

I

Master Thesis

Cascalog for sensor data processing

 August 20, 2014

Supervised by: Submitted by:

Prof Dr. Ralf Moeller Sindhu Hosamane,

Christian Neuenstadt Information and

 Media Technologies (IMT),

 Matriculation nr: 46442

Hamburg University of Technology (TUHH)

Technische Universität Hamburg-Harburg

Institute for Software Systems
21073 Hamburg

II

Statutory Declaration

I, Sindhu Hosamane, declare that I have authored this thesis independently, that I

have not used other than the declared sources/resources and that I have explicitly

marked all material which has been quoted either literally or by content from the used

sources. Neither this thesis nor any other similar work has been previously submitted

to any examination board.

 Hamburg, August 20, 2014

 ……

 Sindhu Hosamane

III

Acknowledgment

On the successful completion of my Master thesis, I would like to thank the

University with gratitude. I wish to acknowledge all of them. However, I wish to

make special mention of the following.

I take this opportunity to express my profound gratitude and deep regards to my guide

Prof. Ralf Moeller for allowing me to write thesis in his department and encouraging

me to explore the topic, which became of deep interest to me.

I must make special mention of Christian Neuenstadt my project supervisor for giving

me his valuable time, attention and for providing a systematic way for completing my

thesis. I appreciate his exemplary guidance and monitoring throughout the course of

this Thesis.

I am obliged to staff members of University, for the valuable information provided by

them in their respective fields. I am grateful for their cooperation during the period of

my master thesis.

IV

Contents

1 Introduction
 1.1 Outline……………..01

2 Big Data

 2.1 Definition…………………….. …….02

 2.1.1 Dimensions of big data…………………………………...........02

 2.2 Reasons for growth in digital data...04

 2.3 Some facts about big data..05

 2.4 Big data for the Enterprise……….……………………………………....06

 2.5 Why not traditional databases for big data?..07

 3 Hadoop
 3.1 Introduction to Hadoop ……………………………………………….... 10

 3.1.1 Salient characteristics of Hadoop …………………………….. 10

 3.2 Hadoop installation…………………………………………………….. .12

 3.2.1 Single node Hadoop installation……………………………......12

 3.2.1 Multinode Hadoop installation…………………………………14

 3.3 What problems can Hadoop solve?..15

 3.4 Hadoop architecture……………………………………………………....15

 3.4.1 Hadoop distributed file system…………………………………..16

 3.4.2 MapReduce………………………………………………………17

 3.4.3 Different components of Hadoop cluster………………………...17

 3.5 Advantages of Hadoop…………………………………………………....22

 3.6 Disadvantages of Hadoop………………………………………………...22

 4 Clojure
 4.1 Setting up an environment……………………………………………….23

 4.2 Clojure basics.. ……………………………..24

 4.3 Why Clojure?. …………………………………………………...............26

 5 Cascalog
 5.1 History of Cascalog... 28

 5.2 Cascalog features…………... 29

 5.3 Getting started with Clojure Cascalog... …29

 5.4 Cascalog Queries………………………………………………………....29

 5.4.1 Structure of the query……………………………………………31

 5.4.2 Predicate operators………………………………………….…...33

 5.4.3 Queries using different Cascalog features………………….……34

 5.5 How Cascalog executes a query………………………………………….37

 5.6 Running Cascalog……………………………………………………..…38

 5.7 Cascalog users and their opinions………………………………………..38

 5.8 Why Cascalog?...40

 5.9 Advantages of Cascalog………………………………………………….41

 6 Experimenting with Cascalog on sensor data
 6.1 Challenges with sensor data……………………………………………..42

 6.2 Analyzing set of Cascalog queries………………………………………42

V

 7 Performance evaluation of Cascalog queries

 7.1 Performance evaluation methods……………………………………..…51

 7.2 Hardware specification……………………………………………….…52

 7.3 Experimental results…………………………………………………......53

 8 Conclusion…………………………………………………………………….61

 9 Bibliography ... ………………………..62

VI

List of Figures

1 Introduction

2 Big Data

 Fig 1 Dimensions of big data .. …….….02

 Fig 2 Reasons for growth in digital data………………………………….04

 Fig 3 Facts about big data…………………………………………...........05

3 Hadoop

 Fig 4 Why Hadoop?..11

 Fig 5 A multi-node Hadoop cluster………………………………………16

 Fig 6 Mapping blocks of file on Datanode and Namenode……………..18

 Fig 7 Functions of Namenode and Datanode……………………………. 19

 Fig 8 Jobtracker and Tasktracker interaction……………………………..20

 Fig 9 Namenode storing information on disk……………………………..21

 Fig 10 Working of Secondary Namenode………………………………...22

 4 Clojure

 5 Cascalog
 Fig 11 What is Cascalog?..27

 Fig 12 Cascalog’s components…………………………………………...28

 6 Experimenting with Cascalog on sensor data

 7 Performance evaluation of Cascalog queries

 Fig 13 Stack of Performance improvements methods………………….....58

 8 Conclusion

 9 Bibliography

VII

Tables

1 Introduction

2 Big Data

 Table 1 Relational scheme for simple web analytics application……..……...08

3 Hadoop

 4 Clojure

5 Cascalog
 Table 2 Cascalog versus other tools………………………………………….41

 6 Experimenting with Cascalog on sensor data

 7 Performance evaluation of Cascalog queries

 Table 3 Results of top command……………………………………………...57

 8 Conclusion

 9 Bibliography

Cascalog for sensor data processing

Master Thesis STS 1

Chapter 1

Introduction

 In today’s world the amount of data has been exploding and analysing large

datasets, so called big data has become a key basis for competition. The world of big

data is dramatically changing right in front of our eyes. Data production is expanding

at an astonishing pace. This data growth presents enormous challenges

[21] and also

provides enormous business opportunities. The dramatic increase of unstructured data

like photos, videos and social media data creates the necessity of new breed of non-

relational databases, which allows the data to reveal its own structure and patterns.

Also today data is increasing beyond the capabilities of traditional databases. To

tackle this a new breed of technologies emerged namely many projects from open

source community like Hbase [29], Mongo DB [27], Cassandra [28], Hadoop [1] and

many more.

There are many tools, which use Hadoop as their execution environment. One such

tool is Cascalog, which is used for processing big data on top of Hadoop. The whole

project is about understanding Cascalog queries, its structure and simplicity by

formulating some Cascalog queries, which queries sensor data used in Optique project

[30] by Siemens. Also some performance tests are conducted at the end.

1.1 Outline

 Chapter 2 begins with the discussion of what is big data, the way data is

exploding today, some current facts and why are traditional databases not suitable for

big data. Chapter 3 provides the understanding of Hadoop, its architecture and further

on Chapter 4 explains some basics of Clojure programming language. Chapter 5 is an

introduction to Cascalog and its query structure. Chapter 6 explains the experiment

conducted, that is querying sensor data using Cascalog, which uses Hadoop as

execution environment. Results of benchmarking are shown in Chapter 7.

Cascalog for sensor data processing

Master Thesis STS 2

Chapter 2

Big Data

2.1 Definition
 Big data is huge amount of data which is difficult to collect, store, manage and

analyse via traditional database systems. Big data has the capacity to deal with data,

which is in petabytes and Exabyte.

According to, leading IT industry research group Gartner [31] Big Data is defined as:

“Big Data are high-volume, high-velocity and/or high-variety information assets that

require new forms of processing to enable enhanced decision making, insight

discovery and process optimization.” [31]

2.1.1 Dimensions of Big Data [5]

 Big data relates to data creation, storage, retrieval and analysis that are

remarkable in terms of Volume, Velocity and Variety. Any data that fits one or more

of above three dimensions is called Big Data.

 Fig 1: Dimensions of Big Data [5]

Cascalog for sensor data processing

Master Thesis STS 3

 Volume: Size of data (how big it is)

- Machine generated data is produced in much larger quantities in petabytes per

day.

- A single jet engine can generate 10TB of tracking data in 30 minutes; 25,000

airline flights per day lead to daily volume to Petabytes.

- Facebook ingests 500 terabytes of new data every day.

- A typical PC might have had 10 gigabytes of storage in 2000.

- The proliferation of smart phones, the data they create and consume.

- Sensors embedded into everyday objects will soon result in billions of new,

constantly-updated data feeds containing environmental, location and other

information.

 Velocity: How fast data is being generated

- High velocity of media data streams.

- Even at 140 characters per tweet, the high velocity of Twitter data ensures

large volumes (over 8 TB per day).

- On-line gaming systems support millions of concurrent users, each

producing multiple inputs per second.

- Sensors generate massive log data in real-time.

- Machine to machine processes exchange data between billions of devices.

- Stock trading algorithms reflect market changes within microseconds.

- Clickstreams and impressions capture user behaviour at millions of events

per second.

 Variety: Variation of data types to include source, format and structure

- As new services are added, new sensors are deployed; new data types are

needed to capture the resultant information. The data arriving is not only

structured but also unstructured, semi-structured and multi-structured.

- Big data does not mean a lot of one type of data, but a lot of data of

different types. Big data is not only Strings, numbers but also refers to

geospatial data, 3D data, audio, video and unstructured text including log

files and social media.

Big data is important; those who can harness big data will have edge in critical

decision-making. IT companies are investing billions of dollars on research and

development of big data. [32] Companies have to extract business critical information

from big data that their company requires.

Possible sources of big data are: [5]

- Social media Facebook posts, Twitter tweets.

- Scientific sensors such as global mapping, meteorological tracking, medical

imaging and DNA research.

- Intranet and Internet websites across the world.

http://www.mongodb.com/use-case/user-data-management

Cascalog for sensor data processing

Master Thesis STS 4

2.2 Reasons for growth in digital data

 Fig 2: Reasons for growth in digital data

1) Increasing growth of Internet usage, social networks and smartphone adoption:

• Almost everyone is using social networking sites especially Facebook and

Twitter. More than 9000 tweets are being generated every second and average

number of tweets per day is 58 million. [3]

Nowadays, around 3 lac status are

updated and more than 1 lac photos are uploaded and 510 comments are posted

on Facebook every minute. Five new profiles are created every second. [4]

• For the very first time in history, Smartphones were sold more than feature

phones.

2) Falling costs of the technology devices that create digital data:

• Digital products are getting cheaper and cheaper -Smartphones are available

for cheaper prices. Smartphones can take images, create documents and do all

sorts of things thus increasing digital data.

• We upload lots of videos on YouTube as it’s free and lots of comments and

likes are posted for videos uploaded and thus lot of data is being generated.

3) Growth of machine generated data:

• Data from Satellites, sensor readings from factories, data generated by

equipment (tractors, vehicles) like fuel consumption, temperature etc. all

contributes to the increasing data. This data is growing at a great speed with

more industrialisation.

• The machine-generated data will account for 40% of the Digital Universe by

2020, up from just 11% in 2005 as per Digital Universe estimation. [5]

Cascalog for sensor data processing

Master Thesis STS 5

2.3 Some facts about Big Data

 Fig 3: Facts about Big Data [5]

Fig 3 shows how digital data is growing enormously. By 2011, more than 1.8 Exabyte

was created and by 2020 more than 35,000 Exabyte of information will be created,

which is 20 times more than in 2011, which obviously says the information to be

managed by business increases.

Situation today: According to the Digital Universe Ticker, around 3.2 Zettabyte of

information has been created since 1st January 2013, which in turn also shows that

Terabytes of data is being generated every second. [2]

As per 2012 Digital Universe Study:

 The amount of information in the Digital Universe is doubling every two

years, currently growing at a rate of more than 7,600 Petabytes per day.

 Less than 1% of the world’s data is analysed today, which presents an

enormous opportunity for Big Data analytics.

Cascalog for sensor data processing

Master Thesis STS 6

According to Foreignaffairs: [35]

In year 2000, only one-quarter of the entire world’s stored information was digital.

The rest of the information was preserved on paper, film and other analog media.

Today, less than two percent of all stored information is non-digital, because of the

enormous amount of digital data.

According to MGI Survey: [36]

The use of big data will underpin new waves of productivity growth and consumer

surplus.

According to InformationWeek: [34]

A recent survey by database vendor says that the better management of big data can

make smarter business decisions of the organization. And also more than 30% of the

people said analysing big data is a challenge.

According to Gartner: [31]

By 2015, 4.4 million IT jobs will be created globally to support big data, generating

1.9 million IT jobs in the US. In addition, every big data-related role in the U.S will

create employment for three people outside of IT, so over the next four years a total of

6 million jobs in the U.S will be generated by the information economy.

Nowadays, big data is being used in all the sectors like Healthcare, banking, Retail

and many more. [33] Based on the above big data facts, it is evident that in the near

future big data is going to play a very important role.

Big data is the biggest trend in IT right now. We all know the amount of data and the

speed at which it is accumulating is growing exponentially. This can be a difficult

problem to tackle in and of itself, however, failing to take advantage of the Variety of

data, the Volume and Velocity become much more of a downside than a value-add.

Big data is very much needed because traditional databases can't analyse data from

Social media, data from Videos, data from sensors as this type of data grows at a great

speed and it is also beyond the processing capacity of traditional databases.

According to CEO at Genalice: The challenge for us is to find the answer we‘re

looking for from that mountain of data. There is a lot of knowledge encrypted in that

data, and our challenge is to pick it out. Our concern is not the size of the data, but its

diversity and complexity. He also mentions the speed at which we receive medical

data is so rapid that you could almost call it a data tsunami.

2.4 Big Data for the Enterprise [23]
 Big data is about using the huge amount of data to extract valuable

information from it and to get the right answer to the questions that can take company

a step forward. Big data is a technology, a new database technology that uses new

hardware platforms to access huge amounts of data quickly.

Big data is about asking the right questions so that the correct analysis of both

structured and unstructured data produces the right answer.

The competitiveness of the company stands or falls based on the quality and speed of

information provided. Nowadays data growth is accelerating; so it is important for the

http://www.foreignaffairs.com/articles/139104/kenneth-neil-cukier-and-viktor-mayer-schoenberger/the-rise-of-big-data
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.informationweek.com/big-data/news/big-data-analytics/big-data-development-challenges-talent-cost-time/240005662
http://www.gartner.com/newsroom/id/2207915

Cascalog for sensor data processing

Master Thesis STS 7

companies to be able to respond faster, better and creatively over the changes in the

market, which gives a major advantage over the competition. Big data is the ultimate

weapon. Companies must therefore be able to retrieve increasingly refined

information from an increasing number of sources. If Companies don’t understand

their customers and do not respond adequately, then there are risks of losing the

customers.

According to French American company Alcatel-Lucent, “No organization can avoid

Big Data “. The rapidly expanding market for diverse mobile devices, the increasing

mobility of their users, the growing need for real-time information and the wide

availability of more and more sources of information including social media, all place

high demands to use new technologies to handle big data.

Big data is no hype or revolution. It is simply an evolution. Companies should not

underestimate or ignore it. But instead try to develop big data applications in order to

remain competitive. Big data is used in variety of organizations. For example, banks

use big data to improve risk analysis and fraud detection. It is also used in Weather

forecasts where weather keeps varying constantly and in high frequency stock

markets, which keeps changing for every microsecond.

2.5 Why not traditional databases for Big Data? [40]
 The Internet, ultimate source of data is incomprehensively large. There are

varieties of data we have to deal with. Users create blogs, tweets, conversations on

social networking sites, upload photos. Servers produce data continuously about what

is going on. This astonishing amount of growth in data is termed as big data, which

we understood in previous sections.

Traditionally, Databases and Business Intelligence tools were used to give a sense of

the data. Big data goes beyond the conventional analytical tools and databases and it

deals with a variety of data. If the data is sensibly arranged and is easy to partition the

set of data, such data is homogeneous. This data is easily handled by traditional

databases. But in today’s world we have a lot of unstructured data from social media,

videos, audios which all doesn’t fall under homogeneous category of data. Not only is

the data too unstructured and too voluminous for a traditional RDBMS, the software

and hardware costs require to crunch through these new data sets using traditional

RDBMS technology are prohibitive. So here comes the necessity of a technology that

deals with data, which is not necessarily as homogeneous or as structured as needed in

traditional databases. Choosing wrong databases for wrong workload may end up

burning pockets.

Big data will be in real time whereas; traditional databases were historic in reporting.

Data is coming in at faster rate than it can be processed. Big data exceeds the

processing capacity of our traditional database systems. So, traditional database

systems such as relational databases are pushed to their limits to deal with Big Data.

They can be fine-tuned to some extent but ultimately it hits a wall. Sometimes these

traditional databases break under the pressure of “Big Data”. It is difficult for

traditional databases to scale to big data.

Cascalog for sensor data processing

Master Thesis STS 8

2.5.1 Scaling with traditional databases

 We consider an example to see how scaling works with traditional databases.

Consider building a web application that gives the pageviews to any URL that the

user wish to track. Then when someone views the page the customer’s webpage pings

the webserver with its URL. In addition we also want the application to tell top 100

URL’s by the number of pageviews.

We start with a traditional relational schema for the pageviews that looks something

like in Table 1. Whenever a webpage is being viewed, then webpage pings the

webserver with a pageview, then webserver in turn increments the corresponding row

in the RDBMS. [37]

Column Name Type

id integer

user_id integer

url Varchar (255)

pageviews bigint

Table 1: Relational schema for simple web analytics application

This seems to make sense atleast in the world before big data. But with big data it

might run into problems in terms of scale and complexity.

2.5.2 Scaling with a queue

 Since it is a web analytic product there could be a lot of traffic to the

application. When the data is growing enormously, then the database can’t keep up

with the load, so write requests to increment pageviews are timing out. The fix for this

problem could be instead of webserver hit the database directly; a queue can be

inserted between webserver and database. When a pageview occurs, an event is

added on to the queue. Then a worker process can be created that reads 1000 events at

a time off the queue and batches them into a single database update. This could

resolve timing out problem. The problem with this is when the database gets

overloaded again and then the queue grows bigger without timing out the webserver

and potentially losing data. Adding a queue and creating a worker to do batch updates

is simply a band-aid to the scaling problem.

2.5.3 Scaling by sharding the database

 When the database gets overloaded then the worker can’t keep up with the writes.

So more workers need to be added to parallelize the updates, which doesn’t seem to

work because the database is a bottleneck.

Next method would be using multiple database servers, which spread the table across

all servers. Each server will have a subset of data for the table. This is known as

sharding. Using this technique, write load is spread across several machines. The

technique used to shard the database is to choose the shard of the key. A script has to

be written to map over all the rows in our single database instance and split the data

into shards.

As the application becomes more popular, the database has to be reshard into more

Cascalog for sensor data processing

Master Thesis STS 9

number of shards to keep up with the huge write load. Then running a single script

would be slow. Multiple scripts have to be managed which obviously increases

complexity.

Fault-tolerance issues begin

 When there are multiple database servers, if one of the disks on one of the database

machine goes bad, so that portion of data is not available as that machine is down.

Then we should think of methods that address this issue. All the time needs to be

spent in solving the problems of reading and writing the data whereas building new

features for customers is a far thought.

Corruption issues

 While working on a worker/queue if a bug is deployed, which increments pageview

by two instead of one and we don’t notice it for a day then many values in the

database are inaccurate. Also no previous backups could help to resolve this issue, as

there is no way of knowing which data was corrupted. So here we see there is no

resilience in the system to human making a mistake.

Analysis of problems with traditional architecture

 In developing a web analytics application we started with a webserver, one

database and then ended up with queues, creating workers, replicas and multiple

servers. Scaling the application forced the backend to become much more complex

and operating the backend becomes even more complex. Some of the challenges

while developing this application:

 Fault-tolerance is hard

 Complexity pushed to application layer

 Lack of human fault-tolerance

 Maintenance is an enormous amount of work

 Considering above example it is proved that traditional databases are perfectly not

suitable for big data. In order to capitalize on the Big Data trend, a new breed of big

data companies has emerged, leveraging commodity hardware, open source and

proprietary technology to capture and analyse these new data sets, the one of which is

discussed in chapter 3.

Database pioneer and researcher Michael Stonebraker discusses the limitations of

traditional database architectures. “Generally, traditional databases scale up with more

expensive hardware, but have difficulty scaling out with more commodity hardware

in parallel and are limited by legacy software architecture that was designed for an

older era.” He contends that the big data era requires multiple new database

architectures that take advantage of modern infrastructure and optimize for a

particular workload. [38]

Data analyst Goldmacher's argument that big data will crush traditional database

companies revolves around cost. Emerging big data players can price better than large

database players like Oracle that have margins to protect. In other words, Oracle

would have to charge 9 times more than the blended average of big data vendors to

solve data conundrums. [39]

Cascalog for sensor data processing

Master Thesis STS 10

Chapter 3

Hadoop

3.1 Introduction to Hadoop
 As seen in the previous chapter in section 2.5, it is clear that it is very complex

to deal with big data with traditional databases. So to tackle the challenges of big data,

a new breed of technologies emerged. In some way these new technologies are

complex than traditional databases and in some ways they are simpler. Google

pioneered many of the big data systems. And in the later years open source

community responded with many projects like Hadoop [1], Hbase [42], Mongo DB

[27], Cassandra [28] and many other projects. In this chapter we understand the details

of Hadoop.

Hadoop is a Java-based programming framework, which supports the processing of

large data sets in a distributed computing environment. It processes large data sets

across clusters of computers using simple programming models. It is designed to scale

up from single server to thousands of machines, each of which provides local

computation and storage. Hadoop began its life at Yahoo and now is a part of the

Apache project sponsored by the Apache Software Foundation. [1]

Hadoop makes it possible to run applications on systems with thousands of nodes

involving petabytes of data. It also facilitates rapid data transfer rates among nodes,

because of its distributed file system. Hadoop has a high degree of fault tolerance,

rather than relying on hardware to deliver high-availability, the library itself is

designed to detect and handle failures at the application layer. This allows the system

to continue operating without any interruptions in case of a node failure. This

approach lowers the risk of catastrophic system failure, even if a significant number

of nodes become inoperative.

Google's MapReduce, a software framework in which an application is broken down

into numerous small parts, inspired Hadoop. Any of these parts (also called fragments

or blocks) can be run on any node in the cluster. Doug Cutting, Hadoop's creator,

named the framework after his child's stuffed toy elephant. Currently Apache Hadoop

ecosystem consists of the Hadoop kernel, MapReduce [44], the Hadoop distributed file

system (HDFS) [43] and a number of related projects such as Apache Hive [29], Hbase

[42] and Zookeeper. [41] Together they form a powerful framework for running large

datasets ranging from terabytes to petabytes. The Hadoop framework is used by major

players largely for both research and production namely Google, Yahoo, IBM and

many other. The preferred operating systems for Hadoop are Windows and Linux but

can also work with BSD and OS X.

3.1.1 Salient characteristics of Hadoop:

Hadoop changes the economics and dynamics of large scale computing. Hadoop

enables a computing solution that is:

 Scalable –New nodes can be added without changing the data format, how

data is loaded, how jobs are written.

http://searchcio-midmarket.techtarget.com/definition/Apache
http://searchcloudcomputing.techtarget.com/definition/MapReduce
http://searchenterpriselinux.techtarget.com/definition/BSD
http://whatis.techtarget.com/definition/OS-X

Cascalog for sensor data processing

Master Thesis STS 11

 Cost effective –Hadoop results in a sizeable decrease in the cost per terabyte

of storage, which in turn makes it affordable to model all the data.

 Flexible –Hadoop absorbs any type of data, structured or unstructured from

any number of sources. So Hadoop can be regarded as schema-less.

It enables deeper analysis of data by joining data from multiple sources and

aggregating it in arbitrary ways.

 Fault tolerant –When a node in a cluster goes down, then the system redirects

the work to another node, which contains the data and continues without any

human interruptions.

Fig 4: Why Hadoop?

The Fig 4 explains the scenario when 1 terabyte of data is to be read. On the left there

is one machine with 4 hard drives and each drive having 100MB/s capability of

reading files from the disk. So if 1 terabyte of data is to be read, then data is scattered

evenly on each drive. So each hard drive will have 250GB of data. So to read 1

terabyte of data from this machine, it would take 45 minutes. This is just a theoretical

calculation based on how long it would take to read from a 250GB drive at 100MB/s.

If we take the same 1 terabyte of data and scatter it across for example a 10-node

cluster with 10 worker machines as shown on right side of Fig 4, so now we are

putting one-tenth of a terabyte on each of the machines, further more each machine

also has 4 hard drives. So now across the 10 machines there are 40 hard drives each

holding 25GB of data. Now to read 1 terabyte of data from 10 machines in parallel

would take only 4.5 minutes. So by harnessing the power of multiple machines

together, reads and writes can be processed significantly faster. The above scenario

clearly explains the power of distributed computing environment and thereby Hadoop.

Cascalog for sensor data processing

Master Thesis STS 12

3.2 Hadoop Installation: [14]

3.2.1 Single node Hadoop installation: (on Linux)

Prerequisites:

Java

Java 1.5x is required. If it is already installed, try typing java -version at the command

line to see if we have it installed. It should say version "1.5.x" (e.g., 1.5.0_14).

Adding a dedicated Hadoop system user

Create a dedicated Hadoop user account for running Hadoop. While that’s not

required it is recommended, because it helps to separate the Hadoop installation from

other software applications and user accounts running on the same machine.
$ sudo addgroup hadoop

$ sudo adduser --ingroup hadoop hduser

This will add the user hduser and the group hadoop to our local machine.

Configuring SSH

Hadoop requires SSH access to manage its nodes, i.e. remote machines plus our local

machine if we want to use Hadoop on it (which is what we want to do in this short

tutorial). For single-node setup of Hadoop, we therefore need to configure SSH access

to localhost.

Assuming SSH is up and running on our machine and configured it to allow SSH

public key authentication. First, we have to generate an SSH key for the hduser user.
user@ubuntu:~$ su - hduser

hduser@ubuntu:~$ ssh-keygen -t rsa -P ""

Generating public/private rsa key pair.

Enter file in which to save the key (/home/hduser/.ssh/id_rsa):

Created directory '/home/hduser/.ssh'.

Your identification has been saved in /home/hduser/.ssh/id_rsa.

Your public key has been saved in /home/hduser/.ssh/id_rsa.pub.

The key fingerprint is:

9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2 hduser@ubuntu

The key's randomart image is:

[...snipp...]

hduser@ubuntu:~$

Second, SSH access has to be enabled to our local machine with this newly created

key as seen above.
hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >>

$HOME/.ssh/authorized_keys

The final step is to test the SSH setup by connecting to our local machine with the

hduser user. The step is also needed to save our local machine’s host key fingerprint

to the hduser user’s known_hosts file.
hduser@ubuntu:~$ ssh localhost

The authenticity of host 'localhost (::1)' can't be established.

RSA key fingerprint is

d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44:f9:36:26.

Are you sure you want to continue connecting (yes/no)? Yes

Warning: Permanently added 'localhost' (RSA) to the list of known

hosts.

Linux ubuntu 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30 UTC

Cascalog for sensor data processing

Master Thesis STS 13

2010 i686 GNU/Linux

Ubuntu 10.04 LTS

[...snipp...]

hduser@ubuntu:~$

Installation:

Download Hadoop from the Apache Download Mirrors and extract the contents of the

Hadoop package to a location to say /usr/local/hadoop. Make sure to change the

owner of all the files to the hduser user and hadoop group, for example:
$ cd /usr/local

$ sudo tar xzf hadoop-1.0.3.tar.gz

$ sudo mv hadoop-1.0.3 hadoop

$ sudo chown -R hduser:hadoop hadoop

Update $HOME/.bashrc

Add the following lines to the end of the $HOME/.bashrc file of user hduser.
Add Hadoop bin/ directory to PATH

export PATH=$PATH:$HADOOP_HOME/bin

Configuration:

hadoop-env.sh

JAVA_HOME environment variable should be set in conf/hadoop-env.sh
The java implementation to use. Required.

export JAVA_HOME=/usr/lib/jvm/java-6-sun

conf/*-site.xml

In this we will configure the directory where Hadoop will store its data files, the

network ports it listens to etc.
<property>

 <name>hadoop.tmp.dir</name>

 <value>/app/hadoop/tmp</value>

 <description>A base for other temporary directories.</description>

</property>

<property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

 <description>The name of the default file system. A URI whose

 scheme and authority determine the FileSystem implementation. The

 uri's scheme determines the config property (fs.SCHEME.impl) naming

 the FileSystem implementation class. The uri's authority is used

to

 determine the host, port, etc. for a filesystem.</description>

</property>

In file conf/mapred-site.xml:
<property>

 <name>mapred.job.tracker</name>

 <value>localhost:9001</value>

 <description>The host and port that the MapReduce job tracker runs

 at. If "local", then jobs are run in process as a single map

 and reduce task.

Cascalog for sensor data processing

Master Thesis STS 14

 </description>

</property>

In file conf/hdfs-site.xml:
<property>

 <name>dfs.replication</name>

 <value>1</value>

 <description>Default block replication.

 The actual number of replications can be specified when the file is

created.

 The default is used if replication is not specified in create time.

 </description>

</property>

Formatting the HDFS filesystem via the Namenode:

The first step to start our Hadoop installation is formatting the Hadoop filesystem

using below command
hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format

Starting single-node cluster:
hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

Running this command will start Namenode, Datanode, Jobtracker and a Tasktracker

on our machine. Jps is a tool for checking whether the expected Hadoop processes are

running.
hduser@ubuntu:/usr/local/hadoop$ jps

2287 TaskTracker

2149 JobTracker

1938 DataNode

2085 SecondaryNameNode

2349 Jps

1788 NameNode

Stopping single-node cluster:
hduser@ubuntu:~$ /usr/local/hadoop/bin/stop-all.sh

3.2.2 Multinode Hadoop installation

In our experiment we set up multiple datanodes on a single machine, which is useful

for small test case scenarios. Below are the steps to be followed:

1. In HADOOP_HOME directory, copy the "conf" directory to, say, "conf2".

2. In the conf2 directory, edit as follows:

a) In hadoop-env.sh, provide unique non-default

HADOOP_IDENT_STRING, e.g. ${USER}_02

b) In hdfs-site.xml, change dfs.data.dir to show the desired

targets/volumes for datanode#2 and of course make sure the

corresponding target directories exist. Also remove these targets

from the dfs.data.dir target list for datanode#1 in conf/hdfs-site.xml.

c) In hdfs-site.xml, set the four following "address:port" strings to

something non-conflicting with the other datanode and other processes

running on this box:

 - dfs.datanode.address (default 0.0.0.0:50010)

Cascalog for sensor data processing

Master Thesis STS 15

 - dfs.datanode.ipc.address (default 0.0.0.0:50020)

 - dfs.datanode.http.address (default 0.0.0.0:50075)

 - dfs.datanode.https.address (default 0.0.0.0:50475)

 3. At this point, launching with:

 bin/hdfs --config $HADOOP_HOME/conf2 datanode

3.3 What problems can Hadoop solve? [24]
 According to cloudera CEO who explains it as “The Hadoop platform was

designed to solve problems where you have a lot of data —perhaps a mixture of

complex and structured data —and it doesn’t fit nicely into tables. It’s for situations

where you want to run analytics that are deep and computationally extensive, like

clustering and targeting. That’s exactly what Google was doing when it was indexing

the web and examining user behaviour to improve performance algorithms.

Hadoop applies to a bunch of markets. In finance, if you want to do accurate portfolio

evaluation and risk analysis, you can build sophisticated models that are hard to jam

into a database engine. But Hadoop can handle it. In online retail, if you want to

deliver better search answers to your customers so they’re more likely to buy the

thing you show them, that sort of problem is well addressed by Hadoop. Those are

just a few examples.”

3.4 Hadoop Architecture: [25]
Hadoop consists of a common package, Mapreduce engine

(MapReduce/YARN) and Hadoop distributed file system (HDFS). Hadoop common

package consists of Java Archives (JAR’S) files and scripts needed to start Hadoop.

A small Hadoop cluster consists of a single master node and multiple worker nodes.

Master node consists of Jobtracker, Tasktracker, Namenode and Datanode. Worker

node or slave node acts as both Datanode and Tasktracker. Whereas in a larger

cluster, the HDFS is managed through a dedicated NameNode server to host the file

system index and a secondary NameNode that can generate snapshots of the

namenode's memory structures, thus preventing file-system corruption and reducing

loss of data. Fig 5 shows how a multinode Hadoop cluster looks like.

Cascalog for sensor data processing

Master Thesis STS 16

 Fig 5: A multinode Hadoop cluster [25]

3.4.1 Hadoop Distributed file system (HDFS)

HDFS is a distributed file system that can store huge amounts of data like

terabytes or even petabytes. Data on HDFS is stored in distributed fashion across

multiple machines, which ensures high availability for parallel computation and

makes it resilient to failures. It provides high throughput to application data and is

very much suitable for large datasets. It remains economical at every size by

providing distributed storage and computation across many servers.

A distributed file system (DFS) is designed to hold large amount of data that is in

terabytes or petabytes and make this data accessible to all the clients across the

network. The file system uses TCP/IP sockets for communication. Clients use remote

procedure call (RPC) to communicate between each other. HDFS was designed to

combat the problems of other DFS’s like Network File system (NFS). It has

similarities like that of other DFS, but it has significant differences as well like highly

fault-tolerant and is designed to deploy on low-cost hardware. In particular:

 HDFS is designed to store large amounts of data (terabytes or petabytes). It

also supports larger file sizes.

 HDFS stores data reliably. If individual machine in cluster goes down, data is

still available.

 HDFS provides fast, scalable access to data. If needed to serve more number

of clients then adding more machines to the cluster serves the purpose.

 HDFS integrates well with Hadoop MapReduce, which allows data to be read

and computed locally.

http://en.wikipedia.org/wiki/Internet_socket

Cascalog for sensor data processing

Master Thesis STS 17

HDFS has a master/slave architecture. HDFS cluster consists of one Namenode, a

master server that manages file system and access to files by clients. There can be

number of datanodes usually one per node in the cluster which manages storage

attached to the node they run on. Also having a single Namenode greatly simplifies

the architecture. Hadoop uses HDFS to store files efficiently in the cluster. HDFS is a

block structured file system that is, when a file is placed on HDFS it is broken down

into blocks of fixed size; 64 MB being the default block size. These blocks are stored

across one or more machines with data storage capacity. These individual machines

are called datanodes. It’s not essential that all the blocks of a file are stored on same

machine. The target for each block is chosen randomly on block –by-block basis.

Thus access to one file may require cooperation of multiple machines. So if one of

those machines goes down, then data in that machine would become unavailable.

HDFS solves this problem by replicating blocks across different nodes (Datanodes) in

the cluster. The default replication value is 3, which means there will be 3 copies of

same block in the cluster.

3.4.2 MapReduce
 It is a programming model that uses java as programming language for

processing and generating large datasets with a parallel, distributed algorithm on a

cluster. It is batch-based modelled after Google’s paper on MapReduce. It allows

parallelizing work over large amounts of raw data. The MapReduce program consists

of Map() and Reduce() procedure. Map() procedure performs filtering and sorting.

Reduce() procedure performs a summary operation. The MapReduce paradigm is very

powerful and has the ability to process data with distributed computing, without

having to deal with concurrency, robustness and scale.

3.4.3 Different components of Hadoop Cluster

 A fully configured cluster runs on a set of daemons: The daemons are

described below:

Namenode: Namenode is the vital of Hadoop daemons which directs the slave

Datanode daemons to perform low-level I/O tasks. Namenode operates file system

namespace operations like opening, closing and renaming files and directories. It is a

bookkeeper of HDFS. It keeps track of how a file is broken into blocks and which

nodes store these blocks and the overall health of the distributed file system. The

system is designed in such a way that, Namenode neither stores any data nor performs

any computation for MapReduce programs. It is the repository of HDFS metadata as

shown in Fig 6 below. In order to keep less metadata, Namenode only tracks

filename, permissions and location of each block of each file. All this information can

be stored in the main memory of the Namenode machine, allowing fast access to

metadata. The figure says the files foo and bar are split into blocks 1, 2, 4 and 3, 5

respectively, which are stored in 3 datanodes with a replication value of 2. Whenever

a file is placed in a cluster a corresponding entry of its location is maintained by

Namenode. So, for files foo and bar there would be something like below in

Namenode:

foo – Datanode1, Datanode2, Datanode3

bar – Datanode1, Datanode2, Datanode3

This information is needed when retrieving data from the cluster as the data is spread

across multiple machines.

Cascalog for sensor data processing

Master Thesis STS 18

Fig 6: Mapping blocks of file on Datanode and Namenode [1]

To open a file, a client contacts the Namenode to obtain the list of locations of blocks

that comprise the file. These locations identify datanodes that hold the blocks. Clients

can directly read file data directly from Datanode servers, possibly in parallel.

Namenode does not involve in these data transfers, keeping its overhead to a

minimum. Since the involvement of a Namenode is relatively less, chances of

Namenode failures are lower than that of Datanode failures.

The limitation of Namenode is, it is the single point of failure in the Hadoop cluster.

There are many redundant systems that allow Namenode to preserve file systems

metadata, even if the Namenode crashes unrecoverably.

Datanode: Datanode is basically the part of a slave machine in the cluster. It is

responsible for storing the files in HDFS. It manages the blocks of files within the

node. It can read or write the HDFS file. Datanode also performs block creation,

move and deletion upon instructions from Namenode. During start-up it makes a

connection to the Namenode and performs a handshake. The purpose of this

handshake is to verify Namespace Id and software version of a Datanode. If it does

not match, Datanode will automatically shut down. Namespace Id is assigned to the

file system when it is formatted. This namespace Id is stored on all datanodes in the

cluster. Datanode with different namespace Id’s cannot join the cluster. This protects

the integrity of the file system.

After the handshake Datanode registers itself with the Namenode. Datanodes stores

storage ID’s. This is assigned to the Datanode when it registers with the Namenode

for the first time and remains unchanged after that. Storage ID is a unique identifier of

Cascalog for sensor data processing

Master Thesis STS 19

Datanode, through which Namenode identifies Datanode, even if it is restarted with a

different IP address and port.

Datanode sends block report to Namenode, which identifies the block replicas it

possess. Block report contains block ID, length of each block, generation stamp. First

block report is sent immediately after Datanode registers with Namenode. And then

subsequent block reports are sent every one hour which keeps Namenode updated

about where the blocks are located.

During the normal operation Datanode sends heartbeat to the Namenode, which

signifies Namenode that Datanode is in operation and data blocks in it are available.

The interval for sending heartbeat is 3 sec. If the Namenode does not receive

heartbeat within 10 minutes, then Namenode considers Datanode is not in operation

and the data blocks in it are unavailable. Then Namenode schedules the replication of

those blocks in other Datanodes. Thus ensuring even if one Datanode becomes

unavailable on the network, data is still available. Heartbeat also contains information

like total storage capacity, storage in use, number of data transfers currently. This

helps Namenode to make decisions on block allocation and load balancing between

datanodes. Namenode does not make direct request with Datanode. It sends replies to

heartbeats, which include instructions to remove local block replicas, replicate the

block on other datanodes, to send immediate block report, restart, or shut down. Fig 7

indicates the functions of Namenode and Datanode.

Fig 7: Functions of Namenode and Datanode [15]

Jobtracker: There is only one Jobtracker in a cluster, which is present on the server

as a master node of the cluster. It is the communication between application and

Hadoop. A Mapreduce engine consists of one Jobtracker to which client applications

submit MapReduce jobs. The Jobtracker is responsible for taking in requests from

Cascalog for sensor data processing

Master Thesis STS 20

clients, determines the execution plan by determining which files to process,

assigning which tasks are to be handled by which tasktracker and monitoring all tasks

as they are running. If a task fails, then the Jobtracker tries to relaunch the task on a

different node. Jobtracker tries to assign task to the tasktracker on Datanode where

data is located. If not possible it assigns the task to another tasktracker. When the

client calls the Jobtracker to start a data processing job, then it splits the work into

different map and reduce tasks that is handled by each tasktracker in the cluster. Fig 8

indicates the interaction between Jobtracker and Tasktracker.

Fig 8: Jobtracker and Tasktracker interaction [15]

Tasktracker: Tasktracker daemon accepts tasks (Map, Reduce and shuffle) from

Jobtracker. It is in constant communication with the Jobtracker. It is responsible for

executing individual tasks assigned by Jobtracker and sends the progress/status back

to the Jobtracker. Whereas Jobtracker is the master overseeing the overall execution

of a MapReduce job. Even though there is only one Tasktracker per slave node,

Tasktracker can spawn multiple JVM’s to execute many map and reduce tasks in

parallel. Tasktracker sends heartbeat to Jobtracker, which notifies Jobtracker that it is

alive. If it does not receive within certain amount of time, then considers Tasktracker

is not in operation and then assigns that task to another Tasktracker.

Secondary Namenode (SNN): It is an assistant daemon that monitors the state of

clusters HDFS. There is only one secondary Namenode in the cluster. It is usually run

on other machine than primary Namenode because its memory requirements are of

same order as that of primary Namenode. SNN does not receive or record any real-

time changes of HDFS. It just takes snapshots of HDFS metadata in time intervals

specified by cluster configuration.

SNN is a poorly named Hadoop component. Secondary Namenode is just a helper

node for Namenode which helps it to function better. It is never a backup or

replacement for Namenode. Namenode stores metadata information in main memory

Cascalog for sensor data processing

Master Thesis STS 21

when in use. But it also stores it on disk for persistent storage. Fig 9 shows how

Namenode stores information on disk.

 Fig 9: Namenode storing information on disk

fsimage - It is the snapshot of the file system when the Namenode started

edit logs – It is the sequence of changes made to the file system after the Namenode

started.

Only during the restart of Namenode edit logs are applied to fsimage to get the

updated fsimage. But normally in production clusters restart of Namenode is rare. So

edit logs could grow larger and larger over a period of time on a busy cluster, which

becomes difficult to manage. And during rare restarts of Namenode since lot changes

in edit logs has to be applied, restart can take longer time. In case of crash, lot of

metadata could be lost, since fsimage is very old. These were the challenges to keep

the metadata up to date.

Secondary Namenode takes the responsibility of merging edit logs with fsimage from

the Namenode. Secondary Namenode gets the edit logs from Namenode in regular

intervals and applies it to fsimage. Once it has a new fsimage, it copies it back to

Namenode. Namenode will use this updated fsimage on restart, which will reduce the

start-up time. It keeps edit logs size within limit.

Cascalog for sensor data processing

Master Thesis STS 22

Fig 10: Working of Secondary Namenode

3.5 Advantages of Hadoop

 HDFS component of Hadoop is optimized for high throughput.

 Hadoop is highly scalable.

 Hadoop uses large block sizes, which is useful in manipulating large files.

Also amount of metadata in Namenode is minimal.

 Hadoop uses MapReduce framework, which is a batch-based, distributed

computing framework, which helps to rapidly process large amounts of data in

parallel.

 Hadoop is highly fault-tolerant.

 It provides distributed storage and computing capabilities both.

 Can be deployed on large clusters of cheap commodity hardware as opposed

to expensive, specialized parallel processing hardware.

 HDFS component of Hadoop has rock solid data reliability and costs extreme

low per byte.

3.6 Disadvantages of Hadoop

 HDFS is inefficient for handling small files and it lacks transparent

compression.

 HDFS is not suitable for small files also because there is an overhead in

setting up Hadoop environment.

 Hadoop does not offer security model, which is a major concern.

 Hadoop does not provide storage or network level encryption, which is a very

big concern for governmental sector application data.

 Master processes of both HDFS and MapReduce components of Hadoop are

single points of failure.

Cascalog for sensor data processing

Master Thesis STS 23

Chapter 4

Clojure

Clojure is a dynamically typed, functional programming language that compiles to

java bytecode and provides interoperability with java. It is a Lisp based. However, it

has some departures from older Lisps. Clojure running on JVM provides portability,

stability, performance and security. It also provides access to the wealth of existing

java libraries supporting functionality including multithreading, database, GUI, I/O,

web applications and more.

4.1 Setting up an environment
 Clojure tools –some of the common tools to get started with Clojure include

 Leiningen

 Emacs with CIDER

 Vim with Fireplace

 Eclipse Counterclockwise

 Nightcode

Leiningen is the easiest way to use Clojure. Leiningen is a build automation and

dependency management tool for the simple configuration of software projects

written in the Clojure programming language. It is a standard tool used by Clojure

community. Below steps indicate leiningen installation from the official leiningen

webpage. [12]

1. Download the lein script.

2. Place it on $PATH where shell can find it.

3. Set it to be executable. (chmod a+x ~/bin/lein)

4. Run it (lein) and it will download the self-install package.

Leiningen Projects [12]

 Leiningen works with projects. A project is a directory containing a group of

Clojure (and possibly Java) source files, along with a bit of metadata about them.

project.clj is a file in the root directory that contains metadata. Through this

project.clj we can tell leiningen about things like

 Project name

 Project description

 What libraries the project depend on

 What Clojure version to use

 Where to find source files

 What’s the main namespace of the app

and more.

Directory Layout of Clojure projects

 A Clojure project contains a src/ directory containing the code, a test/

directory and a project.clj file which describes our project to Leiningen.

http://en.wikipedia.org/wiki/Clojure

Cascalog for sensor data processing

Master Thesis STS 24

project.clj

project.clj file looks something like below

(defproject my-stuff "0.1.0-SNAPSHOT"

 :description "FIXME: write description"

 :url "http://example.com/FIXME"

 :license {:name "Eclipse Public License"

 :url "http://www.eclipse.org/legal/epl-v10.html"}

 :dependencies [[org.clojure/clojure "1.5.1"]]

 :main ^:skip-aot my-stuff.core

 :target-path "target/%s"

 :profiles {:uberjar {:aot :all}})

Clojure provides us with a fully dynamic programming environment called the REPL:

The (R)ead, (E)valuate, (P)rint, (L)oop. The REPL reads input from the user, executes

it and prints the result of the process. During “read” phase source code is converted

into a datastructure. During “evaluate” phase this datastructure is first compiled into

java byte code and then executed by JVM. Clojure is a compiled language and in

many cases can have performance characteristics similar to java.

The REPL becomes the main sketchpad and development tool for many Clojure users.

To start a REPL with leiningen, simply type lein repl on command line and after a

few moments, we see a prompt like this:
$ lein repl

user=> _

4.2 Clojure basics [26]
 Considering basic Clojure code (println “Hello world”). When typed on

prompt and hit enter (R)ead phase begins, turning out entered text into a stream of

symbols. Provided there are no error these symbols are (E)valuated according to rules,

and (P)rinting the result of the code and then (L)oop giving new prompt for input.

user=> (println "Hello World")

Hello World

nil

user=> _

As we see above nil is outputted which is Clojure equivalent of null, which means

println did not produce any computational results and “Hello World” is simply the

side effect of executing println.

Considering few more simple examples like below
(+ 3 2)

; 5

(+ (+ 1 2) (+ 3 3))

; 9

(+ 1 2 3 4)

; 10

As seen above, the operators come first, this is called prefix notation and also it seems

the number of parameters or arguments doesn’t matter.

Cascalog for sensor data processing

Master Thesis STS 25

Basic data types

 Clojure supports numbers, atoms, important atoms, strings, regular

expressions, keywords, list, vector, set. Clojure has functions, special forms and

macros.

Defining and calling functions

 (defn function_name [arguments] expressions) –Syntax of named function.

Value of the function is the value of last expression evaluated.

(function_name arguments) -Syntax of a function call. The name of the function

being called is the first thing inside the parentheses.

(fn [arguments] expressions) –Syntax of anonymous function.

Built-in functions

Absolutely fundamental functions:

(first sequence) -Returns the first element of a nonempty sequence, or nil if the

sequence is empty.
(rest sequence) -Returns a sequence containing all the elements of the given sequence

but the first.

(cons value sequence) -Returns a new sequence created by adding the value as the

first element of the given sequence.

(empty? Sequence) -Returns true if the list is empty and false otherwise.

(= value1 value2) -Tests whether two values are equal. Works for just anything

except functions.

Macros and special forms:

(quote argument) -Returns its argument unevaluated.
(def name expression) -Defines the name to have the value of the expression, in the

current namespace.
(if test thenPart elsePart?) -The test is evaluated; if it is a "true" value, the thenPart is

evaluated; if it is a "false" value then elsePart is evaluated.

(when test expression ... expression) -If the test evaluates to a true value, the

expressions are evaluated and the value of the last expression is returned.

(do exprs*) -Evaluates the expressions in order and returns the value of the last. If no

expressions are supplied, returns nil.

(let [name value ... name value] expressions*) -Defines local names, evaluates the

corresponding values and binds them to the names.

(throw expression) -The expression must evaluate to some kind of Throwable, which

is then thrown.
(recur expressions*) -Performs a recursive call from the tail position, with the exact

number of arguments.

(loop [bindings*] expressions*) -Like recur, but the recursion point is at the top of the

loop.

Cascalog for sensor data processing

Master Thesis STS 26

4.3 Why Clojure?
 As said by the core development team of Clojure, Complexity threatens to

overwhelm the modern programmer. Rather than getting things done, it is all too easy

to focus on tangential problems caused by the technology itself. Clojure was created

to combat this state of affairs through: Simplicity, Empowerment and Focus.

 Simplicity: Clojure is built from ground up to be simple. Code is data. Data is

immutable and state is explicit. Functions are easy to write and test.

 Empowerment: Clojure is built on top of JVM. Clojure provides fast access to

java code, additionally new ways to use the code better.

 Focus: Clojure provides good level of abstraction. Focus can be directly on the

problems rather than tool problems.

Cascalog for sensor data processing

Master Thesis STS 27

Chapter 5

Cascalog

 Cascalog is an open source, fully featured data processing and querying

library for Clojure or java. The main use cases for Cascalog are processing "Big Data"

on top of Hadoop or doing some analysis on local computer. Cascalog is a

replacement for tools like Pig, Hive and Cascading, which operates at a significantly

higher level of abstraction than those tools. [6]

Fig 11: What is Cascalog? [11]

Cascalog is a powerful and easy-to-use data analysis tool for Hadoop. As seen from

the figures 11 and 12, it is a declarative query language that is inspired by datalog

syntax. Queries are written as regular Clojure code. Queries get compiled to one or

more MapReduce tasks through the underlying cascading library. This approach is a

big win over writing MapReduce ourselves. Most queries that we run require multiple

MapReduce tasks chained together. With Cascalog we write a query declaratively

while the underlying libraries take care to create (efficient!) chains of MapReduce

tasks. Rather than writing a Mapper, Reducer, Combiner and job configuration for

mapreduce jobs, with Cascalog we can write our job in a form of a query and we can

write Clojure functions to do whatever we want with our data.

Cascalog can define even complex operations in simple code. Unlike alternatives like

Pig or Hive, it’s written within a general-purpose language, so there’s no need for

separate user-defined functions, but it’s still a highly structured way of defining

queries.

Cascalog for sensor data processing

Master Thesis STS 28

Fig 12: Cascalog’s components [11]

5.1 History of Cascalog
 The main use cases of MapReduce programs are to parse or analyse huge

volumes of data. And since data started growing tremendously, masses of Mapreduce

framework came into existence in the past years. A prominent among them was

Hadoop. Hadoop is never considered “easy” when it comes to developing. It had and

still has a very high learning curve. So this led to the creation of frameworks that

provide higher level of abstraction when working with huge amounts of data.

Hadoop is written in java. Writing MapReduce jobs on Hadoop in any language is

possible. Also writing MapReduce jobs in Clojure is possible. Writing raw

MapReduce a job in any language is difficult because the conceptual model is

primitive, complex computations require several MapReduce jobs chained together.

That’s why data processing tools on top of Hadoop came into existence like

Cascading and other alternatives like Pig [45] and Hive [29].

Cascading is used to create and execute complex data processing workflows on top of

Hadoop hiding the underlying complexities of MapReduce jobs. It provides data-flow

style API using “pipe” metaphor, but the computation steps within pipe is written in

java. Nathan Marz, author of Cascalog implemented Datalog on top of Cascading,

which was an added layer; the result of this was called Cascalog. Cascalog stands

higher on the abstraction ladder implementing Datalog, a truly declarative language

on top of existing Cascading library.

 Cascalog = Cascading + Datalog

Datalog is a declarative programming language, which is a subset of prolog, which is

occasionally used as a database query language. Some interesting differences that

differentiate it from prolog are “order of statements in Datalog doesn’t matter” and

Cascalog for sensor data processing

Master Thesis STS 29

“all Datalog programs are guaranteed to terminate. “ So writing in Datalog is easier

than prolog. Cascalog compiles a Datalog-like language into Cascading workflows

that can be run on Hadoop MapReduce.

5.2 Cascalog Features: [6]
 Super simple – Same syntax is used for functions, filters and aggregators.

Joins are implicit and natural. Fully integrated in a general purpose

programming language.

 Expressive - Logical composition is very powerful and arbitrary Clojure code

can be run in query with little effort.

 Interactive – Run queries from Clojure REPL.

 Scalable – Cascalog queries run as a series of MapReduce jobs.

 Query anything – HDFS data, database data and/or local data can be queried

by making use of cascading’s “Tap” abstraction.

 Careful handling of null values - Null values can make life difficult. Cascalog

has a feature called "non-nullable variables" that makes dealing with nulls

painless.

 First-class interoperability with cascading - Operations defined for Cascalog

can be used in a Cascading flow and vice-versa.

 First-class interoperability with Clojure - Can use regular Clojure functions as

operations or filters and since Cascalog is a Clojure DSL, can use it in other

Clojure code. Full power of Clojure is always available.

 Dynamic queries – Write functions that return queries. Manipulate queries as

first-class entities in the language.

 Easy to extend with custom operations – No UDF interface. Just Clojure

functions.

 Arbitrary inputs and outputs.

 Use Cascalog side by side with other code.

5.3 Getting started with Clojure Cascalog [6]
 The native implementation of Cascalog is in Clojure. But Cascalog also

provides a pure java interface called JCascalog, which is perfectly interoperable

with Clojure version.

Clojure Cascalog queries run on Clojure REPL. Below steps would get us started

with Clojure Cascalog:

 Install leiningen.

 - Since Cascalog programs are Clojure ones, the natural way to

manage a Cascalog project is to use Leiningen (lein).

 Require java 1.6 (run java –version)

 Start a new leiningen project with lein new <project name>, replacing

<project name>

 Include dependency on Cascalog in the project by adding

[cascalog/cascalog-core "2.1.0"] into project’s project.clj file.

 Get started with Cascalog queries.

5.4 Cascalog Queries [46]
 Datasets that are going to be queried are shown below:

Cascalog for sensor data processing

Master Thesis STS 30

(def age

 [[“alice” 28] [“bob” 33] [“chris” 40] [“david” 25] [“Emily”

 25][“george” 31] [“gary” 28] [“kumar” 27] [“Luanne” 36]])

(def person

 [["alice"]["bob"]["chris"] ["david"] ["emily"]["george"]

 ["gary"] ["harold"] ["kumar"]["luanne"]])

(def gender

 [["alice" "f"] ["bob" "m"]["chris" "m"]["david" "m"] ["emily"

 "f"]["george" "m"] ["gary" "m"] ["harold" "m"]["luanne" "f"]])

(def full-names

 [["alice" "Alice Smith"] ["bob" "Bobby John Johnson"] ["chris"

 "CHRIS"]["david" "A B C D E"]["emily" "EmilyBuchanan"]["george"

 "George Jett"]])

(def location

 [["alice" "usa" "california" nil] ["bob" "canada" nil nil]

 ["chris" "usa" "pennsylvania" "philadelphia"]["david" "usa"

 "california" "san francisco"]["emily" "france" nil nil]["gary"

 "france" nil "paris"] ["luanne" "italy" nil nil]])

(def follows

 [["alice" "david"] ["alice" "bob"] ["alice" "emily"]["bob"

 "david"]["bob" "george"]["bob" "luanne"] ["david"

 "alice"] ["david" "luanne"]["emily" "alice"] ["emily"

 "bob"]["emily" "george"] ["emily" "gary"]["george"

 "gary"] ["harold" "bob"] ["luanne" "harold"] ["luanne"

 "gary"]])

(def num-pair

 [[1 2] [0 0] [1 1][4 4][5 10][2 7]

 [3 6][8 64] [8 3][4 0]])

(def integer

 [[-1][0][1][2] [3] [4][5]

 [6][7][8] [9]])

(def dirty-follower-counts

 [[2000 "gary" 56] [1100 "george" 124] [1900 "gary" 49]

 [3000 "juliette" 1002] [3002 "juliette" 1010][3001 "juliette"

 1011]])

(def gender-fuzzy

 [["alice" "f" 100] ["alice" "m" 102] ["alice" "f" 110]["bob" "m"

 100]["bob" "m" 101] ["bob" "m" 102]["bob" "f" 103]["chris" "f"

 100]["chris" "m" 200] ["emily" "f" 100] ["george" "m"

 100] ["george" "m" 101]])

Consider the first basic query
user => (?<- (stdout) [?person] (age ?person 25))

This query can be read as find all the persons for whom the age of a person is equal to

25. When this query is executed we see logging from Hadoop as the job runs and then

results are printed.

Cascalog for sensor data processing

Master Thesis STS 31

5.4.1 Structure of the query

 The query operator being used <- is the query creation operator and ?- is the

query execution operator. So query operator ?<- both defines and runs a query.

In the first part of the query we tell where the results should be emitted. In the above

query it is said (stdout), which means “(stdout)" creates a Cascading tap, which writes

its contents to standard output after the query finishes. Any cascading tap can be used

for output. This means data can be outputted in any file format like sequence file, text

format etc. and anywhere we want (locally, HDFS, database, etc.) The [?person]

specified the variable to be printed; it can have many variables though.

Considering few more queries below: [6]

user=> (?<- (stdout) [?person] (age ?person ?age) (< ?age 30))

This range query tells find all the persons in age dataset who are younger than 30.

Here the age of a person is bounded to a variable ?age and a constraint has been added

which says ?age should be less than 30.

user=> (?<- (stdout) [?person ?age] (age ?person ?age)(< ?age 30))

After defining where the results should be emitted say sink, next result variables of

the query are defined in the Clojure vector. In the above query ?age variable has been

added with ?person in the result variables, which tells find all the person along with

their age from age dataset who are younger than 30.

user=> (?<- (stdout) [?person ?a2] (age ?person ?age)

 (< ?age 30) (* 2 ?age :> ?a2))

Cascalog has the ability to filter and constrain result variables using predicates. Next

in the query are “predicates”.

Cascalog has many flavours of functions, filters and aggregators. Three categories of

predicates are [7]:

 Generators: It is a source of data or tuples. Various operations in the query

act on tuples supplied by query’s generator. A Cascalog generator appears

within a query as a list with generator var, following by a number of output

vars equal to the number of generator’s tuple fields. A generator with two

output fields can be composed in two ways, depending on if you have defined

an array that holds the variables you wish to output the generated data to:
 (<- [?a ?b] (generator :> ?a ?b))

 or
 (def output-variables ["?a" "?b"])

 (<- output-variables (generator :>> output-variables))

There are 3 types of generators:

1. Clojure sequences: These are simplest form of generators and are ideal for

testing. For example:
 (def generator-seq [["a" 1] ["b" 2]])

 (?<- (stdout) [?a ?b] (generator-seq :> ?a ?b))

Cascalog for sensor data processing

Master Thesis STS 32

2. Existing Queries, defined by <-: Queries are decomposable. Very complex

workflows can be decomposed into multiple subqueries. For example, re-

using generator-seq from above:
 (let [subquery (<- [?a ?b] (generator-seq ?a ?b))]

 (?<- (stdout) [?also-a ?also-b](subquery ?also-a ?also-b)))

3. Cascading Taps: These process data from a wide range of input sources into

tuple format. The hfs-textline function, located in cascalog.api, accepts a path

to a file or a directory containing text files and returns a Cascading tap that

produces a 1-tuple for each line of text. These source text files can be

terabytes in size; Cascalog will take care of parallelization. All that need to be

thought are about 1-tuples generated by the tap. For example:
 (let [text-tap (hfs-textline "/some/textfile.txt")]
 (?<- (stdout) [?textline] (text-tap ?textline)))

 Operations: Implicit relations that take in input variables defined elsewhere

and either act as a function that binds new output variables or a filter that

capture or release tuples based on the truthiness of their return values.

Examples include (split ?two-chars :> ?first-char ?last-char) and (< ?val 5).

 Aggregators: While operations act on one tuple at a time, aggregators act on

sequences of tuples. Examples include count, sum, min, max, etc.

A predicate has a name, list of input variables and list of output variables. Predicates

in all the above queries are:

 (< ?age 30)

 < is a Clojure function and since no output variables are specified, this

predicate acts as a filter and filters out records where ?age is less than 30.

 (age ?person ?age)

 It is an aggregator because age predicate refers to a tap which emits

variables ?person and ?age

 (* 2 ?age :> ?a2)

Considering some examples of predicates below:

Example 1:

(?<- (stdout) [?person] (age ?person ?age)(< ?age 30)

 Generator Filter

Example 2:

(?<- (stdout) [?person] (full-name ?person ?name) (extract-first-name ?name :>

“Leon”))

 Generator Function

Example 3:

(?<- (stdout) [?age] (age ?person ?age) (c/count ?count) (> ?count 5))

 Generator Aggregator Filter

Cascalog for sensor data processing

Master Thesis STS 33

5.4.2 Predicate operators

 Cascalog includes two basic operators for specification of predicate input and

output variables :< and :> . And the equivalent versions of these are :<< and :>>

which allows specification of sequences of input and output variables.

:< and :>

The :< predicate operator treats the variables on its right as input to the function on its

left, as here:

(some-op :< ?a :> ?b)

Similarly, the :> operator, located after the initial function and input vars (if any

exist), marks variables to its right as outputs.

Thus, input variables are separated from output variables using keyword :> .

If no keyword :> is specified then:

- Variables are considered as input variables for operations.

- Variables are considered as output variables for generators and aggregators.

For ex: 2 and ?age represent input variables and ?a2 represents output variables in (*

2 ?age :> ?a2)

(> ?age 60 :> ?adult) In this predicate “>” is considered as a function which binds

new variable ?adult as boolean variable which says whether ?age is greater than 60.

Cascalog is purely declarative. Ordering of predicates doesn’t matter.

Considering one example code below :
(def digits [[1 2][3 4]])

 (<- [?a ?b ?c](digits ?a ?b)(+ ?a ?b :> ?c))

The + function receives ?a and ?b and generates ?c. A more explicit form of this

predicate would be:

 (+ :< ?a ?b :> ?c)

The :< ushers the variables to its right into the function to its left. This can be left in

almost all queries because Cascalog is smart enough to infer where :< should go; at

the break between the first function and the following dynamic variables. :> is

necessary, as there is no other way to distinguish between inputs and outputs.

:<< and :>>

The :<< and :>> are used to denote sequences of input and output variables. These are

equivalent to :< and :> discussed above.

Considering an example, which is equivalent to the code, discussed above:
(def my-vars ["?a" "?b"])

 (<- [?a ?b ?c](digits :>> my-vars)(+ :<< my-vars :> ?c))

my-vars is bound to a single sequence of Cascalog vars. If we want to use a sequence

of vars, we have to explicitly place the :<< or :>>. Cascalog can't infer the difference

between :< and :<<.

:#>

The predicate operator, :#>, allows the user to pull specific tuple fields out of a

generator by referencing position.

Cascalog for sensor data processing

Master Thesis STS 34

5.4.3 Queries using different cascalog features

Below sections explains complex Cascalog queries which makes use of different

Cascalog features: [6]

Non-nullable variables

 Cascalog has a feature called non-nullable variables, which handles null

variables. Variables that are prefixed with “?” are non-nullable variables and variables

prefixed with “!” are nullable variables. Below 2 queries shows the effect of non-

nullable variables:
user=> (?<- (stdout) [?person ?city] (location ?person _ _ ?city))

In the above query Cascalog inserts a null check to filter out any records if a non-

nullable variable ?city is binded to null.

user=> (?<- (stdout) [?person !city] (location ?person _ _ !city))

This query produces some null values in result set.

Variables and constant substitution

 Variables are symbols that begin with ? or !. Symbol _ is used to ignore the

variable when we don’t care about the value of the output variable. In all other cases it

is evaluated and inserted as a constant within a query. This feature is called “constant

substitution”. For example
(* 4 ?v :> 100)

Using a constant as output variable acts as a filter on the results of the function. In the

above example 4 and 100 are constants. Output variable 100 acts as a filter to keep

only the values of ?v which produces 100 when multiplied by 4. Strings, numbers,

other primitives and any objects that have Hadoop serializers registered can be used

as constants.

Aggregators

 As mentioned earlier, aggregators are a type of predicates and operate on

series of tuples. Let’s consider below example that finds number of people less than

30 years old.
(?<- (stdout) [?count] (age _ ?a) (< ?a 30) (c/count ?count))

In this example there is a single value about all of the records. Aggregation can also

be done over partition of records.

(?<- (stdout) [?person ?count] (follows ?person _) (c/count ?count))

In this example ?person is included in the output variable. So Cascalog will partition

the records by ?person and apply c/count aggregator within each partition.

Multiple aggregators can also be used.
(?<- (stdout) [?country ?avg]

 (location ?person ?country _ _) (age ?person ?age)

 (c/count ?count) (c/sum ?age :> ?sum)

 (div ?sum ?count :> ?avg))

This query gets the average age of people living in a country. In the above example

we have 2 aggregators c/count and c/sum. “div” operation is applied after both

aggregators run, because it depends on the aggregator output variables.

Cascalog for sensor data processing

Master Thesis STS 35

Custom operations

 Queries can use custom operations like

defmapop: Defines a custom operation which adds fields to a tuple. Expects a single

tuple to be returned.

deffilterop: Defines a custom operation which only keeps tuples for which this

operation returns true.

defmapcatop: Defines a custom operation which creates multiple tuples for a given

input.
Defaggregateop: Defines an aggregator.

user=> (defmapcatop split [sentence]

 (seq (.split sentence "\\s+")))

user=> (?<- (stdout) [?word ?count] (sentence ?s)

 (split ?s :> ?word) (c/count ?count))

The above query gets the number of times a word appears in the set of sentences. But

in the above query the same word will be counted differently if it appears as different

combinations of uppercase and lowercase letters.

Below query is a fix for the above.
user=> (defn lowercase [w] (.toLowerCase w))

user=> (?<- (stdout) [?word ?count]

 (sentence ?s) (split ?s :> ?word1)

 (lowercase ?word1 :> ?word) (c/count ?count))

Here we see the regular Clojure functions can be used as operations. When no output

variables are given, Clojure functions acts as filters. If output variables are given, then

it acts as a map.

Subqueries
 Complex queries can use subqueries. Let form can be used to define

subqueries. Subqueries can be defined using <- , the query definition operator. For

example
user=> (let [many-follows (<- [?person] (follows ?person _)

 (c/count ?c) (> ?c 2))]

 (?<- (stdout) [?person1 ?person2] (many-follows ?person1)

 (many-follows ?person2) (follows ?person1 ?person2)))

In this example, subquery many-follows is defined using the let form. many-follows

subquery can be used within the query executed in the body of the let form.

Cascalog can use multiple subqueries which produce multiple outputs. In the below

example both subqueries many-follows and active-follows are defined without

executing them. The query execution operator ?- is used to bind each query to a tap.

?- executes both queries in tandem.
user=> (let [many-follows (<- [?person] (follows ?person _)

 (c/count ?c) (> ?c 2))

 active-follows (<- [?p1 ?p2] (many-follows

 ?p1)(many-follows ?p2) (follows ?p1 ?p2))]

 (?- (stdout) many-follows (stdout) active-follows))

Cascalog for sensor data processing

Master Thesis STS 36

Duplicate elimination

 If there are no aggregators in the query, then Cascalog tries to insert a reduce

step to remove duplicates from the output. This behaviour can be controlled using

:distinct predicate. Comparing the below queries:
user=> (?<- (stdout) [?a] (age _ ?a))

user=> (?<- (stdout) [?a] (age _ ?a) (:distinct false))

The second query will have duplicates in the output. The use case of this functionality

is when the subquery needs to do some preprocessing on the input source.

Sorting

 Cascalog has :sort and :reverse predicates that control the order in which

tuples arrive at the aggregator. By default, tuples arrive at the aggregator in some

arbitrary order. For example, to find the youngest person each person follows:
user=> (defbufferop first-tuple [tuples] (take 1 tuples))

user=> (?<- (stdout) [?person ?youngest] (follows ?person ?p2)

 (age ?p2 ?age) (:sort ?age) (first-tuple ?p2 :>

 ?youngest))

To find the oldest person that each person follows, :reverse is used together with

:sort predicate:
user=> (?<- (stdout) [?person ?oldest] (follows ?person ?p2)

 (age ?p2 ?age) (:sort ?age) (:reverse true)

 (first-tuple ?p2 :> ?oldest))

Implicit equality constraints

 Considering some examples which are self-explanatory for this feature :
user=> (?<- (stdout) [?n] (integer ?n) (* ?n ?n :> ?n))

integer is one of the dataset mentioned in the earlier section 5.4 of this chapter. It

contains a set of numbers. The above query outputs all the numbers that are equal to

themselves when squared. Here Cascalog sees that ?n is rebinded and automatically

filters out remaining ?n where output of the predicate * is not equal to input.

user=> (?<- (stdout) [?n] (num-pair ?n ?n))

In this example Cascalog detects whether both numbers are same in num-pair dataset.

user=> (?<- (stdout) [?n1 ?n2](num-pair ?n1 ?n2) (* 2 ?n1 :> ?n2))

This example outputs pair of numbers where second number is twice the first number.

Outer joins

 Multiple sources of data can be joined in Cascalog using the same variable

name in the multiple sources of data. For example given two datasets “age” and

“gender” the age and gender of a person can be retrieved using below query:
user=> (?<- (stdout) [?person ?age ?gender]

 (age ?person ?age) (gender ?person ?gender))

There is an inner join in the above example. The result consists of only people

appearing in both datasets.

Cascalog for sensor data processing

Master Thesis STS 37

user=> (?<- (stdout) [?person !!age !!gender]

 (age ?person !!age) (gender ?person !!gender))

This is an example query for full outer join. This consists of null values for people

with non-existence ages or gender. Cascalog's outer joins can be triggered by

variables that begin with "!!". These are called "ungrounding variables". A predicate

that contains an ungrounding variable is called an "unground predicate" and a

predicate that does not contain a grounding variable is called a "ground predicate".

Joining together two unground predicates results in a full outer join, while joining a

ground predicate to an unground predicate results in a left join.
user=> (?<- (stdout) [?person1 !!person2]

 (person ?person1) (follows ?person1 !!person2))

The above query is an example of left join. It gets the follows relationships for each

person. And if no follows relationship exists for a person, it produces null values.

5.5 How Cascalog executes a query
 Cascalog query is defined by a list of output vars which are constrained by a

list of predicates. Predicates can be considered as facts about data. Ordering of

predicates doesn’t matter.

Consider below example to understand how Cascalog executes a query. This query

outputs words from a sentence that occur more than 5 times.
(<- [?word]

 (sentence ?sentence)

 (split ?sentence :> ?word)

 (c/count ?count)

 (> ?count 5))

Cascalog queries are executed in 3 steps:

1. Pre-aggregation

2. Aggregation

3. Post-aggregation

In step 1 Cascalog joins all aggregators while applying as many functions and filters

as it can in the process.

In the above example query, Cascalog starts with the generator sentence. Since all the

input vars are satisfied for a split, it then takes up the split which produces another var

?word. Now (> ?count 5) cannot be applied because ?count var is not satisfied. Since

there are no operations to apply, it moves to aggregation phase.

In step 2 Cascalog partitions the tuples by any output variables that have already been

satisfied. If no variables are satisfied, then it makes a single global partition

containing all tuples. Then executes aggregators of the query on each partition.

In the above example the only output variable ?word is already satisfied, Cascalog

applies the count aggregator to create a ?count var for every value of ?word.

In step 3 Cascalog executes the remaining functions/filters which are dependent on

aggregator output.

In the above example, now ?count variable is satisfied, so predicate (> ?count 5) can

now be applied.

Cascalog for sensor data processing

Master Thesis STS 38

5.6 Running Cascalog
Local mode –Cascalog can be run from REPL on our local machine. In this case

Hadoop runs in local mode which means it is completely in process.

Running on a production cluster –Cascalog queries can be run on external single

node or multinode Hadoop cluster.
Sample data needs to be copied onto the cluster. Next, run lein uberjar to create a jar

containing the program with all its dependencies. To run the query on a cluster and

output the results in text format to /tmp/results, run: (assuming sample data is copied

to /tmp/follows and tmp/action)
hadoop jar [prjectname-standalone.jar] /tmp/follows /tmp/action

/tmp/results

Since uberjar has Clojure within it, queries can be run from REPL using below

commands:
hadoop jar [prjectname-standalone.jar] clojure.lang.Repl

user=> (use 'cascalog-demo.demo) (use 'cascalog.api)

Followed by queries on REPL .

All the custom operations have to be compiled into uberjar before running on

production cluster. But this is not the case in Hadoop local mode, where REPL is still

great for development of custom operations.

5.7 Cascalog users and their opinions: [8]
 Factual – It was launched in October 2009 is an open data platform which is

relying more and more on the Hadoop stack of technologies. It aggregates and

processes growing sets of data. Factual is using Cascalog to run machine

learning algorithms on billions of web pages and user contributed data to

aggregate factual data present in multiple sources. Factual says Cascalog has

allowed easy abstraction from details of data sources (with taps, as in

cascading).They also benefit from the ad-hoc nature of Cascalog when doing

things such as generating statistics across our datasets, verifying map-reduce

job outputs, tracing the history of data through our processing pipeline and

running experimental data manipulation and transformations.

Cascalog -We're also benefiting from the availability of Clojure in Cascalog.

Clojure is a natural fit when doing custom data manipulations and it's also quite

useful to use the REPL to experiment. Being able to "call out" to pure Clojure

from our Cascalog queries has been a big win.

 Harvard school of health –It uses Cascalog for processing large large data sets

of sequencing data. They need approaches that scale to increasing amounts of

data also such approaches should facilitate rapid iterations of coding and

testing for algorithm development work. They say they need to be as efficient

as possible, because any development code could potentially become part of

processing pipelines.

Cascalog -It made coding for Hadoop much easier. It allows them to focus on the

queries and data interpretation. It additionally increases the understandability of

the code, which is essential for reproducibility and transparency.

Cascalog for sensor data processing

Master Thesis STS 39

 Intent Media –It helps retailers recognize and react to the unique value of each

site visitor by providing predictive analytics. They analyse terabytes of data

efficiently using Cascalog to help retailers make smart, real-time choices

about who sees what and how to adapt their site to best realize the full value of

each visitor.

Cascalog –It is an increasingly core component of our backend modelling pipeline

comprising data aggregation, pre-processing and feature extraction.

 Lumosity -It is pioneered in understanding and enhancement of human brain

to give each person the power to unlock their full potential. Data analysis is

an important part of their business, whether it's to conduct new scientific

studies to learn more about the human brain or analyse user behaviour.

Cascalog -It allows our Research & Development team to efficiently analyse our

database of human cognitive performance – the largest in the world with over 450

million data points - to gain new insights on cognitive training.

 Twitter –It uses Cascalog. A batch workflow written using Clojure and

Cascalog updates a variety of !ElephantDB views a few times a day. These

views include time series aggregations, influence analysis, follower

distribution analysis and more. Additionally, the dataset greater than 40TB is

vertically partitioned in a few different ways to allow for efficient querying

later on using Cascalog. Twitter says Cascalog's conciseness and great

expressive capabilities greatly reduce the complexity in their batch processing.

Cascalog –It is also used for ad-hoc querying and exploratory work, taking

advantage of the ease of defining and running queries from the REPL. When a

major event happens, we extract relevant tweets from the master datastore to a

local computer where they can be analysed in a quick iterative fashion.

 Yieldbot's -Cascalog forms the core of intent modelling and matching

technology stack. Publisher's data is fed through a batch workflow at regular

intervals and performs a wide array of task such as predictive modelling, text

processing and metrics aggregation.

Cascalog and Clojure allow us to develop, deploy, explore and iterate on our

workflows with extreme speed and minimal effort.

 REDD Metrics –It uses Cascalog at the heart of their large-scale deforestation

monitoring system, currently housed at the Center for Global Development in

Washington. They process hundreds of gigabytes of NASA satellite data down

into concrete predictions on the likelihood that some piece of land will be

deforested in the next month.

Cascalog –It allows us to generate timeseries and perform analysis at a scale

unimaginable with current "state of the art" practices.

 uSwitch –It uses high-level data to make business decisions and drill down to

the microscopic-level to enable a personalised experience to each of their

customers. Cascalog sits at the heart of their modular data pipeline

transforming immutable event data to clean and extract customer features for

the rest of the business. Furthermore, the logical and functional nature of

Cascalog enables their small data team to build simple, composable data

processing workflow on scale.

Cascalog for sensor data processing

Master Thesis STS 40

5.8 Why Cascalog?
 There are a number of different technologies that use Hadoop as their

processing/execution environment for querying and processing big data. Then comes

the question why Cascalog?

There are two categories of work we may do with data: querying and transforming.

Some tools are best suited for querying like SQL and few others are best suited for

transforming. Cascalog is the best approach for both for a number of reasons. Firstly,

Cascalog is a Clojure DSL. So manipulating data with Clojure is easy compared to

other general-purpose languages (like Java, Python, Ruby etc.). Since it is on JVM it

can leverage on any existing library. Its language is homoiconic, which means the

source code is made of same data structures as that we use for data. And also same

functions that are used for manipulating data can be used for manipulating source

code at compile time.

In languages like Pig [45] and Hive [29] in order to make complex manipulations of

data, User Defined Functions (UDF) is to be written which is a great way to extend

basic functionality. But in Pig and Hive, UDF have to be written in different language

because, the basic PigLatin of Pig and SQL of Hive have only handful of functions

and lack basic control structures. Pig and Hive allow writing UDF in different

languages like Java, Python or few others. But this requires developers to switch

between programming paradigms. We start with a language like PigLatin and SQL

and then end up writing, compiling and bundling UDF in another different language.

Unlike these languages Cascalog is Clojure DSL, so main language is Clojure,

functions are written in Clojure, data is represented as Clojure data types and runtime

is JVM –all the available libraries in the JVM ecosystem can be used, no switch

between the languages is required, no additional compilation is required, no additional

installation burden.

Why another query language like Cascalog for Hadoop? Because existing tools cause

too much accidental complexity.

Accidental complexity –complexity caused by the tool used to solve a problem rather

than a problem itself. [11] Distinct query languages cause accidental complexity.

Accidental complexity caused by other Hadoop tools like Pig and Hive is: query

language is different than the programming language as explained above.

Table 2 shows the comparison when the query language is different from

programming language.

Other tools Cascalog

Friction when embedding custom

operations.

Custom operations defined just like any

other functions.

Interlacing queries with regular

application logic is unnatural.

Interlacing queries with regular

application logic is trivial.

Cascalog for sensor data processing

Master Thesis STS 41

Generating queries dynamically is

difficult.

Generating queries dynamically is easy

and idiomatic.

 Table 2: Cascalog versus other tools [11]

With Cascalog, query logic can be customized –including text parsing – using the full

power of Clojure. So whenever Cascalog query needs to manipulate data or text in

some non-trivial fashion, a full programming language is available. There isn’t an

artificial barrier between programming language and query language.

Pig is one option for extract transform and load of log files and on big data but it is by

no means the only option available. Others include Fluentd, Flume, Scalding and

Cascading. Most of the other tools also have or use Hadoop as the processing/

execution environment. Like Pig, Cascalog takes care of building the low-level

Hadoop job artefacts but offers a higher-level data abstraction. However, Cascalog

uses Cascading for managing its interface with Hadoop. Cascalog has the ability to

abstract and ability to compose in higher levels compared to other tools. It is based on

logic programming and rule interface, we can and it is encouraged to write sub-

queries and reuse them. So complex processing can be written by composing sub-

queries. Finally most important feature REPL (Read, Eval, Print Loop) enables to

explore data in a more interactive way. One more reason worth using Cascalog is it is

suitable for either batch process or a real-time streaming solution.

Cascading describes itself on its home page as: Cascading is an application

framework for Java developers to quickly and easily develop robust Data Analytics

and Data Management applications on Apache Hadoop.

It is also worth emphasising the Full power of Clojure always-available differentiator:

a Cascalog program is a Clojure program and the former can use the functions and

facilities of the latter in a very natural way. Contrast this flexibility with Pig Latin and

its user-defined functions where the API between the former and latter is defined and

constrained.

5.9 Advantages of Cascalog
 Using Cascalog to write Hadoop jobs in Clojure - Even though only plain

Clojure can be used, Cascalog gives the ability to write MapReduce jobs in a

fast and concise way.

 The big bonus that comes from using Cascalog is the ease of testing.

 Cascalog stands higher on the abstraction ladder implementing Datalog, a

truly declarative language on top of existing Cascading library.

 Unlike many other libraries and frameworks that increase the abstraction level

while dropping the ability to go one level deeper, Cascalog gives the ability to

actually resort to writing Cascading when required.

 There is an increase in expressiveness and performance of Cascalog compared

to other Hadoop tools without compromising its simplicity or flexibility.

 Cascalog has added benefits to being Clojure DSL like –Excellent module

system, Interactive REPL; make use of any Clojure functions in queries.

 Can build queries in an expressive and composable way as one would expect

with a Clojure library and get scalability for free.

https://cwiki.apache.org/FLUME/
https://github.com/twitter/scalding
http://www.cascading.org/

Cascalog for sensor data processing

Master Thesis STS 42

Chapter 6

Experimenting with Cascalog on sensor data

In today’s world there are millions of devices and soon may be billions that are

connected to the internet - cars, medical equipment, cell phones, buildings, meters,

power grids, automobiles with built-in sensors and many more. These connected

devices comprise the Internet of Things. [19] The Internet of Things is generating an

unfathomable amount of sensor data -product manufacturers need to manage and

analyse the data to build better products, predict failures to reduce costs and to

improve customer satisfaction. According to Gartner, there will be nearly 26 billion

devices on the Internet of Things by 2020. [19] Sensors are used in different sectors

namely environmental monitoring, infrastructure management, industrial applications,

energy management, medical and healthcare systems, building and home automation,

transport systems and large scale deployments. Sensors are being used for monitoring

movements, measuring the environment and many other purposes without the direct

human interventions. Sensors are the future of distributed data.

[20]

6.1 Challenges with sensor data
 There are differences between sensor based data sources and traditional

database sources, which make standard query processors poorly suited for querying

sensor data as explained in section 2.5.

Sensors produce data continuously at regular intervals, because they use push model.

They deliver data in streams. Sensor data should be processed or queried in real time

as the data arrives, because it would be very expensive to store raw sensor data on

disk, or mostly all the sensor streams represent real world events like traffic accidents,

CCTV footages in banks and few others which need to be responded in time.

Sensors do not deliver data in reliable rates, data is often garbled. Limited processor

and battery resources are the constraints.

In section 6.2 we see how sensor data is queried using Cascalog, which uses Hadoop

as processing/execution environment.

6.2 Analysing set of Cascalog queries
 In this experiment we use sensor data provided by Siemens. Data consists of

events and measurements and they both correlate. Three different datasets which we

call Dataset1, Dataset2 and Dataset3 are used in the experiment. These three datasets

have a different amount of sensors, a different amount of tuples for the measurement

table and event table accordingly and a different time range in each case. Comparing

the sizes of these datasets - Dataset1<Dataset2<Dataset3. Below is a detailed

description of how the three datasets look like.

Dataset1

Sample of measurements table:
Timestamp assembly sensor value

12.05.2010 00:00:00 GasTurbine2103/01 TC1 251.3

This table has 6 sensors with a time range of 1 month and 25.921 tuples.

Cascalog for sensor data processing

Master Thesis STS 43

Sample of events table:
Timestamp assembly category eventtext downtime tag process state

11.05.2010

23:57:50

GasTurbine2103/01 Start

Inhibit

Flame

On

03:37:43 sti

1033
FALSCH No

Data

This table has 2093 tuples with a time range of 1 month.

Dataset2

Sample of measurements table:
Timestamp assembly sensor value

2005-07-06 16:27:38 Turbine2 Static Pressure 1.000

This table has 420.001 tuples.

 Sample of events table:
Timestamp assembly category eventtext downtime tag process state

2012-09-

01

10:20:00

Turbine1 Event

from the

CU

Event642 - 5 f 5373

This table has 182974 tuples.

Dataset3

This dataset consists of timestamp and the values of different sensors during that

timestamp. This dataset is the largest of the three datasets.

This section describes a few important queries on sensor data. First query is explained

in detail and all the rest are the shorthand of concrete implementations.

Listing 4.1: Receive all sensor events with “Warning” category
(ns Cascalogproject.core

 (:use [Cascalog.api]

 [cascalog.more-taps :only (hfs-delimited)])

(:gen-class))

(def info

 (hfs-delimited "/Users/Data/Messages.txt"

 :delimiter ";"

 :outfields ["?timestamp" "?assembly"

"?category" "?eventtext" "?downtime" "?tag" "?process" "?state"]

 :skip-header? false))

(def info-tap

 (<- [?timestamp ?assembly ?category]

 ((select-fields info ["?timestamp" "?assembly" "?category"])

?timestamp ?assembly ?category)))

(?<- (stdout)

 [?timestamp ?assembly ?category]

 (info-tap :> ?timestamp ?assembly ?category)

 (clojure.string/trim ?category :> ?trimmed-category)

 (= ?trimmed-category "Warning"))

This query is run on Dataset1. First we need to include the dependencies on Cascalog,

Clojure and any other essential dependencies in project.clj file. And then import a

number of namespaces from these libraries into our script or REPL.

Cascalog for sensor data processing

Master Thesis STS 44

Cascading provides a number of taps -sources of data or sinks to send data to,

including one for CSV and other delimited data formats. Cascalog also has some very

nice wrappers for several of these taps, but not for the CSV one.

hfs-delimited in the query above is used to read delimited file with a delimiter like

quote characters, comma or any other.

The default separator is a tab character, so the standard hfs-delimited tap with no

options would produce one tuple for each line of text:

(hfs-delimited "/path/to/file")

;; makes textlines

The ":delimiter" option allows you to change this:
(hfs-delimited "/pathto/data”

 :delimiter ";")

;; produces 8-tuples, all strings

The problem of the header line getting in the way can be solved using :skip-header?
(hfs-delimited "/pathto/data"

 :delimiter ","

 :skip-header? true)

;; produces 8-tuples of strings.

Next, if we include a vector of classes with the :classes keyword, the tap will do class

conversions on the fields:
(hfs-delimited "/pathto/data"

 :delimiter ","

 :classes [String String String Float Float Float Integer

 Float]

 :skip-header? true)

;; produces 8-tuples with the above classes -- numbers are parsed properly, strings

stay strings.

The ability to select out specific fields by name can be done using :outfields
(def info-tap

 (<- [?timestamp ?assembly ?category]

 ((select-fields info ["?timestamp" "?assembly" "?category"])

 ?timestamp ?assembly ?category)))

;; returns 3-tuples

And the last section is the Cascalog query which retrieves all the events with

“Warning” category together with the time of their occurrence and assembly causing

it. The query structure is explained in the previous chapter in section 5.4.1.

Clojure.string/trim is a Clojure API to remove whitespaces from both ends of a String.

Listing 4.2: Retrieve all the reasons for start failure and also time it occurred

(?<- (stdout)

 [?timestamp ?category ?eventtext]

 (info-tap :> ?timestamp ?category ?eventtext)

 (clojure.string/trim ?category :> ?trimmed-category)

 (= ?trimmed-category "Start Failure"))

Cascalog for sensor data processing

Master Thesis STS 45

This query is run on Dataset1. The query includes ?eventtext in the output vars which

gives the reason for start failure together with the time of their occurrence.

Listing 4.3: Union of “Start Inhibit” and “Start Failure” events

(let [subquery1 (<- [?timestamp ?category]

(info-tap :> ?timestamp ?category)

(clojure.string/trim ?category :> ?trimmed-category)

(= ?trimmed-category "Start Failure"))

subquery2 (<- [?timestamp ?category]

(info-tap :> ?timestamp ?category)

(clojure.string/trim ?category :> ?trimmed-category)

(= ?trimmed-category "Start Inhibit"))]

(?- (stdout) (union query1 query2)))

This query is run on Dataset1. subquery1 retrieves events with “Start Failure”

category and subquery2 retrieves events with “Start Inhibit” category. And then using

union of Cascalog.api the tuples from the subqueries are merged together into a single

subquery. Uniqueness of tuples is handled by union api. subquery1, subquery2 and

the query using union are bound in let. let is a Clojure special form which evaluates

the expression in a lexical context.

Listing 4.4: Retrieve all the events where sensor values are greater than 800.0

(?<- (stdout)[?timestamp ?assembly ?value]

 (info-tap :> ?timestamp ?assembly ?value)

 (> ?value 800.0))

This query is run on Dataset1. This is similar to previous queries except

Clojure.string/trim not being used, since ?value is a float value and string trimming

cannot be done on it. And > of Clojure.core checks if the numbers are in

monotonically decreasing order. Also in info function :classes should be used in order

to parse float and strings correctly.

Listing 4.5: Count of events where sensor values reached greater than 800.0

(?<- (stdout)[?count ?value]

 (info-tap :> ?value)

 (> ?value 800.0)(c/count ?count))

This query is run on Dataset1. Cascalog provides various helper operations in

Cascalog.ops namespace. We need to include (:require [cascalog.ops :as c]) within

namespace declaration. Count is one such built in operation present in Cascalog.ops.

Cascalog makes a partition the tuples by any output variables that are satisfied, in this

only one variable ?value. Applying the filter to filter out ?value greater than 800.0 and

then making a count of them. Similar queries can be made to find the number of times

for start failure categories.

Listing 4.6: Highest value of sensor

(?<- (stdout) [?timestamp-out ?value-out]

 (info-tap ?timestamp ?value)

 (:sort ?value) (:reverse true)

 (c/limit [1] ?timestamp ?value :> ?timestamp-out ?value-out))

Cascalog for sensor data processing

Master Thesis STS 46

This query is run on Dataset1. :sort and :reverse predicates are used to control the

order in which the tuples arrive at an aggregator. By default aggregators receive

tuples in some arbitrary order. Using only :sort predicate produces results in

increasing order of values. Together with :reverse predicate the order is reversed

means descending order of output. limit is a built in operator of Cascalog used to

return the top-n tuples. In above query 1 is used with limit. So only the highest value

will be displayed.

Also first-n can be used as below. first-n accepts a generator and a number `n` and

returns a subquery that produces the first n elements from the supplied generator.

(def info-tap

 (<- [?timestamp ?value]

 ((select-fields info ["?timestamp" "?value"]) ?timestamp ?value

)))

(?<- (stdout) [?timestamp ?value] (info-tap ?timestamp ?value)

 ((c/first-n info-tap 1 :sort["?value"] :reverse true)?timestamp

 ?value))

Other method mentioned below produces top 4 sensor values.

(defbufferop first-tuples [tuples](take 4 tuples))

(?<- (stdout) [?timestamp-out ?smallest](info-tap ?timestamp ?value)

 (:sort ?value)(:reverse true)(first-tuples ?timestamp ?value :>

 ?timestamp-out ?smallest))

Similar to above queries, lowest value of sensor can be obtained just by removing

:reverse predicate with :sort. It is also a must to include (:require [cascalog.ops :as c])

within the namespace declaration since limit, first-n are present in that.

Listing 4.7: Sensor values between timestamp 12:05:2010 10:00:00 and 12:05:2010

11:00:00

(ns Cascalogproject.core

(:use [cascalog.api]

 [cascalog.more-taps :only (hfs-delimited)])

(:require [clj-time.core :as t])

(:require [clj-time.format :as f])

(:require [cascalog.ops :as c])

(:require [clj-time.coerce :as ct])

(:gen-class))

(def info

 (hfs-delimited "/Volumes/user/burner.txt"

 :delimiter ";"

 :outfields ["?timestamp" "?assembly" "?sensor"

 "?value"]

 :classes[String String String Float]

 :skip-header? false))

(def info-tap

 (<- [?timestamp ?value]

 ((select-fields info ["?timestamp" "?value"]) ?timestamp

 ?value)))

Cascalog for sensor data processing

Master Thesis STS 47

 (def datefrom "12:05:2010 10:00:00")

 (def custom-formatter (f/formatter "dd:MM:yyyy HH:mm:ss"))

 (def start-value (ct/to-long (f/parse custom-formatter datefrom)))

 (def dateto "12:05:2010 11:00:00")

 (def end-value (ct/to-long (f/parse custom-formatter dateto)))

 (defn convert-to-long [a]

 (ct/to-long (f/parse custom-formatter a)))

 (?<- (stdout)[?timestamp ?value](info-tap ?timestamp ?value)

 (convert-to-long ?timestamp :> ?converted)

 (>= ?converted start-value)

 (<= ?converted end-value))

This query is run on Dataset1. To deal with timestamps clj-time, a date and time

library for Clojure is used. Dependency for clj-time library should be included in the

project.clj file. And then all the necessary namespaces need to be imported from the

library in the namespace declaration section. Function info is the source of data and

also uses appropriate options. datefrom and dateto are the start and end timestamps,

which represents a range and are created using def. If we need to parse or print date-

times, we use clj-time.format:
(:require [clj-time.format :as f])

Parsing and printing are controlled by formatters. We can either use one of the built in

ISO8601 formatters or define our own formatter. As seen in code snippet above, we

are defining our own custom-formatter, which uses date-time format

"dd:MM:yyyy HH:mm:ss" in which mm is minutes, MM is months, ss is seconds.

to-long is used to convert a Joda DateTime to and from a Java long, so that comparing

dates would become easy. And in the query we check for every timestamp from the

datasource, if it lies between the start-value and end-value. The tuples satisfying those

filters are displayed with the sensor values.

Listing 4.8: What is the highest sensor value between specific time period

(?<- (stdout)[?timestamp-out ?value-out](info-tap ?timestamp ?value)

 (convert-to-long ?timestamp :> ?converted)

 (:sort ?value) (:reverse true)

 (> ?converted start-value)

 (< ?converted end-value)

 (c/limit [1] ?timestamp ?value :> ?timestamp-out ?value-out))

This query is run on Dataset1. Same as the query in Listing 4.7, but sorting is

performed on sensor values here to find the highest value between given timestamps.

Listing 4.9: Retrieve all sensor values for the last 4 years from now

(def multi-parser (f/formatter (t/default-time-zone) "dd:MM:YYYY

 HH:mm:ss" "YYYY-MM-dd HH:mm:ss"))

 (def currenttimestamp

 (f/unparse multi-parser (f/parse multi-

 parser (l/format-local-time (l/local-now) :mysql))))

 (def custom-formatter (f/formatter "dd:MM:yyyy HH:mm:ss"))

 (def subtractedtime

Cascalog for sensor data processing

Master Thesis STS 48

 (l/format-local-time (t/minus (f/parse custom-formatter

 currenttimestamp) (t/months 48)):mysql))

 (def required-timestamp (f/unparse multi-parser (f/parse multi-

 parser subtractedtime)))

(defn convert-to-long [a]

 (ct/to-long (f/parse custom-formatter a)))

(?<- (stdout)[?timestamp ?value](info-tap ?timestamp ?value)

 (convert-to-long ?timestamp :> ?converted)

 (> ?converted required-timestamp))

This query is run on Dataset1. multi-parser and minus are used in addition to

previous queries. multi-parser is present in namespace clj-time.format, which is used

to parse dates in multiple formats and format dates in just one format. minus is present

in namespace clj-time.core which subtracts some amount of time from the given

time. In the above code snippet 48 months to say 4 years is subtracted from the

current timestamp to get the required-timestamp.

Neither Hadoop nor Cascalog are built to work on smaller data sets, it is important to

conduct the experiment on data of big sizes. The experiment is extended to work on

sensor data bigger in size compared to Dataset1. Below are some complex queries,

which run on Dataset2 and Dataset3.

Listing 4.10: Collect all messages related to potential start problems, concerning some

time period in the past.

(let [query1 (<- [?timestamp ?category_description ?eventtext]

 (info-tap :> ?timestamp ?category_description ?eventtext)

 (convert-to-long ?timestamp :> ?converted-timestamp)

 (>= ?converted-timestamp needed-timestamp)

 (= ?eventtext "Start initiated"))

 query2 (<- [?timestamp ?category_description ?eventtext]

 (info-tap :> ?timestamp ?category_description ?eventtext)

 (convert-to-long ?timestamp :> ?converted-timestamp)

 (>= ?converted-timestamp needed-timestamp)

 (= ?category_description "Event from the CU which indicates

automatic prevention from a start attempt due to some fault"))

 query3 (<- [?timestamp ?category_description ?eventtext]

 (info-tap :> ?timestamp ?category_description ?eventtext)

 (convert-to-long ?timestamp :> ?converted-timestamp)

 (>= ?converted-timestamp needed-timestamp)

 (= ?category_description "Event from the CU which

indicates automatic prevention from a start attempt"))]

 (?- (stdout) (union query1 query2 query3)))

This query is run on Dataset2.

Listing 4.11: Get a sorted list of event text and their number of occurences.

(defn global-sort [sq fields]

 (let [out-fields (get-out-fields sq)

 new-out-fields (v/gen-nullable-vars (count out-fields))]

 (<- new-out-fields

 (sq :>> out-fields)

 (:sort :<< fields)(:reverse true)

 ((IdentityBuffer.) :<< out-fields :>> new-out-fields))))

Cascalog for sensor data processing

Master Thesis STS 49

 (?- (stdout)

 (global-sort (<- [?count ?eventtext] (info-tap ?eventtext)

(c/count ?count))["?count"]))

This query is run on Dataset2. Simple counting and sorting as in some previous

examples would not work in this case. :sort actually means "when aggregating,

perform a secondary sort by the provided parameters within each separate reduce

task." Every Cascalog query can have zero or one aggregations. In above example

query, there is one aggregator, but it's introduced by `count` operator, which itself is

then the source of the ?count variable. So sorting by ?count becomes a paradox,

asking Cascalog to sort by ?count before it exists, which produces an error message.

The :sort sorts items before they go into the buffer. To sort on the way out is done

using global sort like in above query which uses IdentityBuffer which produces

desired output.

Listing 4.12: Identify the control unit that causes most startup problems.

(defn comparethis [c1 c2]

 (if (< c1 c2) "Turbine2" "Turbine1"))

(let [value1 (<- [?count1 ?category_description]

 (info-tap ?assembly ?category_description)

 (= ?category_description "Event from the CU which

indicates automatic prevention from a start attempt")

 (= ?assembly "Turbine1")(c/count ?count1))

 value2 (<- [?count2 ?category_description]

 (info-tap ?assembly ?category_description)

 (= ?category_description "Event from the CU which

indicates automatic prevention from a start attempt")

 (= ?assembly "Turbine2")(c/count ?count2))]

(?<- (stdout) [?final-value]

 (value1 :> ?count1 ?category_description)

 (value2 :> ?count2 ?category_description)

(comparethis :< ?count1 ?count2 :> ?final-value)))

This query is run on Dataset2. In this example of Listing 4.12, numbers of start

problems of two control units Turbine1 and Turbine2 are compared to see which has

the max start problems. In this query, 2 subqueries are formulated value1 and value2

which has information of count and category description. Then these 2 subqueries are

used as generators to access values of ?count1 and ?count2, further on ?count1 and

?count2 are compared to find the control unit.

Listing 4.13: Find events when a specific sensor previously had a peak
(defn convert-to-long [a]

 (ct/to-long (f/parse custom-formatter a)))

(def info-tap

 (<- [?timestamp ?BTT367]

 ((select-fields info ["?timestamp" "?BTT367"])

?timestamp ?BTT367)))

(defn convert-to-float [a]

 (try

 (if (not= a " ") (read-string a))

Cascalog for sensor data processing

Master Thesis STS 50

 (catch Exception e (do nil))))

(?<- (stdout) [?timestamp-out ?highest-value](info-tap ?timestamp

?BTT367)

 (convert-to-float ?BTT367 :> ?converted-BTT367)

 (convert-to-long ?timestamp :> ?converted-timestamp)

 (>= ?converted-timestamp start-value)

 (<= ?converted-timestamp end-value)

 (:sort ?converted-BTT367)(:reverse true)

 (c/limit [1] ?timestamp ?converted-BTT367 :> ?timestamp-out

?highest-value))

This query is run on Dataset3.

Cascalog for sensor data processing

Master Thesis STS 51

Chapter 7

Performance Evaluation of Cascalog queries

As seen in chapter 6, we have a set of Cascalog queries on sensor data. Benchmarking

is done on these Cascalog queries. Benchmarking is used to measure performance

using a specific indicator. In our experiment this specific indicator is execution time,

which we compare between the single node Hadoop and multinode Hadoop cluster.

Also further on, we increase the data size to see effects on execution time. Some test

cases are created with queries that differ in amount of data or complexity of queries.

7.1 Performance evaluation methods
 In order to get the execution time of Cascalog queries, time expression of

Clojure can be used. This looks like (time (Cascalog query)). This evaluates the

expression and prints the time it takes after a single run.

Considering an example:
(time (?<- (stdout)

 [?timestamp ?assembly ?category]

 (info-tap :> ?timestamp ?assembly ?category)

 (clojure.string/trim ?category :> ?trimmed-category)

 (= ?trimmed-category "Start Inhibit")))

The results of which looks like:

Elapsed time: 610.221708 msecs (on 1
st
 run)

Elapsed time: 787.81836 msecs (on 2
nd

 run)

Elapsed time: 680.919887 msecs (on 3
rd

 run)

Here we see there are variations in elapsed time from one run to another. There are

many factors that cause variations in run time between runs in most computations. For

example: [16]

 Computers do not simply execute one process at a time. They continually

switch from one process to another. So it depends on what other processes are

running.

 The state of L1, L2, etc. caches in the CPU memory systems, because the

access patterns to the caches depend not just on the references made by the

program we are trying to measure, but on those of other processes executing

concurrently.

 If files are being accessed on a mechanical disk, then the execution time

depends on the head position.

 If multiple nodes are involved, what other traffic is on the network.

 The number of users sharing the system, the network traffic and timing of disk

operations –these factors influence the exact scheduling of processor resources

for one program.

 For JVM processes, as Clojure/Java is, whether or not the JIT compiler runs

on our code, and if so, how the execution that occurred so far up to that point

affects its "choices" in what kind of optimized code to produce.

Cascalog for sensor data processing

Master Thesis STS 52

So all the above history like thread handling, operating system or hardware issues can

cause variations in execution time. Since the results from the above example are in

milliseconds, it can be ignored. But in order to be little more accurate, running the

experiment multiple times is preferred instead of reporting a single value. So statistics

like min, max, median, arithmetic mean, 10
th

 percentile etc. can be used. In order to

have statistically rigorous results, Cascalog queries have to be run number of times

starting from 5 to 10 and then variance of results should be observed. More is the

variance, more number of times query has to be run in order to be confident that the

results characterize the range of run times that are likely to occur.

The above option would be a little complicated. Other option is Criterium. Criterium

is a benchmarking library for Clojure. It measures the computation time of an

expression. It is designed to address some of the pitfalls of benchmarking and

benchmarking on JVM in particular. It includes [17]:

 Multiple evaluations are statistically processed.

 Purging of gc before testing, to isolate timings from gc state prior to testing.

 A final forced GC after testing to estimate impact of cleanup on the timing

results.

 Inclusion of a warm-up period, designed to allow the JIT compiler to optimise

its code.

Considering an example:
(use 'criterium.core)

(bench (?<- (stdout)

 [?timestamp ?assembly ?category]

 (info-tap :> ?timestamp ?assembly ?category)

 (clojure.string/trim ?category :> ?trimmed-category)

 (= ?trimmed-category "Warning")))

Result looks like:

Evaluation count: 240 in 60 samples of 4 calls.

Execution time mean: 265.359848 ms

Execution time std-deviation: 25.544031 ms

Execution time lower quantile: 229.851248 ms (2.5%)

Execution time upper quantile: 310.110448 ms (97.5%)

Overhead used: 2.708614 ns

It means Criterium made 240 timed test runs in 4 batches of 60 samples each. And

takes the mean execution time of those entire 240 test runs (instead of reporting on

single value, multiple invocations are made to address the pitfall of benchmarking).

"lower quartile" means the 2.5% of the 240 samples (0.025 * 240 = 6) that had the

lowest time that is 229.8 ms. Overhead (in this case negligible small) is the time

Criterium takes in the samples. The main focus in this result is on execution time

mean. In this experiment benchmarking is done on all the queries using execution

time mean outputted by Criterium.

7.2 Hardware specification
 How fast does program X run on machine Y? -For such questions it is also

important to consider processor performance of machine on which program X is run.

Cascalog for sensor data processing

Master Thesis STS 53

In our experiment Cascalog queries are run and performance tests are conducted on

the server with hardware specifications as below:

 Transtec Calleo 552

 2U Quad Opteron

 2 x AMD 8-Core Processors

 5 x 2TB disk space

 2x GB Ethernet

7.3 Experimental Results

Queries described in chapter 6 as Listing are considered as test cases here. Listing

number corresponds to those queries. Datasets explained in chapter 6 that is Dataset1,

Dataset2 and Dataset3 are used here. Executing Cascalog queries on Dataset1 of

sensor data on single node and multinode Hadoop cluster produces the following

results.

Listing 4.1: Receive all sensor events with “Warning” category

Single node Hadoop: Evaluation count: 180 in 60 samples of 3 calls.

 Execution time mean: 374.846440 ms

 Execution time std-deviation: 2.563211 ms

 Execution time lower quantile: 370.776542 ms (2.5%)

 Execution time upper quantile: 379.101664 ms (97.5%)

 Overhead used: 3.800577 ns

Multinode Hadoop: Evaluation count : 180 in 60 samples of 3 calls.

 Execution time mean: 368.122151 ms

 Execution time std-deviation: 4.094212 ms (2.5%)

 Execution time lower quantile: 361.358928 ms (97.5%)

 Overhead used: 6.921949 ns

Listing 4.2: Receive all events with “Start Failure “ problems and also the reasons for

it

Single node Hadoop: Evaluation count : 180 in 60 samples of 3 calls.

 Execution time mean: 369.652707 ms

 Execution time std-deviation: 3.058232 ms

 Execution time lower quantile: 357.260020 ms (2.5%)

 Execution time upper quantile: 367.880197 ms (97.5%)

 Overhead used : 3.812353 ns

Multinode Hadoop : Evaluation count : 180 in 60 samples of 3 calls.

 Execution time mean: 362.918414 ms

 Execution time std-deviation: 3.357051 ms 

 Execution time lower quantile: 365.137062 ms (2.5%)

 Execution time upper quantile: 376.331265 ms (97.5%)

 Overhead used: 3.825462 ns

Analyzing a bit about the above results, which also applies for queries below. As

mentioned in the beginning of this chapter the main focus of results is on execution

Cascalog for sensor data processing

Master Thesis STS 54

time mean. And in some cases it could be interesting when the execution time std-

deviation is too large. We see from the results that Execution time mean of multinode

Hadoop is less than the single node Hadoop, which means Multinode Hadoop is faster

in processing than single node Hadoop. But still the difference between single and

multinode is not much in terms of execution time mean. This could be because our

multinode Hadoop has two Datanodes running on a single machine. May be two

datanodes on a single machine does not prove much. Multiple datanodes running on

one server will compete for cores, bus and memory access, even if not for spindles.

Listing 4.3: Union of “Start Inhibit” and “Start Failure” events

Single node Hadoop: Evaluation count: 60 in 60 samples of 1 calls.

 Execution time mean: 15.447780 sec

 Execution time std-deviation: 1.090036 sec

 Execution time lower quantile: 14.907752 sec (2.5%)

 Execution time upper quantile: 19.695728 sec (97.5%)

 Overhead used: 3.777536 ns

Multinode Hadoop: Evaluation count : 60 in 60 samples of 1 calls.

 Execution time mean: 14.447780 sec

 Execution time std-deviation: 1.000036 sec

 Execution time lower quantile: 14.357752 sec (2.5%)

 Execution time upper quantile: 19.505728 sec (97.5%)

 Overhead used: 3.577536 ns

In the above query we see a noticeable amount of time is taken which is in seconds

compared to milliseconds of previous queries. It is seen from some examples that

unions, joins and few other features of Cascalog take considerable amount of time.

Listing 4.4: Retrieve all the events where sensor values are greater than 800.0

Single node Hadoop: Evaluation count : 180 in 60 samples of 3 calls.

 Execution time mean: 452.275013 ms

 Execution time std-deviation: 4.961628 ms

 Execution time lower quantile: 446.464824 ms (2.5%)

 Execution time upper quantile: 459.080531 ms (97.5%)

 Overhead used: 3.816389 ns

Multinode Hadoop: Evaluation count : 180 in 60 samples of 3 calls.

 Execution time mean: 462.707819 ms

 Execution time std-deviation: 3.047105 ms

 Execution time lower quantile: 457.096924 ms (2.5%)

 Execution time upper quantile: 466.858320 ms (97.5%)

 Overhead used: 3.781914 ns

In this result we see execution time mean of multinode Hadoop is little more than

single node Hadoop. One thing that can be taken into consideration here is, there are

variations in run time between computations because of many factors as mentioned in

the beginning of this chapter. That means such results can also depend on which other

processes are running on that machine at that point of time, to say it depends on

machine load. Also since the results are in milliseconds such differences can be

ignored.

Cascalog for sensor data processing

Master Thesis STS 55

Listing 4.5: Count of events where sensor values reached greater than 800.0

Single node Hadoop: Evaluation count : 120 in 60 samples of 2 calls.

 Execution time mean: 557.359011 ms

 Execution time std-deviation: 7.434236 ms

 Execution time lower quantile: 540.887860 ms (2.5%)

 Execution time upper quantile: 563.301550 ms (97.5%)

 Overhead used: 3.799133 ns

Multinode Hadoop: Evaluation count : 120 in 60 samples of 2 calls.

 Execution time mean: 551.987749 ms

 Execution time std-deviation: 8.658237 ms

 Execution time lower quantile: 546.434380 ms (2.5%)

 Execution time upper quantile: 570.524491 ms (97.5%)

 Overhead used: 3.795115 ns

Listing 4.6: Retrieve the event when highest value of sensor occurred

Single node Hadoop: Evaluation count: 120 in 60 samples of 2 calls.

 Execution time mean: 643.488997 ms

 Execution time std-deviation: 13.276665 ms

 Execution time lower quantile: 604.045185 ms (2.5%)

 Execution time upper quantile: 657.561964 ms (97.5%)

 Overhead used: 3.783847 ns

Multinode Hadoop: Evaluation count : 120 in 60 samples of 2 calls.

 Execution time mean: 600.405934 ms

 Execution time std-deviation: 23.308440 ms

 Execution time lower quantile: 572.196440 ms (2.5%)

 Execution time upper quantile: 638.509888 ms (97.5%)

 Overhead used: 3.836950 ns

Also overhead used in result means time taken by Criterium in samples. This is very

negligible in all cases since it is in nanoseconds.

Listing 4.7: Sensor events between 12:05:2010 10:00:00 and 12:05:2010 11:00:00

Single node Hadoop: Evaluation count: 120 in 60 samples of 2 calls.

 Execution time mean: 600.980124 ms

 Execution time std-deviation: 5.490431 ms

 Execution time lower quantile: 591.699433 ms (2.5%)

 Execution time upper quantile: 612.915271 ms (97.5%)

 Overhead used: 4.404661 ns

Multinode Hadoop: Evaluation count: 120 in 60 samples of 2 calls.

 Execution time mean: 597.772996 ms

 Execution time std-deviation: 5.589792 ms

 Execution time lower quantile: 588.009814 ms (2.5%)

 Execution time upper quantile: 607.226288 ms (97.5%)

 Overhead used: 3.815941 ns

Listing 4.8: Highest sensor value between specific time period

Cascalog for sensor data processing

Master Thesis STS 56

Single node Hadoop: Evaluation count: 120 in 60 samples of 2 calls.

 Execution time mean: 702.486660 ms

 Execution time std-deviation: 10.095460 ms

 Execution time lower quantile: 691.313139 ms (2.5%)

 Execution time upper quantile: 719.952195 ms (97.5%)

 Overhead used: 3.801515 ns

Multinode Hadoop: Evaluation count: 120 in 60 samples of 2 calls.

 Execution time mean: 708.880906 ms

 Execution time std-deviation: 6.922659 ms

 Execution time lower quantile: 702.124179 ms (2.5%)

 Execution time upper quantile: 723.876528 ms (97.5%)

 Overhead used: 3.777129 ns

Listing 4.10: Collect all messages related to potential start problems, concerning some

time period in the past.

Single node Hadoop: Evaluation count: 60 in 60 samples of 1 calls.

 Execution time mean: 23.429731 sec

 Execution time std-deviation: 219.919412 ms

 Execution time lower quantile: 23.035365 sec (2.5%)

 Execution time upper quantile: 23.864622 sec (97.5%)

 Overhead used: 6.920535 ns

Multinode Hadoop: Evaluation count: 60 in 60 samples of 1 calls.

 Execution time mean: 23.398958 sec

 Execution time std-deviation: 201.265028 ms

 Execution time lower quantile: 23.103671 sec (2.5%)

 Execution time upper quantile: 23.760843 sec (97.5%)

 Overhead used: 3.801878 ns

Listing 4.11: Get a sorted list of event text and number of occurrences of all these

events.

Single node Hadoop: Evaluation count: 60 in 60 samples of 1 calls.

 Execution time mean: 39.528952 sec

 Execution time std-deviation: 543.850935 ms

 Execution time lower quantile: 38.093032 sec (2.5%)

 Execution time upper quantile: 40.118840 sec (97.5%)

 Overhead used: 3.790229 ns

Multinode Hadoop: Evaluation count : 60 in 60 samples of 1 calls.

 Execution time mean: 39.528952 sec

 Execution time std-deviation: 543.850935 ms

 Execution time lower quantile: 38.093032 sec (2.5%)

 Execution time upper quantile: 40.118840 sec (97.5%)

 Overhead used: 3.790229 ns

Cascalog for sensor data processing

Master Thesis STS 57

Listing 4.12: Identify the control unit that causes most startup problems.

Single node Hadoop: Evaluation count: 60 in 60 samples of 1 calls.

 Execution time mean: 1.181832 min

 Execution time std-deviation: 1.270972 sec

 Execution time lower quantile: 1.128102 min (2.5%)

 Execution time upper quantile: 1.191209 min (97.5%)

 Overhead used: 3.778576 ns

Multinode Hadoop: Evaluation count: 60 in 60 samples of 1 calls.

 Execution time mean: 1.154474 min

 Execution time std-deviation: 2.876200 sec

 Execution time lower quantile: 1.127387 min (2.5%)

 Execution time upper quantile: 1.290471 min (97.5%)

 Overhead used: 6.935840 ns

In the above queries as of Listing 4.10, 4.11 and 4.12, we see a noticeable amount of

execution time is taken which is in seconds and in the query as of Listing 4.12 it is in

minutes. This could be because these queries are tested on bigger dataset, which is

Dataset2 and also can depend on the complexity of the query, which uses some

Cascalog features that consumes time.

After looking at all the above results it is evident that running multiple datanodes on a

single machine does not provide very significant performance results. To say results

from single node and multinode are nearly equal. By default, Hadoop is configured to

run in a non-distributed mode, as a single java process. To have a look at this we use

top command on terminal, which provides an ongoing look at processor activity in

real time. The result of which indicated that the whole Hadoop job was running as a

single process and only one cpu was utilized even though there were several of them.

This is an evidence for the fact that there was no data distribution between cores of

the machine, by having multiple datanodes installed on single machine. Below tables

indicates the result of top Unix command:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

27752

27423

28167

username

username

username

20

20

20

0

0

0

1867m

1919m

17572

1.1g

332m

1708

12m

11m

1052

S

S

R

101

1

1

0.8

0.3

0.0

9.24.76

0.21.51

0.04.68

java

java

top

Cpu0

Cpu1

Cpu2

.

.

Cpu18

.

.

0.3%us

.

.

100%us

.

.

0.3%sy

.

.

0.0%sy

.

.

0.0%ni

.

.

0.0%ni

.

.

99.3%id

.

.

0.0%id

.

.

0.0%wa

.

.

0.0%wa

.

.

0.0%hi

.

.

0.0%hi

.

.

0.0%si

.

.

0.0%si

.

.

0.0%st

.

.

0.0%st

.

.

Table 3: Results of top command

There are some ways used in the experiment to improve the execution time of the

queries across the vertical stack which is shown in Fig 13.

a) Starting from the bottom, we can add more hardware nodes to our cluster. This is

not being done in our experiment since the required hardware was not available. So

we have set up multiple datanodes on single machine. In this experiment we check if

there exists any other methods to improve performance on single machine rather than

adding more hardware nodes and if they exist do all of them apply for Cascalog?

Cascalog for sensor data processing

Master Thesis STS 58

Fig 13: Stack of performance improvements methods

b) The next in the stack to improve performance would be trying to tweak Hadoop.

To maximize MapReduce job performance some performance improvement strategies

can be implemented. Configure memory settings, map and reduce slot numbers and

job parameters to tune the cluster for optimal MapReduce performance. Below are

some of the parameters affecting the performance:

1. Chunk size

 Chunk size affects parallel processing and random disk I/O. A higher

chunk size means less parallel processing because there are fewer map inputs and

therefore fewer mappers. A lower chunk size improves parallelism, but results in

higher random disk I/O during shuffle because there are more map outputs.

dfs.block.size is the property in configuration file hdfs-site.xml of Hadoop which

refers to the file system block size. The default value is 64MB as explained in section

3.4.1. When there is a small cluster and large data set then the default block size will

create a large number of map tasks.

Example: Input data size = 10 GB

If dfs.block.size = 64 MB then the minimum no. of maps=(10*1024)/64 = 160 maps.

If dfs.block.size = 128 MB then minimum no. of maps=(10*1024)/128 = 80 maps.

Considering a query as of Listing 4.13 which is run on Dataset3 below:

When dfs.block.size is 64MB, the execution time of the query looks like below

Elapsed time: 811491.110925 msecs

(time expr) of Clojure is used. This is the query, which takes significant amount of

time say 13.52 minutes that is 811491.110925 msecs.

When dfs.block.size is 128MB, the execution time of the query looks like below

Elapsed time: 868218.896312 msecs

The above two results indicate that still there is no significant improvement in

performance.

Cascalog for sensor data processing

Master Thesis STS 59

2. Setting the Number of Mappers and Reducers on Each Node

 mapred.child.java.opts:

 Controls the amount of memory that is allocated to a task.

 mapred.tasktracker.map.tasks.maximum:

 Controls the maximum number of map tasks that are created

 simultaneously on Task Tracker.

 mapred.tasktracker.reduce.tasks.maximum:

 Controls the maximum number of map tasks that are created

 simultaneously on Task Tracker.

 mapred.reduce.tasks:

 It is the default number of reduce tasks per job.

The setting mapred.tasktracker.* related settings are related to maximum number of

maps or reducers a tasktracker can run. For example if we set it to 4, it will basically

mean that at any given point the tasktracker running on that machine will run the

maximum of 4 maps or reducers. MapReduce parallelization can be increased by

setting mapred.tasktracker.* values. All the above properties are set in configuration

file mapred-site.xml of Hadoop.

The mapper number is usually not a performance bottleneck. We then try to increase

the number of reducers and MapReduce parallelism using above-mentioned

properties. Since we have set up Hadoop in non-distributed mode, it can’t run more

than one reducer. It can support the zero reducer case, too. This is normally not a

problem, as most applications can work with one reducer, although on a cluster you

would choose a larger number to take advantage of parallelism. The thing to watch

out for is that even if we set the number of reducers to a value over one, it will silently

ignore the setting and use a single reducer. Also to the reducers question, if we are

using an expressive wrapper such as cascalog for MapReduce, then it also depends on

what we are doing in it. If we are computing an operation such as a total count, or a

global max for example, then the wrapper may by itself set the number of reducers to

1, since this is the only way to do a global sum/count. So this shows that we cannot

use above mentioned mapred.* parameters to take advantage of parallelism since it is

too application dependent.

In our experiment, we try to use these above-mentioned properties to increase

parallelization. But most of the queries use the default number of reducers that is 1.

So there was no significant difference in execution time of the queries.

c) The next up in the stack to improve performance would be to tweak our Cascalog

query to get maximum performance. That is to optimize the cascalog queries - like

using a buffer instead of many aggregators and avoiding any redundancies. In our

experiment we had no such queries; all of them were already tuned to get maximum

performance.

However multiple Cascalog queries can be submitted simultaneously to Hadoop. ??-

is a Cascalog query operator that accepts any number of queries (defined by <-),

executes them in parallel and returns a sequence of sequences of the results of each

query’s execution.

Cascalog for sensor data processing

Master Thesis STS 60

Considering an example below:
(def multiple-results

(??- (<- [?timestamp ?assembly ?category]

 (info-tap2 :> ?timestamp ?assembly ?category)

 (clojure.string/trim ?category :> ?trimmed-category)

 (= ?trimmed-category "Warning"))

(<- [?timestamp ?assembly ?category]

 (info-tap2 :> ?timestamp ?assembly ?category)

 (clojure.string/trim ?category :> ?trimmed-category)

 (= ?trimmed-category "Start Failure"))))

In the above example we see there are 2 Cascalog queries defined by <- operator, one

query retrieves all the events with “Warning” category and other retrieve events with

“Start Failure” category. These 2 queries are executed simultaneously since the ??-

operator is being used.

When we run above query on Hadoop we see some logs from Hadoop like below:
14/08/16 21:59:16 INFO flow.Flow: [] parallel execution is enabled: true

14/08/16 21:59:16 INFO flow.Flow: [] starting jobs: 2

14/08/16 21:59:16 INFO flow.Flow: [] allocating threads: 2

14/08/16 21:59:16 INFO flow.FlowStep: [] starting step: (1/2) ...e3-4263-ae7c-

09c62d1a2d37

14/08/16 21:59:16 INFO flow.FlowStep: [] starting step: (2/2) ...07-4a9b-ada1-

5cf88b914ec4

14/08/16 21:59:17 INFO mapred.FileInputFormat: Total input paths to process : 1

14/08/16 21:59:17 INFO mapred.FileInputFormat: Total input paths to process : 1

14/08/16 21:59:17 INFO flow.FlowStep: [] submitted hadoop job: job_201408162142_0001

14/08/16 21:59:17 INFO flow.FlowStep: [] submitted hadoop job: job_201408162142_0002

The above logs clearly explain that 2 Hadoop jobs have been started in 2 different

threads. It is also seen that parallel execution is enabled to true and the 2 Hadoop jobs

have unique Id’s. This parallel execution permits multiple independent threads of

execution, to better utilize the resources provided by modern processor architectures.

The results of top Unix command showed multiple cores are being utilized. This

shows that Hadoop can run multiple Cascalog queries simultaneously. Since the

machine on which experiment is conducted have multiple processor cores, our

program can use threads to take advantage of additional cores to perform our

processing. If we don't use threads at all, our program will only utilize a single

processor core, which is still fine if that's all is needed. Threads cannot speed up

execution of code. All they can do is increase the efficiency of the computer by using

time that would otherwise be wasted.

Cascalog for sensor data processing

Master Thesis STS 61

Conclusion

 In today’s hyper-connected world, where data is growing so rapidly and the

rise of unstructured data is accounting for 90% of digital data, which is beyond the

processing capabilities of traditional databases. The time has come for enterprises to

re-evaluate the approaches of data storage and management. Hadoop provides the

new way of storing and processing data. No data is big with Hadoop. Scalability, cost-

effectiveness and streamlined architectures of Hadoop are making it more and more

attractive. There are number of technologies that work on top of Hadoop for querying

and processing big data. One such tool is Cascalog.

The whole experiment is about formulating the queries in Cascalog, in turn

understanding the Cascalog query structure, features of Cascalog and its simplicity.

Together with Cascading and Clojure, Cascalog is highly impressive and provides a

powerful ecosystem for manipulating and analysing large data sets.

In this experiment sensor data is queried using Cascalog and then some performance

tests are conducted. Performances of Cascalog queries are compared, which are run

on single node Hadoop and multinode Hadoop. Also different sizes of sensor data are

used to compare the performance. Further on, complexity of queries is also increased

to see the performance. The results of the experiment prove that setting up multiple

datanodes on a single machine does not show significant performance improvements.

The extended work of this thesis which can be done in the future could be, to use

multiple hardware nodes and see the performance improvements.

Investing in learning Cascalog will pay rich dividends. The little down side of

Cascalog is that the learning curve for a complete beginner is quite steep and whilst of

great use, the limited documentation and tutorial available will make the hill harder to

climb.

Cascalog for sensor data processing

Master Thesis STS 62

Bibliography

[1] http://hadoop.apache.org

[2] http://www.emc.com/leadership/digital-universe/index.htm

[3] http://www.statisticbrain.com/twitter-statistics/

[4] http://zephoria.com/social-media/top-15-valuable-facebook-statistics/

[5] www.scn.sap.com

[6] http://www.cascalog.org/articles/marz_intro_1.html

 [7] http://www.nathanmarz.com

[8] http://cascalog.org/articles/users.html

[9] http://clojure.com/blog/2012/02/03/functional-relational-programming-with-

cascalog.html

[10] https://github.com/nathanmarz/cascalog

[11] http://www.slideshare.net/nathanmarz/cascalog-at-hadoop-day

[12] http://leiningen.org

[13] http://www.cis.upenn.edu/~matuszek/Concise/Guides/Concise/Clojure.html

[14] http://www.michael-noll.com/tutorials/

[15] http://www.guruzon.com

[16] http://csapp.cs.cmu.edu/public/1e/public/ch9-preview.pdf

[17] https://github.com/hugoduncan/criterium

[18] http://blog.brunobonacci.com

[19] http://en.wikipedia.org/wiki/Internet_of_Things

[20] http://datasensinglab.com

[21] http://www.sas.com/resources/asset/five-big-data-challenges-article.pdf

[22] http://www.mongodb.com/big-data-explained

[23] http://globalsp.ts.fujitsu.com/dmsp/Publications/public/br-bigdata-revolution.pdf

Cascalog for sensor data processing

Master Thesis STS 63

[24] http://radar.oreilly.com/2011/01/what-is-hadoop.html

[25] http://en.wikipedia.org/wiki/Apache_Hadoop

[26] http://clojure.org/getting_started

[27] http://www.mongodb.org

[28] http://cassandra.apache.org

[29] http://hive.apache.org

[30] www.optique-project.eu

[31] http://www.gartner.com/it-glossary/big-data/

[32] http://www.cbinsights.com/blog/big-data-report

[33] http://blogs.wsj.com/experts/2014/03/28/sectors-where-big-data-could-make-an-

impact/

[34] http://www.informationweek.com/big-data/big-data-analytics/big-data-

development-challenges-talent-cost-time/d/d-id/1105829?

[35] http://www.foreignaffairs.com/articles/139104/kenneth-neil-cukier-and-viktor-

mayer-schoenberger/the-rise-of-big-data

[36]http://www.mckinsey.com/insights/business_technology/big_data_the_next_front

ier_for_innovation

[37] http://en.wikipedia.org/wiki/Relational_database_management_system

[38] http://dba.stackexchange.com/questions/13931/why-cant-relational-databases-

meet-the-scales-of-big-data

[39] http://www.zdnet.com/blog/btl/big-data-vs-traditional-databases-can-you-

reproduce-youtube-on-oracles-exadata/52053

[40] http://scaledb.com/pdfs/BigData.pdf

[41] http://zookeeper.apache.org/

[42] http://hbase.apache.org/

[43] http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[44] http://en.wikipedia.org/wiki/MapReduce

[45] http://pig.apache.org/

Cascalog for sensor data processing

Master Thesis STS 64

[46] https://github.com/jeffsack/playground/blob/master/src/playground/test_data.clj

