Minimizing Automata
Myhill-Nerode Theorem

Taken from:
COMS 3261: Computability, Fall 2004

Columbia University
Zeph Grunschlag

Equivalent States.
Example

Consider the accept states c and g. They are both sinks
meaning that any string which ever reaches them is
guaranteed to be accepted later.

Q: Do we need both states?

Equivalent States.
Example

A: No, they can be unified as illustrated below.

Q: Can any other states be unified because any subsequent
string suffixes produce identical results?

Equivalent States.

Example
A: Yes, b and f. Notice that if you’re in b or f then:

1. if string ends, reject in both cases
2. if next character is O, forever accept in both cases

3. if next character is 1, forever reject in both cases
So unify b with f.

Equivalent States.

Example
Intuitively two states are equivalent if all
subsequent behavior from those states is the
same.

Q: Come up with a formal characterization of state
equivalence.

Equivalent States.
Definition
DEF: Two states g and g@” in a DFA
M=(Q, 2,0, q,, F) are said to be
equivalent (or indistinguishable) if
for all strings u € 2*, the states on which

u ends on when read from g and g’ are
both accept, or both non-accept.

Equivalent states may be glued together
without affecting M’ s behavior.

Finishing the Example

Q: Any other ways to simplify the
automaton?

Useless States

A: Get rid of d.

Getting rid of unreachable useless states
doesn’t affect the accepted language.

Minimization Algorithm.
Goals

DEF: An automaton is irreducible if
— it contains no useless states, and
— no two distinct states are equivalent.

The goal of minimization algorithm is to create
irreducible automata from arbitrary ones.

Remarkably, the algorithm actually produces smallest

possible DFA for the given language, hence the name
‘minimization”.

The minimization algorithm reverses previous example.
Start with least possible number of states, and create
new states when forced to.

Minimization Example

Start with a DFA

Split into two teams.
REJECT

VS.
ACCEPT

O-label doesn’t split
up any teams

1-label splits up
REJECT's

Start team
contains
original

start

Minimization Example.
End Result

States of the minimal automata are

0

remaining teams. Edges are
consolidated across each team. Accept
states are break-offs from 0

original ACCEPT team. 0,1

Minimization Algorithm.
(Partition Refinement) Code

DFA minimize(DFA (Q, %, 0, g, F))
remove any state g unreachable from g,
Partition P={F, Q- F}
boolean Consistent = false
while(Consistent == false)
Consistent = true
forevery (SetSE P, chara €2, Set TEP)
Settemp ={g €T | 0(g,a) €S }
if tlemp =@ &&temp !=T)

return defineMinimizor((Q, Z, 0, q,, F), P)

17

Minimization Algorithm.
(Partition Refinement) Code

DFA defineMinimizor
(DFA (Q, %, 0, q,, F), Partition P)
Set Q" =P
State q’,=the set in P which contains g,
F={S€P |SCF}
for (eachSEP, a €2)

define 8’ (S,a) = the set T& P which contains
the states 0’(S,a)

return (Q’, 2, &%, @y, F’)

Minimization Example.
Compare 0,1

ﬁOOlOOlOl

Minimization Example.
Compare 0,1

]100100101

Minimization Example.
Compare 0,1

1()()100101

Minimization Example.
Compare 0,1

1OOT100101

Minimization Example.
Compare 0,1

1001{)0101

Minimization Example.
Compare 0,1

10010?101

Minimization Example.
Compare 0,1

100100}01

Minimization Example.
Compare 0,1

1001001?1

Minimization Example.
Compare 0,1

10010010}

Minimization Example.
Compare 0,1

100100101T

ACCEPTED.

Minimization Example.
Compare 0,1

ﬁOOOO

Minimization Example.
Compare 0,1

]f)OOO

Minimization Example.
Compare 0,1

1()POO

Minimization Example.
Compare 0,1

100?0

Minimization Example.
Compare 0,1

1000P

Minimization Example.
Compare 0,1

10000
T

REJECT.

Proof of Minimal Automaton

Previous algorithm guaranteed to produce an
irreducible FA. Why should that FA be the
smallest possible FA for its accepted language?

Analogous question in calculus: Why should a
local minimum be a global minimum? Usually
not the case!

Proof of Minimality

THM (Myhill-Nerode): The minimization algorithm
produces the smallest possible automaton for its
accepted language.

Proof. Show that any irreducible automaton is the
smallest for its accepted language L:

We say that two strings u,v € 2* are indistinguishable
if for all suffixes x, ux is in L exactly when vx is.

Proof of Minimality

Consequently, the number of states in any DFA for L
must be as great as the number of mutually
distinguishable strings for L.

But an irreducible DFA has the property that every state
gives rise to another mutually distinguishable string!

Therefore, any other DFA must have at least as many
states as the irreducible DFA

Let’s see how the proof works on a previous example:

Proof of Minimal Automaton.

* 00 anc
e 10 ano

e 11 anc

Example

000 are indistinguishable
1010 are indistinguishable
01 are indistinguishable

Proof of Minimal Automaton.

mutua
redunc

Example

The “spanning tree of strings” {€,0,01,00} is a
ly distinguishable set (otherwise
ancy would occur and hence DFA

would
has =4

oe reducible). Any other DFA for L
states. o1

Equivalence Classes

* Finite automata induce finitely many equivalence

classes on strings from *

(Mvyhill Nerode: Finite Automata are of finite index)
— x =, Y iff O(s,x) = 0(s,y) = q for some g € Q,

the set of states.

— There are only |Q| states, hence Z* has

maximally |Q| =,,-classes.

e Our example automaton M

has 4 equivalence classes
(named with representatives
{€,0,01,00})

-

Regular
v set defined
by M
[

—~——

|_— =,-classes

