Automaten und Formale Sprachen

Einführung

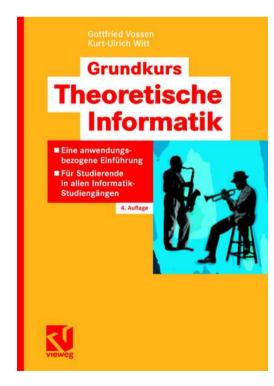
Ralf Möller Hamburg Univ. of Technology

Übung Fr. 14:30-15:15 *Max Berndt, D1025*

Literatur

• Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik,

Vieweg Verlag



Weitere Literatur

- U. Schöning: Theoretische Informatik kurz gefasst, Spektrum Akademischer Verlag
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison Wesley Publishing Company

Danksagung

- Kurs basiert auf
 Präsentationsmaterial von
 - G. Vossen (Uni Münster),
 K.-U. Witt (Hochschule Bonn-Rhein-Sieg)
 - Christian Sohler (TU Dortmund)
 - Thomas Ottmann (Uni Freiburg)
 - Lenore Blum (CMU)

Zentrale Fragestellungen

Effiziente Algorithmen:

- Welche Probleme können effizient gelöst werden?
- Wie misst man Effizienz?
- Welche algorithmischen Methoden gibt es, Probleme zu lösen?
- Wie kann man Probleme mit geringstmöglichem Aufwand lösen?
- Wie gehen wir mit schweren Problemen um?

Wozu benötigen wir effiziente Algorithmen?

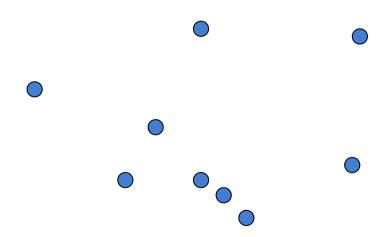
Beispiele:

- Internetsuchmaschinen
- Berechnung von Bahnverbindungen
- Optimierung von Unternehmensabläufen
- Datenkompression
- Computer Spiele
- Datenanalyse

Alle diese Bereiche sind (immer noch) Stoff aktueller Forschung im Bereich der Algorithmik!

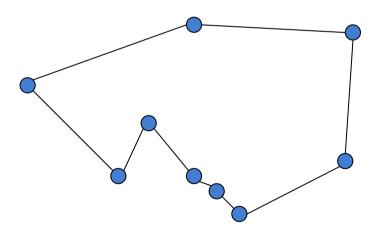
Typische Aufgabenstellung:

• Berechne die kürzeste Rundreise durch n Städte



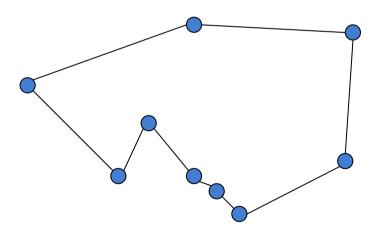
Typische Aufgabenstellung:

Berechne die kürzeste Rundreise durch n Städte



Typische Aufgabenstellung:

 Berechne die kürzeste Rundreise durch n Städte [Optimierungsproblem]

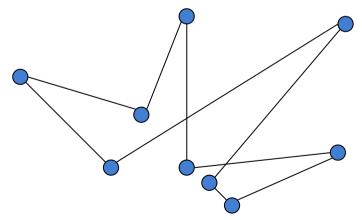


Optimierungsprobleme (informal):

- Zulässigkeitsbedingung (Lösung ist eine Rundreise)
- Zielfunktion (Länge der Tour)
- Aufgabe: Finde beste zulässige Lösung

Optimierungsprobleme (informal):

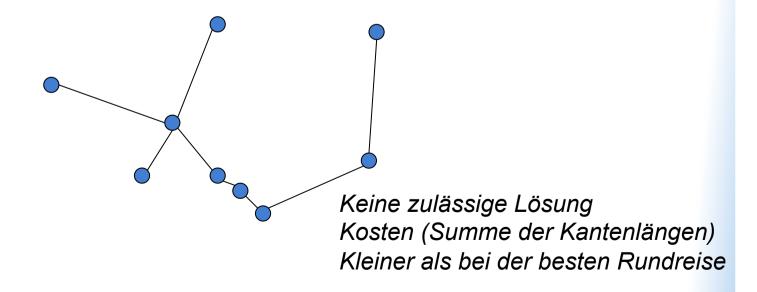
- Zulässigkeitsbedingung (Lösung ist eine Rundreise)
- Zielfunktion (Länge der Tour)
- Aufgabe: Finde beste zulässige Lösung



Lösung ist zulässig, aber nicht optimal

Optimierungsprobleme (informal):

- Zulässigkeitsbedingung (Lösung ist eine Rundreise)
- Zielfunktion (Länge der Tour)
- Aufgabe: Finde beste zulässige Lösung



Typische Aufgabenstellung:

• Entscheide, ob eine Zahl prim ist

Typische Aufgabenstellung:

- Entscheide, ob eine Zahl prim ist
- 2 -> prim
- 17 -> prim
- 99 -> nicht prim

Typische Aufgabenstellung:

- Entscheide, ob eine Zahl prim ist [Entscheidungsproblem]
- 2 -> prim
- 17 -> prim
- 99 -> nicht prim

Entscheidungsprobleme:

- Eigenschaft (Primzahl)
- Aufgabe:
 - Akzeptieren, wenn Eingabe die Eigenschaft besitzt
 - Zurückweisen, sonst
- Ausgabe: 1 (akzeptieren) oder 0 (zurückweisen)

Typische Aufgabenstellung:

Sortiere Folge von n Zahlen

Typische Aufgabenstellung:

Sortiere Folge von n Zahlen

Eingabe:

9, 3, 2, 15, 17, 8

Typische Aufgabenstellung:

Sortiere Folge von n Zahlen

Eingabe:

9, 3, 2, 15, 17, 8

Ausgabe:

2, 3, 8, 9, 15, 17

Typische Aufgabenstellung:

 Sortiere Folge von n Zahlen [neue Art von Problem?]

Neue Problemformulierung:

 Finde die Reihenfolge der Zahlen mit der kleinsten Anzahl Inversionen

Inversion:

- Bezeichne xⁱ die Zahl an Stelle i unserer Reihenfolge
- Das Paar (i,j) ist eine Inversion, wenn gilt i<j, aber x ⁱ > x ^j

Beispiel: Position 6

• 1, 5, 4, 7, 8, 3 (2,6) ist eine Inversion

Position 2

Neue Problemformulierung:

 Finde die Reihenfolge der Zahlen mit der kleinsten Anzahl Inversionen

Lemma:

Eine Reihenfolge ohne Inversionen ist aufsteigend sortiert.

Neue Problemformulierung:

 Finde die Reihenfolge der Zahlen mit der kleinsten Anzahl Inversionen

Lemma:

Eine Reihenfolge ohne Inversionen ist aufsteigend sortiert.

Lemma:

Eine Reihenfolge mit Inversionen ist nicht aufsteigend sortiert.

Erkenntnis:

 Durch geschickte Umformulierung kann man die meisten algorithmischen Probleme als Entscheidungs- oder Optimierungsprobleme formulieren

Vorgehensweise:

 Wir werden zunächst Entscheidungsprobleme untersuchen und uns danach (ggf. in anderen Vorlesungen) mit Optimierungsproblemen beschäftigen

Langfristige Fragestellung

Welche Entscheidungsprobleme können durch einen Rechner gelöst werden?

Formale Sprachen

Wie kann man Entscheidungsprobleme allgemein formulieren?

- Annahme: Jede Eingabe kann als endliche Zeichenkette (Bitstring) beschrieben werden
- Bei Entscheidungsproblemen müssen wir bestimmen, ob eine Eingabe eine vorgegebene Eigenschaft hat
- <u>Äquivalent:</u> Bestimme die Menge der Bitstrings, die eine Eingabe mit der vorgegenene Eigenschaft kodieren

Formale Sprachen

Beispiel: Primzahlerkennung

- Eingabe ist eine Zahl
- Kann Zahl durch Binärkodierung darstellen
- Muss alle Zahlen akzeptieren, deren Binärkodierung eine Primzahl ist
- L = {Bitstrings b : b ist die Binärdarstellung einer Primzahl}
- Enscheide, ob Bitstring b in L ist

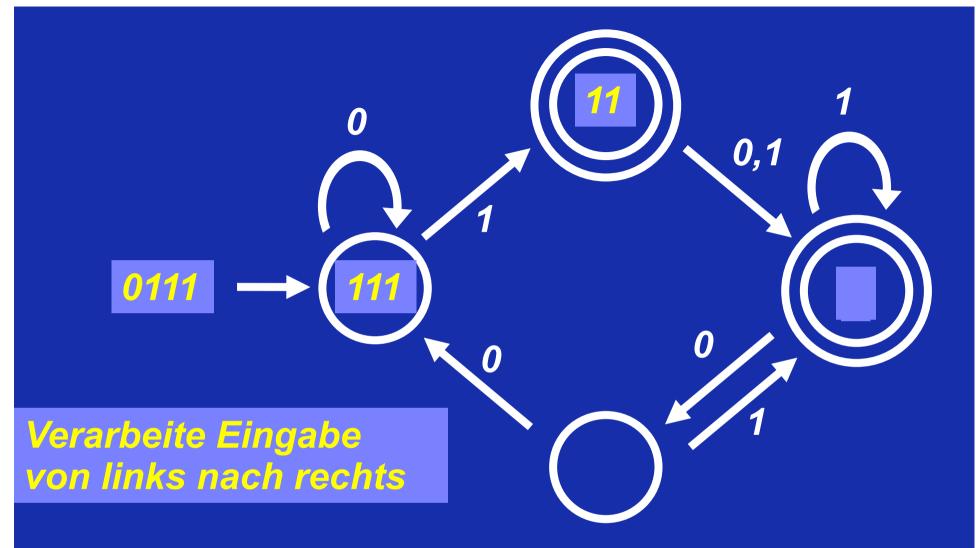
Formale Sprachen

Wichtige Erkenntnis:

 Man kann auf dieselbe Weise jedes Problem als Problem über Bitstrings formulieren

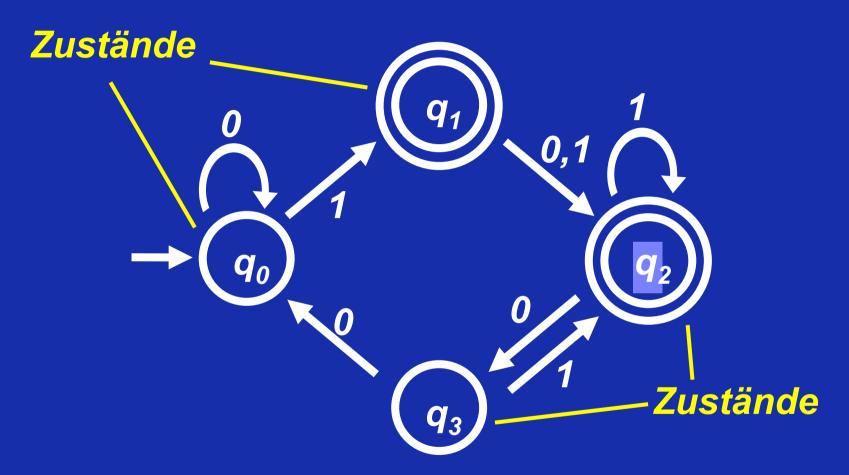
Generalisiertes Problem:

- Sei L eine Menge von Bitstrings
- Entscheide, ob Eingabebitstring b in L liegt



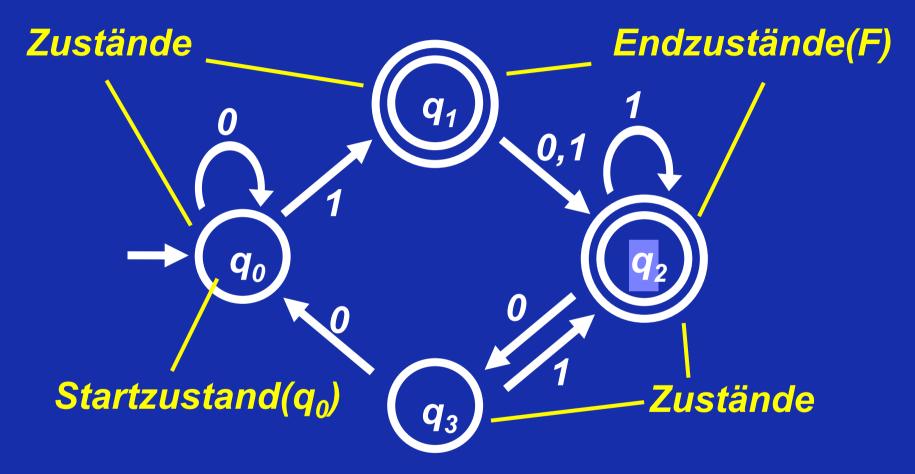
Die Maschine akzeptiert eine Eingabezeichenkette wenn der Prozess in einem Zustand mit Doppelkreis endet

Ein Deterministischer Endlicher Automat (DEA)



Die Maschine akzeptiert eine Eingabezeichenkette wenn der Prozess in einem Zustand mit Doppelkreis endet

Ein Deterministischer Endlicher Automat (DEA)

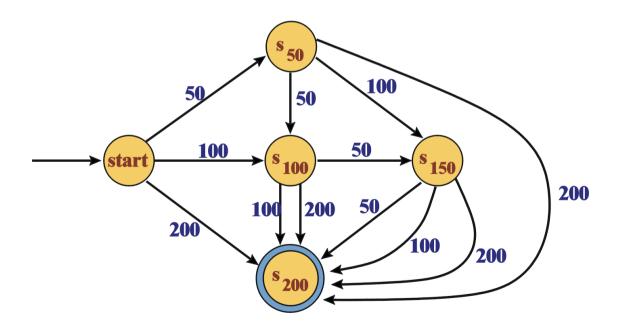


Die Maschine akzeptiert eine Eingabezeichenkette wenn der Prozess in einem Zustand mit Doppelkreis endet

Zustandsdiagramm des Automaten A_{swim}

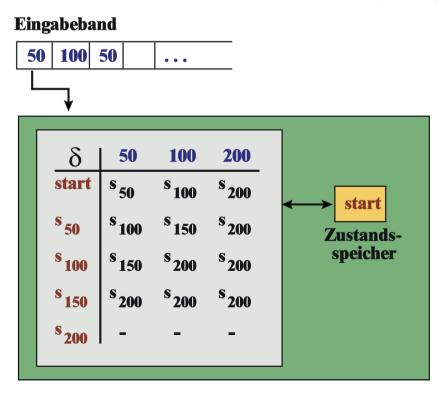
Eigenschaften von A_{swim}:

- Münzeingaben mit Werten 50, 100, 200 in beliebiger Reihenfolge
- Nach Einwurf von insgesamt \geq 200 akzeptiert A_{swim} : Eintritt freigegeben!
- Der Gesamtwert der bisherigen Eingabe ist im aktuellen Zustand vermerkt.

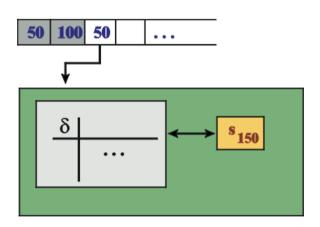


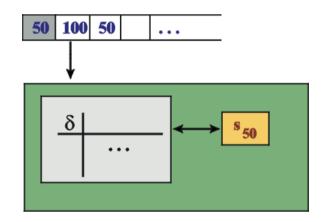
Startkonfiguration von A_{swim}

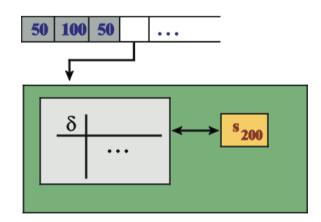
Eingabeband enthält Eingaben als Folgen von Zeichen Zustandsspeicher enthält jeweils aktuellen Zustand Programm, Kontrolle: Zustandsübergangsfunktion δ .



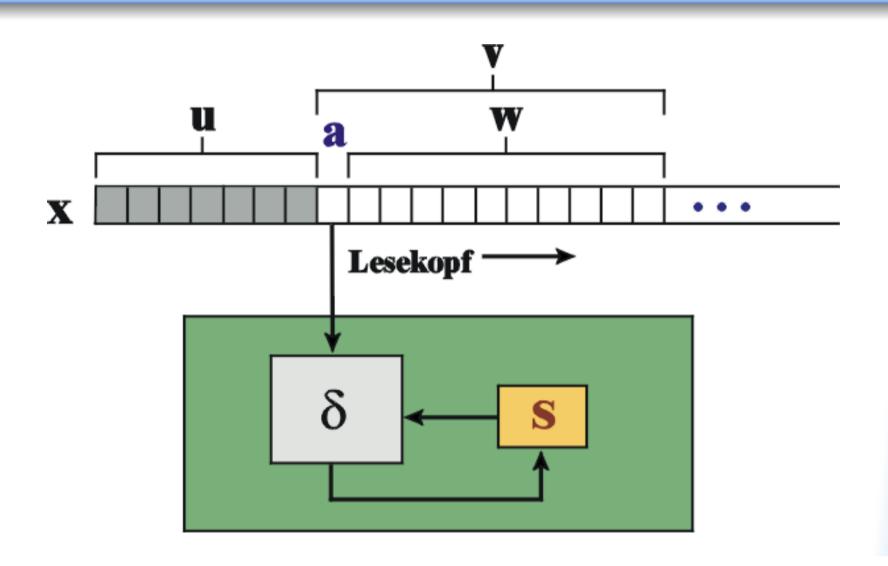
Rechnung des Automaten A_{swim}







Konfiguration eines endlichen Automaten



Alphabete

- Automaten verarbeiten Zeichenfolgen, die aus atomaren Symbolen bestehen.
- Menge der zugelassenen Zeichen: Endliches Alphabet Σ .

Beispiele:

•
$$\Sigma = \{\underline{50}, \underline{100}, \underline{200}\}$$
 | $\Sigma = 3$
• $\Sigma = \{a_1, a_2, a_3, ..., a_n\}$ | $\Sigma = n$
• $\Sigma = \{a, b, ..., z\}$ | $\Sigma = 26$
• $\Sigma = \emptyset$ | $\Sigma = 0$

Deterministische endliche Automaten

Ein deterministischer endlicher Automat (DFA) ist gegeben durch

- eine endliche Menge Σ von Eingabezeichen
- eine endliche Menge S von Zuständen
- eine Übergangsfunktion $\delta : S \times \Sigma \rightarrow S$
- einen Anfangszustand $s_0 \in S$
- eine Endzustandsmenge $F \subseteq S$

Kurz:
$$A = (\Sigma, S, \delta, s_0, F)$$

 δ kann auch durch einen Zustandsübergangs Graphen oder als Menge von Tripeln (s, a, t) mit δ (s, a) = t gegeben sein

δ ist manchmal nicht total (überall definiert)

Erweiterte Übergangsfunktion

Die Zustandsübergangsfunktion δ kann von Zeichen auf Wörter erweitert werden:

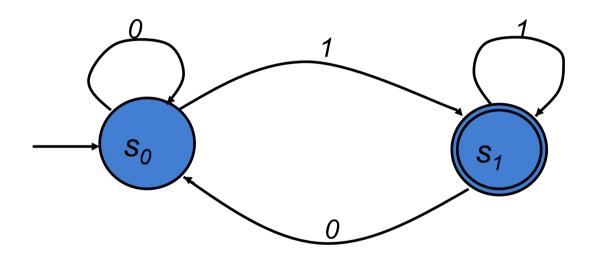
$$\delta^*$$
: S x $\Sigma^* \rightarrow$ S definiert durch

- $\delta^*(s, \epsilon) = s$ für alle $s \in S$
- $\delta^*(s, aw) = \delta^*(\delta(s, a), w)$ für alle $a \in \Sigma$, $w \in \Sigma^*$

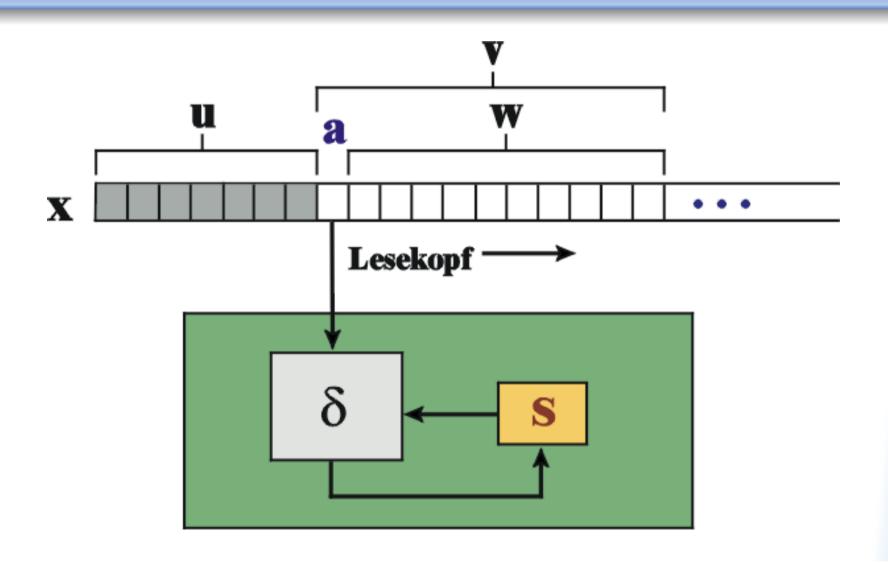
Für einen endlichen Automaten $A = (\Sigma, S, \delta, s_0, F)$ wird die von A akzeptierte Sprache (die Menge aller von A akzeptierten Eingabefolgen) $L(A) \subseteq \Sigma^*$ definiert durch:

$$L(A) = \{w; \delta^*(s_0, w) \in F\}$$

Beispiel



Konfiguration eines endlichen Automaten

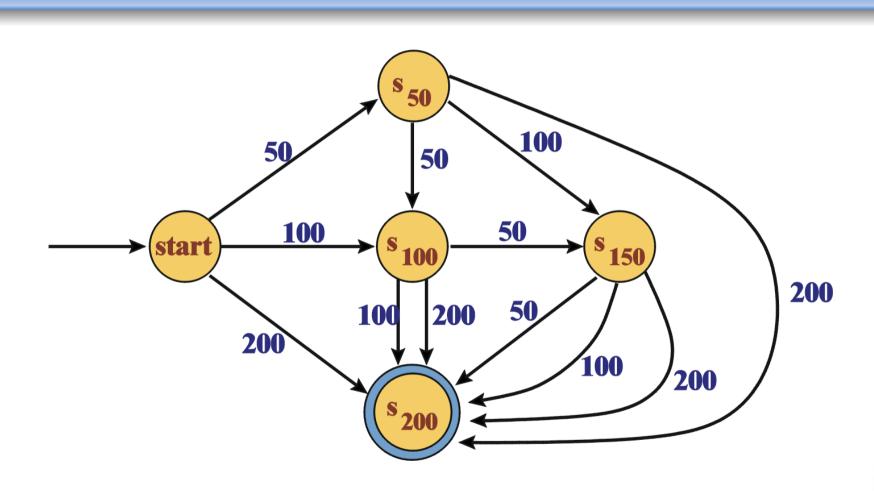


Konfigurationsübergänge

```
Ein Konfigurationsübergang (s, v) ⊢ (t, w) kann
  stattfinden, wenn v = aw und \delta(s, a) = t ist.
Die Abarbeitung eines Wortes x = x_1x_2 ... x_r durch
  einen DFA kann als Folge von
  Konfigurationsübergängen beschrieben werden:
      (s_0, x_1x_2 ... x_r) \vdash (s_1, x_2 ... x_r) \vdash ...
  (S_r, \varepsilon)
beschrieben.
Beispiel:
```

(*start*, 50 100 50) |

(*start*, <u>50</u> <u>100</u> <u>50</u>)



Reguläre Sprachen

- Für einen DFA $A = (\Sigma, S, \delta, s_0, F)$ ist $L(A) = \{w \in \Sigma^* ; (s_0, w) \mid -* (s, \epsilon), s \in F\}$ die von A akzeptierte Sprache.
- Eine Sprache $L \subseteq \Sigma^*$ heißt regulär, wenn es einen DFA A gibt mit L = L(A).
- Zwei DFA A und A' heißen äquivalent, falls sie die gleiche Sprache akzeptieren, wenn also gilt: L(A) = L(A').