B

An Automata Theoretic Approach to
Branching Time Model Checking

Acknowledgements: after Arie Gurfinkel's notes

Automata and Logic
1

There is an intimate connection between automata and

logic

Logic

o atemporal logic formula ¢ is identified with all
models that satisfy it

Automata

a alanguage of an automaton is the set of all words
accepted by it

The language of an automaton for a logical formula ¢ is

the set of all models that satisfy ¢

a strings for linear logic

a trees for branching logic

]

2

56

Automata-Theoretic Approach
B]

e Automata-theoretic approach gives a uniform solution to
both satisfiability and model-checking

e For a given logical formula ¢ and a model K

a ¢ is satisfiable iff there exists a model that satisfies ¢
e Op is satisfiable

e O(p A —p) is not

o model-checking is deciding if ¢ is satisfied by a given
model

e Automata-theoretic solution
e build an automaton A, for the formula ¢
e @ is satisfiable iff A, is non-empty
e combine A-, and K into an automaton A, x
L e K Epiff A, g is empty J

3/56

Automata-Theoretic Approach

f e Automata provide a clean separation between logic andT
algorithms

e Constructing an automaton for a formula

o what does that mean for a model to satisfy the
formula

e Solving non-emptiness problem for an automaton
o how to decide if a given model satisfies the formula

4 /56

Outline
]

e Automata on infinite words

o refresher

e acceptance conditions

e computational tree of an automaton

o alternation — a powerful extension of nondeterminism
e Constructing an Alternating Word Automaton for LTL

e Automata on infinite trees
o deterministic automata
e nondeterministic automata
e alternating automata
e Constructing an Alternating Tree Automaton for CTL

]

5/56

Finite-state Automata

[|

e A finite state automaton A is a tuple (%, @, d, go, F),
where

Y is a finite alphabet

Q is afinite set of states

0 C Q x X x Q is atransition relation
qo € Q is a designated initial state

e F C Q¥ is an acceptance condition

e A D-labeled infinite string s is a function N — D

PP PP

e A X-word w is a X-labeled infinite string
e w = ababaaa®
a w(0) =a, w(l) = b, w(3) = a, etc.

L]

6 /56

Finite-state Automata
-

e Arunr of an automaton overaword wisa N x @
labeled string, where

o anode of r labeled with (n, ¢) indicates that the
automaton reads letter n of w while at state ¢

_@:—;@ state H §(q,a) ‘ 6(q,b) ‘ é(g,c)
q
AR

e arunonw = aba is

(07 qU)a (15 ql)7 (27 q0)7 (35 ql)a (45 QI)7 (57 (J1), s

7 /56

Infinite Occurrences

¥ - Y (¢) — there exists infinitely many :th such that Y(i)T

For p € Q¥

a In(p) is the set of states that occur infinitely often
e In(p) ={q€ Q|3 p(i) = q}

Biichi condition

e FISFCQ

e In(w)NEF #£0

o weak fairness — something occurs infinitely often

Muller condition

o Fis{F,...,F;,} C29

e Ji-In(w)=F;

8 /56

Acceptance Conditions

f e Rabin condition (“pairs”) T

e Fis{(R1,G1),...(Rn,Gp)} with R;,G; C Q
e Fi-Infw)NR;=0AIn(w)NG; #0
o Rabin (0, F) is equivalent to Biichi F

e Street condition (“complemented pairs”)
o Fis{(Fi, E1),...,(Fn, Ep)} with B, F; CQ
e Vi-In(w)NF;# 0= In(w)NE; #0
a strong fairness

e if infinitely often enabled, then infinitely often
executed

o Street (@, F) is equivalent to Buchi F

9/56

Acceptance Conditions
—

e Parity condition
@ FisF C---CF,withF,CQ
e smallest i for which In(w) N F; # 0 is even
e co-Bichi condition
e FiISFCQ
o accepts w if In(w)NF =0
e Nondeterministic Buichi-, Muller-, Rabin-, and Street-
automata all recognize the same w-languages

10 /56

Example: Acceptance
-

e Language over {a,b,c}*
e if a occurs infinitely often, then so does b

e Automaton with states g¢q, ¢, and ¢., and §

state H 5(q,a) ‘ 6(q,b) ‘ 4(q,c) ‘

da da dp dc
Qb Ga ') qc
dc da ap dc

e Acceptance conditions

o Street — single pair ({¢a}, {av})
o Muller — all states F where ¢, € F = q, € F

L {@}, {ac} {aw ac}, {0 } {00 @ ac} J

11 /56

Example: Acceptance

f e Automaton with states ¢, g, and g, and § T

state H d(g,a) ‘ 6(q,b) ‘ d(q,c) ‘

Ga Ga 1) qc
b qa b qc
qc Ga qb qc

e Acceptance conditions

e Rabin
e either b occurs infinitely often, or both a and b have

finite occurrences
o two pairs (0,{g}), ({da> @}, {ac})

o Parity
e mv{Qb}v{qav(ﬂ?}7{q(laqbaq6} J

12 /56

Example: Acceptance

[|

e For Bichi acceptance condition simulate Rabin pairs by
nondeterminism

state H 5(q,a) ‘ d(q,b) ‘ (g, c) ‘

Ga | % s {4e.q'}
®» | @b {4e,d'}
Qe Ga @ {4e,4'}
q q

e Every time ¢ occurs, guess that a suffix containing only
cis reached

e Bichi acceptance condition

L e = {qb,q'} J

13 /56

Computational Tree of an Automaton

—

Q

A set of all runs of an automaton A over a fixed word w
is called a computational tree

Each node in the computational tree is labeled by a
history h € Q*

A history is a list of all states visited by the automaton
so far

For a deterministic automaton, the computational tree is
linear

a there is only one possible run!

14 /56

Computational Tree: Example
—

e A deterministic automaton over {a, b}
state | 9(¢,a) | 6(q,b)

q0 q1

q q

9
q1

e Computational tree over (aab)¥

(90), (90 40), (40, 90, 90), (0, 90, 90, q1), - - -

15 /56

Comp. Tree: Nondeterministic Case
]

f e For a nondeterministic automaton, the computational
tree contains all possible choices

e Formally, the computational tree T of A over w is
recursively defined as
o the root is labeled by ¢,
o for a node k € T labeled with the history z - y, where
zeQ* andyeQ
a if d(y,w(|z-y|)) = {t1,... tn}, then
e k has n successors, and
o th successor is labeled with z - y - ¢;

16 /56

Example: nondeterministic automaton
[]

e Nondeterministic automaton over {a, b}

state H 0(q,a) ’5(%17)
@ {9 at|

e acceptance condition is Buchi F' = {q:}
a corresponds to oOa

e Computational tree over aba®

L]

17 /56

Computational Tree: Acceptance
]

f e An infinite history h € Q“ corresponds to an infinite
branch g of the computational tree iff for any prefix of A
there exists a node in S labeled with it

e An automaton A accepts a word w iff

o there exists an infinite branch g in the computational
tree of A over w, such that
e an infinite history corresponding to 3 is an
accepting run

18 /56

Alternation
B]

e For a non-deterministic automaton A, a transition
d(q,a) = {t1,...,tn} can be interpreted as

o when A isin state ¢ and has read letter a
e create n copies of A
e switch sth copy to state ¢;
e run each copy on the rest of the word

o aword is accepted iff it is accepted by at least one
copy

e We can dualize the acceptance condition to be

o aword is accepted iff it is accepted by all copies
e Inthis case, the computational tree is linear

a but, each node is labeled with multiple histories

L]

19 /56

Example of a Dual Automaton
f e Automaton over {a, b} T
state || 9(g,a) | (q,b)
0 |[{oa}| @
q1 q1 q2
q2 q2 q2

a just as before but {qo, ¢1} means pick both, not pick
onel

e acceptance condition is Buchi F = {¢;}
e Computational tree over aba® is linear

L]

20 /56

Another Example of a Dual Automaton
[]

e Automaton over {a,b, c}

state || 9(g,a) | d(g,b) | 9(q,¢)
o | {9, @} {0 e} | {a, e}

| a3 q1 a1
a2 a2 a3 a2
a3 a3 a3 a3

o acceptance condition is Blchi F' = {g3}
o accepts o((ca) A (ob))
e Computational tree over ccabc” is linear

L]

21 /56

Alternating Automata

[|

e Alternating automata combine the two interpretations

o the transition relation becomes @ x ¥ — 92°
a d(q,a) ={T1,...,T,} is interpreted as
e when q is read at state ¢, pick one of T; C @
e create as many copies of A as |T;|, and send them
along the word
e aword is accepted iff it is accepted by all the
copies
e A computational tree of an alternating automaton is
e branching
e each node can be labeled with multiple histories

L]

22 /56

-

Alternating Automata: Example

e Example alternating automaton over {a, b, c}

state | d(q,a) | 3(q,b) | d(q,¢)

q | {{ao}{a}}

q1 q1
q2 a3
a3 a3

Buchi acceptance {¢3}
computational tree over acbaa®
a run over acbaa®

corresponds to a U (¢a A ob)

q2

{q1, a2}
q1
q2
q3

23 /56

Alternating Automata: Acceptance

e A word is accepted iff there exists an infinite branch T
such that all of its infinite histories satisfy the
acceptance condition

e Alternatively,

e arun of an alternating word automaton is a tree
e each branch in the computational tree is a run
e the set of infinite histories associated with a
branch forms a tree

e arun is accepting iff all of its branches are accepting
e aword is accepted iff there exists an accepting run

]

24 /56

Symbolic Representation

e A transition relation Q x A — 92? can be represented
symbolically as a boolean formula over @

a q1 Vg isequivalentto {{q:1}, {q2}}
e ¢q1 Aq2Vgsis equivalent to {{q1, ¢2}, {as}}

e Intuition
a ¢ Vg means
e splitinto two copies
e one switches to ¢, the other to ¢,
e accept iff at least one copy accepts
e (1Vag)Ags
e splitinto 3 copies
e 1st switches to ¢;, 2nd to ¢2, and 3rd to g3
L e accept if both the 3rd copy and either one of 1st orJ
2nd accept

25 /56

Why Do We Need This?

e Complementation is easy T
a let ¢ be a boolean formula over X

a adual . of ¢ is obtained by switching A with v
e adualof (aAb)Veis (aVb)Ac

o acomplementof A = (%,Q,4,qo, F) is
Ac = (2,Q, 6, q,F:), where
e d;isthedual of 0, F. = Q¥ \ F

e There is an easy translation from temporal logic (LTL) to
alternating Buchi word automaton

26 /56

rm
Rectangle

From LTL to Automata
f e Foran LTL formula ¢ T
a closure of ¢, cl(y), is the set of all subformulas of ¢
e An alternating automaton A, that accepts all 247
labeled words that satisfy ¢ is built as follows
e AQO = (2AP7 Cl((p)a 67 ®, F)
a d(q,0) is defined as follows

da,0) = aco d(—a, o) = a¢o
i(op,0) = ¢ 6(Bp,0) = d(p,0) ADyp
5(op,0) = d(p,0)Vop d(eUtp,0) = 6(¢,0)V
5(p, o) AU
L e F={0O¢| Oy € c(p)} is a Blchi acceptance J
condition

F := F\union { true }

27 /56

rm
Text Box
F := F \union { true }

Examples
’7 e aldd T

state | (g, {a,0}) | 6(¢,{a}) | 8(q. {b}) | 8(.0)

a true true false false
b true false true false
aldb true aldb true false

e No accepting states

28 /56

Examples
’7 e aldob T

state || 0(g,{a.b}) | d(q.{a}) | d(q,{b})|d(a.0)

a true true false false
b true false true false
ob true ob true ob

ald ob true (ob) V (aU ob) | true ob

e no accepting states

29 /56

Examples
’7 e Oa T

state H {a} ‘ 0

false

true
Oa

a
Oa

false

e acceptance condition {Oa}
e (Oa) A (Ob)

state || d(g, {a,b}) | 8(q.{a}) | (. {b}) | 6(a.0)

a true true false false
b true false true false
Oa Oa Oa false false

L 0b ab false ab false J

(Oa) A (Ob) || (Oa) A (Ob) | false false | false

30 /56

Automata over Infinite Trees

31/56

Outline
-

e Automata on infinite trees
o deterministic automata
o nondeterministic automata
e alternating automata

e Constructing an Alternating Tree Automaton for CTL

32 /56

Trees

f e Atreeis atuple (V4,V, E,r), where T
e V; and V] is the set of tree and leaf nodes,
respectively

a (VyUV, E)is adirected acyclic graph

a F CV,x (V,UV)is the set of edges

e r € Vyistheroot node,Vx € V; - (z,7) ¢ E

e Atree is the set of paths from the root to the leaves
e assume nodes at each level are enumerated

o each path is an element of N*
o e isthe root node
e 0-1-0 means: go to child 0, then 1, then 0

33 /56

Trees

e Atree 7 is a subset of N* such that
a 7 is prefix closed
Qe €ET
e VeeN*-VyeN-(z-y)er=uzer
e 7 is child closed
e VeeN*-VyeN-(z-y)er=Ve<y-(z-2)€eT
e each node z € 7 is described by the unique path
from the root to z
e A degree d(z) of a node z is the number of successors
of x

e Vy<d(z) (z-y)eTA(z-dz)) &1

]

34 /56

Trees
[]

e Atree 7 is n-ary iff
a every non-leaf node has degree d(z)
e Vzer-dz)=nVd(z)=0

A tree is leafless if degree of every node > 0

A D labeled tree is a tuple (, L), where
e Tisatree
e L:N* — Dis alabeling function

A string is 1-ary tree

An infinite string is a leafless 1-ary tree

A finite word is a X-labeled 1-ary tree

An infinite word is a Y-labeled 1-ary leafless tree

P

e

35/56

Tree Automata

f e A tree automaton is a tuple A = (%, @, qo, 9, F), where T
e Y is a finite alphabet
e @ is a finite set of states
a qo € Q is the initial state
e ¢ is the transition relation
e different depending on the type of the automaton
o F C Q¥ is the acceptance condition
e can be Buichi, Rabin, Street, Parity, etc.

e For a deterministic n-ary tree automaton
0:Q XX — Q" where §(¢q,a) = (wp, ..., w,—1) Means
e if Aisin state ¢, and reads node labeled with a, then
a A splits into n copies

L e copy ¢ is switched to state w;, and J
a is sent to the ith successor of the tree node

36 /56

Example

[|

e deterministic automaton accepting all binary
{a,b}-labeled trees that have a b along every branch

e corresponds to AFb

state H d(g,a) ‘ (g, b)

(90, 90) | (q1,q1)
(@1, q1) | (q1, 1)

qo0
q1

e acceptance is Buchi {¢;}

37 /56

Run and Acceptance
]

e A run of a deterministic tree automaton on a X-labeled
n-ary tree (T,V) is a N* x Q-labeled tree (T,V;), where
e Vi(z) = (z,q) indicates that the automaton read letter
V(z) while in state ¢
e Vi(e) = (€, q0)
e if Vi(z) = (z,q) and (¢, V(x)) = (wo, . . ., wnp—_1), then
e Vy<n-(z-y)eT,and
e Vi(z-y) = (z-y,wy)
e Arunis accepting iff all of its branches satisfy the
acceptance condition

38 /56

Computational Tree of a Tree Automaton
B 1

e A computational tree of A on atree (7,V) is a tree of all
runs of A on (T,V)

o computational tree of a deterministic tree automaton
is linear

e Each node of the computational tree is labeled by a set
of histories

e A history is a string (N x @)* describing a run of an
automaton over a single branch of the input tree

e A branch g of a computational tree is accepting iff all
infinite histories associated with it are accepting

e Atree is accepted iff exists an accepting branch of the
computational tree

L]

39 /56

L

Non-Deterministic Tree Automata
]

3

e For a non-deterministic tree automaton 6 : Q x ¥ — 2¢"
where 6(q,a) = {Wy, ..., W} means

e if Aisin state ¢, and reads a node labeled with «
a pick W; € §(¢,a) and proceed as a deterministic
automaton

e A run of a non-deterministic automaton is defined as for
the deterministic case

e A computational tree of a non-deterministic tree
automaton is branching

o atree is accepted iff there exists an accepting
branch of the computational tree

a or equivalently, iff there exists an accepting run

]

40 /56

Example

[|

e non-deterministic binary tree automaton that accepts an
{a,b}-labeled tree if at least one branch contains an a

e correspondsto EFa

state H d(q,a) ‘ d(g,b)
q0 ‘ (q1,q1) | {(q0,91), (q1,490)}
o || (q1.q1) (a1, q1)

e acceptance is Buchi {¢;}

41 /56

Symbolic Transition Relation
[]

e For deterministic and non-deterministic tree automata
transition relation can be described by a boolean

formula over N x)

e For deterministic binary tree automaton
a d(q,a) = (wp,w1) becomes
a d(q,a) = (0,wo) A (1,w1)

e For a non-deterministic binary tree automaton a choice
is encoded by a disjunction

a d(q,a) = {(wo, wr), (w2, ws)} becomes
e (g, a) = ((0,wo) A (1,w1)) V ((0,w2) A (1,ws3))
a note that both conjunction and disjunction are used

L]

42 /56

Alternating Tree Automata
[]

e Foraset X, let B(X) denote the set of all positive
boolean formulas over X

e AsetY C X satisfies a formula § € B(X) if treating
atomsin Y as true, and in X \ Y as false, makes 6 true
e X ={a,b,c}
e {a,b} satisfiesa AbV ¢, and
o does not satisfya AbAc

e An alternating n-ary tree automaton is a tree automaton
with transition relation §(¢, a) € B({0,...,n — 1} x Q)
Q (Oa ql) \ (Oa q?) A (13 ql)

L]

43 /56

Example

[|

e Alternating automaton that accepts all binary
{a, b}-labeled trees where b occurs as a child of every
node at the second level

e Corresponds to AXEXb

state H d(q,a) ‘ 0(q,b)
q | (0,q1) A(L,q1) | (0,q1) A (1,q1)
a1 | (0,q2) V (1,42) | (0,g2) V (1,2)
g2 || (0,q4) A(1,q4) | (0,93) A (1,43)
g3 | (0,g3) A (1,g3) | (0,g3) A (1,q3)
qa || (0,q4) A (1,q4) | (0,q4) A (1, qa)

L e acceptance is Bichi {¢3} J

44 /56

Alternating Automata
[]

e Arun of an alternating n-ary tree automaton A over a

Y-labeled tree (T, V) is a N* x @ labeled tree (T}, V;)

@ Vi(e) = (¢, q0)

e if V;(z) = (y,q) and 6(g, a) = 6, then there exists a
possibly empty set Y = {(co, wo), - - ., (ck, wg)} such
that
e Y satisfies 4, and
e forall0<i<k,z-i€T, and Vi(z i) = (y-c,w;)

e Atree (T,V) is accepted by A iff there exists an

accepting run of A over (T,V)

45 /56

ATA Computational Tree
—

e As before, we can build a computational tree of A over a
Y.-labeled tree (7,V)

e Nodes in the computational tree are labeled with
histories

e Atree is accepted by the automaton iff there exists an
accepting infinite branch in the computational tree

L]

46 /56

rm
Rectangle

Example
—

e Automaton over binary {a}-labeled tree

state H d(g,a)
20 | (0,90) A(1,q2) V(0,q1)
@1 | (0,q1) A(0,q2) A(1,q2)
15 (0,42)

e computational tree is branching

47 /56

Extending to Arbitrary Trees
—

e We only considered trees with a fixed branching degree

e LetDCN

e a D-tree is a tree such that a branching degree of
every node is in D
e Vz-d(z)eD
e A D-tree automaton has transition relation
§:QxXxD—-BNxQ)
e ¢ is defined separately for each branching degree
e d(q,a, k) can only contain terms from {0,k — 1} x Q
e A size of a D-tree automaton Ap is
a [|Ap|| = D] + Q[+ [F| + ||4]]
o 1811 = 2.0k 16(g, a, k)| where 6(q, a, k) # false

L]

48 / 56

Model: Kripke Structure
-

e As usual, our models are Kripke structures
K = (AP, S,s0,R, L)
a AP is the set of atomic propositions
o S is afinite set of states
a sg € S an initial state
a R C S x S the transition relation
a L:S — 247 s the labeling function

e A Kripke structure induces a S-labeled tree (T, Vi)
e Vi :N* — S labels each node with a state
Q VK(G) = S0
a Tx C N* is a tree such that
e fory € Tk with R(Vk(y)) = (wo, - . . wy,) We have
L YO<i<m-(y-i) €Tk and Vg(y-i) = w; J

49 /56

Computation Tree

[|

e A Kripke structure can be seen as a computation tree
over its atomic propositions

e For a Kripke structure K
e (Tk,Vk) is its tree unrolling
e (Tk, L o V) is its computation tree

50 /56

-

Temporal Logic: CTL

e Computation Tree Logic is interpreted over a
computation tree of a Kripke structure

e Definition

lIp!I(s) = peL(sp)

lI=¢l|(s) = llell(s)

e All(s) = llell(s) AllYlI(s)
leVells) = llell(s) VI¥ll(s)
IEXell(s) = 3teR(s)-|lell(t)
[AXell(s) = VteR(s)-|lll(t)
IE[pUY]l|(s) = ||uZ -4V e ANEXZ]|(s)
[A[UYII(s) = |InZ -4 Ve NAXZ]|(5)
IE[pRY]||(s) = [lvZ- -9 A(pVEXZ)|(s)
[A[pRY]l|(s) = [vZ ¢ A(pVAXZ)||(s)

B

]

51/56

From CTL to ATA

e For a CTL formula ¢ we construct an alternating D-tree
automaton Ap , that accepts all D-trees that are
models of ¢

e Ap, = (247 cl(p), p, 8, F)

o the alphabet is all subsets of AP
a states correspond to sub-formulas of ¢
e initial state is ¢

o acceptance condition is Biichi and consists of all AR
and ER sub-formulas

a ¢ is the transition relation

e Intuitively, Ap , accepts a tree from a state g iff the tree
is the model of the formula associated with ¢

]

52 /56

L

From CTL to ATA

d(p,o,k) = trueifpeo T

d(p,o, k) = falseif po

0(—p, 0, k) = falseif peo

d(—p, 0,k) = trueifp&o

0o N1, o,k) = 0(p,0,k) No(h,0,k)

eV, o,k) = (p,0,k)VI(,0,k)

S(AXe,0k) = Negle)

(EXp.ok) = Vigglep)
S(AleUY)0.k) = 5(th,0,k) V 8(p,0.k) A Neg (e, AlpUd))
S(AlgRy),0.k) = 8(v,0,k) A(3(g,0,k) V Nz (c, AlpRy))))

S(ElgUYL oK) = 8(t,0,k) V8l 0,k) AV (e, BLeUY)
S(ElpRy],0.k) = o) A

(1, 0,k) A (5(p,0,k) V Vi (e, E[wR@b]))J

53 /56

Examples
’7 e ¢ =AFAGp T

e in negation normal form: Aftrue U (A[false R p])]
o alphabet 21}

state H 0(q,{p}, k) ‘ 5(q,0,k)
¥ Nezo(c, Alfalse R p]) v Ar—g (e,) | Ao (e,
Alfalse R p] /\’C:é (¢, A[false R p]) false

o acceptance condition is Buchi { A[false R p|}

54 /56

-

Examples

e 9= A[(-~AXp) U b]
e in negation normal form: A[(EX—p) U q]
o alphabet 2{P:t}

state | d(q, {p, b}, k) 0(q, {p}, k) 6(q, {b}. k) 3(q,0,k)
v true [Veg(le,p) ANiSg(e¥) | true [Vimg(e,p) A NS, (e ¥)
-p false false true true

55 /56

rm
Rectangle

=R

it
v

Q>
56 /56

