
Part VI

Transaction Management and Recovery
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The “Hello World” of Transaction Management

I My bank issued me a debit card to access my account.
I Every once in a while, I’d use it at an ATM to draw some

money from my account, causing the ATM to perform a
transaction in the bank’s database.

bal← read bal (acct no) ;1
bal← bal− 100 CHF ;2
write bal (acct no, bal) ;3

I My account is properly updated to reflect the new balance.
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Concurrent Access
The problem is: My wife has a card for the account, too.

I We might end up using our cards at different ATMs at the
same time.

me my wife DB state

bal← read (acct) ; 1200
bal← read (acct) ; 1200

bal← bal− 100 ; 1200
bal← bal− 200 ; 1200

write (acct, bal) ; 1100
write (acct, bal) ; 1000

I The first update was lost during this execution. Lucky me!
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Another Example
I This time, I want to transfer money over to another account.

// Subtract money from source (checking) account
chk bal← read bal (chk acct no) ;1
chk bal← chk bal− 500 CHF ;2
write bal (chk acct no, chk bal) ;3

// Credit money to the target (saving) account
sav bal← read bal (sav acct no) ;4
sav bal← sav bal + 500 CHF ;5
write bal (sav acct no, sav bal) ;6

I Before the transaction gets to step 6, its execution is
interrupted/cancelled (power outage, disk failure, software
bug, . . . ). My money is lost/.
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ACID Properties

To prevent these (and many other) effects from happening, a
DBMS guarantees the following transaction properties:

AtomicityA Either all or none of the updates in a database
transaction are applied.

ConsistencyC Every transaction brings the database from one
consistent state to another.

IsolationI A transaction must not see any effect from other
transactions that run in parallel.

DurabilityD The effects of a successful transaction maintain
persistent and may not be undone for system
reasons.
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Anomalies: Lost Update

I We already saw a lost update example on slide 201.
I The effects of one transaction are lost, because an

uncontrolled overwriting by the second transaction.
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Anomalies: Inconsistent Read
Consider the money transfer example (slide 202), expressed in
SQL syntax:

Transaction 1 Transaction 2
UPDATE Accounts

SET balance = balance - 500
WHERE customer = 4711

AND account_type = ’C’;

SELECT SUM(balance)
FROM Accounts
WHERE customer = 4711;

UPDATE Accounts
SET balance = balance + 500
WHERE customer = 4711

AND account_type = ’S’;

I Transaction 2 sees an inconsistent database state.
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Anomalies: Dirty Read
At a different day, my wife and me again end up in front of an
ATM at roughly the same time:

me my wife DB state

bal← read (acct) ; 1200
bal← bal− 100 ; 1200
write (acct, bal) ; 1100

bal← read (acct) ; 1100
bal← bal− 200 ; 1100

abort ; 1200
write (acct, bal) ; 900

I My wife’s transaction has already read the modified account
balance before my transaction was rolled back.
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Concurrent Execution

I The scheduler decides the execution order of concurrent
database accesses.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2

1

2
1

3
2

1

2
1
1
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Database Objects and Accesses

I We now assume a slightly simplified model of database
access:

1. A database consists of a number of named objects. In a
given database state, each object has a value.

2. Transactions access an object o using the two
operations read o and write o.

I In a relational DBMS we have that

object ≡ attribute .
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Transactions
A database transaction T is a (strictly ordered) sequence of steps.
Each step is a pair of an access operation applied to an object.

I Transaction T = 〈s1, . . . , sn〉
I Step si = (ai, ei)

I Access operation ai ∈ {r(ead), w(rite)}
The length of a transaction T is its number of steps |T| = n.

We could write the money transfer transaction as

T = 〈 (read, Checking), (write, Checking),
(read, Saving), (write, Saving) 〉

3
2

1

or, more concisely,

T = 〈r(C), w(C), r(S), w(S)〉 .
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Schedules
A schedule S for a given set of transactions T = {T1, . . . , Tn} is an
arbitrary sequence of execution steps

S(k) = (Tj, ai, ei) k = 1 . . . m ,
2
1
1

such that
1. S contains all steps of all transactions an nothing else and
2. the order among steps in each transaction Tj is preserved:

(ap, ep) < (aq, eq) in Tj ⇒ (Tj, ap, ep) < (Tj, aq, eq) in S .

We sometimes write
S = 〈r1(B), r2(B), w1(B), w2(B)〉

to mean
S(1) = (T1, read, B) S(3) = (T1, write, B)
S(2) = (T2, read, B) S(4) = (T2, write, B)
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Serial Execution

One particular schedule is serial execution.
I A schedule S is serial iff, for each contained transaction Tj, all

its steps follow each other (no interleaving of transactions).

Consider again the ATM example from slide 201.
I S = 〈r1(B), r2(B), w1(B), w2(B)〉
I This schedule is not serial.

2
2
1
1

If my wife had gone to the bank one hour later, “our” schedule
probably would have been serial.

I S = 〈r1(B), w1(B), r2(B), w2(B)〉
2
1
2
1
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Correctness of Serial Execution

I Anomalies such as the “lost update” problem on slide 201
can only occur in multi-user mode.

I If all transactions were fully executed one after another (no
concurrency), no anomalies would occur.

I Any serial execution is correct.

I Disallowing concurrent access, however, is not practical.
I Therefore, allow concurrent executions if they are equivalent

to a serial execution.
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Conflicts
What does it mean for a schedule S to be equivalent to another
schedule S′?

I Sometimes, we may be able to reorder steps in a schedule.
I We must not change the order among steps of any

transaction Tj (↗ slide 211).
I Rearranging operations must not lead to a different

result.
I Two operations (a, e) and (a′, e′) are said to be in conflict

(a, e) = (a′, e′) if their order of execution matters.
I When reordering a schedule, we must not change the

relative order of such operations.
I Any schedule S′ that can be obtained this way from S is said

to be conflict equivalent to S.
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Conflicts
Based on our read/write model, we can come up with a more
machine-friendly definition of a conflict.

I Two operations (Ti, a, e) and (Tj, a′, e′) are in conflict in S if
1. they belong to two different transactions (Ti 6= Tj),
2. they access the same database object, i.e., e = e′, and
3. at least one of them is a write operation.

I This inspires the following conflict matrix:
read write

read ×
write × ×

I Conflict relation≺S:
(Ti, a, e) ≺S (Tj, a′, e′)

:=
(a, e) = (a′, e′) ∧ (Ti, a, e) occurs before (Tj, a′, e′) in S ∧ Ti 6= Tj
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Conflict Serializability

I A schedule S is conflict serializable iff it is conflict equivalent
to some serial schedule S′.

I The execution of a conflict-serializable S schedule is correct.
I S does not have to be a serial schedule.

I This allows us to prove the correctness of a schedule S based
on its conflict graph G(S) (also: serialization graph).

I Nodes are all transactions Ti in S.
I There is an edge Ti → Tj iff S contains operations

(Ti, a, e) and (Tj, a′, e′) such that (Ti, a, e) ≺S (Tj, a′, e′).

I S is conflict serializable if G(S) is acyclic.14

14A serial execution of S could be obtained by sorting G(S) topologically.
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Serialization Graph
Example: ATM transactions (↗ slide 201)

I S = 〈r1(A), r2(A), w1(A), w2(A)〉
I Conflict relation:

(T1, r, A) ≺S (T2, w, A)
(T2, r, A) ≺S (T1, w, A)
(T1, w, A) ≺S (T2, w, A)

T1

T2

→ not serializable

Example: Two money transfers (↗ slide 202)
I S = 〈r1(C), w1(C), r2(C), w2(C), r1(S), w1(S), r2(S), w2(S)〉
I Conflict relation:

(T1, r, C) ≺S (T2, w, C)
(T1, w, C) ≺S (T2, r, C)
(T1, w, C) ≺S (T2, w, C)

...

T1

T2

→ serializable
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Query Scheduling

Can we build a scheduler that always emits a serializable
schedule?

Idea:
I Require each transaction to

obtain a lock before it accesses
a data object o:

lock o ;1
. . . access o . . . ;2
unlock o ;3

I This prevents concurrent
access to o.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2

1

2
1

3
2

1

2
1
1
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Locking

I If a lock cannot be granted (e.g., because another
transaction T′ already holds a conflicting lock) the
requesting transaction Ti gets blocked.

I The scheduler suspends execution of the blocked
transaction T.

I Once T′ releases its lock, it may be granted to T, whose
execution is then resumed.

I Since other transactions can continue execution while T is
blocked, locks can be used to control the relative order of
operations.
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Locking and Serializability
� Does locking guarantee serializable schedules, yet?

� No! Imagine all transactions would just wrap each
read/write operation tightly into lock/unlock calls.

lock (acct) ;1
bal← read bal (acct) ;2
unlock (acct) ;3

bal← bal− 100 CHF ;4

lock (acct) ;5
write bal (acct, bal) ;6
unlock (acct) ;7
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ATM Transaction with Locking

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200
read (acct) ;
unlock (acct) ;

lock (acct) ;
read (acct) ;
unlock (acct) ;

lock (acct) ;
write (acct) ; 1100
unlock (acct) ;

lock (acct) ;
write (acct) ; 1000
unlock (acct) ;
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Two-Phase Locking (2PL)

The two-phase locking protocol poses an additional restriction:
I Once a transaction has released any lock, it must not acquire

any new lock.

lock phase release phase

# of locks
held

time

I Two-phase locking is the concurrency control protocol used
in database systems today.
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Again: ATM Transaction

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200
read (acct) ;
unlock (acct) ;

lock (acct) ;
read (acct) ;
unlock (acct) ;

lock (acct) ; �
write (acct) ; 1100
unlock (acct) ;

lock (acct) ; �
write (acct) ; 1000
unlock (acct) ;
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A 2PL-Compliant ATM Transaction

I To comply with the two-phase locking protocol, the ATM
transaction must not acquire any new locks after a first lock
has been released.

lock (acct) ;1
bal← read bal (acct) ;2
bal← bal− 100 CHF ;3
write bal (acct, bal) ;4
unlock (acct) ;5

lock phase

unlock phase
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Resulting Schedule

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200
read (acct) ;

lock (acct) ;
write (acct) ; 1100
unlock (acct) ;

read (acct) ;
write (acct) ; 900
unlock (acct) ;

Transaction
blocked

I The use of locking lead to a correct (and serializable)
schedule.
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Lock Modes

I We saw earlier that two read operations do not conflict with
each other.

I Systems typically use different types of locks (“lock modes”)
to allow read operations to run concurrently.

I read locks or shared locks: mode S
I write locks or exclusive locks: mode X

I Locks are only in conflict if at least one of them is an X lock:

shared (S) exclusive (X)
shared (S) ×

exclusive (X) × ×

I It is a safe operation in two-phase locking to convert a
shared lock into an exclusive lock during the lock phase.
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Deadlocks
I Like many lock-based protocols, two-phase locking has the

risk of deadlock situations:

Transaction 1 Transaction 2

lock (A) ;
... lock (B)

do something
...

... do something

lock (B)
...

[ wait for T2 to release lock ] lock (A)
[ wait for T1 to release lock ]

I Both transactions would wait for each other indefinitely.
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Deadlock Handling

A typical approach to deal with deadlocks is deadlock detection:
I The system maintains a waits-for graph, where an edge

T1 → T2 indicates that T1 is blocked by a lock held by T2.
I Periodically, the system tests for cycles in the graph.
I If a cycle is detected, the deadlock is resolved by aborting

one or more transactions.
I Selecting the victim is a challenge:

I Blocking young transactions may lead to starvation: the
same transaction is cancelled again and again.

I Blocking an old transaction may cause a lot of
investment to be thrown away.
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Deadlock Handling
Other common techniques:

I Deadlock prevention: e.g., by treating handling lock requests
in an asymmetric way:

I wait-die: A transaction is never blocked by an older
transaction.

I wound-wait: A transaction is never blocked by a
younger transaction.

I Timeout: Only wait for a lock until a timeout expires.
Otherwise assume that a deadlock has occurred and abort.

I E.g., IBM DB2 UDB:
db2 => GET DATABASE CONFIGURATION;

...
Interval for checking deadlock (ms) (DLCHKTIME) = 10000
Lock timeout (sec) (LOCKTIMEOUT) = -1
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Variants of Two-Phase Locking

I The two-phase locking protocol does not prescribe exactly
when locks have to acquired and released.

I Possible variants:

“lock phase” release phase

locks
held

time

preclaiming 2PL
lock phase “release phase”

locks
held

time

strict 2PL

I � What could motivate either variant?
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Phantom Problem

Transaction 1 Transaction 2 Effect

scan relation R ; T1 locks all rows
insert new row into R ; T2 locks new row
commit ; T2’s lock released

scan relation R ; reads new row, too!

I Although both transactions properly followed the 2PL
protocol, T1 observed an effect caused by T2.

I Cause of the problem: T1 can only lock existing rows.
I Possible solutions:

I Key range locking, typically in B-trees
I Predicate locking
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Concurrency in B-tree Indices

Consider an insert transaction Tw into a B+-tree that resulted in a
leaf node split, as on slide 58.

I Assume node 4 has just been split, but the new separator
has not yet been inserted into node 1.

I Now a concurrent read transaction Tr tries to find 8050.
I The (old) node 1 guides Tr to node 4.
I Node 4 no longer contains entry 8050, Tr believes there is no

data item with zip code 8050/.
I This calls for concurrency control in B-trees.
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Insert: Examples (Insert with Leaf Split)
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Locking and B-tree Indices
Remember how we performed operations on B+-trees:

I To search a B+-tree, we descended the tree top-down. Based
on the content of a node n, we decided in which son n′ to
continue the search.

I To update a B+-tree, we
I first did a search,
I then inserted new data into the right leaf.
I Depending on the fill levels of nodes, we had to split

tree nodes and propagate splits bottom-up.

According to the two-phase locking protocol, we’d have to
I obtain S/X locks when we walk down the tree15 and
I keep all locks until we’re finished.
15Note that lock conversion is not a good idea. It would increase the

likeliness of deadlocks (read locks acquired top-down, write locks bottom-up).
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Locking and B-tree Indices

I This strategy would seriously reduce concurrency.
I All transactions will have to lock the tree root, which

becomes a locking bottleneck.
I Root node locks, effectively, serialize all (write) transactions.
I Two-phase locking is not practical for B-trees.
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Lock Coupling
Let us consider the write-only case first (all locks conflict).

The write-only tree locking (WTL) protocol is sufficient to
guarantee serializability:

1. For all tree nodes n other than the root, a transaction may
only acquire a lock on n if it already holds a lock on n’s
parent.

2. Once a node n has been unlocked, the same n may not be
locked again by the same transaction.

Effectively,
I all transactions have to follow a top-down access pattern,
I no transaction can “bypass” any other transaction along the

same path. Conflicting transactions are thus serializable.
I The WTL protocol is deadlock free.
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Split Safety

I We still have to keep as may write locks as nodes might be
affected by node splits.

I It is easy to check for a node n whether an update might
affect n’s ancestors:

I if n contains less than 2d entries, no split will propagate
above n.

I If n satisfies this condition, it is said to be (split) safe.
I We can use this definition to release write locks early:

I if, while searching top-down for an insert location, we
encounter a safe node n, we can release locks on all of
n’s ancestors.

I Effectively, locks near the root are held for a shorter time.
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Failure Recovery
We want to deal with three types of failures:
transaction failure (also: ‘process failure’)

A transaction voluntarily or involuntarily aborts. All of its
updates need to be undone.

system failure
Database or operating system crash, power outage, etc. All
information in main memory is lost. Must make sure that no
committed transaction is lost (or redo their effects) and that
all other transactions are undone.

media failure (also: ‘device failure’)
Hard disk crash, catastrophic error (fire, water, . . . ). Must
recover database from stable storage.

In spite of these failures, we want to guarantee atomicity and
durability.
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Shadow Pages

I Since a failure could occur at any time, it must be made sure
that the system can always get back to a consistent state.

I Need to keep information redundant.
I System R: shadow pages. Two versions of every data page:

I The current version is the system’s “working copy” of
the data and may be inconsistent.

I The shadow version is a consistent version on stable
storage.

I Use operation SAVE to save the current version as the
shadow version.

I SAVE↔ commit
I Use operation RESTORE to recover to shadow version.

I RESTORE↔ abort
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Shadow Pages
1. Initially: shadow≡ current.
2. A transaction T now changes the

current version.
I Updates are not done in-place.
I Create new pages and alter

current page table.
3a. If T aborts, overwrite current

version with shadow version.
3b. If T commits, change information in

directory to make current version
persistent.

4. Reclaim disk pages using garbage
collection.

R R∗
directory

current

shadow
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Shadow Pages: Discussion
I Recovery is instant and fast for entire files.
I To guarantee durability, all modified pages must be forced

to disk when a transaction commits.
I As we discussed on slide 31, this has some undesirable

effects:
I high I/O cost, since writes cannot be cached,
I high response times.

I We’d much more like to use a no-force policy, where write
operations can be deferred to a later time.

I To allow for a no-force policy, we’d have to have a way to
redo transactions that are committed, but haven’t been
written back to disk, yet.

↗ Gray et al.. The Recovery Manager of the System R Database
Manager. ACM Comp. Surv., vol. 13(2), June 1981.
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Shadow Pages: Discussion

I Shadow pages do allow frame stealing: buffer frames may
be written back to disk (to the “current version”) before the
transaction T commits.

I Such a situation occurs, e.g., if another transaction T′ wants
to use the space to bring in its data.

I T′ “steals” a frame from T.
I Obviously, a frame may only be stolen if it is not pinned.

I Frame stealing means that dirty pages are written back to
disk. Such writes have to be undone during recovery.

I Fortunately, this is easy with shadow pages.
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Effects on Recovery

I The decisions force/no force and steal/no steal have
implications on what we have to do during recovery:

force no force

no steal no redo
no undo

must redo
no undo

steal no redo
must undo

must redo
must undo

I If we want to use steal and no force (to increase concurrency
and performance), we have to implement redo and undo
routines.
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Write-Ahead Log

I The ARIES17 recovery method uses a write-ahead log to
implement the necessary redundancy. Data pages are
updated in place.
↗Mohan et al. ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM TODS, vol. 17(1), March 1992.

I To prepare for undo, undo information must be written to
stable storage before a page update is written back to disk.

I To ensure durability, redo information must be written to
stable storage at commit time (no-force policy: the on-disk
data page may still contain old information).

17Algorithm for Recovery and Isolation Exploiting Semantics
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Checkpointing

I We’ve considered the WAL as an ever-growing log file that
we read from the beginning during crash recovery.

I In practice, we do not want to replay a log that has grown
over days, months, or years.

I Every now and then, write a checkpoint to the log.
(a) heavyweight checkpoints

Force all dirty buffer pages to disk, then write
checkpoint. Redo pass may then start at the checkpoint.

(b) lightweight checkpoints (or “fuzzy checkpoints”)
Do not force anything to disk, but write information
about dirty pages to the log. Allows redo pass to start
from a log entry shortly before the checkpoint.
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Media Recovery

I To allow for recovery from media failure, periodically back up
data to stable storage.

I Can be done during normal processing, if WAL is archived,
too.

I If the backup process uses the buffer manager, it is sufficient
to archive the log starting from the moment when the
backup started.

I Buffer manager already contains freshest versions.
I Otherwise, log must be archived starting from the

oldest write to any page that is dirty in the buffer.

I Other approach: Use log to mirror database on a remote
host (send log to network and to stable storage).
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Wrap-Up
ACID and Serializability

To prevent from different types of anomalies, DBMSs
guarantee ACID properties. Serializability is a sufficient
criterion to guarantee isolation.

Two-Phase Locking
Two-phase locking is a practicable technique to guarantee
serializability. Most systems implement strict 2PL. SQL 92
allows explicit relaxation of the ACID isolation constraints in
the interest of performance.

Concurrency in B-trees
Specialized protocols exist for concurrency control in B-trees
(the root would be a locking bottleneck otherwise).

Recovery (ARIES)
The ARIES technique aids to implement durability and
atomicity by use of a write-ahead log.
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