Automaten und Formale Sprachen

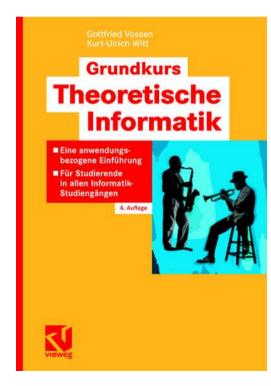
Endliche Automaten und Reguläre sprachen

Ralf Möller Hamburg Univ. of Technology

Literatur

• Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik,

Vieweg Verlag



Danksagung

- Kurs basiert auf
 Präsentationsmaterial von
 - G. Vossen (Uni Münster),
 K.-U. Witt (Hochschule Bonn-Rhein-Sieg)
 - Johannes Köbler (HU Berlin)
 - Thomas Ottmann (Uni Freiburg)
 - Lenore Blum (CMU)

Wiederholung: Alphabete

- Automaten verarbeiten Zeichenfolgen, die aus atomaren Symbolen bestehen.
- Menge der zugelassenen Zeichen: Endliches Alphabet Σ .

Beispiele:

•
$$\Sigma = \{50, 100, 200\}$$
 | $\Sigma = 3$
• $\Sigma = \{a_1, a_2, a_3, ..., a_n\}$ | $\Sigma = n$
• $\Sigma = \{a, b, ..., z\}$ | $\Sigma = 26$
• $\Sigma = \emptyset$ | $\Sigma = 0$

Widerholung: Deterministische endliche Automaten

Ein deterministischer endlicher Automat (DFA) ist gegeben durch

- eine endliche menge S von Zuständen
- eine endliche Menge Σ von Eingabezeichen
- einen Anfangszustand $s_0 \in S$
- eine Endzustandsmenge F ⊆ S
- eine Übergangsfunktion $\delta : S \times \Sigma \rightarrow S$

Kurz: $A = (\Sigma, S, \delta, s_0, F)$

 δ kann auch durch einen Zustandsübergangs Graphen oder als Menge von Tripeln (s, a, t) mit δ (s, a) = t gegeben sein

δ ist manchmal nicht total (überall definiert)

Wiederholung: Erweiterte Übergangsfunktion

Die Zustandsübergangsfunktion δ kann von Zeichen auf Wörter erweitert werden:

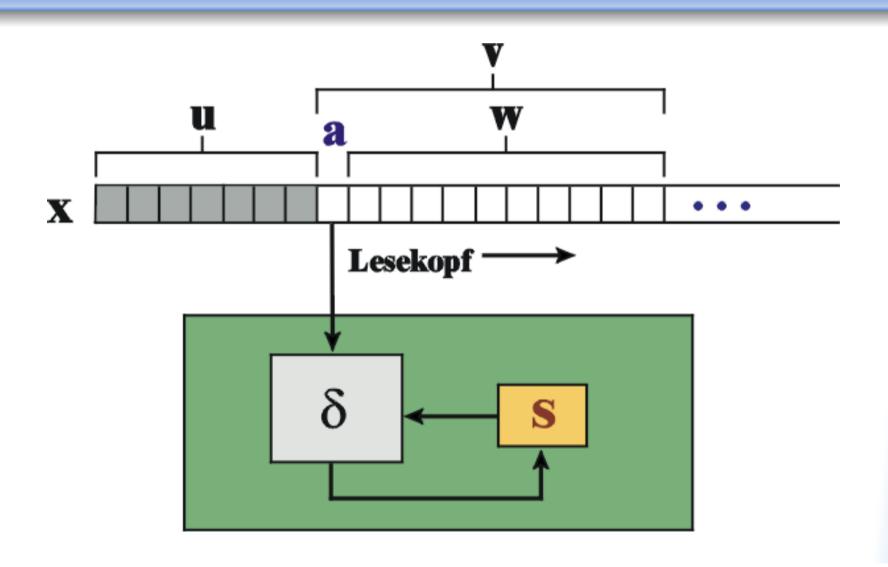
$$\delta^*$$
 : S x $\Sigma^* \rightarrow$ S definiert durch

- $\delta^*(s, \epsilon) = s$ für alle $s \in S$
- $\delta^*(s, aw) = \delta^*(\delta(s, a), w)$ für alle $a \in \Sigma$, $w \in \Sigma^*$

Für einen endlichen Automaten $A = (\Sigma, S, \delta, s_0, F)$ wird die von A akzeptierte Sprache (die Menge aller von A akzeptierten Eingabefolgen) $L(A) \subseteq \Sigma^*$ definiert durch:

$$L(A) = \{w; \delta^*(s_0, w) \in F\}$$

Wiederholung: Konfiguration eines endlichen Automaten



Widerholung: Konfigurationsübergänge

```
Ein Konfigurationsübergang (s, v) \models (t, w) kann stattfinden, wenn v = aw und \delta(s, a) = t ist. Die Abarbeitung eines Wortes x = x_1x_2 \dots x_r durch einen DFA kann als Folge von Konfigurationsübergängen beschrieben werden: (s_0, x_1x_2 \dots x_r) \models (s_1, x_2 \dots x_r) \models \dots \models (s_r, \epsilon) Mit \models* wird die transitiv-reflexive Hülle von \models beschrieben.
```

Wiederholung: Reguläre Sprachen

- Für einen DFA $A = (\Sigma, S, \delta, s_0, F)$ ist $L(A) = \{w \in \Sigma^* ; (s_0, w) \mid -* (s, \epsilon), s \in F\}$ die von A akzeptierte Sprache.
- Eine Sprache $L \subseteq \Sigma^*$ heißt regulär, wenn es einen DFA A gibt mit L = L(A).
- Zwei DFA A und A' heißen äquivalent, falls sie die gleiche Sprache akzeptieren, wenn also gilt: L(A) = L(A').

Theorie endlicher Automaten

Gibt Antworten auf folgende Fragen:

- 1. Wie entwirft man endliche Automaten für bestimmte Aufgaben (Synthese-Aufgabe)?
- 2. Wie analysiert man endliche Automaten? D.h. kann man die von endlichen Automaten akzeptierbaren Sprachen auch anders (automatenfrei) beschreiben?
- 3. Wie vereinfacht (reduziert, minimiert) man endliche Automaten? D.h. wie eliminiert man evtl. überflüssige Zustände?

Die Synthese endlicher Automaten ist ein kreativer Prozess!

Zur Analyse verwendet man: Reguläre Ausdrücke, Grammatiken, algebraische Hilfsmittel.

Die Reduzierung erfolgt durch Bildung von Äquivalenzklassen.

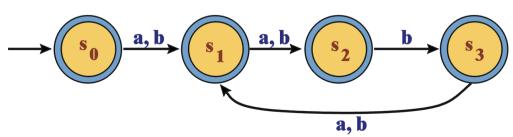
Beispiel einer Syntheseaufgabe

Finde einen DFA für

$$L_{3b} = \{ w \in \{a, b\}^* ; w = w_1...w_n, w_i \in \{a, b\}, w_{3i} \neq a, 1 \le 3i \le n, n \ge 0 \}$$

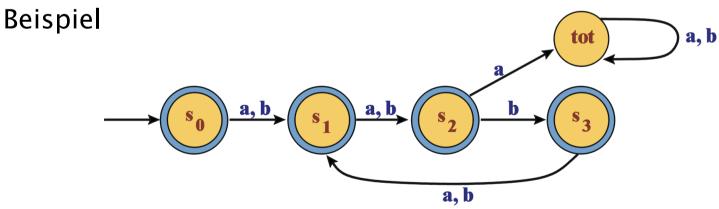
- Dreiergruppe von Zeichen, deren letztes ein b ist, muss erkannt werden:
- Beliebig viele Dreiergruppen derselben Art sind als Präfixe erlaubt:

Auch sämtliche Präfixe sollen erkannt werden:



Vollständige Automaten

- Bisher musste die Funktion δ eines DFA nicht total sein.
- Ein DFA A = $(\Sigma, S, \delta, s_0, F)$ heißt vollständig, wenn dom $(\delta) = S \times \Sigma$
- Jeder DFA A = $(\Sigma, S, \delta, s_0, F)$ kann durch Hinzunahme eines Zustands *tot* vervollständigt werden:
- Wenn $\delta(s, a)$ nicht definiert ist, ergänze $\delta(s, a) = tot$



Anwendung von DFA zur Suche in Texten

Verschiedene Szenarien:

Dynamische Texte

- Texteditoren
- Symbolmanipulatoren
- Statische Texte

Literaturdatenbanken

- Bibliothekssysteme
- Gen-Datenbanken
- WWW–Verzeichnisse

Problemdefinition: Mustersuche in Texten

Gegeben:

$$\begin{array}{lll} \text{Text} & t_1t_2t_3 \ ... \ t_n & \in \Sigma^n \\ \text{Muster} & p_1p_2 \ ... \ p_m & \in \Sigma^m \end{array}$$

Gesucht: Ein oder alle Vorkommen des Musters im Text, d.h. Verschiebungen i mit $0 \le i \le n-m$ und

Naives Verfahren

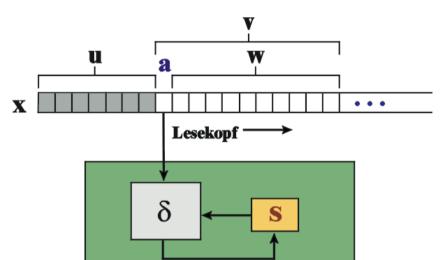
Für jede mögliche Verschiebung i mit 0 ≤ i ≤ n-m prüfe maximal m Zeichenpaare. Bei Mismatch beginne mit neuer Verschiebung!

Text:
$$t_1 \ t_2 \ t_3 \ t_{i+1} \dots t_{i+j} \dots t_{i+m} \dots$$
Muster: $p_1 \dots p_j \dots p_m$

Aufwandsabschätzung: Was ist die Laufzeit im schlimmsten Fall?

Automatenbasiertes Verfahren

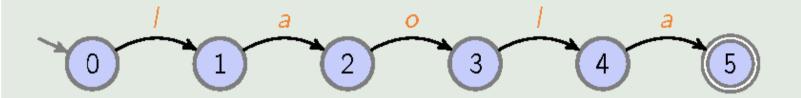
Konstruiere zum Muster $P = p_1 p_2 \dots p_m$ einen DFA A_P , der den Text $T = t_1 t_2 t_3 \dots t_n$ einmal v.l.n.r. liest und in einem Endzustand ist, immer dann, wenn er das Ende eines Vorkommens von P in T erkannt hat.



Beobachtung: Das Lesen und Verarbeiten eines Zeichens Verursacht nur konstanten Aufwand!

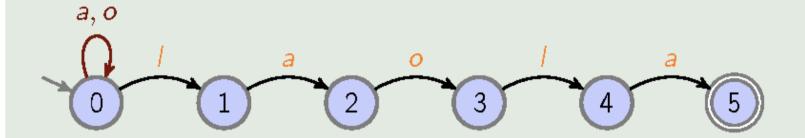
Alfred V. Aho und Margaret J. Corasick 1975

Beispiel



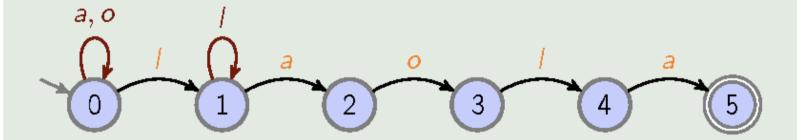
δ	0	1	2	3	4	5
а		2			5	
	1			4		
0			3			

Beispiel



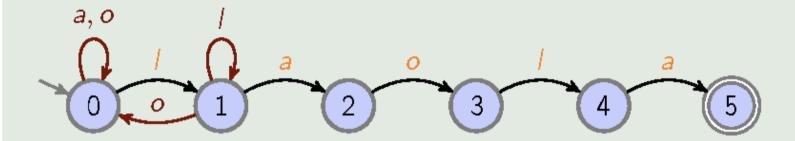
δ	0	1	2	3	4	5
a	0	2			5	
1	1			4		
0	0		3			

Beispiel



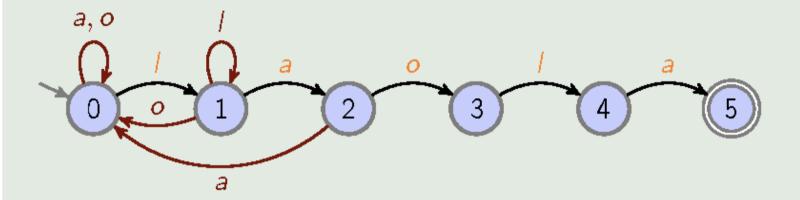
δ	0	1	2	3	4	5
а	0	2			5	
1	1	1		4		
0	0		3			

Beispiel



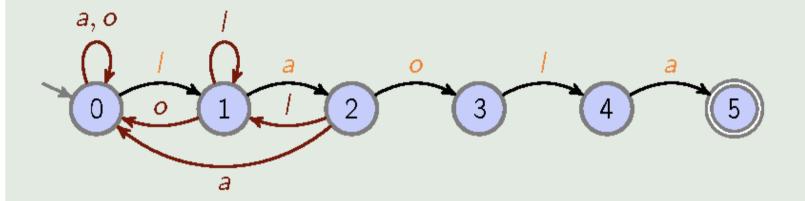
δ	0	1	2	3	4	5
а	0	2			5	
1	1	1		4		
0	0	0	3			

Beispiel



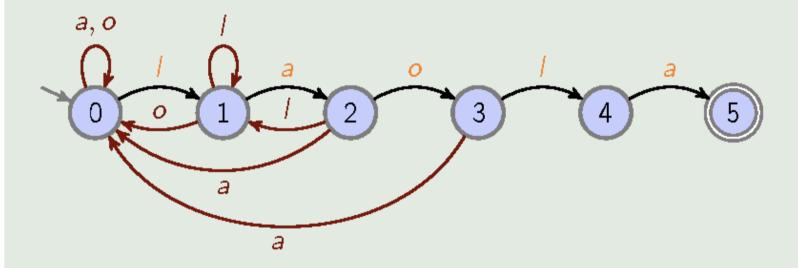
δ	0	1	2	3	4	5
a	0	2	0		5	
1	1	1		4		
0	0	0	3			

Beispiel



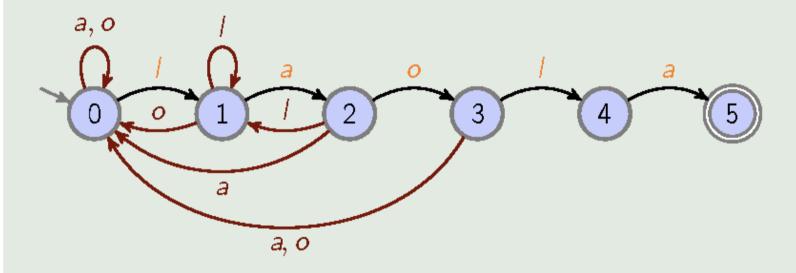
	0			3	4	5
a	0	2	0		5	
	1	1	1	4		
0	0 1 0	0	3			

Beispiel



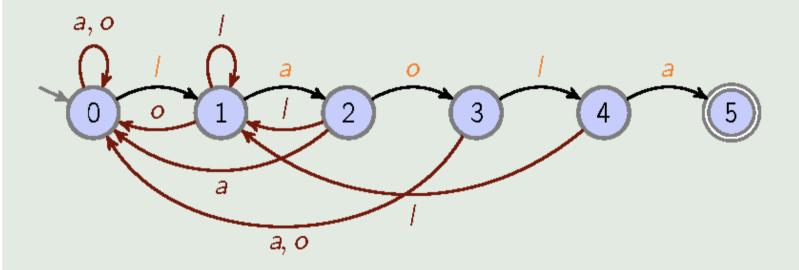
δ	0	1	2	3	4	5
а	0 1 0	2	0	0	5	
	1	1	1	4		
0	0	0	3			

Beispiel



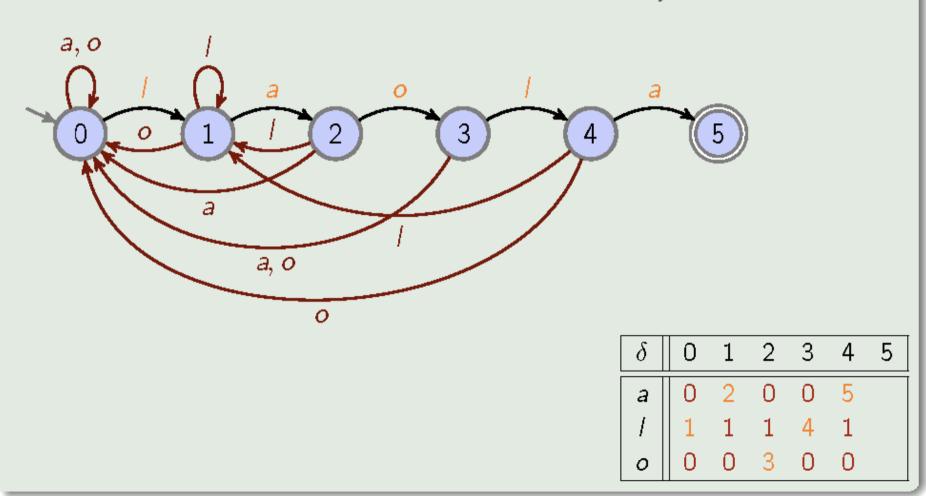
δ	0	1	2	3	4	5
a	0	2	0	0	5	
	1	1	1	4		
0	0	0	3	0		

Beispiel

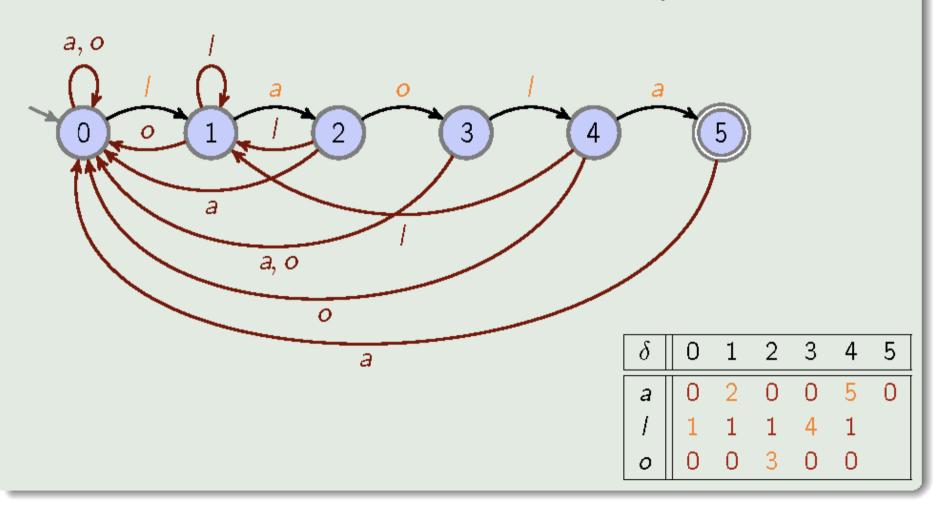


δ	0	1	2	3	4	5
а	0	2	0	0	5	
	1	1	1	4	1	
0	0	0	3	0		

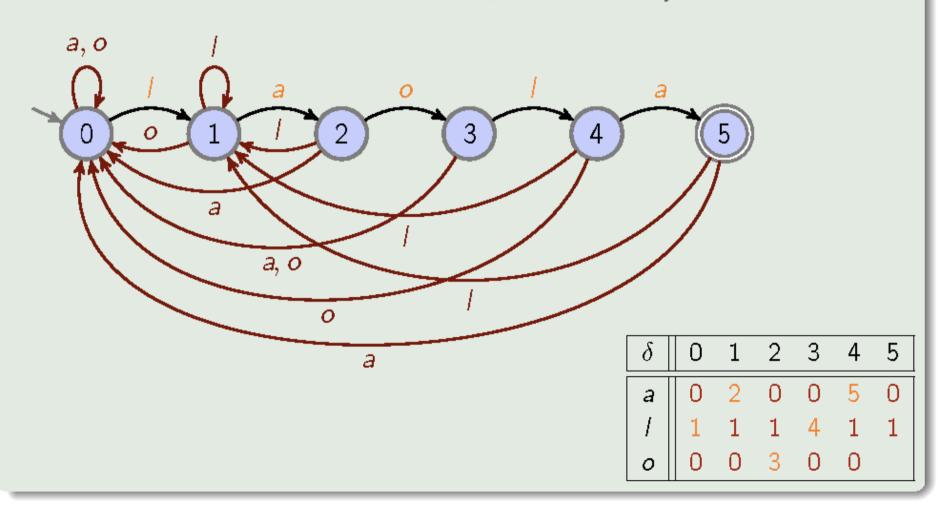
Beispiel



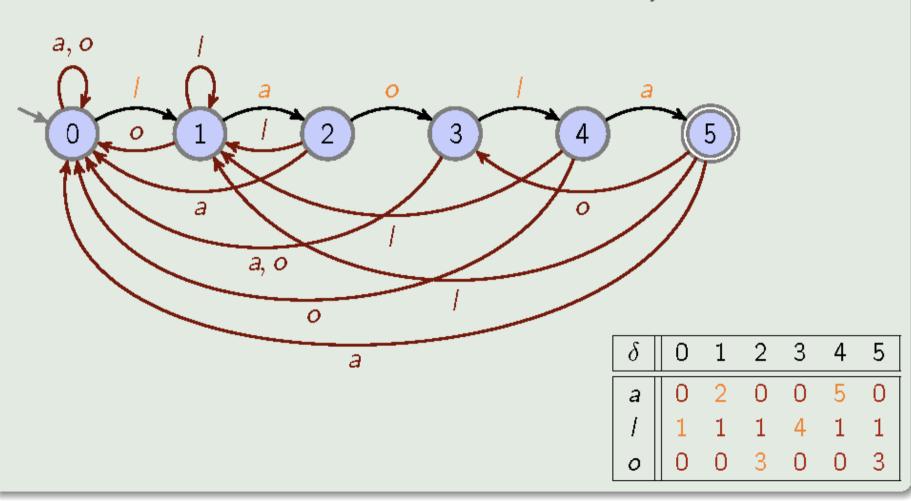
Beispiel



Beispiel

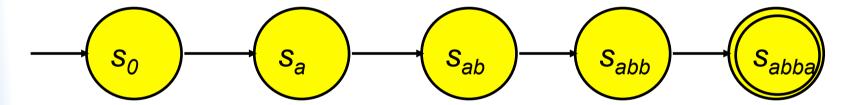


Beispiel



Übung

Sei P = abba, ein DFA, der jedes Vorkommen von P in einem beliebigen Text aus $\Sigma^* = \{a, b\}^*$ entdeckt, kann so konstruiert werden:



Weitere Anwendungen

- fgrep
- Bioinformatik: String Matching
- Intrusion detection: Find certain patterns in sequences of TCP packaged
- Firewall: Apache modsecurity HTTP traffic analysis

Operationen für Formale Sprachen

```
Sei \Sigma ein fest gewähltes, endliches Alphabet.
 Für Sprachen A, B \subseteq \Sigma^* definiert man:
 Vereinigung: A \cup B = \{w; w \in A \text{ oder } w \in B\}
 Durchschnitt: A \cap B = \{w; w \in A \text{ und } w \in B\}
 Verkettung: A \cdot B = \{xy; x \in A \text{ und } y \in B\}
 Iteration A^* = \{x_1...x_k; k \geq 0 \text{ und } x_i \in A \text{ für alle i mit } 1 \leq i \leq k\}
```

Reguläre Sprachen

Die Klasse der von endlichen Automaten akzeptierbaren Sprachen heißt auch Klasse der regulären Sprachen, m.a.W:

Eine Sprache $L \subseteq \Sigma^*$ heißt regulär, wenn es einen endlichen Automaten (einen DFA) A gibt mit L = L (A).

Satz: Die Klasse der regulären Sprachen ist abgeschlossen gegenüber Vereinigung, Durchschnitt und Komplement.

UNION THEOREM

Given two languages, L_1 and L_2 , define the union of L_1 and L_2 as

 $L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$

Theorem: The union of two regular languages is also a regular language

Theorem: The union of two regular languages is also a regular language

Proof: Let

 $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ be finite automaton for L_1 and

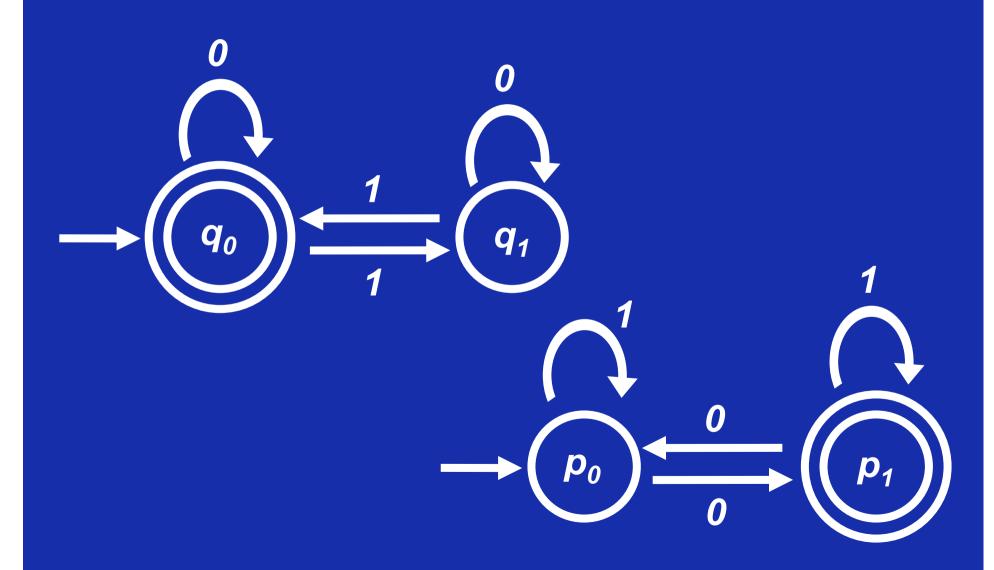
 $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for L_2

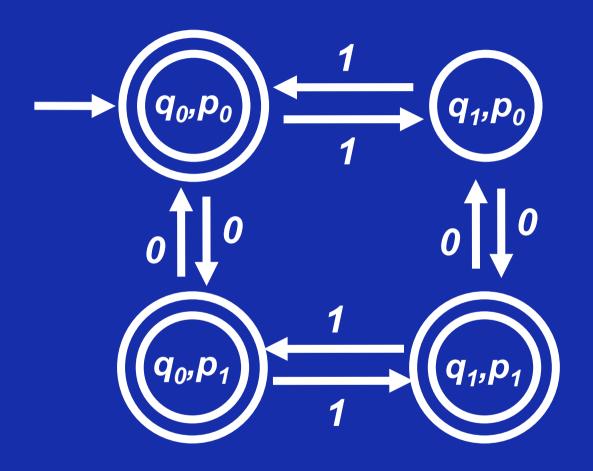
We want to construct a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $L = L_1 \cup L_2$

Idea: Run both M₁ and M₂ at the same time!

Q = pairs of states, one from
$$M_1$$
 and one from M_2
= $\{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
= $Q_1 \times Q_2$
 $q_0 = (q_0^1, q_0^2)$
 $F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$
 $\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$

Theorem: The union of two regular languages is also a regular language





Intersection THEOREM

Given two languages, L_1 and L_2 , define the intersection of L_1 and L_2 as $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$

Theorem: The intersection of two regular languages is also a regular language