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SELECT *
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

How could we prepare for such queries and evaluate them efficiently?

We could
1. sort the table on disk (in ZIPCODE order).
2. To answer queries, then use binary search to find first

qualifying tuple, and scan as long as ZIPCODE < 8999.
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scan
k* denotes the full data record with search key k.
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Ordered Files and Binary Search
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scan
page 0 page 1 page 2 page 3 page 4 page 5 page 6 page 7 page 8 page 9 page 10 page 11 page 12

" We get sequential access during the scan phase.

We need to read log2(# tuples) tuples during the search phase.

% We need to read about as many pages for this.
(The whole point of binary search is that we make far,
unpredictable jumps. This largely defeats prefetching.)
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ISAM—Indexed Sequential Access Method
Idea: Accelerate the search phase using an index.
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I All nodes are the size of a page
→ hundreds of entries per page
→ large fanout, low depth

I Search effort: logfanout(# tuples)

p0 k1 p1 k2 p2 · · · kn pn
• • • •

index entry separator key
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ISAM Index: Updates
ISAM indexes are inherently static.

I Deletion is not a problem: delete record from data page.
I Inserting data can cause more effort:

I If space is left on respective leaf page, insert record
there (e.g., after a preceding deletion).

I Otherwise, overflow pages need to be added.
(Note that these will violate the sequential order.)

I ISAM indexes degrade after some time.

· · · · · · · · · · · ·
· · · · · ·

· · ·

overflow pages
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Remarks

I Leaving some free space during index creation reduces the
insertion problem (typically≈ 20 % free space).

I Since ISAM indexes are static, pages need not be locked
during index access.

I Locking can be a serious bottleneck in dynamic tree
indexes (particularly near the root node).

I ISAM may be the index of choice for relatively static data.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 52



B+-trees: A Dynamic Index Structure

The B+-tree is derived from the ISAM index, but is fully dynamic
with respect to updates.

I No overflow chains; B+-trees remain balanced at all times
I Gracefully adjusts to inserts and deletes.
I Minimum occupancy for all B+-tree nodes (except the root):

50 % (typically: 67 %).

I Original version: B-tree: R. Bayer and E. M. McCreight.
Organization and Maintenance of Large Ordered Indexes.
Acta Informatica, vol. 1, no. 3, September 1972.
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B+-trees: Basics
B+-trees look like ISAM indexes, where

I leaf nodes are, generally, not in sequential order on disk,
I leaves are connected to form a double-linked list:2

. . . . . . . . .

. . .

I leaves may contain actual data (like the ISAM index)
or just references to data pages (e.g., rids). ↗ slides 67 and 70

I We assume the latter case in the following, since it is
the more common one.

I each B+-tree node contains between d and 2d entries (d is
the order of the B+-tree; the root is the only exception)

2This is not really a B+-tree requirement, but most systems implement it.
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Searching a B+-tree

Function: search (k)1

return tree search (k, root);2

Function: tree search (k, node)1
if node is a leaf then2

return node;3

switch k do4
case k < k05

return tree search (k, p0);6

case ki ≤ k < ki+17
return tree search (k, pi);8

case k2d ≤ k9
return tree search (k, p2d);10

I Function search (k)
returns a pointer to the
leaf node that contains
potential hits for search
key k.

p0 k1 p1 k2 p2 · · · k2d p2d
• • • •

index entry separator key

node page layout
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Insert: Overview

I The B+-tree needs to remain balanced after every update.3

→ We cannot create overflow pages.
I Sketch of the insertion procedure for entry 〈k, p〉

(key value k pointing to data page p):
1. Find leaf page n where we would expect the entry for k.
2. If n has enough space to hold the new entry (i.e., at

most 2d− 1 entries in n), simply insert 〈k, p〉 into n.
3. Otherwise node n must be split into n and n′ and a new

separator has to be inserted into the parent of n.
Splitting happens recursively and may eventually lead
to a split of the root node (increasing the tree height).

3I.e., every root-to-leaf path must have the same length.
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Insert: Examples (Insert without Split)
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· · · pointers to data pages · · ·

Insert new entry with key 4222.
→ Enough space in node 3, simply insert.
→ Keep entries sorted within nodes.
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Insert: Examples (Insert with Leaf Split)
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Insert key 6330.
→ Must split node 4.
→ New separator goes into node 1
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Insert: Examples (Insert with Inner Node Split)
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After 8180, 8245, insert key 4104.
→ Must split node 3.
→ Node 1 overflows→ split it
→ New separator goes into root

Unlike during leaf split, separator key
does not remain in inner node.�Why?
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Insert: Root Node Split
I Splitting starts at the leaf level and continues upward as

long as index nodes are fully occupied.
I Eventually, this can lead to a split of the root node:

I Split like any other inner node.
I Use the separator to create a new root.

I The root node is the only node that may have an occupancy
of less than 50 %.

I This is the only situation where the tree height increases.

� How often do you expect a root split to happen?

E.g., B+-tree over 8 byte integers, 4 KB pages;
pointers encoded as 8 byte integers.

I 128–256 index entries per page.
I An index of height h indexes at least

128h records, typically more.

h # records

2 16,000
3 2,000,000
4 250,000,000
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Insertion Algorithm
Function: tree insert (k, rid, node)1

if node is a leaf then2
return leaf insert (k, rid, node);3

else4
switch k do5

case k < k06
〈sep, ptr〉 ← tree insert (k, rid, p0);7

case ki ≤ k < ki+18
〈sep, ptr〉 ← tree insert (k, rid, pi);9

case k2d ≤ k10
〈sep, ptr〉 ← tree insert (k, rid, p2d);11

if sep is null then12
return 〈null, null〉;13

else14
return split (sep, ptr, node);15

see tree search ()
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Function: leaf insert (k, rid, node)1

if another entry fits into node then2
insert 〈k, rid〉 into node ;3
return 〈null, null〉;4

else5
allocate new leaf page p ;6
take

˘
〈k+

1 , p+
1 〉, . . . , 〈k+

2d+1, p+
2d+1〉

¯
:= entries from node ∪ {〈k, ptr〉}7

leave entries 〈k+
1 , p+

1 〉, . . . , 〈k+
d , p+

d 〉 in node ;8
move entries 〈k+

d+1, p+
d+1〉, . . . , 〈k

+
2d, p+

2d〉 to p ;9

return 〈k+
d+1, p〉;10

Function: split (k, ptr, node)1

if another entry fits into node then2
insert 〈k, ptr〉 into node ;3
return 〈null, null〉;4

else5
allocate new leaf page p ;6
take

˘
〈k+

1 , p+
1 〉, . . . , 〈k+

2d+1, p+
2d+1〉

¯
:= entries from node ∪ {〈k, ptr〉}7

leave entries 〈k+
1 , p+

1 〉, . . . , 〈k+
d , p+

d 〉 in node ;8
move entries 〈k+

d+2, p+
d+1〉, . . . , 〈k

+
2d, p+

2d〉 to p ;9
set p0 ← p+

d+1 in node;10

return 〈k+
d+1, p〉;11



Insertion Algorithm

Function: insert (k, rid)1

〈key, ptr〉 ← tree insert (k, rid, root);2
if key is not null then3

allocate new root page r;4
populate n with5

p0 ← root;6
k1 ← key;7
p1 ← ptr;8

root← r ;9

I insert (k, rid) is called from outside.
I Note how leaf node entries point to rids, while inner nodes

contain pointers to other B+-tree nodes.
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Deletion

I If a node is sufficiently full (i.e., contains at least d + 1 entries,
we may simply remove the entry from the node.

I Note: Afterward, inner nodes may contain keys that no
longer exist in the database. This is perfectly legal.

I Merge nodes in case of an underflow (“undo a split”):
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I “Pull” separator into merged node.
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Deletion

� It’s not quite that easy. . .
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redistribution

I Merging only works if two neighboring nodes were 50 % full.
I Otherwise, we have to re-distribute:

I “rotate” entry through parent
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I B+-trees in Real Systems

I Actual systems often avoid the cost of merging and/or
redistribution, but relax the minimum occupancy rule.

I E.g., IBM DB2 UDB:
I The MINPCTUSED parameter controls when the system

should try a leaf node merge (“on-line index reorg”).
(This is particularly simple because of the pointers between
adjacent leaf nodes,↗ slide 54.)

I Inner nodes are never merged
(→ need to do full table reorg for that).

I To improve concurrency, systems sometimes only mark
index entries as deleted and physically remove them later
(e.g., IBM DB2 UDB “type-2 indexes”)
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What’s Stored Inside the Leaves?

Basically three alternatives:

1. The full data entry k*.
(Such an index is inherently clustered. See next slides.)

2. A 〈k, rid〉 pair, where rid is the record id of the data entry.
3. A 〈k, {rid1, rid2, . . . }〉 pair. The items in the rid list ridi are

record ids of data entries with search key value k.

Options 2 and 3 are reasons why want record ids to be stable.
→ slides 42 ff.

I Alternative 2 seems to be the most common one.
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B+-trees and Sorting
A typical situation according to alternative 2 looks like this:

. . . . . . . . .

. . .

. . .

index file

data file

� What are the implications when we want to execute
SELECT * FROM CUSTOMERS ORDER BY ZIPCODE ?

I “Random” access to data pages when we scan the B+-tree.
I Page I/Os needed: ≈ number of tuples in CUSTOMERS.
I For comparison: Using external sorting, we could sort the

entire file with 3–5 sequential file reads.
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Clustered B+-trees
If the data file was sorted, the scenario would look different:

. . . . . . . . .

. . .

. . .

index file

data file

We call such an index a clustered index.
I Scanning the index now leads to sequential access.
I This is particularly good for range queries.

� Why don’t we make all indexes clustered?

You can only sort a table according to one criterion! In addition,
maintaining a clustered index involves additional work.
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Index Organized Tables

Alternative 1 (slide 67) is a special case of a clustered index.
I index file≡ data file
I Such a file is often called an index organized table.

I E.g., Oracle8i

CREATE TABLE (...
...,
PRIMARY KEY ( ... ))

ORGANIZATION INDEX;
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Prefix and Suffix Truncation
B+-tree fanout is proportional to the number of index entries per
page, i.e., inversely proportional to the key size.
→ Reduce key size, particularly for variable-length strings.

Dagobert Duck Daisy Duck

Daisy Duck

Goofy Mickey Mouse Mini Mouse

Mickey Mouse Mini Mouse

Goofy

Suffix truncation: Make separator keys only as long as necessary:

Dagobert Duck Daisy Duck

Dai

Goofy Mickey Mouse Mini Mouse

Mic Min

G

Note that separators need not be actual data values.
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Prefix Truncation

Keys within a node often share a common prefix.

Goofy Mickey Mouse Mini Mouse

Mic Min

· · ·

Goofy Mickey Mouse Mini Mouse

c n

· · ·

Mi

Prefix truncation:
I Store common prefix only once (e.g., as “k0”).
I Keys have become highly discriminative now.

Violating the “50 % occupation” rule can help improve the
effectiveness of prefix truncation.

↗ R. Bayer, K. Unterauer: Prefix B-Trees. ACM TODS 2(1), March 1977
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Composite Keys
B+-trees can (in theory4) be used to index everything with a
defined total order, e.g.:

I integers, strings, dates, . . . , and
I concatenations thereof (based on lexicographical order).

E.g., in most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME);

A useful application are, e.g., partitioned B-trees:
I Leading index attributes effectively partition the resulting

B+-tree.

↗ G. Graefe: Sorting And Indexing With Partitioned B-Trees. CIDR 2003.

4Some implementations won’t allow you to index, e.g., large character fields.
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Bulk-Loading B+-trees

Building a B+-tree is particularly easy when the input is sorted.

. . .

. . .

. . .

I Build B+-tree bottom-up and left-to-right.
I Create a parent for every 2d + 1 unparented nodes.

(Actual implementations typically leave some space for future
updates. ↗ e.g., DB2’s PCTFREE parameter)

� What use cases could you think of for bulk-loading?
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Stars, Pluses, . . .

In the foregoing we described the B+-tree.

Bayer and McCreight originally proposed the B-tree:
I Inner nodes contain data entries, too. � Pros/cons?

There is also a B*-tree:
I Keep non-root nodes at least 2/3 full (instead of 1/2).
I Need to redistribute on inserts to achieve this.

(Whenever two nodes are full, split them into three.)

Most people say “B-tree” and mean any of these variations. Real
systems typically implement B+-trees.

“B-trees” are also used outside the database domain, e.g., in
modern file systems (ReiserFS, HFS, NTFS, . . . ).
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Hash-Based Indexing
B+-trees are by far the predominant type of indices in databases.
An alternative is hash-based indexing.

h

bucket 0
bucket 1

...

bucket n− 1

key
. . .•

•

•

primary
bucket pages

overflow
pages

h : dom(key)→ [0 .. n− 1]

I Hash indices can only be used to answer equality predicates.
I Particularly good for strings (even for very long ones).
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Dynamic Hashing

Problem: How do we choose n (the number of buckets)?
I n too large→ space wasted, poor space locality
I n too small→many overflow pages, degrades to linked list

Database systems, therefore, use dynamic hashing techniques:
I extendible hashing,
I linear hashing.

I Few systems support true hash indices (e.g., PostgreSQL).
More popular uses of hashing are:

I support for B+-trees over hash values (e.g., SQL Server)
I the use of hashing during query processing→ hash join.
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Recap

Indexed Sequential Access Method (ISAM)
A static, tree-based index structure.

B+-trees
The database index structure; indexing based on any kind of
(linear) order; adapts dynamically to inserts and deletes; low
tree heights (∼ 3–4) guarantee fast lookups.

Clustered vs. Unclustered Indices
An index is clustered if its underlying data pages are ordered
according to the index; fast sequential access for clustered
B+-trees.

Hash-Based Indices
Extendible hashing and linear hashing adapt dynamically to
the number of data entries.
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