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Adversarial Agents


•  Competitive environments 

 Agents’ goals are in conflict, 

 Giving rise to adversarial search problems …

 … often known as games.


•  Mathematical game theory

 Branch of economics, views any multiagent 

environment as a game, …

 … provided that the impact of each agent on the 

others is significant, 

 regardless of whether the agents are cooperative 

or competitive.




Games


•  Agents must anticipate what other agents do

•  Criteria:


  Abstraction: To describe a game we must capture every 
relevant aspect of the game.  


  Accessible environments:  Such games are characterized 
by perfect information


  Search: game-playing then consists of a search through 
possible game positions


  Unpredictable opponent: introduces uncertainty thus 
game-playing must deal with contingency problems




Two-player games


•  A game formulated as a search problem:


 Initial state: 
 ?

 Operators: 
 ?

 Terminal state: ?

 Utility function: ?
  



Two-player games


•  A game formulated as a search problem:


 Initial state: 
 board position and turn

 Operators: 
 definition of legal moves

 Terminal state: conditions for when game is over

 Utility function: 
  

a numeric value that describes the outcome of the  
game.  E.g., -1, 0, 1 for loss, draw, win (AKA payoff 
function)




Example: Tic-Tac-Toe




Types of 
Games




Searching


•  For small games, search the game tree for 
an optimal solution

 Depth first search

 Breadth first search

 Informed/Uniformed search




Searching


•  Standard search methods:

  Depth first

  Breadth first


•  Alternative approach 
selective expansion 
of search space




Heuristic search




Example Heuristic Functions




Example A* Search




Path finding example - A* 




A* example




A* example




A* example




A* Search Algorithm




A*


•  A* heuristics reduces the number of 
branches to be evaluated in typical cases


•  A* always finds the optimal solution.  

•  NOW we are interested in searching in the 
context of two-player, zero-sum games.




The minimax algorithm


•  Perfect play for deterministic environments with perfect 
information


•  Basic idea: choose move with highest minimax value  

 
 = best achievable payoff against best play


•  Algorithm: 

1.  Generate game tree completely

2.  Determine utility of each terminal state

3.  Propagate the utility values upward in the three by applying MIN 

and MAX operators on the nodes in the current level

4.  At the root node use minimax decision to select the move with 

the max (of the min) utility value


•  Steps 2 and 3 in the algorithm assume that the opponent will 
play perfectly.




Generate Game Tree
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A subtree
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What is a good move?
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Minimax
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• Minimize opponent’s chance 
• Maximize your chance 
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Minimax
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• Minimize opponent’s chance 
• Maximize your chance 



minimax = maximum of the minimum


1st ply 

2nd ply 



Minimax: Recursive implementation


Complete:  ? 
Optimal: ? 

Time complexity:  ? 
Space complexity: ? 



Minimax: Recursive implementation


Complete:  Yes, for finite state-space 
Optimal: Yes 

Time complexity:  O(bm) 
Space complexity: O(bm)   (= DFS 
Does not keep all nodes in memory.) 



Game vs. search problem




Searching for the next move


•  Complexity: many games have a huge search space

  Chess:
 b = 35, m=100  ⇒ nodes = 35 100  


 
 if each node takes about 1 ns to explore  

 
 then each move will take about 10 50 millennia  

 
 to calculate.  

•  Resource (e.g., time, memory) limit: optimal solution not 
feasible/possible, thus must approximate  

1.  Pruning: makes the search more efficient by discarding 
portions of the search tree that cannot improve quality result.  

2.  Evaluation functions: heuristics to evaluate utility of a state 
without exhaustive search.




1. α-β pruning


•  Pruning: eliminating a branch of the search tree 
from consideration without exhaustive examination 
of each node (e.g. A*).


•  α-β pruning: the basic idea is to prune portions of 
the search tree that cannot improve the utility value 
of the max or min node, by just considering the 
values of nodes seen so far.


•  Does it work?  Yes, it roughly cuts the branching 
factor from b to √b resulting in double as far look-
ahead than pure minimax.




α-β pruning: example
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α-β pruning: example
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α-β pruning: example


≥ 6 

6 

MAX 

6 12 8 2 

≤ 2 

5 

≤ 5 MIN 

MINIMAX(root) = max(min(6,12,8),min(2,a,b),min(5,b,d)) 
  = max(6,z,y)      where    z=min(2,a,b)≤ 2   and  y=min(5,b,d) ≤ 5 
 = 6 



α-β pruning: general principle


Player 

Player 

Opponent 

Opponent 

m 

n

α

v!

If α > v then MAX will chose m so 
prune tree under n !
Similar for β  for MIN!



More on the α-β algorithm


•  Because minimax is depth-first, let’s consider 
nodes along a given path in the tree. Then, as we 
go along this path, we keep track of:

  α : Best choice so far for MAX

  β : Best choice so far for MIN




The α-β algorithm:
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More on the α-β 
algorithm


… 

MAX 

MIN 

MAX 

v = -∞ 
α = -∞!
β = +∞!

5           10            6                   2            8            7 

Min-Value loops 

In Min-Value: 

v = 5!
α = -∞!
β = 5!



More on the α-β 
algorithm


… 

MAX 

MIN 

MAX 

v = -∞ 
α = -∞!
β = +∞!

5           10            6                   2            8            7 

Min-Value loops 

In Min-Value: 

v = 5!
α = -∞!
β = 5!



More on the α-β 
algorithm


… 

MAX 

MIN 

MAX 

v = -∞ 
α = -∞!
β = +∞!

5           10            6                   2            8            7 

Min-Value loops 

In Min-Value: 

v = 5!
α = -∞!
β = 5!



More on the α-β 
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More on the α-β 
algorithm


… 

MAX 
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In Max-Value: 

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

v = 2  
α = 5!
β = +∞!

Max-Value loops 



Properties of α-β 


•  Pruning does not affect the final result!!!

•  Good move ordering improves effectiveness of 

pruning

•  With perfect ordering, time complexity = O(bm/2)


  doubles depth of search

  need a heuristic how to order

  can easily reach depth 8 => good chess


•  A simple example of the value of reasoning about 
which computations are relevant (a form of 
metareasoning)




2. Move evaluation without complete search


•  The minimax algorithm generates the entire game search 
space, whereas the alpha-beta algorithm allows us to prune 
large parts of it. 
 


•  Complete search is often too complex and impractical


•  Evaluation function: evaluates value of state using heuristics 
and cuts off search


•  New MINIMAX:

  CUTOFF-TEST: cutoff test to replace the termination condition 

(e.g., deadline, depth-limit, etc.)

  EVAL: evaluation function to replace utility function (e.g., number 

of chess pieces taken)




Evaluation function


•  The evaluation function should order the 
terminal states in the same way as the true 
utility function 
 (a<b<c…).


•  The computation must not take too long! 
Significant compared to Minimax?


•  For nonterminal states, the evaluation 
function should be strongly correlated with 
the actual chances of winning.  
 



 




Evaluation functions


•  Most calculate features – e.g., number of 
pawns


•  From that we can form categories, 
equivalence classes.


•  Any category represent states that win, lose 
or result in draws.


•  If we know 72% lead to win (+1), 20% to loss 
(-1), 8% drawn (0).  
Expected value:


•  (0,72* +1) + (0,20* -1) + (0,08 * 0)= 0,52 




Evaluation functions


•  Weighted linear evaluation function: to combine n heuristics 

 f = w1f1 + w2f2 + … + wnfn 

E.g, w’s could be the values of pieces (1 for prawn, 3 for bishop etc.) 
 f’s could be the number of type of pieces on the board 



Note: exact values do not matter




With cutoff and eval




Minimax with cutoff: viable algorithm?


Assume we have 
100 seconds, 
evaluate 104 
nodes/s; can 
evaluate 106 
nodes/move 



Other Results




Nondeterministic games




Algorithm for nondeterministic 
games




Remember: Minimax algorithm




Nondeterministic games:  
the element of chance


3 ? 

0.5 0.5 

8 17 

8 

? 

CHANCE ? 

expectimax and expectimin, expected values over all possible outcomes 



Nondeterministic games:  
the element of chance


3 5 
0.5 0.5 

8 17 

8 

5 

CHANCE 4 = 0.5*3 + 0.5*5 Expectimax 

Expectimin 



Evaluation functions:  
Exact values DO matter


Order-preserving transformations do not necessarily behave 
the same! 



Games of imperfect 
information


•  E.g., card games, where opponent's initial cards are unknown

•  Typically we can calculate a probability for each possible deal

•  Seems just like having one big dice roll at the beginning of 

the game

•  Idea: compute the minimax value of each action in each deal, 

then choose the action with highest expected value over all 
deals


•  Special case: if an action is optimal for all deals, it's optimal.


•  GIB, current best bridge program, approximates this idea by

  generating 100 deals consistent with bidding information

  picking the action that wins most tricks on average




Summary


•  Games are fun to work on! 

•  They illustrate several important points about agent interation


  perfection is unattainable  must approximate

  good idea to think about what to think about

  uncertainty constrains the assignment of values to states

  optimal decisions depend on information state, not real 

state  

•  Games are to multi-agent systems as grand prix racing is to 
automobile design



