Automaten und Formale Sprachen

ε-Automaten und ihre Transformation in NFAs

Ralf Möller Hamburg Univ. of Technology

Endlicher Automat mit ε-Übergängen

- Ein endlicher ε -Automat (ε FA) ist ein Quintupel $A = (S, \Sigma, \delta, S_0, F)$;
- Dabei sind S, Σ , S₀ und F wie bei NFA definiert, und δ ist die Zustandsübergangsrelation, die auch ϵ -Transitionen zulässt:

$$\delta \subseteq S \times (\Sigma \cup \{\epsilon\}) \times S$$

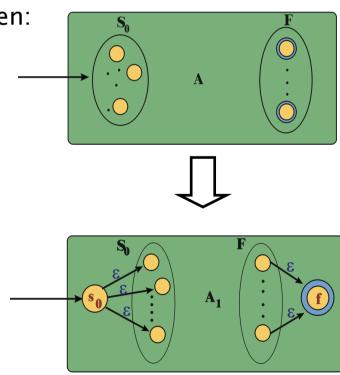
- Konfigurationen k = (s, w) sind wie bei NFA definiert
- Für Konfigurationsübergänge gilt:

(s, aw)
$$\vdash$$
 (t, w) gdw. (s, a, t) $\in \delta$, a $\in \Sigma \cup \{\epsilon\}$, w $\in \Sigma^*$

Die von einem εFA A akzeptierte Sprache ist dann wieder

$$L(A) = \{ w \in \Sigma^*; (s_0, w) \mid -* (s, \varepsilon), s_0 \in S_0, s \in F \}$$

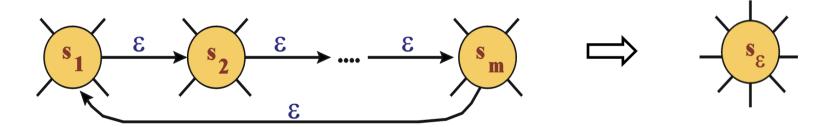
Äquivalenz von ε-Automaten und NFA


Satz: Die Klasse der jeweils von E-Automaten und NFA akzeptierbaren Sprachen sind gleich.

Beweis:

- 1. Jeder NFA ist ein spezieller εFA (ohne ε-Übergänge)
- 2. Wir konstruieren zu einem beliebig gegebenen εFA $A = (S, \Sigma, \delta, S_0, F)$ in vier Schritten einen NFA A', der dieselbe Sprache akzeptiert, für den also L(A) = L(A') ist.

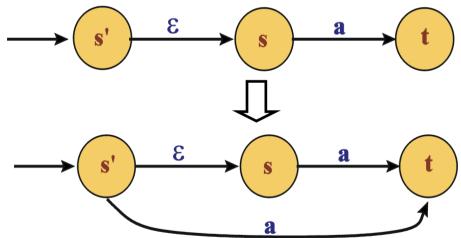
Transformation von EFA in NFA, 1. Schritt


A erhält einen neuen Startzustand s_0 und einen neuen Endzustand f, die mit den bisherigen Start- bzw. Endzuständen über ϵ -Transitionen verbunden werden:

(Falls A nur einen Start- oder Endzustand hat, kann auf das Schaffen neuer Zustände verzichtet werden.)

Transformation von εFA in NFA, 2. Schritt

Entferne alle ϵ -Zykel, Zustandsfolgen $s_1, s_2, ..., s_m$, die zyklisch über ϵ -Transitionen durchlaufen werden können, ersetze sie durch neuen Zustand s_{ϵ} . Zu und von s_{ϵ} führen alle Transitionen der ersetzten Zustände.



Anschließend werden alle Transitionen der Art (s, ε , s) entfernt.

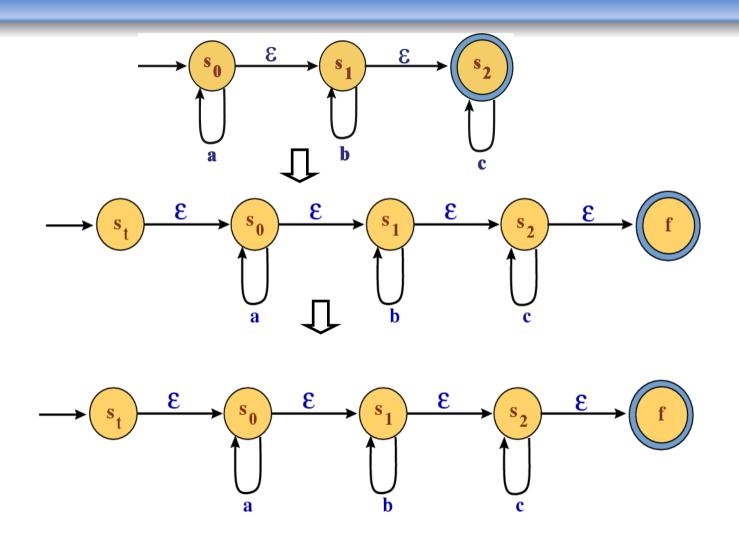
Transformation von εFA in NFA, 3. Schritt

Jetzt noch enthaltene ϵ -Transitionen werden durch alternative Übergänge ergänzt, die Zeichen aus Σ benötigen. (Ziel ist es, die ϵ -Transitionen überflüssig zu machen.)

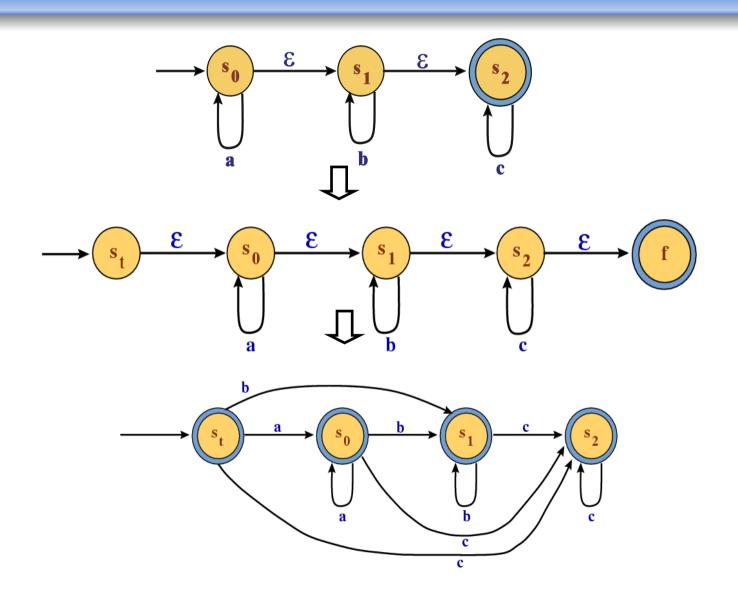
Kommt man mit (erst ϵ dann a) von s' nach t, dann auch mit (nur a).

Diese Operation wird so oft angewandt, bis sich keine Änderungen mehr ergeben.

Transformation von εFA in NFA, 4. Schritt


Ein neu eingefügter Endzustand f (der nur das Ziel von ε-Transitionen ist) wird wieder entfernt und in die Endzustandsmenge F' werden alle die Zustände aufgenommen, von denen aus f per ε-Transitionen erreichbar war.

$$F' = \{t \in S; (t, \epsilon) \mid -^* (f, \epsilon)\}$$


Anschließend können alle ε-Transitionen entfernt werden.

Da alle Transformationsschritte äquivalenzerhaltend waren, akzeptiert der so konstruierte Automat dieselbe Sprache wie der gegebene εFA A.

Beispiel: Transformation von A_{εabc} in einen NFA

Beispiel: Transformation von A_{εαbc} in einen NFA

Transformation in DFA

- Es entsteht ein Automat mit einem Startzustand
- Der Automat ist i.a. ein NFA, der aber automatisch in einen DFA transformiert werden kann (Potenzmengenautomat)
- Häufig werden nicht alle Zustände des Potenzmengenautomaten gebraucht
- Entferne unerreichbare Zustände
- → weitere Minimierung möglich!