formulas as result. An intermediate result should combine results, but
due to the larger range, each set needs to be touched individually.
For the second case, the storage S has the size of three. In the special case k− j+ 1 =

2∗u, the size of the storage is two. The Figure 5.3 shows this case with sliding window of
range r = 5 and an overlapping of u = 2. Each color represents one set of answer formulas
in the storage S. The figure shows the results of the intersections of the first overlapping
part in green, which overlaps with the previous window. The none overlapping part is
marked as yellow. The second overlapping part that overlaps with the next window has
the red color. For the next window, the set is moved from the end of the storage to the
first position. Therefore the red sets of answer formulas are the same as the green ones
in the next window.
The Figure 5.4 shows the third case. The range is smaller than twice the overlapping

parameter. The storage has the size (k − j + 1)/y, where y is the size of the input of
sets of answer formulas for an intermediate result. In this example, the range is r = 6
and the sliding window has a sliding of 2, therefore y = 2 and the size of the storage
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5.1 The Optimised Vector Algorithm

is 3. An intermediate result is used up to three times to calculate a final result. The
red intermediate results are used in the next window marked as yellow. After the next
window, they are used as the green results, before they are erased.
The always in the past operator has the same formula as the always operator for a

given finite sequence of sets of answer formulas as input. Only the calculation of case
one differs. Therefore, an always in the past operator with a range of one uses the cases
2 and 3 of the always operator. For a range larger than one, the always in the past
operator is defined as:

- Vj,k,u(�−A) = {
⋂
i≤h Si}j≤h≤k where S = A

The eventually and the history operator are defined analogously as the always and
always in the past operators:

- V I
j,k,u(♦1A) = {

⋃
i≥hAi}j≤h≤k

- V I
j′,j′,0(♦2Vj,k,u(A)) =

⋃
Si where S =

⋃
A0≤i<u,

⋃
Au≤j≤k−j+1−u,

⋃
Ak−j+1−u<j<k−j+1

- V I
j′,j′,0(♦3Vj,k,u(A)) =

⋃
Si where

S = {
⋃
i∗y≤i<(i+1)∗y Aj}0≤i<(k−j+1)/y
x = ((k − j + 1)%u)

y = gcd(x, u)

- Vj,k,u(♦−A) = {
⋃
i≤h Si}j≤h≤k where S = A

The last operators are the since and the until operator. They are using a storage to
store the incoming results in terms over reusing them at the next run. The operators do
not reuse intermediate results of its own, because to compute intermediate results with
their structure would be an overhead.

- V I
j,k,0(A U B) = {Ui}0≤i≤k−j+1 with Uq−j+1 = S(B)q−j+1, Ui = S(B)i ∪ (S(A)i ∩
Ui+1)
and S(A) = A,S(B) = B

- V I
j,k,0(A S B) = {Si}j≤i≤k with S0 = S(B)0, Si = S(B)i ∪ (S(A)i ∩ Si−1)
and S(A) = A,S(B) = B

5.1.2 The Next Function
The Initial Function initialises the storages of the operators with the results of the first
sliding window. The Next Function updates this storages depending on the overlapping
parameter. The expression S << B means that the storage S drops as many elements
of the first positions as the sequence B contains. Afterwards it adds all elements of
the sequence B to the storage. In some cases, there is a storage with more than one
sequence. For this reason, the storage can be accessed by S(A), where A is a sequence
of the storage S.
The vector operator for CQs in the Next Function is defined as:
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5 Optimising the Vector Algorithm

- V N
j,k,u(v1) = {Φi(v1)}j+u≤i≤k where v1 is a CQ

The conjunction and the disjunction operator of the Next Function are defined as:

- V N
j,k,u(Vj,k,ua(A) ∧ Vj,k,ub

(B)) = S where S << {S(A)i ∩ S(B)i}i≥u
and u = max{min{ua, ub}, 0}, S(A) << A,S(B) << B

- V N
j,k,u(Vj,k,ua(A) ∨ Vj,k,ub

(B)) = S where S << {S(A)i ∪ S(Bi)}i≥u
and u = max{min{ua, ub}, 0}, S(A) << A,S(B) << B

The next and previous operators have the same definition. Only the storage handling
is changed by shifting the storage content with the new sets of answer formulas. The
definition of the next and previous operators are defined as:

- V N
j,k,u(◦1A) = A

- V N
j,k,0(◦2A) = S,> where S << A

- V N
j,k,u(•1A) = A

- V N
j,k,0(•2A) = S, ∅ where S << A

- V N
j,k,u(◦−1 A) = A

- V N
j,k,0(◦−2 A) = >, S where S << A

- V N
j,k,u(•−1 A) = A

- V N
j,k,0(•−2 A) = >, S where S << A

The always, always in the past, eventually and history operator are changed also in the
storage handling. They all shift the storage content by the new sets of answer formulas
represented by A. The second case of the always and eventually operator only calculates
the intermediate results for the not overlapping part and the overlapping part of the
next window, because it uses the previous set of answer formulas of the overlapping part
of the next window as the current part of the overlapping of the previous window. In
Figure 5.3 the yellow and red part are calculated by the Next Function. The green part
is equal to the red part of the previous window.
The third case of the always and eventually operator only calculates the intermediate

results for the new overlapping part. This part is marked as red in Figure 5.4.

- V N
j,k,0(�1A) = {

⋂
i≥h Si}j≤h≤k where S << A

- V N
j′,j′,0(�2Vj,k,u(A)) =

⋂
Si where S <<

⋂
Au≤i≤k−j+1−u,

⋂
Ak−j+1−u<i<k−j+1

- V N
j′,j′,0(�3Vj,k,u(A)) =

⋂
Si where

S << {
⋂
i∗y≤j<(i+1)∗y Aj}0≤i<len(A)/y
x = ((k − j + 1)%u)

y = gcd(x, u)
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- Vj,k,u(�−A) = {
⋂
i≤h Si}j≤h≤k where S << A

- V N
j,k,u(♦1A) = {

⋃
i≥h Si}j≤h≤k where S << A

- V N
j′,j′,0(♦2Vj,k,u(A)) =

⋃
Si where S <<

⋃
Au≤j≤k−j+1−u,

⋃
Ak−j+1−u<j<k−j+1

- V N
j′,j′,0(♦3Vj,k,u(A)) =

⋃
Si where

S << {
⋃
i∗y≤j<(i+1)∗y Aj}0≤i<len(A)/y
x = ((k − j + 1)%u)

y = gcd(x, u)

- V N
j,k,0(♦−A) = {

⋃
i≤h Si}j≤h≤k where S << A

The since and until operator are the same as in the Initial Function. The handling of
the storage is like the other operators before.

- V N
j,k,0(A U B) = {Ui}0≤i≤k−j+1 with Uq−j+1 = S(B)q−j+1, Ui = S(B)i ∪ (S(A)i ∩
Ui+1)
and S(A) << A,S(B) << B

- V N
j,k,0(A S B) = {Si}j≤i≤k with S0 = S(B)0, Si = S(B)i ∪ (S(A)i ∩ Si−1)
and S(A) << A,S(B) << B

The next section describes the Optimised Vector Rewriting Algorithm for TCQs to the
Optimised Rewriting Algorithm.

5.2 The Optimised Vector Rewriting Algorithm
The Vector Rewriting Algorithm of the Vector Algorithm is a recursive call over the
entire TCQ. It defines the actually used ranges of the query to calculate the access of
data. To calculate the overlapping of each operator, the Optimised Vector Rewriting
Algorithm introduces an update function called U . The call of the update function is
integrated into the Vector Reweiting Algorithm (Section 4.3) as follows:

- ROj,k(v1) = Vj,k,u(v1) if v1 is a CQ
where u = max{0,min{(r − s)− (q − (k − j)), (r − s)− j}}

- ROj,k(v1 ∧ v2) = U(Vj,k(ROj,k(v1) ∧ROj,k(v2)))

- ROj,k(◦v1) =


U(Vj,k(◦1ROj+1,k+1(v1))) if k < q

U(Vj,k(◦2ROj+1,k(v1))) if j < k ∧ k = q

{∅} otherwise

- ROj,k(�v) = U(Vj,k(�ROj,q(v)))

- . . .
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5 Optimising the Vector Algorithm

The Update Function takes a rewritten sub-query as input and return the new one with
the overlapping parameter u. The overlapping parameter of the conjunction or disjunc-
tion operator is set to zero, if both sub-queries have different values for overlapping
parameters. If the overlapping parameter has the same, then the overlapping of the
conjunction or disjunction also has this value.

- U(Vj,k(Vj,k,u1(v1) ∧ Vj,k,u2(v2))) = Vj,k(Vj,k,u1(v1) ∧ Vj,k,u2(v2))

where u =
{
u = u1 if u1 = u2

u = 0 otherwise

- U(Vj,k(Vj,k,u1(v1) ∨ Vj,k,u2(v2))) = Vj,k,u(Vj,k,u1(v1) ∨ Vj,k,u2(v2))

where u =
{
u = u1 if u1 = u2

u = 0 otherwise

The first case of the previous and next operators passes through the sets of answer
formulas. Therefore they can be removed. They are defined as:

- U(Vj,k(◦1v1)) = v1

- U(Vj,k(•1v1)) = v1

- U(Vj,k(◦−1 v1)) = v1

- U(Vj,k(•−1 v1)) = v1

The overlapping parameters of the second case of the previous and next operators are
zero, because their sequence of sets of answer formulas is changing at every window.

- U(Vj,k(◦2v1)) = Vj,k,0(◦2v1)

- U(Vj,k(•2v1)) = Vj,k,0(•2v1)

- U(Vj,k(◦−2 v1)) = Vj,k,0(◦−2 v1)

- U(Vj,k(•−2 v1)) = Vj,k,0(•−2 v1)

The always, always in the past, eventually and history operators have an overlapping
parameter of zero, because after each evaluation of an window, the results in terms of
the sets of answer formulas are changing. The cases 2 and 3 of the operators using a
storage to reuse intermediate results, if the sub-query has an overlapping larger than
zero.

- U(Vj,k(�Vj′,k′,u(v1))) =


Vj,k,0(�1Vj′,k′,u(v1))) if j < k

Vj,k,0(�2Vj′,k′,u(v2)) if j = k ∧ k − j > 2u
Vj,k,0(�3Vj′,k′,u(v3)) otherwise

- U(Vj,k(�−Vj′,k′,u(v1))) =


Vj,k,0(�−Vj′,k′,u(v1))) if j < k

Vj,k,0(�2Vj′,k′,u(v2)) if j = k ∧ k − j > 2u
Vj,k,0(�3Vj′,k′,u(v3)) otherwise
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- U(Vj,k(♦Vj′,k′,u(v1))) =


Vj,k,0(♦1Vj′,k′,u(v1))) if j < k

Vj,k,0(♦2Vj′,k′,u(v2)) if j = k ∧ k − j > 2u
Vj,k,0(♦3Vj′,k′,u(v3)) otherwise

- U(Vj,k(♦−Vj′,k′,u(v1))) =


Vj,k,0(♦−Vj′,k′,u(v1))) if j < k

Vj,k,0(♦2Vj′,k′,u(v2)) if j = k ∧ k − j > 2u
Vj,k,0(♦3Vj′,k′,u(v3)) otherwise

The since and until operators have different sets of answer formulas after each sliding of
the window. Therefore their overlapping parameter is always equal to zero.

- U(Vj,k(v1 S v2)) = Vj,k,0(v1 S v2)

- U(Vj,k(v1 U v2)) = Vj,k,0(v1 U v2)

This is the complete update function for the rewriting of a TCQ into an Optimised
Vector Query. The next chapter evaluates and compares the different approaches to
establish a Temporal Query Answering with a sliding window.
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All in all there are five algorithms to support a sliding window. The Chapter 3 introduces
a rewriting for a TCQ to use the original algorithm [1] unchanged. The second algorithm
(Algorithm 4) introduces the skipping of not used A-Boxes to reduce the overhead of
useless intermediate results. Another approach is to consume the entire sliding window
at once as batch. In Chapter 4 the Vector Algorithm represents this approach. It only
calculates the needed intermediate results. The improvement of this algorithm to reuse
the intermediate of the overlapping part is shown in Chapter 5. The last algorithm is the
usage of the original algorithm over batches. With this approach, a comparison between
the original algorithm and the other batch algorithms can be accomplished, because the
input of the stream and batch algorithms is different.
In this chapter, the correctness of the implementations and their performance against

each other is benchmarked. The section correctness describes the correctness testing of
all five algorithms. It uses test sets to verify the correctness. The second section shows
the benchmarks and discusses the benefits of each algorithm and their drown backs.

6.1 Correctness

In this section, the correctness tests for the five algorithms are described. There are two
different types of implementations of Temporal Query Answering with sliding window.
The first one is the stream implementation. It uses the original algorithm for Temporal
Query Answering [1] and consumes an A-Box a time. The second type is the batch
processing. It consumes the whole window at once. A batch is a sequence of A-Boxes
that represents a window.
To check the correctness of the streaming implementations, each test represents a finite

sequence of A-Boxes as input and defines the sliding and range of the sliding window.
Furthermore each test has a sequence of answer formulas for the given sequence of A-
Boxes that represents the right results for the given sliding window. This test results
only contain the results for the sliding window in terms of range and sliding. This result
should be equal to the result of the evaluation function at the end of each window.
Therefore only the results at specific points in time are checked. The tests check the
result against the sequence of answer formulas, if both checked algorithms have a result.
To check the correctness of the results at all points in time, the test compares the results
of both algorithms at each point. If they are not equal, the test fails. If both algorithm
have no result for the current point, the test continuous with the next A-Box of the
sequence.
The batch implementations consuming the entire sliding window at once. The entire

window is represented as a sequence of A-Boxes, also called batch. The batch test uses
the same test cases as the streaming test. To achieve that, the batch test has to build
batches out of the sequence of A-Boxes with the specific range and slide of the sliding
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window. A batch algorithm is correct, if it has the same result as the result of the
sequence of answer formulas of the test case.
All in all both tests use the same test cases and every algorithm has the same result.

A streaming algorithm should have the same result as the batch algorithm in terms
of a sliding window. Each test uses two algorithm at the same time. This has two
different reasons: The first reason is the check, whether the streaming algorithms return
the results at the same positions. If this is not the case, one of the algorithm behave
in a wrong way. The second reason is the expected result data. Not always a set of
results for a specific sequence of A-Boxes is available. To check the correctness, a second
verified algorithm can be used to produce the right result to compare them each other.
This eliminates the manual work to calculate the right results of a given query with a
Temporal Knowledge Base.
Each test only gets the test case with a sliding, a range, a Temporal Knowledge Base,

the expected results and a TCQ as string. That means before the algorithm is tested,
the parser has to parse the TCQ string and produce the query as object structure. The
query has to be rewritten to contain the ontology of the test case. The next step is
the rewriting or optimisation regarding the specific algorithm. The sliding algorithm,
which uses the standard algorithm, has to rewrite the query to contain the boundaries
of the window. The Vector Algorithm has to calculate the ranges of each sub-query.
The Optimised Vector Algorithm calculates also the overlapping of each sub-query in
terms of the sliding window. Therefore all test cases not only include the algorithms,
but also the parser and the rewriting and optimisation algorithms that are used before
the algorithms can be used.
To test the correctness of the algorithms, test cases are provided for each operator

of TCQ. All test cases of an operator have different range and sliding values to test
different combinations. The always operator has three different implementations in the
Optimised Vector Algorithm. To check all of them, there are at least three test cases
which cover all three implementations. All algorithms calculate the right results for all
test cases. Therefore the algorithms behave all the same way. This means that the Vector
Algorithm calculates the same result of answer formulas as the streaming algorithm with
a rewritten TCQ in terms of Temporal Query Answering with sliding window.

6.2 Benchmarks

In the last section, the correctness tests are described. They verify that all five algorithms
have the same semantic to answer TCQs. In this section, the performance of them is
compared to each other. The goal is to classify the different algorithms in regard to the
performance. The classification should suggest which algorithm is able to perform best
performance under a given configuration.
The performance of an algorithm is based on the amount of data, the complexity of

the TCQ and the reuse of intermediate results in terms of window overlapping. The
benchmarks compare the algorithms with different settings of those influences.
The benchmarks measure the execution time of the algorithms. To get a precise result,
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Figure 6.1: Benchmark of TCQ Q(x) = hasV al(x, y)
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the test data is loaded completely prior to execution of the algorithm and is measured
by the CPU time in nano seconds. The test system has an i5-2520M as CPU and 8 GB
RAM installed.

6.2.1 Range and Slide are equal

The first set of benchmarks deals with a sliding window that has the same value for the
range and slide. This means that the windows are not overlapping. Furthermore there
is no gap between two windows. Due to the specific slide and range values, the reuse of
intermediate results in terms of overlapping is not possible.
In this subsection, all five algorithms are compared. All five algorithms can handle the

setting and return the same result for a given Temporal Knowledge Base and TCQ. All
benchmarks in this subsection have a Temporal Knowledge Base with an empty ontology.
The sequence of A-Boxes contains 1000 A-Boxes. Each A-Box contains 50 sensor data
as role assertions. Each role has as subject the name of the sensor and as object a value
of type double. Each A-Box has the same assertions.
The first benchmark has the TCQ Q(x) < −hasV al(x, y). It should query all sensor

names with the role assertion hasV al. The query is queried over different window sizes.
All different settings use the same sequence of A-Boxes. The Figure 6.1 represents the
results. The first window size is ten. Therefore the input represents a sliding window
with 100 different positions. The result of the TCQ is a sequence of 100 sets of answer
formulas. The last window size is 200. Therefore the sequence of A-Boxes only represents
5 windows and has a sequence of 5 sets of answer formulas as result.
The first algorithm is the Sliding Window, which uses a rewritten TCQ to contain
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the boundaries of the sliding window. The rewritten TCQ is the same as Q. Only the
sequence of the Evaluation Function calls is changed. It is called every 10 A-Boxes. The
second algorithm is the Sliding Window with Gap. It uses the original TCQ Q and calls
the Initial Answer Formula at the begin of a window. These two algorithms use the
sequence of A-Boxes as input. The other three ones have a sequence of batches as input.
Each batch represents a window. The TCQ Batch algorithm is the original algorithm
performed over batches. The Vector Algorithm and the Optimised Vector Algorithm
are only calculating the needed intermediate results to answer the TCQ regarding the
sliding window.

The Figure 6.1 shows that there are two different result areas. The first three algo-
rithms have nearly the same results. They use the original algorithm. The execution
of the first two algorithms is nearly the same. They are different in terms of the Initial
Function calls of the second one. The third algorithm queries over the same A-Boxes,
which are represented as batches. The second result area is represented by the Vector
Algorithms. They need much less time to query the TCQ against the sequence of A-
Boxes. The reason for this is the calculation of intermediate results. The first three
algorithms calculate useless intermediate results and the Vector Algorithms only touch
A-Boxes that are needed for the result of the sliding window. In the last run with a range
of 200 A-Boxes, the first three algorithms touch 1000 A-Boxes, the Vector Algorithms
only touch 5 A-Boxes.

The TCQ Q only queries the last point in time of the sliding window. The next al-
gorithm queries over the complete window. Given the TCQ Q2(x) = �−(hasV al(x, y)),
which queries over the complete window and the window has the same A-Boxes as be-
fore, then the query Q2 has the same result as Q, because all A-Boxes are the same and
the intersection of one A-Box with another one results into the same A-Box. The only
difference to the benchmark above is the fact that every A-Box has to be touched. The
runtime of the first algorithm Sliding Window for the TCQ Q2 is shown in Figure 6.2.
It needs much more time as the other algorithms to calculate the results for the TCQ
Q2. This is due to the rewriting of the query to contain the boundaries of the sliding
window. The rewriting of the always in the past operator changes the complexity of Q2
linear to the range of the window and computes every intermediate result. This is only
the case in this given TCQ. If the TCQ contains more nested operations, the complexity
would increase exponential. The runtime of the Sliding Window for the TCQ Q2 is
measured in seconds. The other algorithms are represented in Figure 6.3. Their runtime
is represented in milliseconds. All four algorithms in Figure 6.3 are a lot faster than the
Sliding Window Algorithm (Algorithm 3). The runtime of all four algorithms is nearly
the same. The Sliding Window Algorithm with Gap uses the not rewritten version of the
query. Therefore it is much faster than the rewritten version in Figure 6.2, but it is the
slowest algorithm compared to the batch algorithms. One reason for this behavior could
be the consumption of a sequence of A-Boxes instead batches. The algorithm has to
control the handling of the A-Boxes to call the right function depending on the current
A-Box of the sequence.
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Figure 6.2: Benchmark of TCQ Q2(x) = �−(hasV al(x, y)) of Sliding Window
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Figure 6.3: Benchmark of TCQ Q2(x) = �−(hasV al(x, y))
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6.2.2 Range is larger than Slide

In this subsection, the previous benchmark is running over a sliding window with a
much larger range than slide. In this case caching of intermediate results should be an
improvement.
Figure 6.4 represents the runtime of the Sliding Window Algorithm depending on the

window sizes 100 and 200 with different sliding parameters. The runtime is represented
in seconds. The Sliding Window Algorithm uses the rewritten TCQ. It consumes the
sequence of A-Boxes and evaluates the TCQ at the end points of the windows. The
algorithm with the rewritten TCQ has a much longer runtime than the other algorithms.
It touches each A-Box and calculates all intermediate results. As in Figure 6.4 shown,
the runtime of the algorithm depends on the complexity of the rewritten TCQ and the
range of the window. The runtime of the algorithm for the window size 100 is nearly
equal. This holds also for the cases of the window size 200. The runtime of both different
window sizes depends on the complexity of the TCQ. In this case, the original TCQ is
the same, but the rewritten TCQ depends on the window size. The rewritten TCQ for
the window size 100 is much simpler than the TCQ for the window size 200.
In Figure 6.5, the same TCQ is executed by the TCQ Batch, the Vector Answering

and the Optimised Vector Answering Algorithm. The Sliding Window Algorithm that
handles gaps can not be applied in this case, because the range of the sliding window is
larger than its slide. That means an overlapping of the windows exists. The runtime in
this figure is measured in seconds. It is nearly the same for all three algorithms. The
first 4 measurements of the algorithm uses a range of 100. The runtime decreases by
increasing the sliding. It is nearly linear. This is the case due to the structure of the
benchmark. By changing the sliding parameter, the number of windows changes. In the
previous Figure 6.4, the algorithm runtime depends on the rewritten TCQ in regard to
the range, because they consume a sequence of A-Boxes that are equal at each run in this
benchmark. In this figure the three algorithms are consuming batches. The number of
batches changes depends on the sliding parameter. By increasing the sliding parameter
the runtime and the number of windows decreases in a linear way. The runtime depends
also on the window size.
All three algorithms nearly have the same runtime, but the handling of the TCQ is

different. The Optimised Vector Algorithm uses previous calculated intermediate results
of the overlapping part. The handling of the reusing of already calculated parts also takes
time. Therefore the execution of the Vector Algorithm and the optimised version of it
are nearly the same in this case.

6.2.3 Range is smaller than Slide

In this subsection, the TCQ Q2(x) = �−(hasV al(x, y)) is queried over the same se-
quence of A-Boxes with a larger sliding than window range. In Figure 6.6, the results
for the Sliding Window Algorithm with the rewritten TCQ are shown. It uses the orig-
inal algorithm and calculates all intermediate results for all sub-queries. Therefore the
execution time depends on the window size. The sliding parameter only defines the
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6.2 Benchmarks

Figure 6.4: Benchmark of TCQ Q2(x) = �−(hasV al(x, y)) of Sliding Window
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Figure 6.5: Benchmark of TCQ Q2(x) = �−(hasV al(x, y))
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Figure 6.6: Benchmark of TCQ Q2(x) = �−(hasV al(x, y)) of Sliding Window
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frequency of Evaluation Function calls. Therefore the runtime of the algorithm is equal
for a given TCQ, if the window size is the same. Due to the rewriting of the TCQ,
the rewritten TCQ is much larger than the original one. The runtime for the Sliding
Window Algorithm is measured in seconds.
The other four algorithms in Figure 6.7 are much faster. Their runtimes are measured

in milliseconds. All four algorithms are much faster, because they are skipping useless A-
Boxes. All four algorithms nearly have the same execution time, but they are handling
the gap in different ways. The Sliding Window Algorithm with Gap has a stream of
A-Boxes as input. It handles the gap by itself and only calculates the necessary results.
The other three algorithms have a sequence of batches as input. This sequence of batches
already represents the set of windows with the specific sliding.
The TCQ Q2(x) is queried against each A-Box of the window the same way. The

entire TCQ is an intersection of all A-Boxes. Therefore the execution time decreases
linear by increasing the sliding parameter, because it can skip more A-Boxes. The Figure
6.7 represents the execution time for a sliding window with the range of 10, 20 and 50.
The window range of 10 has three different sliding parameters. They have the value 20,
50 and 100. The figure shows that an increase of the sliding results in a decrease of the
runtime. This is not only the case for a range of 10, but also the case for the range of
20. Furthermore the figure shows that the runtime depends on the range and the sliding
value. Given the range of 10 and the sliding value 50, then the runtime time increases
by doubling the range. This new runtime is represented by the case 20/50.
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6.3 Result

Figure 6.7: Benchmark of TCQ Q2(x) = �−(hasV al(x, y))
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6.3 Result

The Sliding Window Algorithm uses a rewritten TCQ to query against a sequence of
A-Boxes. The advantage of using the Sliding Window Algorithm is the consuming of
a sequence of A-Boxes. No batches have to be created to use this algorithm. The
disadvantage is the rewriting of the TCQ. The rewritten TCQ is exponential larger than
the original TCQ. It introduces a lot of new sub-queries to create the same meaning
without the unbounded operations like always or eventually. Due to this rewriting, the
algorithm uses a lot of memory space to query the TCQ against the sequence. In the
benchmarks above, the Sliding Window Algorithm is the slowest algorithm. It needs
significant more runtime than the other algorithms to solve a TCQ. In practice, the
other algorithms are preferred.
The Sliding Window Algorithm with Gap uses the original algorithm to query the

TCQ against the sequence of A-Boxes. The advantage of this algorithm is the usage
of the sequence of A-Boxes. A transformation into batches is not needed. The second
advantage is the usage of the original TCQ. This keeps the complexity small and enables
a better memory space usage against the algorithm before. The runtime of the algorithm
is also faster in comparison to the Sliding Window Algorithm. The disadvantage is the
leak of support for overlapping sequences. This algorithm is optimal to query none
overlapping sliding windows over a sequence of A-Boxes without rewriting the TCQ.
The TCQ Batch Algorithm is the original algorithm of [1]. It has the same im-

plementation to answer the TCQ against a sequence of A-Boxes as the previous two
algorithms. The algorithm is executed over a sequence of batches. The advantage of
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this implementation is the usage of the original algorihm and the low memory usage.
The disadvantages of the algorithm are the consumption of batches, which have to be
created and the inefficiency of calculating useless intermediate results. It queries against
all A-Boxes, in depending of the TCQ. A TCQ without temporal operations would touch
all A-Boxes instead only the last one. This algorithm is optimal for TCQ Answering
with overlapping batches without rewriting the TCQ.
The Vector Algorithm is the second algorithm that consumes batches. It queries only

against the needed A-Boxes to evaluate the result of a batch. Therefore the query is
rewritten to work over ranges. The result of an operator is a vector of sets of answer
formulas. The advantage of this algorithm is the reduction of accessing data of A-Boxes.
If a database holds the A-Boxes, this algorithm reduces the access to the database to
a minimum. The disadvantage of this algorithm is the leak of implementation to cache
intermediate results for overlapping parts of the query.
The last algorithm is the Optimised Vector Algorithm. It is build on top of the

Vector Algorithm to implement the leak of caching intermediate results. To implement
a caching, the rewriting algorithm calculates the overlapping for each sub-query of the
TCQ. Each sub-query gets its own overlapping parameter depending on their own sub-
queries. The advantage of this approach is the reuse of intermediate results for large
data requests against a database. In the benchmarks, the batches are already loaded in
the memory. Therefore the disadvantage of this algorithm is the overhead to calculate
the intermediate results to enable the reuse of them in the next point in time.
The implementation of a TCQ Answering with Sliding Window should be done with

two different algorithms: The first algorithm should be the Vector Algorithm to answer
a specific TCQ against a sequence of batches. It performs quite well regarding run-
time. To implement operations that are defined as holistic or context-sensitive [6] the
intermediate results can be used, because each sub-query has its intermediate results at
once as vector. The optimised version of it has no benefit in the benchmarks above. Its
overhead of handling the reusement is too high for our test cases. If the windows are
not overlapping and their range is quite large, the Sliding Window Algorithm with Gap
should be preferred, because it can answer TCQs over large window ranges that exceeds
the memory space. The previous preferred algorithm is based on answering batches.
If a batch is larger than the available memory, the memory limit is exceeded and the
algorithm stops to work. Therefore the Sliding Window Algorithm with Gap should be
used to consume a sequence of A-Boxes. Queries with memory exceeding batches that
are overlapping can not be processed by both algorithms.
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7 Future Work

This thesis represents approaches to deal with a sliding window for TCQ Answering. It
introduces five different algorithms to handle a sliding window. The sliding window is
introduced to support TCQ Answering with holistic and context-sensitive operations [6].
In the last chapter, the correctness of the implementation was checked and the runtime
was measured. It shows that the Vector Algorithm is the best choice to deal with TCQs
in order to contain holistic or context-sensitive operations. If the window range of a
sliding window is quite larger than the entire batch exceeds the memory space, the
Sliding Window Algorithm with Gap should be used, if the windows do not overlap.
The next step is the implementation of holistic and context-sensitive operations. For

the Vector Algorithm, the operations can be implemented by using the already existing
vector of intermediate results. In the context of the Sliding Window Algorithm with
Gap, the original algorithm of [1] is used. Therefore a solution to collect all intermediate
results and calculating the result at the end of the window has to be discovered. This
can be achieved by constructing a data structure that consumes the results of the sub-
query and saves it for the entire window by knowing the range and sliding of the sliding
window.
The implementation is written in Java. It contains all five algorithms and a parser to

parse a TCQ as string. The parser is based on the parser generator ANTLR [7]. For each
algorithm there exists a factory class that the parser uses to build the query structure
for the algorithm. Furthermore the implementation contains two Trident Assemblies.
Trident is an abstraction framework of the Storm Cluster Framework. The first assembly
is for processing an infinite sequence of A-Boxes with the algorithms Sliding Window
and Sliding Window with Gap. Also the original algorithm can run with this assembly.
The second assembly gets a stream of batches as input. It is build for the TCQ Batch,
the Vector Algorithm and the Optimised Vector Algorithm.
The implementation only implements the algorithms with the Trident assemblies and

the parser. An extension would be a user interface to build queries and show the results
in real time to the end user. Another extension is the implementation of a cluster
environment based on Storm that manages the committed algorithms and handles the
streams of all assemblies.
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8 Conclusion

This thesis introduced the sliding window for Temporal Conjunctive Query Answering.
It presents five algorithms to deal with a sliding window. In Chapter 3 the Sliding
Window Algorithm is introduced. It uses a rewritten TCQ to compile the boundaries
of the window into the TCQ. In Section 3.4 the Sliding Window Algorithm is extended
to the Sliding Window Algorithm with Gap. It reduces the overhead of touching useless
A-Boxes. Both algorithms of Chapter 3 are consuming a sequence of A-Boxes.
The second approach of a sliding window for TCQ Answering is the batch processing.

Each batch represents a window, therefore the original algorithm can be used. The algo-
rithm TCQ Batch implements the answering of TCQs against batches with the original
algorithm [1]. Another algorithm for TCQ Answering on batches is the Vector Algo-
rithm. It is introduced in Chapter 4. This algorithm only calculates intermediate results
that are used to answer the TCQ at the last point in time of the window. In Chapter
5 it is shown how to improve the Optimised Vector Algorithm in case of overlapping
windows.
All five algorithms are implemented in Java. Their implementation was checked with

correctness tests in Section 6.1. Afterwards their runtimes were benchmarked in Section
6.2 in terms of a sliding window. In Section 6.3, the results of the benchmarks were
discussed.
All in all the sliding window for TCQ Answering to support holistic or context-sensitive

operations is introduced and discussed. All five presented algorithms produce the same
sets of answer formulas as result for a given sequence of A-Boxes. The Vector Algorithm
is the best choice to answer TCQs with a sliding window. It is optimal to implement
holistic and context-sensitive operations in the context of TCQ Answering, because all
intermediate results of the sub-queries are represented as vector.
The benchmarks assume the present of the sequence at once. In reality, the A-Boxes

of the sequence are not arriving at a time. Therefore the Sliding Window Algorithm
with Gap and the TCQ Batch Algorithm can start the evaluation before the entire
window is present, iff there is no holistic or context-sensitive operator present in the
query. If a holistic or context-sensitive operator is present in the query, both algorithms
can only start the evaluation, if the entire window is received. The Vector Algorithm has
nearly the same runtime as both algorithms. Therefore the Vector Algortihm is the best
choice to establish Temporal Query Answering regarding to holistic and context-sensitive
operators.
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