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Abstract

The fact that artificial text segments can be generated, which are recognizable by humans but
not by artificial intelligence, shows that research in the field of artificial intelligence in the range
of optical character recognition is not as advanced as it could be. Such artificial text segments
serve as human interaction proofs in the field of computer security mechanisms, also known as
CAPTCHAs.

Taking one of the most used CAPTCHAs—the reCaptcha system—as a guideline for heavily
distorted text segments, this thesis pursues the goal of developing a robust recognition algorithm,
which is easily adaptable to other systems and use cases.

In the scope of this thesis a strong character classifier based on Fourier descriptors is developed.
The test results indicate that the proposed algorithm outperforms current state-of-the-art character
recognition systems in single character recognition with a mean recognition rate of % vs. %.
Furthermore, with a recognition rate of % it is able to break the reCaptcha system and beat
human recognition performance by nearly %. On top of that, it is shown to be adaptable to
other CAPTCHA systems and, despite being developed for character recognition, also to numbers.

The complete algorithm solely depends on pre-rendered instances of characters without any
knowledge or instances of applied distortions and is able to recognize and separate merged characters.
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Chapter 

Introduction and Motivation

This thesis will deal with the problem of optical character recognition on heavily distorted text
segments, likely to be found e.g. in historic books or low resolution digital copies of prints.

While it seems that research in classic optical character recognition of Latin characters has been
abandoned since the late s, the fact that still text segments can either be artificially or naturally
generated unrecognizable by modern OCR techniques shows that the research is not as complete
as it could be. Modern OCR systems work extremely well on high resolution scans but rapidly fail
on low quality.

As part of security mechanisms so called captchas still rely on the generation of text segments that
are recognizable by humans but not by computers. That this is possible, shows how little these
systems are advanced in dealing with non-standard inputs.

On the other hand the fact that these captchas are needed as a security mechanism shows that
there must be a demand in breaking them, i.e. there is a demand for new research in this area.

In this thesis we will first identify a model for common types of distortions and then further on try
to develop an algorithm allowing the digitalization of even heavily distorted text segments.

To do so we will conquer the challenge of breaking one of the most used captchas in the wild—the
reCaptcha system under development of Google. With over , sites using reCaptcha [reC,
/whyrecaptcha] it represents a striking attack target and at the same time an excellent model for
heavily distorted text segments.

Yet, we only want to take these as guidelines in our research, just as very extreme examples of heavily
distorted text segments. We want to focus on developing a robust algorithm, which is not tightly tai-
lored to one particular system, but being easily adaptable with a very high generalization ability. We
want to point out that breaking the system is not the main goal of thesis, but still is a very nice chal-
lenge to conquer. Quoting Luis von Ahn—one of the inventor of captchas and the reCaptcha system:

“ A CAPTCHA implies a win-win situation: either the CAPTCHA is not broken and there
is a way to differentiate humans from computers, or the CAPTCHA is broken and a useful
AI problem is solved.

– Luis von Ahn, et al. [vBL]”It describes the balancing on a knife’s edge in this thesis and its goals.

The rest of this thesis will be structured as follows: We will first give a brief insight into current
captcha systems, their applications and history in the second chapter. Further on, we will start
developing a model of heavily distorted text segments derived from instances of the reCaptcha
system. In addition we will also try to find real world occurrences for legitimating the identified
distortions.


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From the third chapter on we will elaborate the algorithm. We will start with the processing of
complete segments, in which we will deal with binarization, word-segmentation, desloping and
deslanting. While considering the captcha as a complete word in the third chapter, the fifth chapter
will deal with single characters and their classification. We will develop a very robust scheme to
classify heavily distorted characters based on heavy feature extraction using Fourier descriptors.

The fourth chapter will build the bridge between the third and fifth chapter by building a
segmentation algorithm that will separate the complete word into single characters. The idea will
be to heavily over segment the word, from which the correct segmentation points will be derived
by considering the confidence of recognition of consecutively merged segments.

The sixth chapter will bring the previous work together and finally propose the complete algorithm
for word recognition. Finally, we will evaluate our algorithm and compare it to current state-of-the-
art systems. We will conclude this thesis by giving an outlook to further possibilities and showing
its high adaptability to other applications.

While developing the algorithm we will encounter many problems also common in the range of
recognition of handwriting and shape recognition.

To the best of my knowledge the proposed algorithm features a new approach to optical character
recognition and captcha security by resembling the way humans actually read and recognize
characters and words and utilizes a new, heavy invariant character classifier based on Fourier
descriptors and necessary-necessity-matching. In contrast to other works, the classifier is solely
based on pre-rendered instances of characters from well known font faces and is not based on
per-pixel accuracy or system-specific anomalies of certain characters. By heavy feature extraction
from characters resembling the way humans are able to distinguish between different characters, it
shows to be heavily adaptable.

I will speak of “we” in the sense of “The reader and I”, as I will take the reader by the hand and
guide them through this thesis. The reader shall understand all assumptions and made decisions.
We will try to break down all explanations to a reasonable level, neither requiring an in-depth
knowledge of image processing, data mining nor optical character recognition.



Chapter 

CAPTCHA

. History and Overview of Captcha Systems and Related
Work

We will start this section with a quote from Luis von Ahn, which puts the effects and
need of captcha systems in a nutshell. Luis von Ahn is one of the persons, who in-
vented captchas in  and is also one of the founders of the discussed reCaptcha system:

“ This week Time Magazine announced the results of their Time , a listing of the most
influential people over the last year. In the past this list has included Barack Obama, Steve
Jobs, and Al Gore. This year’s winner: “moot,” the creator of an underground bulletin
board called chan. Not many people had heard of moot before, so it’s no surprise to say
that that the poll was completely manipulated by members of the site he created. At first,
the poll had almost no protection against abuse, so members of chan wrote a program to
vote for moot millions of times :)

Although Time Magazine eventually decided to implement reCAPTCHA on their poll, it
was unfortunately too late. Before Time added reCAPTCHA, members of chan had written
a program that was able to submit over  million votes. After Time added reCAPTCHA,
the ballot-stuffing program completely stopped working, and the members of chan were
forced to spend thousands of human hours typing reCAPTCHAs by hand. Through all this
effort (some of them singlehandedly spent + hours per week typing CAPTCHAs), they
were only able to submit about , more votes after Time implemented reCAPTCHA.
, votes is a small number compared to the number of votes other candidates got.

Use reCAPTCHA from the start on your polls and you will significantly raise the bar for
spammers to be effective.

– Luis von Ahn [vA]”CAPTCHA is an acronym for “Completely Automated Public Touring-Test (to tell) Computers
(and) Humans Apart”. As part of security mechanisms in order to prevent massive automated
requests to services, they require the user to proof being human and not a robot. They are especially
used to prevent mass-mailing (spam), mass-posting (comment spam), mass-voting (ballout-stuffing),
mass-registration or mass-downloading. For a more detailed description and history one can consider
von Ahns original paper [ABHL] or many other papers like [BMM, Kal, YE]. For fairness
reasons we shall notice that von Ahn was not the first to invent the idea of captchas, but rather
coined this term. Also noticeable work in the field of “human interaction proofs” was made by
Microsoft’s researcher Kumar Chellapillah [CLSCb, CLSCa].

due to typographical reasons we will write the acronym in lowercase


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In the history of designing and developing such captcha systems, of course, also the other side of
the coin was researched—the breaking of the captcha systems. Many papers on this topic exist
providing many approaches. Noticeable are for example [YE], featuring a character classification
engine solely based on the number of pixels or [GWF], an attack on the Yahoo! captcha system.
With the Yahoo! captcha system being similar to the here discussed reCaptcha system, it still
is different from it. While the Yahoo! captcha features both distorted characters and merged
characters, the characters still remain rather sharp and easy to recognize [GWF]. Captchas with
arbitrary noise speckles and overlayed lines have already been cracked, for example by [HLBO].
The reCaptcha system features heavily distorted characters, on which classic classification engines
fail, and connected characters, while not adding artificial and unusual distortions or noise. The high
security of reCaptcha also becomes clear from an attack developed by Burzstein [BMM, Bur].
Burzstein demonstrated a successful attack on various common captcha systems at the CSA in
, breaking almost all captcha systems in the wild [BMM]. Nevertheless, it exactly failed on
the reCaptcha system.

Speaking of attacks to (previous generations of) the reCaptcha system one should note [BBFM],
an unusual attack to a captcha system, not breaking it down to single characters, but approaching
it as a complete solid word. It used a dictionary of , pre-rendered words, which shapes where
then matched to the captcha. A very minimalistic attack to a slightly more recent generation of
the reCaptcha system was proposed in [Weg]. Currently Gao et al. try to adapt their proposed
algorithm for the Yahoo! captcha to the current generation of the reCaptcha system [GWF+].

For further reading one can consider the “PWNtcha” project [Hoc], showing various weaknesses
and examples of previous captcha systems.

As more and more systems are broken, also new ideas in human interaction proofs are emerging.
We will now give a brief three notable examples and—as classic text-only captchas are well covered
in the literature—will also focus on different approaches.

The first is a geometrical puzzle implemented by “relink.us”. Figure . shows some examples of
this interaction proof. The human is required to click inside of the opened circle. While this is
very easy for a human, a robot might struggle with it due to overlapping circles. Nevertheless, all
circles are of a different colour and the target circle always features a bolder stroke width. Two
observations that might easily break this captcha.

Figure .: Different relink.us-captchas. The human has to click inside of the opened circle. Source:
http://www.relink.us/

Next is a captcha implemented by “share-links.biz” as seen in Figure .. A matrix consisting of
coordinates and a target index embedded in the background. This captcha features many security
mechanisms, which need to be overcome in order to break it. First the background index must be
extracted from a noisy background pattern. Further, all coordinates (extractable by the html image
map) have to be analysed and finally the correct position has to be submitted. On top of that, some
indices are left out, disabling a simple replay-attack. Still, it should be fairly easy to automate. As
the backgroundpattern is always the same, it can simply be erased by a difference with it. Further,
only the background index, which consists of clean stripes after background-removal, has to be
extracted. Fixing these stripes should be possible by a median-filter. Finally, only the extracted
indices have to be classified. As their locations are known and a constant font is used this should
be possible by a pixel-count attack. The reason why this system is not already broken might be the
fact that it is only used on one single site and therefore does not represent an interesting target.

Last we will look at a very notable and emerging captcha system. Just as reCaptcha it features an
API making it easy to implement and reuse. It is therefore wide spread (e.g. it is used by Western

http://www.relink.us/
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Figure .: A “share-links.biz” captcha. The human has to click the denoted coordinate from the
background. Notice that not all coordinates exist. Source: http://share-links.biz/

Digital and rapidgator) and forms an interesting target. It combines a human interaction proof with
advertising and brand imaging. What makes it interesting is that it can be used in two ways. In
an “advertising”-mode (Figure .(bottom)) it features linguistic-challenging brand advertisements,
requiring the user to enter a slogan or describe a brand. On the other hand it can be used in a
“secure”-mode, featuring a classic text-based captcha which adapts to the input. It starts with a
rather easy variant (Figure .(top-left)), but is able to harden itself (Figure .(top-right)) upon
entering too many wrong challenges or when requiring a high reliability. On top of that, it does
not use random words, but rather popular “geek”-phrases. With this even texts in extremely harsh
conditions can be read by a human. Still, this also enables dictionary-based attacks.

Figure .: Different solveMedia captchas. It features a dynamic degree of difficulty (first row). The
examples on the left are easy to solve compared to the ones on the right. Also, it features advertisement-
based captchas requiring linguistic intelligence (second row).

With this brief insight into current captcha systems and related works, we will now look into the
current generation of the reCaptcha system on which we will focus in this thesis.

Source: http://www.solvemedia.com/ and their corresponding API.

http://share-links.biz/
http://www.solvemedia.com/
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. The reCaptcha System

The reCaptcha system was invented in  by Luis von Ahn, Ben Maurer, Colin McMillen, David
Abraham and Manuel Blum. It started out as a project at the Carnegie Mellon University and was
acquired by Google in September  [vAC, AMM+][reC, /aboutus].

The system serves two purposes. On the one hand it provides security as a captcha system, on the
other hand it helps digitizing books.

Figure .: The Google reCaptcha. Consisting of pro-bono part “masses” at the left and the challenge
part “knoesti” at the right.

A reCaptcha always consists of two parts. One part being from the real world that was (not
entirely) recognizable and one artificially generated text segment.

We will call the real world example the “pro-bono”—parts extracted from the Google Books project
and from old New York Times journals [reC, /learnmore]. These segments are often very easy to
read, but seem to confuse some OCR system or get recognized with low confidence. By asking the
users for this text, Google can take a majority vote and improve their systems. For an in-depth
and detailed description and analysis of this, one can refer to the original reCaptcha-science paper
from von Ahn in [AMM+].

The second part will be called the “challenge”. It is the artificially generated text segment we
are interested in. It was especially designed to look like a real world text segment while still
being unrecognisable by computers. As it is not artificial and unusually scrambled with lines or
artefacts, it reflects common real world distortions. We will construct the algorithm based on
observations made from those captchas in order to hopefully provide new research results in the
field of digitalizing heavily distorted (old) prints or text segments. As it resembles real world
distortions, the research on this captcha system should be generously applicable to real world text
segments.

Interestingly only the challenge part of the captcha must be entered to pass the test. Yet, entering
something completely arbitrary for the pro-bono appears to let the test fail. This might be
connected to a prank played on Google a few years ago where a group of people would always
just type in the same word for this pro-bono part in the hope for it appearing in digitalized books
[Red].

. Model Development and Data Acquisition

In order to develop a model for heavily distorted text segments based on observations from the
reCaptcha challenges, a test data set had to be acquired as a first step. For this  captchas
were single-handedly solved and checked against the reCaptcha system. From those  solved
puzzles, only .% () were rejected, as the captchas were solved by a highly trained user. Based
on the leftover  captchas, which will serve as the ground truth in this thesis and will be called
the “captcha test set”, we will now develop the model. Furthermore, we will try to find real world
occurrences for these distortions.

If not other noted, all reCaptcha images were generated by the reCaptcha API and might therefore be copyrighted
by reCaptcha and/or Google.
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.. Sloping

Figure .: The baseline of the “Pavigi” challenge is offset by a curve, or rather the text is set on the
curve.

The first most obvious distortion is the wavy form of the text. It look like it is written on a wave.
This is a common distortion in the real world. It can originate from wrinkled paper, curvature
of paper, printing errors or heavy lens-distortion. It is also frequent for digitalized books where
the inner part of the text is stretched to bond of the book. Another example would be creased
or wrinkled paper or heavily wrinkled paper due to water damage. However, in the case of water
damage also the ink would be affected.
This process can be modelled by offsetting the baseline of the text by a curve. While offsetting a
given text on a curve one has two options to align the single characters on the curve. For one thing
the characters can just be offset on the curve like a staircase (.a) or the individual characters
can be rotated according to the local curvature (.b).

(a) Baseline offset by a staircase along the
curvature.

(b) Characters set on the baseline rotated
according to the local curvature.

Figure .: Two possibilities for offsetting a text on a curve (“sloping”).

While the term “Sloping” usually only refers to a straight, but angled baseline, we will still call this
process “Sloping”, since it refers to an anomaly of the baseline.

.. Slanting

Figure .: Slanting of the word “hersoved”. Notice the angled stems of the ’h’ and ’d’.

The next anomaly is the slanting of the characters. While not being a real distortion it im-
mensely hardens the process of segmenting the characters, since the individual characters are now
overlapping.
The slanting occurs very often in the real world, the most well known would be the itacilization of
text.

Remark . Good font sets provide special italic-subfonts for real italic typesetting. They sometimes
differ slightly in single characters e.g. a real italic version of & is & and not &.
Yet, simple shearing is sometimes used (e.g. by Microsoft Word) and achieves roughly the same
results.
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We are able to model this by a simple shearing operation on the word itself.

Notwithstanding we must point out that slanting and sloping are not commutative. In order to
correctly slant all characters they must all be set on the same, straight baseline. Thus, the sloping
operation must be done after the shearing operation. I.e. we will first need to de-slope the image
prior to de-slant the image.

.. Connection of Characters

The connection of the individual characters is the most difficult of the occurring distortions.

Figure .: Interconnection of all characters. Notice that the characters are connected at different
positions, most times by their shortest distance.

The digitalization of a text segment usually consists of a segmentation phase and a recognition
phase [GWF]. While in the early days recognizing the individual characters was the challenge,
nowadays it can be considered the easier one (e.g. [YE, YE]). Thus, the real challenge is the
segmentation of the characters.

With the connection of the characters this however is hardened immensely. We will later tackle
this problem by combining the segmentation- with the recognition-phase.

Notice that the characters are not always single-connected, in some cases they are connected via
two connections, thus forming intermediate holes which can be easily mistaken as new characters.
(See Figure .). In the real world this often appears on low quality prints. After a fresh print the

Figure .: Double connected characters lead to intermediate holes. Thereby, one can also see a ’b’ in
the first character if one only focuses on the first part. The human brain automatically corrects this to a
“to” once it sees the left over part after the ambiguous ’b’ which can not be classified alone.

still wet ink could be smeared or it could bleed out on non-suitable paper. Also water damage and
thus runny ink can cause such connections.

Notice that this connection is different from other used “connection-strategies” (e.g. Figure .),
where arbitrary strokes or random speckles are used. The direct connection of the characters more
likely resembles some kind of handwriting or permanent, unremovable distortions on the paper
itself. Arbitrary strokes resemble dust or hair on the paper that could be removed physically before
the scan.

Figure .: An old version of the Google reCaptcha system with arbitrary added strokes connecting the
normally separated characters. Source: http://blog.recaptcha.net///funny-recaptchas.html

http://blog.recaptcha.net/2008/12/funny-recaptchas.html


Chapter 

Word Processing

In this chapter we will process the complete captcha or subsegments of it in its entirety. We will
first split the captcha into pro-bono and challenge and then further process the challenge part.

Our goal will be to process the challenge in a way that we will be able to separate the characters
via straight-cuts, i.e. vertical snips with a scissor through the challenge. Yet, this is prevented by
the overlap of the characters originating from the slanting/shearing of the characters.

In order to correct the overlap, we will need to de-slant the image. Yet, the direct de-slanting is
prevented again by the wavy baseline.

Thus, we will first start with correcting the baseline to further correct the slanting of the image.

. Separation of Pro-Bono and Challenge

As described in Section . the reCaptcha consists of two parts, the pro-bono part and the interesting
challenge part. Thus, the first task will be to extract the challenge.

Figure .: Separation of challenge part and pro-Bono part. The island of zeros (blue) clearly separates
the challenge (red) and pro-bono (green) from each other. Furthermore, the challenge part is dimensionally
higher than the pro-bono part, due to its curvature.

Observations showed that both parts are always clearly separated by a free space, allowing us to
separate them easily.

We will do so by looking at the projection of the image onto the x-axis via the sum of pixels per
column. We will call this the horizontal projection of the captcha. In this projection we will search
for the longest period of zeros in the middle, giving us the point where we need to segment.

Further observations showed that almost always the challenge part was taller (dimension wise)
than the pro-bono part. Thus, the first part of the algorithm for extracting the challenge part is as
follows in pseudo code:

Image processing is performed on a logical-image. Meaning the text is logical 1 and the background logical 0,
which results in a “white-on-black”-image. For printing-purposes all images are therefore displayed negative as
“black-on-white”.


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Listing .: Separation algorithm – Extracting the challenge

function ex t rac tCha l l enge ( image) {
// e x t r a c t s the cha l l en g e out o f the captcha

//remove whi te spaces at the border
 // shr ink to sma l l e s t bounding r e c t ang l e

image ← imcrop_total ( image) ;

// p ro j e c t the image
p r o j e c t i o n ← sum( image , ’ per Column ’ ) ;

[ i s l andIndex , i s landLength ] ← f i nd I s l andOfZe ro s ( p r o j e c t i o n ) ;
l o n g e s t I s l a nd ← argmax ( i s landLength ) ;
cu t t ingLocat i on ← i s l and Index ( l o n g e s t I s l a nd ) ;

 [ l e f t , r i g h t ] ← cutImageAt ( cut t ingLocat i on ) ;

i f ( l e f t . s ize . h > r i g h t . s ize . h )
return l e f t ;

else
 return r i g h t ;

}

. De-Sloping

In order to correct the curved baseline, we will follow a very simple approach similar to that used
in [GWF, Weg].

The baseline is the line on which almost all characters are aligned with their lowest point. This
holds true except for the characters ’p’, ’q’, ’g’ and ’y’. We therefore just calculate the lowest set
pixel per row (Figure .left) and then heavily smooth this line to prevent rapid jumps between or
inside the characters (Figure .middle). This also removes the rapid jumps to below the baseline
formed by ’p’, ’q’, ’g’ and ’y’. For smoothing we use a robust version of locally weighted scatterplot
smoothing (RLOWESS), which adds a higher weight to outliers.

As one can see in Figure .(right) even this simple approach yields great results. Still, it might
sometimes run into problems.

Figure .: The simple desloping process. From left to right: The lowest pixel per column is calculated,
the baseline is heavily smoothed, every column is shifted downwards by the baseline. Note that even this
simple approach delivers great results.

The proposed scheme works great as long as it has some fix points at the start and at the
end—further called the “edges” of the word.

Anyhow, as soon as the fix points are missing, the calculated baseline will drift away at the edges
(see Figure .).

Figure .: The simple desloping process sometimes runs into problems as one can see from this example.
The baseline drifts away at the edge, since it has no fixpoints to stay at. This heavily destroys the last ’d’.
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To prevent this we will hold down at the edges to the last plateau. All characters form at least a
small plateau at their correct baseline. With this technique (Figure .) we can correctly identify
the baseline in this setting.

Figure .: The more sophisticated approach by keeping down to the strongest plateau at the edges.
Note that it no longer destroys the last ’d’.

Considering slanting of the characters of serif fonts sadly disables the “use the first plateau” approach.
A slanted T or F would form a clear plateau at the edges. Also a serif ’H’ (like in Figure .),
forms a clear plateau already right at the beginning. The problem becomes even worse once we

Figure .: Selecting the plateau to stick to is not trivial. Notice that the upper serif of the ’H’ already
forms two (rather small) plateaus right at the beginning. Therefore, the deepest of the longest plateaus is
selected.

consider noise, where arbitrary noise-speckles might form random (small) plateaus right in the
middle of a character.

We therefore will take the deepest plateau of the three longest plateaus at the edges. We define
the edges as a fourth of the image from the left and right.

This approach might sometimes select a too deep-plateau, such that the shift of the first or last
characters is not corrected, as can be seen in Figure .. While this will affect our de-slanting
algorithm it is not as bad as a wrongly identified baseline. One can imagine that the destroyed
character from Figure . is worse than the slightly uncorrected baselines in Figure ..

Figure .: Selecting the deepest of the longest plateaus at the edges sometimes selects a too deep
one, leading to a slightly uncorrected baseline at the edges (’ol’ and ’ca’). Still, this is not as bad as the
previously seen destroyed ’d’ in Figure ..

As the characters of a not completely corrected baseline still remain intact and readable we will
accept this issue over the risk of completely destroying single characters.
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Listing .: Desloping Algorithm in Pseudo-Code

function deslopeImage ( image) {
[ h ,w] ← s ize ( image) ;
b a s e l i n e ← [0]w ;

 foreach (column x in image)
b a s e l i n e (x ) ← f indLowestSetPixelInColumn (x ) ;

//Perform s l i g h t smoothing
smooth( ba s e l i n e , ) ;

// S t i c k to Plateaus
l e f t P a r t ← [ start → w · 0.25 ] ;
r i gh tPar t ← [w · 0.75 → end ] ;

 // f ind l on g e s t
l e f t P l a t e a u s ← f i ndLonges tP la teaus ( image( l e f t P a r t ) ,  p la t eaus ) ;
r i gh tP l a t eau s ← f i ndLonges tP la teaus ( image( r i gh tPar t ) , ) ;

// f ind deepes t
 s t i ckToLe f t ← min( l e f tP l a t e au s , ’ y ’ ) ;

s t ickToRight ← min( r i ghtP la teaus , ’ y ’ ) ;

// S t i c k to t h i s p la t eau
ba s e l i n e ( start → s t i ckToLe f t . Index ) ← s t i ckToLe f t . Value ;

 ba s e l i n e ( st ickToRight . Index → end) ← st ickToRight . Value ;

//Perform Heavy Smoothing
smooth( ba s e l i n e , ) ;

 //Ensure s t i l l s t i c k i n g to p l a t eaus
ba s e l i n e ( upto s t i ckToLe f t . Index ) ← s t i ckToLe f t . Value ;
b a s e l i n e ( from st ickToRight . Index ) ← st ickToRight . Value ;

 //Deslope image
deslopedImage ← image ;
foreach (column x in image) //Loop through a l l coord ina te s

foreach (row y in column) // S h i f t a l l ( s e t ) p i x e l s by b a s e l i n e in column
deslopedImage (y + h−ba s e l i n e (x ) , x ) ← image(y , x ) ;

return deslopedImage ;
}

. De-Slanting

As we have straightened the baseline, we are now able to correct the slanting of the characters. This
is also a frequent problem in handwriting recognition, where some writers tend to write slanted to
the left and some to the right. We will refer to an algorithm proposed by Kavallieratou et al. in
[KFK, KFK], with slight modifications.

The basic idea is again very simple. Many characters contain clear vertical lines (“stems”), e.g.
[T tmnbB], etc. Once these get slanted like [T tmn bB ], the lines still remain, but are not vertical
anymore.

When considering the x-projection as the sum of pixels per row again, this leads to a very neat
effect. With straight, vertical lines the sum of pixels per row is maximized, they form peaks. But
once they get slanted they distribute over the neighbouring characters, leading to a significantly
flatter x-projection. For visualization consider Figure ., clearly showing the dominant peaks in
the deslanted version, which vanish in the slanted version.
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Figure .: The slanted (left) and deslanted (right) versions of the “hersoved”-captcha. The projections
are normalized to the highest peak of the deslanted version. Notice the well defined and high peaks present
in the deslanted version. Notice further the double maxima formed in some peaks which need to be ignored.

In order to show that this also holds for different shearing angles, Figure . shows a simulation of
different shearing angles on a normal text segment.
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Figure .: Simulation of different shearing angles affecting the horizontal projection. Notice the extremely
distinct peaks of high amplitude in the unsheared case that fade and blur rapidly opon shearing.

We will therefore search for the shearing-angle that will lead to the “peakiest” x-projection. To
find this “peakiness” Kavallieratou et al. [KFK, KFK] utilized the so called Wigner-Ville-
Distribution. We however will follow a simpler approach. As a measurement for peakiness we will
take the median of the five highest peaks. Deciding the number of peaks to consider depends on
the average word length and the frequency of stem-characters in this language.

While this sounds very easy, noise on the other hand might lead to some complications. During a
peak, random noise might interrupt the peak and lead to a small fluctuation downwards. This
then will break one peak into multiple maxima, where we would normally just expect one, formed
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by one vertical line (see Figure .). In order to not count these twice, a minimal distance between
two maxima is required. While scanning all maxima from left to right, a maximum blocks following
maxima for a certain blocking range.
The blocking range of course depends on the average width of a stem. Empirical studies have
shown that a range of ±  pixels shows satisfying results.

Listing .: Deslanting Algorithm in Pseudo-Code

function des lantImage ( image) {

p r o j e c t i o n ← sum( image , ’ perColumn ’ ) ;

 //BruteForce a l l Shearing Angles
for ( shear ingAngle from −. to  .  , Step  .  ) {

tmpImage ← shear ( image , shear ingAngle ) ;
tmpProject ion ← sum( tmpImage , ’ perColumn ’ ) ;

 tmpMax ← getHighestPeaksMean ( tmpProjection , b lock for  p i x e l s , get  peaks←↩
) ;

//Remember the Maximum
i f (tmpMax > cMax) {

maxMean ← tmpMax ;
 maxAngle ← shear ingAngle ;

}
}

//Only shear i f reasonab ly improved
 i f (maxMean < 1.05·getHighestPeaksMean ( p ro j e c t i on ,  , ) )

return image ;

// return sheared Image
return shear ( image , maxAngle ) ;

 }

function getHighestPeaksMean ( p ro j e c t i on , b lock ing , n) {
// c o l l e c t s n maxima from pro j e c t i on .
// c a l c u l a t e s the mean .

 // b l o c k s around every maxima fo r > b l o c k i n g < p i x e l s .

maxima ← extrema ( p ro j e c t i on , ’maxima ’ ) ;

foreach (maximum in maxima , order by x−ascending ) {
 i f ( l a s t maximum nearer than b lock ing )

remove maximum from maxima ;
}

s o r t (maxima , by y descending ) ;

// return median o f n h i g h e s t maxima
return median (maxima (  : n) ) ;

}

. Evaluation

With the desloped and deslanted image it is now possible to segment the word into single characters
via straight cuts.
In order to evaluate the performance of the proposed desloping- and deslanting-algorithm, the
captcha test set of  captchas was processed by the algorithm and presented to a human. With
the now straightened words, the human placed the correct cutting positions.
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This evaluation served two purposes. On the one hand it tested the proposed algorithms, on the
other hand it generated a great test set of heavily distorted single characters. This test set will
come in very useful when designing and evaluating our classification engine for single characters.

All told the proposed algorithm delivered very satisfying results. Some selected examples are
presented in Figure ..

Out of  captchas, only eleven captchas were separated wrong into pro-bono and challenge part
and an astonishing amount of .% ( captchas) were separable via straight cuts. Leaving only
 captchas left that were not separable, of which about % were due to a wrong slant correction
and only in six cases the desloping algorithm failed completely. It should be pointed out that some
words are not desloped completely; some curvature might still remain. Certainly this is no problem,
as long as the characters are separable via straight cuts. These numbers are also represented in
Table ..

Table .: Manual evaluation results of the desloping- and deslanting-algorithm.

# Result/Reason %

 Captchas .%
 Separable .%
 Wrong challenge extracted .%
 Not Cuttable .%
...  Desloping failed

... .%...  Deslanting failed

... .%...  Other

... .%

Figure .: Results of the word-processing algorithms. Notice the last result, where the deslanting failed
and slanted the word too much.
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(Over)Segmentation

While the previous chapter considered the captchas as complete words, the next chapter will focus
solely on single characters and their classification. This chapter will build the bridge between
both of them by supplying a segmentation algorithm that will cut the complete word into single
characters.

We will not force the segmentation algorithm to solely cut at the desired, correct positions, i.e.
also cuts at unnecessary positions are permitted—it will oversegment the word.

Later on, the correct segmentation positions will be determined via a backtracking algorithm based
on the classification-certainty of the individual segments.

. Separated Segments

Prior to heavily oversegmenting every individual word, we shall rescue already separated characters
or word segments. As an exemplar one can consider the “Bblicie”-captcha (Figure .) from the
previous sections, where the ’B’, ’b’, ’lici’ and ’e’ are already separated by not having a connection
with the other characters or segments. As one can further see, a straight cut between ’c’ and
’h’ of the word “DGraSch” (Figure .) would however chop off some small parts of the h. We
will therefore stretch already separated segments far apart, disallowing a further merging of these
segments.

However, as one can see from Figure .(right), not every separated segment is an isolated character
or segment. In this case the upper part of the ’G’ broke off and forms another isolated segment.
This can often happen on thin and fragile lines of characters. Referring to Figure .(left) one may
notice that those segments are not necessarily broken characters but can also be formed by i-dots.
We therefore need to detect that some segments might belong to another group of the image and
are not a separation of two word segments.

To do so, at first all isolated regions not connected by an eight-neighbourhood are labelled. Further,
the bounding rectangles of all regions are checked for overlapping along the x-axis (horizontally).
Once a segment is overlapping horizontally more than % of its width with another region it will
be relabelled into this region. Afterwards the individual regions are stretched apart, i.e. processed
as separate words.

Figure .: Parts of the challenges are already separated, i.e. not connected.


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Figure .: After initial labelling of connected regions, the algorithms detects whether single segments
belong to another (bigger) group. Following it stretches the segments far apart, such that they are not
merged in further processes.

Listing .: Stretching Algorithm

function s t retchImage ( image) {
// f i nd s be l ong ing components .
// s t r e t c h e s separa te reg ions f a r apart .

 removeObjects ( image , ’ sma l l e r than  P ix e l s ’ ) ;

labelConnectedComponents ( image) ;

// Re labe l r e l a t e d components
 foreach ( component a in image) {

foreach ( component b in image) {
i f ( a . x−Range l i e s 50% in b . x−Range )

a ← b ; // r e l a b e l
}

 }

// S t r e t ch f a r apart ( or process separa te )
foreach ( component c in image) {

stretchedImage ← stretchedImage . append ( [ c space ] ) ;
 }

return stretchedImage ;
}

This would also be a place where an algorithm for reconstructing broken characters could be
implemented. Whether or not and how this could be implemented will be discussed now.

.. Broken, Over- and Under-Connected Characters

In the previous section we have seen that some characters might break apart, leaving shards at the
previous places (e.g. Figure .b). These shards give a hint that a character might be broken and
needs fixing. Yet, implementing such a fixing algorithm is not trivial.

Moreover, during the manual cutting of all captchas more observations have been made. Besides
broken characters with left over shards, some characters were also broken without leaving any
shards at all. Figure .a shows some examples of these under connected characters. A possible
real world explanation for this could be scrapped of ink from the paper or a low resolution scanning.
On top of that, some characters tend also to be overconnected with themselves, a problem that
might originate from the same effects that also connect intermediate characters. However, these
connections (e.g. Figure .c) form completely different characters and are (without context) not
recognizable anymore.

(a) Underconnected (b) Broken with shards (c) Overconnected

Figure .: Different types of degraded characters discussed in this section.
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Figure .: The ’B’ blocks the caliper from measuring the lean connection between ’e’ and ’B’.

All in all it becomes clear that broken characters are not easy to reconstruct. An analogy would be
the purchase of a heavily used vase. With the presence of some shards one at least knows that the
vase is broken and needs to be fixed, but one does not immediately know where exactly the shards
should go. However, with the absence of shards one has no indication whether the vase is broken
or not; even an unusual hole in it might be the choice of the artist himself. The same is applicable
to the interconnection, where an unusual connection might originate from some manufacturing
defect or might again be the choice of the designer—a different character.

It becomes clear that only the broken characters with left over shards might be reconstructible.
Since we already identified to which part the segment belongs to, it could be connected via its
shortest distance to it. Still, one would need to distinguish between i-dots and shards that need to
be connected. Moreover, the shortest distance is not always the best choice, as the shard of the ’G’
in . (right) would then be connected to the ’r’. [Dro] proposes an algorithm which might solve
this problem, by connecting the shard to multiple candidates and then further checking the quality
of the classification. Yet, this would introduce another layer of backtracking in our algorithm, as
we already will use this for the identification of correct segmentation points already.

After these remarks we will refrain from considering broken characters in this thesis as it would be
beyond the scope of it. Furthermore, with only  instances out of  the amount of broken
characters with left over shards is rather small. Also the amount of  instances of characters
that are under- or over-connected is significant, but still rather small.

Nevertheless, this remains a very interesting research topic.

A note on morphological operations In image processing a very powerful tool are morpho-
logical operations. Basic operations include dilation and erosion, as well as closing and opening.
With a closing operation small holes or gaps can be filled, in contrary a opening operation breaks
loosely connected structures. Basically this could be used for reconstructing degraded characters.
Wrongly connected characters could benefit from an opening and underconnected characters from
closing operation. Anyhow a closing operation would also connect nearly connected structures,
like the jolt of an ’s’. The same effect occurs for an opening, which would break correct, thin
connections of a character.

All in all morphological operations would “heal” some degraded characters, but at the same time
destroy various fragile proper characters. We will therefore not utilize morphological operations in
the classification or segmentation engine.

. Oversegmentation

Since the word now consists of only inter-connected characters, we will need to find a way to
identify possible cutting points.

Some papers (e.g. [LSA]) utilize a so called “Caliper-Distance” for this. Named after the tool
(Caliper, german “Messschieber”), it measures the distance of lowest and highest point per row and
further cuts at the closest points.

While this works great on straight, but connected characters, it will fail on such heavily distorted
segments we are considering in this thesis. As one can see from . the caliper distance works at
the separation of ’a’ and ’l’, but fails on the separation of ’e’ and ’B’, since the serif of the big ’B’
blocks the highest point from meeting the lowest point at this row.
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We will therefore utilize again the projection of the image onto the x-axis by the count of pixels
per column.

As one can imagine possible cutting positions always contain a very small number of pixels per
column and therefore form minima in the projection. Therefore, all minima will be considered as
candidates for cutting points.

To further increase the precision we will prevent cuts through holes in characters. This will enable
that characters like ’b’ are not intermediately cut, although they form a minimum after their stem.
To prevent this, all holes are filled prior to calculating the projection. Due to the fact that adjacent
characters with two touching parts might also build holes (remember the “toxesh”-captcha from
Figure .), we will further formulate the requirement that the holes to be filled must be at least
some kind of circular. This is checked via calculating the extent, the ratio of area to bounding
rectangle. We set the requirement that the extent must be larger than % and further that the
width must be larger than half of the height.

Considering the previous projections from the “deslanting”-section and Figure ., one can see that
even the simple approach taking all minima as cutting hypotheses already provides good results.
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Figure .: Horizontal projection of the ’Bblicie’-Captcha and the detected cutting-positions hypotheses.
Minima deleted due to not lying inside a valley are marked red. Too adjacent minima or minima lying
above the threshold are marked black. The final hypotheses are marked in green.

For all that, small noise fluctuations lead to small and short minima that need to, or rather, can
be disregarded. A first idea was to consider the second derivative at the minima for changes of the
slope above 1 in an adjacent region. While this approach showed acceptable results, sometimes
small minima were not deleted and, even worse, some clear and correct minima were deleted. With
this approach only very steep and rapid minima are selected and slowly descending minima were
disregarded.

Therefore, a second requirement for being a minimum is added. Each minimum must lie in a valley,
surrounded by steep walls. Therefore, an adjacent area of ±8 pixels is scanned and checked for
the maximum value to the left and right. The difference of the lowest maximum to the possible
candidate must be at least greater than 2 pixels. A very small, but very effective threshold,
efficiently eliminating small noise fluctuations along a descend or ascend.

Further, the cutting positions are not allowed to be too close together. Therefore, a bottom-up
scanning process will eliminate close minima, keeping only the deepest of neighbouring minima.

Finally, this leads to a hypotheses of possible cutting points as shown in Figure .. Adjacent
segments will later be merged and checked against the classification engine, which we will now
develop.
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Figure .: Potential cutting hypotheses of the ’Bblicie’-Captcha found by the algorithm. Notice the cuts
at all necessary positions, but also at unnecessary, which will later be merged.

Listing .: Over-Segmentation Algorithm

function segmentImage ( image) {

p r o j e c t i o n ← sum( image , ’ per Column ’ ) ;

 //smooth very g en t l y
p r o j e c t i o n ← smooth( p ro j e c t i on , ) ;

// f ind minima
minima ← extrema ( p ro j e c t i on , ’minima ’ ) ;

// requ i r e minima to l i e in v a l l e y s
foreach (minimum in minima ) {

leftMax ← findNearestMaximum ( upto  p i x e l s , ’ to l e f t ’ ) ;
rightMax ← findNearestMaximum ( upto  p i x e l s , ’ to r i g h t ’ ) ;

 lowestMax ← min( leftMax , rightMax ) ;

// i f no v a l l e y o f  p i x e l s i s present
//and i t i s not an ab so l u t e minimum ( very few p i x e l s in column )
i f ( lowestMax − minimum <  ∧ minimum > )

 remove minimum from minima ;
}

// requ i r e t ha t minima don ’ t l i e too c l o s e to each other
foreach (minimum in minima , order by y−descending ) {

 // d e l e t e ad jacent minima ( keeping the h i ghes t , s ince i t ’ s ordered descending )
removeAdjacentMinima ( around ± p i x e l s ) ;

// d i s a l l ow too high minima
i f (minimum > 80%· max( p r o j e c t i o n ) )

 remove minimum ;
}

return minima ;
}



Chapter 

Character Classification

In this chapter we will deal with the classification—or recognition—of single separated characters.

For gathering the required test and learning data, we will use the previously separated characters
from Section .. From nearly  captchas, about  characters were extracted and will be used
here.

As said before the final recognition engine will recursively backtrack the oversegmented parts into
the correct segments. This means our classification engine will need to serve two purposes. On the
one hand it must be able to correctly classify even heavily distorted characters, on the other hand
it must deliver a measure of confidence in this classification, such that non-character segments can
be discarded.

While some current OCR systems are able to cope with the first requirement and can correctly
classify distorted characters, we were unable to find any system that provides a fine-granular and
reliable confidence measure.

This chapter deals with the main part of this thesis, since without a very robust and precise
recognition engine also the complete segmentation engine would be of no avail. Furthermore, we
will see that we will develop a classification system for single characters that will beat current and
most sophisticated recognition engines significantly.

. First Ideas

Some earlier captcha systems used very easy, fixed character sets consisting of a fixed font-height
and weight as well as being very crisp. Some of them were even detectable by the count of pixels
alone [YE, GWF, YE].

Encouraged by such an easy approach a first idea was to just take a simple pixel-by-pixel
difference measure against a predefined set of characters; like the letters from the font-family
“Times New Roman”. The letter with the least pixel-difference would win.

While being very easy to implement and at first glance showed acceptable result, it soon got clear
that this was a too naïve approach.

The first problem was how to scale the test and reference letter against each other. Scaling them
to a common width and height would destroy valuable information about the shape—an ’i’ would
be blown up to an ’o’ and almost anything would be scaled down to a small line when compared
against an ’i’. Scaling all to a fixed width and height destroyed valuable information on proportions.

Tesseract provided a confidence measure up to version ., but it was not documented well and only provided a
 bit confidence measure. As of version . it is only available by patching the source code and recompiling. [Cod]


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Moreover, varying font-weight (or pen stroke) completely destroyed the measurement. For example
an ’s’ scaled up to a ’B’ fits very well in it, with just some errors on the connection of the upper and
lower circle. On the other hand a slightly more thicker ’B’, or a ’B’ with some left over artefact (and
thus not perfectly aligned on a reference ’B’) resulted in a much higher error than an accidental
“fitting” s.

All these problems lead to the conclusion that this approach would be of no avail.

Coping with the problem of true negatives (like an ’S’ against ’B’) and false negatives (like thick
’B’ against thin ’B’), the idea was to implement a weighted error based on the distance to the
next pixel that would fit. While being hard to implement it showed better results. Nevertheless,
the problem of alignment still existed and it was computationally too expensive.

Discarding all the previous ideas, the idea for using a neuronal network arose. With the amount
of activation per output neuron it would hopefully deliver a confidence measure. However, while
being hard to configure and determining the number of layers, hidden layers and input neurons it
also needs a big set of inputs.

Since our goal was to not tailor or algorithm too hard to a given system, we will need to discard
this idea too. Also slight changes in the character set would always mean relearning the complete
neuronal network. Furthermore, a neuronal network is always a way of non-deterministic and leads
to very unexpected results when confronted with completely different data (like non-characters
from wrongly merged segments).

We therefore focused on the nature of the characters themselves. The human is able to read almost
any arbitrary font-type irrespective of its weight, stroke-width or scaling. We will therefore try in
the following to resemble this process by a heavy feature extraction on the characters.

. Feature Extraction

Humans are able to read almost any font face, irrespective of their shape, curvature, decoration
(serif, sans-serif) or scaling. Even handwritten characters are recognizable, even without having
any font-weight at all, they are just a skeleton of the character.

We will therefore now try to extract the features of letters that enable this process.

.. Character Shape

The most important feature of a character is its shape, and outline or boundary. Basically this
shape is always the same, independent of the used font-face and -weight or even handwriting.
Between different font-types only small decorations change—they can be serif or sans-serif, some
use intermediate lighter-strokes, some have a constant width—but the outer shape always stays
the same.

Thus, for comparing the shape of a character we need to generalize it. We shall not care about
small interrupts due to noise or serifs. We will want to smooth it deriving the heart or essential
structure that makes this outline unique.

In order to achieve this we will use so called Fourier descriptors, they can be thought of as a Fourier
series decomposition of two-dimensional outlines. Basically these transform the outline into an
ordered sequence of n complex numbers, which are then easily comparable to other (reference)
sequences. Just as Fourier series they have the nice property to hold the basic structure in the
low-frequency parts and the details in the upper high-frequency coefficients.

We therefore can heavily smooth (or generalize) the outline by discarding high frequency components
and reconstructing the outline from the remaining low frequencies. . shows a reconstruction from
the Fourier descriptors for the letter ’F’ at different approximations.
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

  

   



Figure .: Reconstructed ’F’ by different numbers of Fourier descriptors.

To get a first impression of the generalization ability, Figure . shows the comparison of a heavily
distorted ’F’ from a captcha and the corresponding ’F’ rendered directly from Times New Roman.
Note that in this image the rotation, scaling and translation is not yet eliminated, but only focuses
on the generalization of the outline.

Figure .: Comparison of distorted and reference capital F. Notice how the reduced Fourier descrip-
tors () heavily generalize the shape of the letters.

The exact calculation of Fourier descriptors and the mathematical derivations of their properties
can be found in the appendix A. on page . For now we will take the computation and their
properties as granted.

Invariants of Fourier Descriptors

Fourier descriptors are especially interesting for us, since they provide a heavy degree of invariance
against rotation, scaling, flipping, translation and the starting point of the boundary. The
derivations are obvious and given in the appendix.

The translation and scaling invariance is achieved by ignoring the DC component and normalizing
all descriptors by the magnitude of the first component.

The remaining invariances are achieved by just considering the absolute value, since only the phase
is affected by rotation, flipping and starting point changes.

In order to get a feeling for the power of Fourier descriptors and their high invariance, we will
consider several rotated, mirrored and scaled ’d’s. For comparison a slightly similar, but different
’o’ and two completely different ’T’ and ’s’ are given. Notice that the ’o’ almost has the same
outline, except a short trip around the stem of the ’d’. The first  Fourier descriptors for these
letters are given in Table ..

As one can see from Table . the absolute values are almost constant, even on heavy scaling and
rotation. Also, while being similar in shape, the ’o’ shows very different absolute values as well as
the different ’T’ and ’s’.
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Table .: The first  Fourier descriptors for several distorted ’d’. For comparison different characters
’o’, ’T’ and ’s’ are given.

d ◦ l ↔ +◦ -◦ scaled o T s

. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Like stated before the rotation only manifests itself in the phase angle. Empirical studies have
shown that the rotation is approximately linearly correlated with the phase of the first coefficient.
Mirroring along x and y leads to a complex conjugation in some of the phase angles.

As one can see from the mathematical derivations in the appendix, a rotation should affect all
phases at the same amount. Also all phases should be complex conjugated on mirroring along
x. A mirroring along y should lead to a complex conjugation of the phase in addition to a phase
shift of π. Finally, a rotation of ◦ should lead to a constant phase change of π.

Sadly though this does not hold true in practice, because, in addition to the rotation and mirroring,
the starting point of the boundary is also changing. The changing of the starting point leads to a
linear change in the phases. The starting point always changes, because it is in our implementation
fixed to always start at the left centre. That’s why the theoretical phase changes are not directly
evident in practice. Luckily as noted above they are still evident in some of the phases.

If one would implement a constant starting point (like always starting at the end of a stem) it
should be possible to utilize the phase for a very precise orientation measurement. Though without
knowing anything about the character yet, it is quite impossible to find a constant feature for
starting point selection. (One would need a feature for starting point selection that selects the
same point on all characters, without knowing what character it is. For example it would need to
select the same point among [b d p q], [c u n], [s SN] or [t f i l] and further also search in the same
direction.)

With that being said the heavy invariance of the Fourier descriptors shows up to be a problem in
character recognition. Characters are per se not invariant. A ’p’ mirrored along the x-axis looks
like a ’b’, y-mirrored like ’q’ and xy-mirrored like ’d’. For comparison Table . shows these four
letters [b d p q] side by side.

This also happens in some other cases. For example a jolted ’s’ with a tight curvature of the upper
curve, has approximately the same shape as a ◦ rotated ’n’ or always has high similarities to
a ’Z’ or ’N’. Furthermore, the characters ’u’, ’n’ and ’c’ are almost identically in shape, but only
rotated by some angle.

We therefore need to also consider the phases on variant characters in which the information about
mirroring and rotation (i.e. orientation) is partially enclosed.
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Table .: Comparison of the Fourier descriptors for the letters ’b’,’d’,’p’ and ’q’. Notice they are
approximately constant and do not differ by magnitudes as they should normally (e.g. from ’T’).

sml q sml b sml d sml p big T

. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

We will try to prevent a too high rotation invariance by checking the phase of the first coefficient.
Mirroring often leads to a complex conjugation in the phases of coefficient two and three. While
the phase check on the first coefficient can be done by a simple threshold of e.g. ◦, detecting
complex conjugation can also be quite tricky. A complex conjugation of a∠5◦ leads to a∠−5◦,
a phase change of only ◦, which is the same result as simple rotation of the character by ◦.
So even if one would find the holy grail of starting point selection, one would still struggle with
detecting the complex conjugation originating from mirroring.

In order to still utilize the phases, while keeping some rotation invariance, we will discard phase
differences in the second and third coefficient of more than ◦(≈ rad). All other phases are
discarded as it was derived in the appendix.

Remark . This phase check can be disabled on per se invariant characters like [oOD i I l j A].
An ’A’ could be confused with a ’V’, but includes a hole.

Remark . While implementing keep in mind the jump from π to −π in the complex phase angle.

Still, as mentioned above, the shifting of the starting points and small complex conjugations lead to
a significant amount of wrong classifications based on rotation variance. Empirical studies showed
up that especially a significant amount of [b d pPq], [c C uUvVn] and [s SN] were confused. Most
annoyingly many ’s’ were mistaken for an ’N’. We will therefore extract further features dealing as
necessary conditions, with the Fourier descriptors dealing as the sufficient condition. I.e. without
the necessary condition being fulfilled for the candidate, we do not even have to check whether
the Fourier descriptors match the general shape. This can also be thought of as a thinning of the
possible neighbours space.

.. Feature Removal and Detection of i-Dots

Prior to any calculation or detection of necessary and sufficient conditions the segments must be
cleaned. It is very common that adjacent characters reach into the field of another character. This
can be due to wrong or inaccurate segmentation or due to typographic exceptions like kerning or
ligatures.
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It is therefore possible that the classification engine is confronted with an image consisting of
multiple parts. As discussed earlier, we can assume that multiple parts are not part of one character,
as we will ignore broken characters. Indeed one exception exists, naturally ’i’ and ’j’ consist of
multiple parts—their dots. In typographic terms this dot is called a “tittle”, but we will simply
refer to it as an “i-dot”.

We will therefore only analyse the biggest connected object of an presented segment. During the
search for the biggest object we will also detect possible i-dots, as a segment whose centroid lies
completely above the bounding rectangle of the biggest connected object.

Of course the potential i-dot can also be a left over artefact of a neighbouring character and
therefore be a false-positive i-dot. It will only deal as a slight indicator for the character to be an
’i’ or ’j’.

.. Necessary Condition – Height and Minimal Area

Since the text segment is heavily oversegmented, it is possible that a partial segment, which is
way too small to be a character, is presented to the algorithm. Due to the fact that the Fourier
descriptors posses the before mentioned invariances, these would still be recognized as some
character.

Figure .: Some heavily oversegmented parts need to be ignored (coloured), since they are too small
to form a character and the Fourier descriptors would still match some character. Notice how the green
part forms something similar to an ’c’. This image further shows that the classification engine might be
confronted with multiple objects in one segment; the biggest object is then chosen.

To ignore these false segments, at first all objects with an area of below  pixels (that is for e.g. a
very small x Square) are deleted. Furthermore, the remaining largest object from the previous
feature removal step must be at least taller (dimensional) than a given threshold.

Empirical studies have shown that a minimum character height of  pixels achieved satisfying
results, accepting all valid characters and ignoring false partial segments.

A segment, which is too small by the above criterion is ignored during the backtracking process. It
is given a weight of ∞, such that the algorithm is given no choice in choosing this segment alone.

Anyhow one small exception remains. Given a serif font it is natural from our oversegmentation
algorithm that the serifs at the beginning of a word can be cut off (see Figure .). Since these
are very small objects, they are detected as an invalid segment by the above mentioned process.
Of course there is no problem in ignoring these beginning serifs. The above mentioned “disallow
too small segments” is therefore deactivated on segments at the beginning of the word or at the
beginning of an stretched afar segment.

Figure .: The oversegmentation chops off very small serifs (red) at the beginning of words. Normally
these are detected as illegal cutting positions, certainly in the case of the beginning of a word, these small
segments can be ignored safely.
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.. Necessary Condition – Open Counters

In order to distinguish between letters like ’c’, ’u’ and ’n’ we will detect the orientation of their
open counter. In typographic terms an open counter (or aperture, German “Punze”) is e.g. the
arch found in ’c’, ’n’ or ’u’.

In order to detect the orientation of a possible arch, probes are sent from all directions into the
candidate. The side in which the probe can dunk in the most will deal as the orientation of the
character. E.g. to classify as a ’c’, the probe must dunk in coming from the right.

To detect this, we will project the character onto the x and y axes, by measuring the distance
to each individual side. With this we will get the probe’s travelling distance from north, east,
south and west until hitting the character. Further, the maximum between the minima of the
first and last third is calculated. The difference of highest minimum to maximum will deal as the
probe’s maximum-dunked-in-distance. The direction with the highest distance wins and deals as
the orientation of the open counter. Of course such a dunked-in-distance can also originate from
some other constellations, but as it is only a necessary condition, the satisfying condition from the
Fourier descriptors will ignore these options.

From Left From Right

From Top From Bottom
c

From Left From Right

From Top From Bottom
u

From Left From Right

From Top From Bottom
n

From Left From Right

From Top From Bottom
a

Figure .: Arch-Detection by sending in probes from all directions. Distinct peaks are present in the
direction to where the counter is open. All axes are scaled and limited equally.

All necessary orientation conditions are given in Table ..

Table .: Necessary orientation conditions for characters.

Orientation North East South West

Characters u v H N U V c e s C S E z Z h m n H N a s S z Z

Notice that [s S] and ’N’ have multiple necessary conditions of which at least one must be fulfilled.
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.. Necessary Condition – Stems

While the problem of [c u n a] and [sN] is solved, [b d p q] is still confusing and not detectable via
the previous method. We will therefore try to detect the location of the stem, to be precise, the
location where it is poking out of the bulge.

To do so the centroid of the hole will split the character into four regions. The region with the
highest weight wins, since it will most likely contain the stem. The weight is just calculated as the
sum of all pixels in this region. This leads to the necessary conditions for some characters depicted
in Table ..

Table .: Necessary weight conditions for characters.

Weight Top Right Top Left Bottom Left Bottom Right

Characters d b p P q

.. Necessary Condition – Holes

Holes are a key feature of characters and a very strong necessary condition. In typographical terms
they are also referred as “closed counter”, “closed apertures” or eyes.

Also, they are constant among many font-faces. The only exception might be the ’g’, where the
lower eye might sometimes be open.

The number of holes therefore categorizes the characters into three groups as in Table ..

Table .: Necessary hole conditions for characters.

Holes   

Characters cfhijklmnrstuvwxyz abeopq g
CEFGHIJKLMNSTUVWXYZ ADOPQR B

While detecting the number of holes, it is required that two holes must lie above each other and
only a minimal vertical overlap of the bounding rectangle is allowed. This prevents that adjacent
characters are merged that would form a rotated or mirrored ’B’ on accident. This is implemented
by comparing the area of the holes inside the overlapping bounding rectangle. If this area contains
more than % of the total area of the holes, the character is ignored.

Furthermore, it is possible that two adjacent characters are merged and form new, illegal holes. As
one can see from Figure . the merged ’e’ and ’s’ form a merged construct containing two holes
which outline is similar to a ’B’. Fortunately, such holes are very wide, since they are formed by
two characters, which is why we will further ignore very wide holes with a bounding rectangle
wider than  pixels.

Figure .: Adjacent characters might form an intermediate hole, if connected at two points. This hole
must be ignored in the filling-process during segmentation, as well as during classification.
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.. Classification Engine

The final classification engine will consist of three stages: First the pre-processing for removing
left over artefacts, followed by the pre-classification via necessary conditions and finally the actual
classification via Fourier descriptors.

The classification will be done with a simple -nearest neighbour classifier, selecting the nearest
neighbour from a pre-rendered reference set of characters. For finding the nearest neighbour
the candidate is compared to all reference characters. If the candidate matches the necessary
conditions for this reference character, the sum of differences in the Fourier descriptors is used as
the measurement. A failing on matching the necessary conditions leads to a measurement of ∞.
The argmin of these measurements is then used as the nearest neighbour.

Furthermore, since the arch detection alone is a pretty strong classification, a correct classification
via Fourier descriptors as an arch character will lead to a boost of its difference measure by ..
It would be an interesting research topic, to see if the classification based on projections alone
delivers satisfying results.

Moreover, i-dots are a very high indication for an ’i’ or ’j’. Therefore, once the nearest neighbour
has an almost straight outline like [r f i j l I J], the character is forced to be an ’i’ (or j) and the
measure is boosted by .. I.e. the algorithm is almost forced to choose this character during
backtracking. On the other hand classifications as ’i’ or ’j’ without an i-dot are punished by a
doubling of the measurement. This has the effect that upon selecting the nearest neighbour a ’l’ is
favoured above an ’i’ if no i-dot is present.

Another approach utilizing detected i-dots was to already consider it during the nearest neighbour
search, i.e. automatically boosting the difference measure of the ’i’ and ’j’ if an i-dot was detected.
However, this approach led to confusing results, since an i-dot candidate is equally likely to be an
adjacent character shard. The boosting then led to the effect that nearly everything containing an
i-dot-candidate was classified as an ’i’.

The engine is given as pseudo code in listing ..

Listing .: Character Classification Algorithm

function c l a s s i f ySegment ( segment , r e f e r e n c e ) {

[ segment , i P o s s i b l e ] ← cleanSegment ( segment ) ;

 [ h ,w] ← s ize ( segment ) ;

// i f segment too smal l or empty
i f (h<  ∨ isEmpty ( segment ) ) {

 // could be a cut o f f s e r i f
i f ( segment l i e s at beg inning ∧ cutOnlyOnce ∧ o r i g i n a l−he ight < )

return ’ i gno r e ’ ;
}

 //wrong
return ’ impos s ib l e ’ ;

}

ho l e s ← getNumberOfHoles ( segment ) ;
 o r i e n t a t i o n ← ge tOr i en ta t i on ( segment ) ;

fd ← c a l c u l a t eFou r i e rDe s c r i p t o r s ( segment ) ;
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con f idence ← i n f ;
foreach ( r e f in r e f e r e n c e ) {

 // check every re f e r ence charac ter f o r p o s s i b l e match

// necessary cond i t i ons
// ho l e s
i f ( r e f . ho l e s 6= ho l e s )

 cont inue ;

// cu t s − t r i p p l e s p l i t s
i f ( connect i ons ≥  ∧ r e f i s not in ’m M K w W x T R X F E B ’ )

cont inue ;

// cu t s − don ’ t s p l i t
i f ( connect i ons >  ∧ r e f i s in ’ i I j l I ’ )

cont inue ;

 // o r i en t a t i on − r e qu i r e o r i en t a t i on match on some charac t e r s
// ← ’ on ly check aga ins t r e f i f o r i en t a t i on f i t s ’
arch_c ← ’ c e s C S E z Z    ’ ;
arch_n ← ’ h m n H N’ ;
arch_u ← ’ u v H N U V’ ;

 arch_a ← ’ s S z Z a     ’ ;
i f ( o r i e n t a t i o n 6= ’ c ’ ∧ r e f i s in arch_c )

cont inue ;
// analogue una

 // we igh t s − r e qu i r e weight match on some charac t e r s
i f ( r e f = ’d ’ ∧ o r i e n t a t i o n 6= ’ topRight ’ )

cont inue ;
// analogue f o r [ bpPq ]

 //Phase−Check
noPhaseCheck ← ’ oODiIljAHcCmnhuvUVdbpPq ’ ;
i f ( r e f i s not in noPhaseCheck ) {

i f ( fd . phase d i f f e r s too much from r e f . phase )
cont inue ;

 }

// necessary cond i t i ons passed . compare f o u r i e r d e s c r i p t o r s .
r e s u l t s [ ] ← sum( abs ( fd−r e f . fd ) ) ;

 // c l a s s i f i c a t i o n as ’ i ’ or ’ j ’ w i thout i−dot i s punished
i f ( ¬ i P o s s i b l e ∧ ( r e f = ’ i ’ ∨ r e f = ’ j ’ ) )

r e s u l t ∗←  .  ;
}

 //NN
NN ← min( r e s u l t s ) ;
char ← NN. char ;
con f idence ← NN. r e s u l t ;

 // fo rce i i f i−dot was found
i f ( i P o s s i b l e ∧ char l i k e ’ r f t i l I ’ )

char ← ’ i ’ ; c on f idence ∗←  .   ;
i f ( i P o s s i b l e ∧ char l i k e ’ j J ’ )

char ← ’ j ’ ; c on f idence ∗←  .   ;

// boos t based on o r i en t a t i on
// the o r i en t a t i on i t s e l f i s a very s t rong ind i c a t o r
i f ( o r i e n t a t i o n check performed and matched )

con f idence ∗←  .  ;

return [ char , con f idence ] ;
}
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. Evaluation

.. Self-Distorted

For a first evaluation of the proposed algorithm, the engine is given a rendered version of the font
“Times New Roman”. All  characters are rendered and given as reference, completely untouched.

For testing the same set is taken, but distorted. Each character is rotated by ±5◦ and ±10◦, scaled
unproportionally to a fixed size of x Pixels and further distorted by a vertical and horizontal
sin/cos wave. The wave varied between an amplitude of ±3 in steps of .. This resulted in a test
set of  characters, we will call this test set the “distorted times” test set. Figure . shows
some examples presented to the algorithm in comparison to what it knows about these characters.

(a) Examples from the distorted times
test set.

(b) Corresponding reference characters
given to the algorithm.

Figure .: Comparison of what the engine is confronted in the distorted times test set with and what it
knows.

For comparison the same set is presented to a state of the art OCR engine, called “Tesseract”.
Wikipedia [Wik] quotes “Tesseract is considered one of the most accurate open source OCR engines
currently available.”

For fairness reasons Tesseract is configured as only detecting [a-zA-Z] and put into “Treat the
image as a single character” mode.
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Figure .: Comparison of confusion matrices for the generated distorted times test set. Y-axis indicates
the target, x-axis indicates the classification result. The best result would be a straight, red line. Both
perform really well. The proposed algorithm however still performs slightly better than Tesseract with a
mean recognition rate of .% against .%. Note that the algorithm only has knowledge about one
single, undistorted instance of each character!
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Figure . shows the confusion matrices of Tesseract and our algorithm. As one can see both
perform pretty well, still our algorithm performed with an average recognition rate of % better
than Tesseract with %. A remarkable achievement, considering it only knows one instance of
every individual character. All confusion matrices can also be found in detail in the appendix B on
page  et seqq.

.. reCaptcha Characters

We will now evaluate the performance on the manually segmented characters obtained from the
real reCaptchas. As mentioned earlier broken or wrong connected characters are not part of this
thesis. Therefore,  characters were excluded from the  test characters.

Since these characters are even more distorted than the previous test set, we will grant our engine
also a ±5◦ and ±10◦ rotated instance of each character. Also, the reference set does not consist of
one single font-family, but is selected from Times New Roman, Cambria and Calibri. It is selected
by best (human) guess providing the best discrimination ability. Examples for the captcha test set
and the reference characters are given in Figure .

(a) Examples from the captcha test set. (b) Corresponding reference characters
given to the algorithm.

Figure .: Comparison of what the engine is confronted with in the captcha test set and what it knows.

Moreover, a very large amount of ’s’ characters showed up a connection of the upper serif and the
spine. Therefore, a manually connected ’s’ from Times New Roman is given to the engine.

Also the letter ’r’ is given in two versions, one having a very dominant serif drop (r) and one with
a sans-serif drop (r). All in all this lead to a reference set of  instances.

This lead to the following remarkable results. Figure . shows the confusion matrices of our
proposed algorithm and the results of tesseract. With a recognition rate of .% our engine
outshines Tesseract with just %. Keep in mind that it only has knowledge about sharp, undistorted
and clean instances of every single character. Again Tesseract was configured to only detect letters
and put into “Treat the image as a single character” mode.

Considering the confusion matrix . one can see that a significant amount of ’i’ and ’j’ were
confused. A problem that should be easily solvable by postprocessing. Moreover, it is questionable
whether it is in fact even recognizable by a human. Also a rather large amount of ’f’ were confused
as ’t’ and vice versa. While being understandable, this problem should be again solvable by
post-processing.

One might notice that no ’w’ are present. Sadly no ’w’ got into the test set, since it is a very rare
character (see Section .) and was always connected wrong or completely broken.

Interesting is the amount of about % from ’o’ confused as ’D’ (big and small letters are consolidated
in the given graphic). This is due to the fact that a side-gated ’o’ generates a straight line at the
edge, followed by the normal loop of the ’o’. The generated character then just looks like a ’D’. Of
course this could be discriminated by the dimensions of the character. However, big and small
letters are often squeezed and scaled in the captchas.

The scope and possibilities of post-processing will be discussed in chapter ..

For another evaluation the proposed algorithm was compared to the “Abbyy Finereader Engine
”, for which Abbyy gratefully supplied a trial license. The results are presented in Figure ..
For evaluation Finereader was again only allowed to use letters and put into “Text-Extraction
Accuracy”, the slowest, but most accurate processing mode. As we can see from the confusion
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Figure .: Comparison of confusion matrices for the captcha test set. The straight red line, is nearly
achieved by the proposed algorithm with a mean recognition rate of %.

matrix Finereader does not perform very well. Admittedly, we want to point out that Finereader
has a huge amount of tweaking parameters and is very powerful in processing even handwritten
documents or badly printed recipes. Yet, it seems that Finereader is not able to cope with the
low resolution of the characters presented to it. Frankly it could be possible that Finereader was
configured wrong; notwithstanding equal efforts were taken to configure Tesseract and Finereader.

Finally, we will benchmark the proposed algorithm against itself with a different amount of Fourier
descriptors. Figure . shows both confusion matrices using  and  Fourier descriptors. As
one can see both confusion matrices are nearly identical. In fact, the overall increase in accuracy is
only .%. Indeed, the complete algorithm will perform slightly better with  Fourier descriptors.
It will be able to discard more wrong characters as it checks the outline for more details.

The small difference should be explainable by two characteristics. For once, the magnitude of
feature reduction from about  features (from a x logical image) down to  or  features is
so high, that the scale between  and  features is irrelevant. Secondly the Fourier descriptors are
naturally weighted—the higher the frequency, the smaller the coefficient. With that the difference
of high frequency coefficients contributes less to the complete sum of differences.

Having developed a remarkable accurate classification engine dwarfing the “most accurate OCR
system”, we are now able to process the complete text segments.
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Figure .: Comparison of confusion matrices. The commercially available Abbyy Finereader performs
poorly against the proposed algorithm. Admittedly, one has to notice that Finereader is not primarily
designed for single character recognition and could be heavily trained to recognize these characters.
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 Fourier Descriptors
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Figure .: Comparison of confusion matrices for the proposed algorithm with  and  Fourier
descriptors. Nearly no difference is visible, still the algorithm will perform better with  Fourier
descriptors, since it will more likely disregard false-characters.
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Backtracking and Evaluation

With the developed classification system we are now able to combine all previously developed steps,
and hopefully be able to correctly detect the distorted text segments.

. Viterbi

As mentioned earlier the idea was to oversegment the image and then merge adjacent segments.
Some merged combinations will then be classified as the correct character with a low difference
measure. Other wrong combinations will be discarded by the engine or be classified with a high
difference measure. For this purpose a classic Viterbi algorithm is used.

Of course a once used segment is not allowed to be used again in a following combination, i.e.
it does not greedily select the lowest difference measures, but aims that the overall picture is
satisfying.

Figure . displays the process at the previously seen “nnguit”-captcha. It is chosen, because it
shows important properties of the Viterbi algorithm and is rather short.

At first the algorithm merges and classifies up to three adjacent segments, from which the depicted
graph in Figure .(top) is formed. Further, all incoming connections into one segment are checked
and the lowest accumulated difference is chosen. I.e. the segment’s classification measure (denoted
along the path) is added to the origin’s measure of this path. From these accumulated difference
measures the lowest is chosen and marked as this node’s measure. With this the second graph
.(bottom) is formed.

At the end the best route is backtracked by following the marked decisions.

This process can also be modelled as a hidden Markov model (HMM). The (merged) segments form
observed states originating from hidden states—the real characters. Using the Viterbi algorithm
we determine the most likely sequence of these hidden states, i.e. the underlying characters from
which the single segments originated, which then solves the captcha. For a detail and indepth
analysis of this approach one can consider [Vin] or various works of Michel Gilloux on cursive
script recognition.

. Further Tweaks

During the classification and Viterbi some additional tweaks are added to the classification engine.

For once it might be possible that a triple connection leads to some arbitrary construct, whose
outline accidentally resembles some character. Since it can jump over three single connections,


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Figure .: Viterbi Algorithm for the “nnguit”-Captcha. Top: The initial errors for every single and
merged segment. Bottom: The accumulated errors and classifications. The best incoming connections are
marked with . The optimal backtracked path is marked in purple.
Notice that it is not greedy (i.e. always selects the lowest possible measurement). Otherwise it would
pick the 0.35 between  to , instead of the worse, but correct 0.45 from  to . Also, it is not forward
orientated (i.e. evaluating all possible routes to where the segment points), where it would select the 0.65
at the beginning, with which it could directly jump to segment , to where the next best possible way
would be 0.36 + 0.38 = 0.74. It is backward orientated, such that the best way is chosen that minimizes
the total accumulated error along the path.

the Viterbi would heartily choose this way, even if it has a rather high difference measure, which
normally should indicate a wrong decision.

On the other hand some characters cannot be formed by multiple connections. For example an
’i’ would never be segmented into multiple segments. We therefore define three more necessary
conditions for merged segments:

The segment is not allowed to be wider than the maximum letter width. This is most likely a
’M’ or ’W’. Empirical studies showed that a threshold of  Pixels showed rather good results.
This also prevents that stretched afar segments are merged; exactly what we intended.

A triple connection is only allowed on special characters. A triple split is common for capital
letters, like an F. The three stages of stem-end, middle bar-end and top bar-end split the character
into three parts. Also ’m’ and ’w’ are always split into three parts, as their counters form minima.
We allow a triple split on: [mMKwWxTRXFEB].

Finally, some characters are only allowed to originate from a single segment, i.e. they can’t
origin from merged segments. This includes small, solid characters as: [i I j l I]. This is important,
because some arbitrarily merged characters might always form a “stem”-like outline, leading to a
rather good classification as an ’l’ or similar.

Furthermore, since the algorithm can skip one or two segments when taking a merged object,
the difference measure can be twice as high as a single element. This would lead to many large
jumps, ignoring valuable single segments. Therefore, multi-connections are weighted globally by a
factor of ..

Figure . shows the algorithm finally solving the “Bblicie”-captcha, which accompanied us since
the beginning.
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Figure .: Final backtracked cutting positions for the ’Bblicie’-captcha with the classifications and thus
solved captcha.

. Evaluation

We are now able to completely evaluate the proposed algorithm. For evaluation the acquired
captcha test set of roughly  captchas is used. As neither the classification engine nor any other
part is trained with data from this test set, no cross-validation should be required, since overfitting
cannot occur. From the acquired  captchas, only the  captchas are used from which the
challenge was extracted correctly. This is done because basically both parts could be processed one
after another, but we are only interested in one of them. Admittedly one might argue that selected
captchas, on which we based some special exceptions, must be excluded from the test set; since we
heavily generalized these exceptions and tried to find real world applications, we will still use them.

Since the result of the algorithm will be a text-string, we first need to find a way to quantify the
result.

.. String Difference Measure

While acquiring the test data, a response was sent to the reCaptcha servers which then returned a
boolean answer “accepted” or “fail”. We want to point out that the answered string is not necessarily
the exact string that was presented or was intended by the captcha. During the entering phase
some observations have been made that lead to the conclusion that a certain amount of error
is acceptable. For example at least one character was allowed to be left out. Also, some easily
confusable characters like ’I/l’, ’c/e’ or ’i/j’ were allowed to be interchanged.

Of course the underlying difference measure is not disclosed. We therefore must refer to a similar
measurement. One would for example be the Damerau–Levenshtein distance, a difference measure
for two strings that will give the number of operations needed to align both strings. This is also
known as the “optimal alignment problem”, also found in the world of computational biology in the
range of DNA sequence alignment.

The Damerau–Levenshtein distance allows operations of insertion (inserting a left out character),
deletion (removing one additional character), mismatch (exchanging a character) and—this is an
addition to the optimal alignment problem—the flipping of two adjacent characters.

Since we already mentioned that some characters are basically similar and leave even no choice for
the human for discrimination, the strings are normalized by a replacement of similar character
groups. The groups of [i l I j t f r], [D o], [B a] [X x kK] and [uUvV] are treated as the same letters.
[B a] is included in this set, as a significant amount of a’s showed a connection of the “instroke” with
the “bowl”. Furthermore, the strings are compared case-insensitive and adjacent ’ll’ are treated as
an ’u’.

In order to justify this measurement we will first perform an evaluation among humans on the
test set. This is intended to also show up to which distance an answer to a captcha should be
considered correct.
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.. Human Performance

To evaluate the performance of humans on the test set, a website was generated and posted on
facebook with the ask for help.

The website featured a simple textbox and the challenge from the captcha. The captcha was
presented in the original dimensions and left unprocessed, only the challenge was extracted.
Moreover, the time was measured from fully loading the image up to submitting the form. On
page load the focus was automatically set into the textbox and the form could be submitted by
hitting Enter; therefore the time measurement should be accurate.

The captcha was selected randomly from the test set on every page load.

The test was well received with over  (again) solved captchas and over  participants within
just one day. After one day, no further entries occurred, since it went out of focus inside the
facebook timeline. We will assume that (almost) all entered solutions must be accepted by the
captcha systems. Otherwise it would not fulfil its requirement from separating humans from
computers. Table . shows the results of this evaluation.

Table .: Human results for the unprocessed challenges. With only % complete matches, the captcha
system must at least allow some range of inaccuracy. Otherwise it would nearly lock out every second
human. We conclude that a Damerau–Levenshtein distance (DLD) of two is still acceptable as a full match.

DLD Absolute Percent

  .%
  .%
  .%
  .%
  .%
  .%
  .%
  .%
  .%

Empty  .%

Total 

As one can see only % of the captchas were solved with a Damerau–Levenshtein distance of
, even after normalization. So only accepting answers with a distance of , i.e. an exact match,
would lock out nearly half of all humans from the test. A number way too high for usability.
Therefore, at least some error must be allowed. As we can see from the table, % of the humans
achieved a Damerau–Levenshtein distance of smaller than . We will therefore accept answers with
a distance smaller or equal to  as a “full or almost match”. A distance of  or  will be considered
as at least a “partial match”. Distances above that might still have some partial hits, but will be
considered as “wrong”.

.. Evaluation of Tesseract and Finereader, unprocessed

Since the previous evaluation has set a very high benchmark of % correct recognitions, we will
now evaluate how well current, available, profound systems perform in this setting.

For this the applications already used previously—Tesseract and Finereader—are used. Both
applications are again configured to only detect letters. Tesseract was further put into “Treat
the image as a single word.”-mode. Both applications were then confronted with the unprocessed
extracted challenges. Table . shows the results.
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Table .: Evaluation results of Abbyy Finereader  and Tesseract . for unprocessed challenges of
the captcha test set ( captchas).

DLD Finereader Pure Tesseract Pure

  
  
  
  
  
  
  
  
  
  

 
 

Empty  

Full/Almost  
Partial  

No  

Full/Almost .% .%
Partial .% .%

No .% .%

As we can see from the table, both applications perform pretty bad. Of course this is a very harsh
test for the applications, since both are primarily trained for high resolution scans of sharp texts.
Most likely the low resolution in combination with the sloped baseline and shearing of the letters
confuses both systems. However, at least the shearing should not confuse the system, since it is
natural for italic text.

.. Evaluation of Tesseract and Finereader, processed

To be fair we will also repeat the previous test, with preprocessed challenges. We therefore deslope
and deslant all segments and present them to the applications again.

This is fair since the wavy slope is an especially rare occurrence (but still possible and reasonable)
and both applications are clearly not trained to it.

The results (Table .) show a much higher recognition rate, but still half of the words are detected
with a Damerau–Levenshtein distance above . In fact, many words were just ignored completely.
Since an (almost) empty answer leads to a Damerau–Levenshtein distance of the reference string
length, answers with zero or one characters are marked as “empty” in the table. Such empty words
are a peculiarity that our algorithm does not do, as it will always output something, even if it
is useless. It is questionable whether this is better or not. We will say that answering gibberish,
instead of an empty or one-character word is better, since it will give the reader a hint that the
OCR system was not able to recognize something. A left out word inside a text might not be that
obvious. Furthermore, every spell-check system would mark the gibberish.

With Tesseract’s performance of about % we now have a target to compare our algorithm against.
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Table .: Evaluation results of Finereader and Tesseract for the preprocessed (desloped and deslanted)
challenges of the captcha test set ( captchas). One can clearly see that neither Tesseract nor Finereader
is prepared for such distorted text segments.

DLD Finereader Tesseract Finereader Pure Tesseract Pure

    
    
    
    
    
    
    
    
    
    

 


Empty    

Full/Almost    
Partial    

No    

Full/Almost .% .% .% .%
Partial .% .% .% .%

No .% .% .% .%

.. Evaluation of the Proposed Algorithm

With the set target for our algorithm, we will now evaluate the performance of our proposed
algorithm. We will further compare the performance of utilizing  and  Fourier descriptors.
Again all  captchas of the test set are processed by the algorithm. Table . shows the results
in comparison to Tesseract and Finereader.

With a recognition rate of .% we have beaten the set target and the performance of Tesseract
and Finereader. We can further note that the proposed algorithm generates much more partial
matches than the competitors. A fact that might come in handy in postprocessing of real world
texts, since a potential spell-check might still be able to reconstruct the original word.

While the .% are a remarkable, pleasant result and it performs better—especially in the partial
matches—than Tesseract it still performs below its potential. We have previously seen that the
classification engine itself is capable of detecting % of the characters. With less than the half
of this in the final results, it should be capable of more. The results of Tesseract range in the
same dimension. With a final result of % and its capabilities of detecting % of the characters
the results are reasonable. We can conclude that the weakness of the proposed algorithm is
its segmentation algorithm. Tesseract implements are more sophisticated approach utilizing a
box-scanning. Still, even our simple approach was able to outperform it slightly.

We can further see that the difference between  and  Fourier descriptors is marginal. With just
one more exact match and a slight shift in the distances, the results are nearly the same. Since a
difference in processing times was not measurable, we will stick to the  Fourier descriptors.

Figure . shows some selected solved examples from the test set.
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Table .: Final evaluation results of the proposed algorithm utilizing  and  Fourier descriptors. For
comparison the results of Tesseract, Finereader and the humans are given. With a slightly higher accuracy
in full/almost matches and a much higher partial hits our algorithm performs really well. Notice that
Tesseract completely gives up on % of the captchas, while our algorithm still tries to at least find some
matches.

DLD  FD  FD Tesseract Finereader Humans

     
     
     
     
     
     
     
     
     
  

 


Empty   

Full/Almost     
Partial     

No     

Full/Almost .% .% .% .% .%
Partial .% .% .% .% .%

No .% .% .% .% .%
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Figure .: Selected, processed and solved examples from the captcha test set.
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Time Requirement As mentioned earlier, the human performance was also evaluated with
regard to solving time. The time taken from fully loading the image up to submitting the answer
was measured.

Of course the time requirements differ from human to human, depending on the typing speed
and how well the human is used to captchas in general. Since the testpage was published using
facebook, we can assume that all  users should be familiar with captchas in general and further
be kind of used to typing. In other words, the resulting times will set a higher benchmark than the
average.

For evaluating the mean time required to process a captcha we will eliminate outliers from the
answers. In some cases the time measurement failed and a time of zero was submitted. Since the
time is measured using JavaScript, certain browser-extensions might have caused this. Further,
times above s were ignored. These times might origin from a case where the human did not
process the captcha immediately after loading the page, e.g. the user has left the computer or was
distracted from the page.

As said earlier the time measurement was started right after the challenge-image loaded completely.
Another starting point would have been the time, when the user entered the first character. However,
this would not reflect the complete process, since most of the humans will first start typing, after
fully processing the complete captcha (i.e. reading it). This would have measured the typing speed
of each user and not the time required to solve the captcha.

Considering this, a human took .s on average to process a captcha with a mean deviation of
.s. In comparison our algorithm just needs .s per captcha with a mean deviation of .s.

Considering that a human recognizes .% of all captchas but takes this long, it is reasonable to
consider the throughput of the algorithm: Our algorithm achieves .captchas/minute, whereas
a human is just able to process .captchas/minute. In other words, one could say that the
algorithm achieves a recognition rate of % in comparison to a human.

With this we propose that the algorithm is able to beat the reCaptcha system. A big claim we will
try to verify in the next section.

.. Live Test / Verification Set

In order to verify the previous results, the idea was to perform a live test of the algorithm against
the reCaptcha system.

To connect Matlab with the reCaptcha system, a small backend in PHP was developed, since no
direct API implementation is available for Matlab. Matlab first requests a new captcha from the
PHP script. The script then fetches a new captcha, downloads the image and returns the filename.
After processing the file, Matlab calls the script again with the processed result which is then
verified by the reCaptcha servers.

Based on experience the current reCaptcha implementation was constant since at least spring .
Unfortunately and strictly according to Murphy’s Law reCaptcha changed its system right after
finishing the research on this system.

Figure . shows two examples of this new version. It appears that Google is now using the captcha
system for increasing the accuracy of Google Maps. It seems to present a house number taken from
Google StreetView in combination with a new challenge consisting solely of numbers. The fact
that only numbers are present increases the usability of the system, since switching from entering
numbers to characters is inconvenient. The system remains basically the same, with the StreetView
image as pro-bono part and the generated numbers as challenge. Again only the challenge has
to be entered. Although this time the number must be entered exactly, no mistakes are allowed

The benchmarks were performed on an Intel Core i-, x.GHz, GB DDR-, Windows  Professional
Bit and Matlab Rb.
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anymore. Upon entering more than four of these number-captchas or a false answer the system
refers to the old versions.

This is a feature also mentioned in the beginning implemented by “solveMedia”. If the system
detects a possible robot it hardens itself, while a human is presented with easily solvable captchas.
In order to disable mass-inputs by humans (services exist that solve/break captchas by employing
low paid humans), the system hardens itself after four entered captchas.

Upon hardening the system returns to the old system at first glance. Sadly a live test against
this performed very poorly. Only an acceptance rate of about % was achieved. This might have
several reasons, which will now be discussed.

Figure .: New version of the reCaptcha system as of fall .

At first, as we can see from Figure ., the captchas appear to be much more dense. With a much
smaller letter spacing, generating cutting-hypotheses becomes incredibly hard. As one can see from
the “mtetai”-captcha, a classic caliper-distance would fail completely. But even our projection-based
approach would fail. The extreme tight fitting of ’m’ and ’t’ or ’a’ and ’i’ sadly no longer enables
us to cut at these positions. It is even not clear whether it is an ’nn’ or an ’m’.

Figure .: The new, hardened version of the old system as of fall .

This is a really intelligent approach of the reCaptcha system. With the number-challenges being
very easy for a human, but very hard for a robot (see Section .), humans get very easy challenges.
Upon a wrong input, a very hard challenge is presented that even further excludes robots. Yet,
humans are still able to more or less recognize even these hard versions. Upon solving a hard
challenge the system can again be sure to be talking to a human, and can return to easier ones,
which are again easy solvable by a human. This is a win-win situation, since humans are able to
solve them easily and robots are excluded.

Furthermore, we have to question, whether our first data acquisition of the captcha test set might
have been error prone. It might be possible that this “harden upon potential robot” was already
present in the old version. Because the data was acquired by a human, the system believed to be
talking to a human, and therefore presented easier captchas. Once the algorithm tries to solve
these captchas (according to the test set about every third captcha is detected correctly), already
two captchas were entered incorrectly. Since that, the system might already have hardened and
therefore present much harder captchas, as it has seen in the test set.

Nevertheless, since the goal was to develop a very robust recognition system and not primarily
breaking the reCaptcha system, we still achieved our goal. However, one could argue heretically
that our algorithm fails on the live-test, only because all defined thresholds (even though we tried
to keep absolute threshold down) were tightly fitted to the test set.

In order to prove these heretical voices wrong and verify our results, we want to run the test against
a new, completely unseen, verification set. Since the system is not available anymore, freshly
gathering this data was not possible. Fortunately, a local download manager kept a local cache
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of entered captchas. From this cache  captchas were collectable, which were entered during a
timespan from December  up to May . The captchas appear to be of the same version as
our test set.

Again all  captchas were solved manually and then compared to the outcome of the algorithm.
Still, one captcha had to be excluded since it was not readable for a human. Table . shows the
results for the verification set, which match the results for the test set.

Table .: Final verification results. With the verification set delivering nearly the same results, we can
say that our algorithm works very well. For comparison the results of Tesseract and the humans of the test
set are given.

DLD Test Set Verification Set Tesseract Humans

    
    
    
    
    
    
    
    
    
  

 


Empty  
Total    

Full/Almost    
Partial    

No    

Full/Almost .% .% .% .%
Partial .% .% .% .%

No .% .% .% .%



Chapter 

Outlook and Conclusion

We will dedicate this chapter to an outlook on what could further be implemented in the form of
postprocessing. We will show why postprocessing is possible and what possibilities it could hold.

Furthermore, we will give an conclusion to our algorithms, show its adaptability and discuss its
limits and potentials.

. Postprocessing

We will begin with a stochastic analysis of the captchas. While manually acquiring the datasets
the feeling arose that the captchas are not generated completely randomly. In a sense they were
always pronounceable, and sometimes even spelled some kind of word. As an example one could
take the “knoesti” captcha from the beginning, which sounds like a German word. On top of being
pronounceable they were always convenient to type.

This raised the assumption that the captchas underlie a probabilistic generation model, which is
also present in a human language. All human languages underlie a pattern of letter frequencies
and bigram frequencies. Bigrams, or rather n-grams, are an alignment of n consecutive characters,
e.g. very frequent bigrams (n=) are “in” in English or “en” in German.

We therefore analyse the letter frequencies in all entered captchas, all captchas from the test and
verification set. While  unique words are not very sufficient for generating a reliable stochastic
analysis, it still shows that certain characters are favoured among others. For comparison the freely
available books “The Adventures of Sherlock Holmes” by Arthur Conan Doyle, “Romeo and Juliet”
by William Shakespeare and “Grimms Fairy Tales” by the Brothers Grimm were analysed. All
books were obtained from the Gutenberg Project [Gut]. Prior to generating the frequencies, all
non-letter characters were erased and the complete text was converted into lowercase. This lead to
the statistics in Figure ..

As we can see the captchas clearly follow a trend comparable to the English language. This helps
either reading the captcha, as well as typing the captcha. On the other hand, this fact can also
help us and is very common in text recognition as part of postprocessing. The different characters
can help us on deciding which nearest neighbour to choose, since some are more likely to occur.
As an example one can consider a ’k’ and an ’x’. While both—in particular when distorted—are
very similar, an ’x’ is with just .% much less likely to occur compared to a ’k’ with a letter
frequency of .%.

An implementation option for this could be to consider the n (e.g. ) nearest characters, weigh
their difference measure by their probability and then choose the lowest. After the selection the
unaltered measure should be used, to maintain comparability during the Viterbi algorithm. Notice
that we talk about nearest characters and not neighbours, since in our implementation a character


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is presented with multiple instances. Considering just e.g. three nearest neighbours would very
often bring up three times the same character. It should therefore be better to consider the n
nearest characters and choose the lowest difference measures of those for the group.

Another option would be to again consider the n nearest characters and then simply choosing the
most probable. However, in this case, an ’x’ would almost never be chosen over an ’k’, even though
the difference measure is much higher.

e t a o h n i s r d l u w m c y f g b p v k j x q z

Figure .: Letter frequencies for English (Blue) compared to the letter frequencies from all captchas
(Red). While not being completely identical, a clear trend is visible.

As mentioned before, the other statistic is the bigram frequency. For this again all  unique
words are chosen and a dictionary is built (in the case of the captchas this of course leads to a 
word dictionary, since the captchas are all unique). The same is done for the mentioned books,
which leads to a dictionary consisting of  words. Of all these distinct words the bigram
frequencies were analysed and are displayed in Figure .. One could of course also analyse all tri-
and four-grams.

in ed er re es ng te en st on le ar ti an nt at ri de se co or ea ra is li

Figure .: The top  bigrams from the generated English dictionary (Blue) compared to the corre-
sponding frequencies of all captchas (Red). The frequencies are normalized to the highest occurrence.
Almost all English bigrams are also dominant in the captchas. Of the top  English bigrams,  are also
found in the top  captcha bigrams.

It is evident from this statistic that also a trend is visible. Admittedly,  unique words are again
too sparse to create a reliable statistic. Still, we can see that certain bigrams are much more likely
than others. Noticeable were also that really unusual—or not existing at all—bigrams like “xw”
or “yx” from the English language were also not present in the bigrams of the captchas. Again
this helps the captcha in being more typeable, since humans are more trained to certain character
sequences than others. Again this can also be utilized in postprocessing.

During the Viterbi algorithm certain paths can be favoured in regard to others. As one implemen-
tation one could check the bigram formed by the current path and the character which lead to the
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local optimum of the origin node. Another option would be to accept multiple paths through the
Viterbi diagram and afterwards choose the path with the most likely bigrams.

The last postprocessing option is a classic spell-checking system. Of course this only works with a
profound dictionary and an underlying real language. Spell checking reCaptchas would be of no
avail, since they are only on “accident” real words. With other captcha systems (e.g. solveMedia)
this approach should lead to great results. On top of that, a spell-checking system would greatly
benefit from the proposed algorithm, since our algorithm always generates some answer, instead of
completely giving up or stopping once the recognition becomes unreliable. Also, it generates much
more partial matches, from which a spell check might still be able to reconstruct the original word.

Since these ideas and options are of statistical nature and need to be adapted to every specific
application, they are not implemented or evaluated in the scope of this thesis. For example
Tesseract and Finereader are equipped with a broad range of dictionaries and are even able to
detect the underlying language. All in all, statistics house a broad range of possibilities and can
increase recognition performance, but once implemented decreases the direct adaptability to other
systems or languages.

. Adaptability

In the previous section we’ve talked about the adaptability of the proposed algorithm. Further
we have seen that the reCaptcha system changed and now features a new, different challenge of
number recognition. As mentioned in the introduction also other competing captcha systems are
available. We will try to adapt the proposed algorithm to those and see if it holds the potential in
recognizing those.

In general the algorithm is implemented very flexibly. The challenge-extraction, desloping and
deslanting process are three separate algorithms, which can also be left out. Also, the classification
engine is solely based on instances of different characters. No retraining is needed once these are
exchanged. In fact, the current implementation just loads all available images from a pattern-folder
and uses those as the reference characters. Adapting the algorithm to e.g. numbers or alpha-numeric
captchas should be fairly easy. Furthermore, the adaptation to classic, unmerged captchas should
be possible by only allowing cutting hypotheses at blank spaces, instead of minima.

We will first start by testing the algorithm against the new reCaptchas consisting only of numbers.
This shall not be an exhaustive evaluation, but rather show its adaptability and potential. Figure .
shows some more instances of this type.

Figure .: New version of the reCaptcha system as of fall .

One can see that the numbers are again written on a curve and are slightly rotated or slanted. We
could use the desloping- and deslanting-algorithms to correct this. Nevertheless, approximating the
baseline of numbers is not as “easy” as of characters. Considering the consecutive “” in Figure .,
the baseline is not anymore the lowest pixel. Also the deslanting-algorithm would run into heavy
problems, since it is based on vertical stems inside the characters. Sadly those are not as frequent
as they are in letters; most of the numbers only consist of round, circular objects.

Fortunately, both operations are not needed, as they were used to enable straight cuts at cutting-
hypotheses. As one can see, the numbers are already separable via straight cuts.
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As reference rendered versions of all numbers from the Font “Lucidia Sans”, rotated by up to ±5◦
are given. Again, numbers are per se not invariant. This is well known from a  and . Moreover,
a  also looks almost exactly like a  if one smoothes its outline. Also a  and  are the same when
flipped. Interestingly, the system seems to know about this; it seems like those ambigue ,,,,
are way more present as easily detectable and unique  (the only number with two holes) and .

To overcome this ambiguity we first used the hole locations. We can again utilize this for  and ,
to detect whether the hole is present in the lower or upper part. Sadly this fails with the number .
The second used method was to sent in probes, to detect the opening-direction of counters. This
could be used for discriminating  and . Sadly both are opened to both the same sides. We will
therefore quickly adapt the algorithm further. A  and  can be discriminated by their counters
again, a  is opened west and a  to the east. To further distinguish between  and , we will also
evaluate the previously unused location of the probe that dunked in the most. The counter of a 
can be open to the east or west, but an east counter must be in the upper half, a west in the lower
half—vice versa for a .

Figure . shows the first results of the algorithm with the mentioned approaches. We conclude
that it has the potential to be adaptable to this system. The bottleneck appears to be again
the segmentation algorithm; once the numbers are correctly cut, they are also classified correctly.
Figure . shows a number-captcha where some of those problems are evident.











Figure .: Deciphered number-captchas of the new reCaptcha system.



Figure .: Problems in solving the number-captchas.  and  are very similar. The wrong classified  is
very small and thus the hole-location is detected wrong.

For showing the adaptability to other systems we will try to decipher the Microsoft-captcha. As it
is widely used among various Microsoft web-applications, it should represent a rather interesting
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asset.

The Microsoft-captcha does not feature connected characters. As we therefore do not need to
oversegment the image, all preprocessing steps can be ignored and it will only be cut between the
stretched areas. As it is an alpha-numeric captcha, the number-instances are added to the previous
reference-set and the previously mentioned adaptions for distinguishing numbers are in place. The
Figure . shows how well the algorithm adapts to this type.

vprut

kvYGPpk

cDGwvSFd

_EqyLHwpG

Figure .: Deciphered Microsoft captchas.

. Conclusion

Prior to coming to a final conclusion, we will discuss the limits of the developed algorithm.

Although we showed that the proposed algorithm is highly adaptable, some limits remain which
include absolute thresholds. Even though we tried to refrain from using absolute thresholds and
use relative thresholds, the algorithm is fixed to a minimum character height, maximum character
width and a maximum hole width in pixels. We could circumvent these absolute values by requiring
a constant text height. This could be implemented by considering the baseline and the topline
as the first and last pixel per column. The average distance between both could then deal as a
measurement to scale the segment to a constant height.

Another limit is that the algorithm always tries to deslope and deslant the segment, although
it might not be needed. For a completely straight text segment, the desloping algorithm would
still try to deslope it and as a result of this, some characters that stick out of the baseline (’p’ or
’q’) are deformed. Further, the deslanting process might overcorrect the already straight segment.
Therefore, it should first be evaluated whether an preprocessing is really needed.

Furthermore, the algorithm strictly depends on the outline of characters. Once the outline breaks,
or the characters are not classifiable by their outline, it will fail.

Nevertheless, we developed a highly adaptable algorithm that is capable of deciphering even very
hard distortions.

We have shown that one of the last unbroken captcha systems is attackable by more-or-less simple
techniques. With a rate of % we have beaten current profound systems and supplied an attack
that renders this version of the captcha useless, since it cannot distinguish between a human and a
computer in almost one out of three cases.

Furthermore, we have shown that Fourier descriptors are very useful in classifying heavily distorted
characters. We have chosen them because of their heavy invariances that were needed to even
detect such degraded characters. On the other hand we have encountered and shown that their
heavy invariances are not necessarily good when applied to characters. We have further shown that
a necessary necessity matching is able to circumvent this problem and utilize Fourier descriptors
for character classification. We have supplied a classification engine that outperforms current OCR
systems, especially on heavily distorted single characters.
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Moreover, the developed algorithm only needs pre-rendered reference characters to classify individual
characters. With this it is even adaptable to other character sets like the Cyrillic alphabet or even
Chinese or Japanese character sets. It should be adaptable to any character set, as long as their
characters are classifiable by their outline and the presence of holes. I.e. the shape of a hole is not
important in deciding the characters. It should be an interesting research topic if the proposed
engine is adaptable to Asian characters.

Finally, we conclude that we have achieved the goal of developing a robust recognition system. We
also achieved the goal of breaking the reCaptcha system, without tailoring the system to it. We
hope that this research will help in digitalizing old, degraded books. A pre-print of this thesis has
been made available to Google, the reCaptcha-team, the Tesseract team and Abbyy.

As more and more captcha systems get broken, it is questionable whether a (text-only based)
captcha system remains save and usable. As we have seen, reCaptcha changed its system that on
the one hand disabled our approach, but on the other hand also extremely hardened the challenge
for humans.

We will close with a quote from Ray Kurzweil from his book “Singularity is Near” [Kur] about
the prediction of artificial intelligence and the solving of the Turing test.

“ Since nonbiological intelligence will have passed the original Turing test years earlier
(around ), should we allow a nonbiological human equivalent to be a judge?

– Ray Kurzweil”



Appendix A

Fourier Descriptors

A. Mathematical Description and Generation of Fourier
Descriptors

This shall give an exhaustive description of Fourier descriptors, their mathematical properties,
derivations and invariances.

As no exhaustive derivation for all invariances and properties was found in the books, we will
derive them from scratch. We require basic knowledge of well known properties of the (discrete)
Fourier transformation and signal processing. We will follow roughly [Hel], added with more
derivations and a more convenient and usual nomenclature.

Nomenclature We define a function a(n) in the discrete time domain as a lowercase function
with the discrete time index n. The corresponding discrete Fourier transformation (DFT) is denoted
by its uppercase function A(k) with the discrete frequency index k.

The DFT is then defined as

a(n) c sA(k) (A.)

F {a(n)} = A(k) =

N−1∑
n=0

a(n) exp
(
−2π n

N
k
)

(A.)

with  as the imaginary unit.

A.. Generation of Fourier Descriptors

In order to transfer an outline of a shape into the frequency domain we first have to extract the
boundary of the shape. For this very easy and profound methods exist in the books.

Prior to extracting the boundary a starting point needs to be selected in addition to an initial
search direction. Extracting the boundary then leads to an ordered sequence of N real-valued
coordinate points (xN , yN ) with (x0, y0) denoting the starting point. We have chosen the starting
point to always be the left most pixel in the vertical centre and the initial search direction to be
north-west, i.e. clockwise.


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This sequence of (real) coordinate points is then mapped into a complex contour-vector a(n) by

a(n) =


x0 +  y0
x1 +  y1

...
xN−1 +  yN−1

 (A.)

Onto a(n) an one dimensional discrete Fourier transformation is applied, leading to N complex
Fourier descriptors A(k).

In order to low-pass the boundary, high-frequency components of A(k) can then be discarded. Keep
in mind that the high-frequency components are not directly the high-index coefficients, but lie in
the middle. The DFT-vector starts with the zero-frequency DC offset, followed by the positive
frequencies in the first half and contains the negative frequencies in the last half. Matlab provides
a function fftshift (), which centres the DC offset.

A.. Invariances

For deriving the invariances, respectively the effects of certain operations on the Fourier descriptors
we will utilize basic signal processing properties.

Translation Translating the complex contour a(n) by a complex offset zx + zy leads to change
in the zero-frequency component (DC offset) in A(k), i.e. a Dirac at frequency  is added.

a(n) + (zx + zy) c sA(k) + (zx + zy) · δ(0) (A.)

Scaling Scaling the complex contour a(n) by a constant factor s leads to a global scaling factor
in A(k).

s · a(n) c ss ·A(k) (A.)

Rotation Rotating the complex contour a(n) by a constant angle φ, i.e. every complex-
coordinate’s phase is shifted by φ, leads to a constant phase shift in A(k). This is the same
effect as a scaling operation, since it is a multiplication by a constant.

a(n) · eφ c sA(k) · eφ (A.)

Starting Point Shift Shifting the starting point x0 + y0 by m points, but—very important—
keeping the search direction, leads to a phase change in the Fourier descriptors. For this derivation
we utilize the shift theorem of the DFT.

a(n−m) c sA(k) · e2πm·k (A.)
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(a) Translation by 0.25 +  0.5.
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(b) Rotation by 30◦.
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
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(c) Scaling of a(n) by 1.5.
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 

<{a(n)}
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(d) Shifting of the starting point
by two indices. Note that the ini-
tial search direction stays the same
(clockwise). For visualization both
boundaries are slightly scaled.

Figure A.: Different operations applied to the original complex contour a(n) (grey) and the result ã(n)
(red).

A.. Effects of Mirroring and Further Derivations

While the previous effects of operations where very easy to show, deriving the impact of a mirroring
operation is not that trivial.

In order to derive this, we’ll first need to derive the effects of a contour-reversion and a complex-
conjugation. While both are also elementary properties of the (discrete) Fourier-transformation,
they are not that common.

Contour Reversal Reversing the order of a contour a(n) leads to the contour ã(n) = a(−n). I.e.
we change the initial search direction. Note that this is not a flipping of the vector like a(N −1−n),
but the first point—the starting point—stays fixed. Further, since the index periodically wraps
around, ã(n) = a(−n) = a(N − n).
With this, the DFT derives as

ãrev(n) = a(−n) = a(N − n) (A.)

F {a(N − n)} =
N−1∑
n=0

a(N − n) e(−2π n
N k) , (A.)
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substituting n′ = N − n, the lower bound becomes n = 0 ⇒ n′ = N and the upper bound
n = N − 1⇒ n′ = N −N + 1 = 1

=

N∑
n′=1

a(n′) e
(
−2πN−n′

N k
)

(A.)

=

N∑
n′=1

a(n′) e(−2π
N
N k)︸ ︷︷ ︸

=1∀k

e

(
−2π−n′

N k
)

(A.)

=

N∑
n′=1

a(n′) e
(
−2π n′

N (−k)
)

(A.)

=

N∑
n′=0

a(n′) e
(
−2π n′

N (−k)
)
− a(0) (A.)

=

N−1∑
n′=0

a(n′) e
(
−2π n′

N (−k)
)
− a(0) + a(N) e(−2π

N
N (−k))︸ ︷︷ ︸

=1∀k

, (A.)

as a(0) = a(N)

=

N−1∑
n′=0

a(n′) e
(
−2π n′

N (−k)
)

(A.)

= A(−k) . (A.)

In summary, a reversed complex-contour with fixed starting point leads to a reversion of the Fourier
descriptors with the DC offset staying fixed.

a(−n) c sA(−k) (A.)

−1 1

−


 





 



<{a(n)}

= {a(n)}

Figure A.: Curve reversal ã(n) (red) of the contour a(n) (grey). For visualization both boundaries are
slightly scaled.



APPENDIX A. FOURIER DESCRIPTORS 

Complex Conjugation A complex conjugation on the contour a(n), i.e. flipping all yn, leads
to a mirrored contour, in addition to a mirrored initial search direction.

F {a(N)∗} =
N−1∑
n=0

a(n)∗ e−2π
n
N k (A.)

=

N−1∑
n=0

(
a(n) e2π

n
N k
)∗

(A.)

=

(
N−1∑
n=0

a(n) e2π
n
N k

)∗
(A.)

=

(
N−1∑
n=0

a(n) e−2π
n
N (−k)

)∗
(A.)

= A(−k)∗ (A.)

A complex conjugation of the contour leads to a complex conjugation of the Fourier descriptors in
a reversed order.

a(n)∗ c sA(−k)∗ (A.)
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Figure A.: Complex conjugation ã(n) (red, right) of the original contour a(n) (grey, left). Notice that
the curve orientation switches.

Vertical Mirroring A vertical mirrored (mirrored along the x-axis, or flipped up and down)
contour ã(n) of a(n) can be described as a complex conjugated and reversed contour. Both is
needed, since we require that the starting point (its relative position in the contour) does not
change and that the initial search direction stays the same. Therefore, ã(n) = a∗(−n) and with
Equation A. and A. a mirroring again only has an influence in the phase:

ãl(n) = a∗(−n) c sA(k)∗ (A.)

Horizontal Mirroring Horizontal mirroring is derived analogue to vertical mirroring as
ã↔(n) = −ãl(n) = −a∗(−n) and therefore is again just another phase change of π.

ã↔(n) = −a∗(−n) c sA(k)∗ · e−π (A.)
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A. Normalisation

As we have derived all influences, we are now able to normalise the Fourier descriptors in order to
make them invariant.

Translation We have seen that a translation of the contour only influences the zero-frequency
component. We therefore are able to centre the shape at the origin and remove any translation by
setting the DC offset to zero.

Ainv(0) = 0 (A.)

Scaling As a scaling operation affects all components equally, we can normalise all descriptors by
a common divisor, e.g. by the first frequency. Notice that a scaling operation affects the magnitude
of the coefficient and not the phase. Therefore, we can achieve scaling invariance by normalising
all descriptors by the magnitude of the first coefficient (not the DC offset).

Ainv(k) =
A(k)

|A(1)| (A.)

Rotation, Starting Point and Mirroring We have seen that all three operations affect the
phases of every coefficient in different degrees. We therefore could achieve complete invariance
against these operations by removing the phase information. Unfortunately this has also the effect
that the Fourier descriptors heavily generalize the shape and a lot of information is lost. Figure A.
shows two different objects with the same magnitude spectrum.

As the phases are influenced differently by starting point shifts, rotations and mirroring, a
comparison or normalisation is not trivial. As discussed in this thesis certain phase information can
be used in order to allow a range of invariance, without loosing the complete phase information.

Furthermore, we have seen that mirroring affects the phases by a complex conjugation, which
should be fairly easy to detect. Though this only holds true, while the starting point remains its
relative position in the contour. Since that does not hold true, when always selecting an starting
point at a fixed absolute position, it will lead to a starting point shift and therefore to a further
change of the phases. Thus, detecting a mirroring by the complex conjugation is rendered almost
impossible. It would however be very easy to detect if the starting point would be selected using a
heuristic that would always select the same relative position. This is also discussed in Section ...
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Figure A.: Both objects share the same magnitude spectrum, i.e. the Fourier descriptors match if the
phase information is discarded. Clearly both objects are nowhere near similar.



Appendix B

Confusion Matrices

Following all previously embedded confusion tables in detail. As lower- and uppercase characters
are most times very similar they are consolidated.

All numbers are given in percent as, e.g. for the first table, “.% of all ’a’s are classified as
’a’. .% of all ’a’s are classified as ’d’.” In other words, the numbers are not adjusted to the
frequency of the individual letters in the set.

This becomes noticeable in the captcha sets, where sadly only four ’x’ were acquirable. Hence the
unusual distribution of %, % and %.


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