Temporal Logic
The main ideas

Ralf Méller
Hamburg University of Technology

Acknowledgements

» Slides by Eric Madelaine, INRIA

Reasoning about Executions

b1 Conceptual View

——

L1 L4
?b0

| Explored State-Space (computation tree)
?b1 lal

i /LI, (mti, vrl),]

L2 zerr £ [IJ}’”Z‘Z, 7"2),]
L3

[L3, (mt3, vr3),[L5, (mt5, vr5),]

L4

« We would like to reason about execution trees
+ tree node = snapshot of the program’s state
« Reasoning consists of two layers

+ defining predicates on the program states (control points,
variable values)

+ expressing temporal relationships between those predicates

Computational Tree Logic (CTL)

Syntax
b = P ...primitive propositions
/ I / O && D / ()] // D / b > P ...propositional connectives
/ AG D / EG @ / AF @ / EF @& ...temporal operators
| AX @ | EX & | A[®d U @] | E[® U @]
Semantlc Intuition graT T 3
FRGRLELLLELEEEELEL ... O path quantifier
AG p ...along All paths p holds Globally P temporal operator
EG p ...there EXxists a path where p holds Globally
AF p ...along All paths p holds at some state in the Future

EF p ...there Exists a path where p holds at some state in the Future

Computational Tree Logic (CTL)

Syntax

o = P ...primitive propositions
/ I / O && D / ()] / / D / b > P ...propositional connectives
/ AG D / EG @ / AF @ / EF @ ...path/temporal operators

| AX @ | EX @ | A[® U @] | E[® U D]

Semantic Intuition

AX p ...along All paths, p holds in the neXt state
EX p ...there Exists a path where p holds in the neXt state

Alp U q] . along All paths, p holds Until g holds

Elp U q] ...there Exists a path where p holds Until q holds

Computation Tree Logic

Aor ﬁ@\

18915

Computation Tree Logic

EGp /‘/‘V@\
f@% @i}g

! \
! \
! \
! \

Computation Tree Logic

AEp /‘/‘0\
.\/
fg }g {c\fg

1 1

\ 1 \
\ 1 \
\ 1 1
\ 1 \

Computation Tree Logic

B }O\
f@% {c\fg

1 \

1 \] \

1 1\] \
1 \ 1 \
_’ \ 1 \

Computation Tree Logic

AXp /O\
Jf}@g (i@?g

Computation Tree Logic

i ﬁO\

X0 Q O/f)}
6060 9006

Computation Tree Logic

Alp Uq]

Computation Tree Logic

E[p Ugq]

Example CTL Specifications

 For any state, a request (for some resource) will
eventually be acknowledged

AG(requested -> AF acknowledged)

e from any state, it is possible to get to a restart state
AG(EF restart)

e An upwards travelling elevator at the second floor
does not changes its direction when it has
passengers waiting to go to the fifth floor

AG((floor=2 && direction=up && buttonbpressed)
-> A[direction=up U floor=95])

CTL Notes

Invented by E. Clarke and E. A. Emerson
(early 1980’s)

Specification language for Symbolic
Model Verifier (SMV) model-checker

SMV is a symbolic model-checker instead
of an explicit-state model-checker

Symbolic model-checking uses Binary
Decision Diagrams (BDDs) to represent
boolean functions (both transition system
and specification

Linear Temporal Logic

Restrict path quantification to “ALL” (no “EXISTS”)

OO0~ OO0

Linear Temporal Logic (LTL)

Syntax

Qo ;= P ...primitive propositions
[1o | & && @ | © || & | & -> & ...propositional connectives
[[]® | <> | @U@ | X @ ...temporal operators

Semantic Intuition

PP DDPDDPDPDPDP DD D DD
[]o .always @ —_—

D D
<> ...eventually @ s e

o DD PP DT D r

®UT .. until T —

LTL Notes

* Invented by Prior (1960’s), and first use to reason
about concurrent systems by A. Pnueli, Z. Manna,
etc.

 LTL model-checkers are usually explicit-state
checkers due to connection between LTL and
automata theory

* Most popular LTL-based checker is Spin
(G. Holzman)

Comparing LTL and CTL

CTL*
CT@LTL

e CITL is not strictly more expressive than LTL (and vice
versa)

e CTL* invented by Emerson and Halpern in 1986 to
unify CTL and LTL

