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Adversarial Agents

« Competitive environments
+ Agents’ goals are in conflict,
+ Giving rise to adversarial search problems ...
+ ... often known as games.

 Mathematical game theory

* Branch of economics, views any multiagent
environment as a game, ...

+ ... provided that the impact of each agent on the
others is significant,

* regardless of whether the agents are cooperative
or competitive.



Games

« Agents must anticipate what other agents do
e Criteria:

Abstraction: To describe a game we must capture every
relevant aspect of the game.

Accessible environments: Such games are characterized
by perfect information

Search: game-playing then consists of a search through
possible game positions

Unpredictable opponent: introduces uncertainty thus
game-playing must deal with contingency problems



Two-player games

A game formulated as a search problem:

+ |nitial state: ?
¢+ Operators: ?
¢+ Terminal state: ?
+ Utility function: ?



Two-player games

A game formulated as a search problem:

+ |nitial state: board position and turn
* Operators: definition of legal moves
* Terminal state: conditions for when game is over

+ Utility function:
a numeric value that describes the outcome of the
game. E.g., -1, 0, 1 for loss, draw, win (AKA payoff
function)




Example: Tic-Tac-Toe
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Types of
Games

The board set for play

25 24 23 22 21 20 19 18 17 16 15 14 13

Red to play

determinidic chance

perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information bridge, poker, scrabble
nuclear war

White:

10



Searching

* For small games, search the game tree for
an optimal solution
+ Depth first search
+ Breadth first search
* Informed/Uniformed search



Searching

e Standard search methods:
+ Depth first
+ Breadth first

» Alternative approach
selective expansion Fontor /

of search space Sl
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Heuristic search

Idea: don't ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

h(n) is an estimate of the cost of the shortest path from
node n to a goal node.

h(n) uses only readily obtainable information (that is easy to
compute) about a node.

h can be extended to paths: h({no,...,nk)) = h(ng).

h(n) is an underestimate if there is no path from n to a goal
that has path length less than h(n).



Example Heuristic Functions

o If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

@ If the nodes are locations and cost is time, we can use the
distance to a goal divided by the maximum speed.

o If the goal is to collect all of the coins and not run out of fuel,
the cost is an estimate of how many steps it will take to
collect the rest of the coins, refuel when necessary, and return
to goal position.



Example A* Search

@ A* search uses both path cost and heuristic values
@ cost(p) is the cost of path p.
@ h(p) estimates the cost from the end of p to a goal.

e Let f(p) = cost(p) + h(p). f(p) estimates the total path cost
of going from a start node to a goal via p.
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Path finding example - A*

. - f@)=15 + 4
/ =4, ’
(0)=4,5 fld)=2 + 4,5

h(e)=2




A* example

- - fla)=1,5 + 4
h(d)=4,5 fld)=2 + 4.5
- f(b)=3,5+2
fld)=2 + 4,5

h(e)=2




A* example

_ - fa)=1,5 + 4
h(d)=4.,5 fld)=2 + 4,5
- f(b)=3,5+2
fd)=2 + 4,5
f(c)=6,5 + 4
- fld)=2 + 4,5

h(e)=2




A* example

hid)=4,5 > fla=15+4
fld)=2 + 4,5
- f(b)=3,5+2
fld)=2 + 4,5
fc)=6,5 + 4
- fld)=2 + 4,5

f(c)=6,5 + 4
- fle)=5 + 2

h(e)=2




A* Search Algorithm

@ A* is a mix of lowest-cost-first and best-first search.

@ It treats the frontier as a priority queue ordered by f(p).

o |t always selects the node on the frontier with the lowest
estimated distance from the start to a goal node constrained

to go via that node.



« A* heuristics reduces the number of
branches to be evaluated in typical cases

« A* always finds the optimal solution.

« NOW we are interested in searching in the
context of two-player, zero-sum games.



The minimax algorithm

Perfect play for deterministic environments with perfect
information
Basic idea: choose move with highest minimax value
= best achievable payoff against best play
Algorithm:
1. Generate game tree completely
2. Determine utility of each terminal state

3. Propagate the utility values upward in the three by applying MIN
and MAX operators on the nodes in the current level

4. At the root node use minimax decision to select the move with
the max (of the min) utility value

Steps 2 and 3 in the algorithm assume that the opponent will
play perfectly.



Generate Game Tree




Generate Game Tree




Generate Game Tree




Generate Game Tree

1 ply




A subtree
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What is a good move?
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Minimax
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eMinimize opponent’s chance
eMaximize your chance



Minimax
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eMaximize your chance



Minimax
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Minimax
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eMinimize opponent’s chance
eMaximize your chance



minimax = maximum of the minimum

MAX

MIN




Minimax: Recursive implementation

function MINIMAX-DECISION( game) returns an operator

for each op in OPERATORS[game] do

VALUE[op] ¢ MINIMAX-VALUE(APPLY( 0p, game), game)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE(state, game) returns o utility value

if TERMINAL-TEST[game](state) then

return UTILITY[game]( state)
else if MAX is to move in state then

return the highest MINIMAX- VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

Complete: ? Time complexity: ?
Optimal: ? Space complexity: ?




Minimax: Recursive implementation

function MINIMAX-DECISION( game) returns an operctor

for each op in OPERATORS[game] do

VALUE[op] ¢ MINIMAX-VALUE(APPLY( 0p, game), game)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE(state, game) returns o utility value

if TERMINAL- TEST[game](state) then

return UTILITY[game]( state)
else if MAX is to move in state then

return the highest MINIMAX- VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

Complete: Yes, for finite state-space Time complexity: O(b™)
Optimal: Yes Space complexity: O(bm) (= DFS
Does not keep all nodes in memory.)




Game vs. search problem

“Unpredictable” opponent = solution is a contingency plan
Time limits = unlikely to find goal, must approximate

Plan of attack:

e algorithm for perfect play (Von Neumann, 1944)

e finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950;
Samuel, 1952-57)

e pruning to reduce costs (McCarthy, 1956)



Searching for the next move

« Complexity: many games have a huge search space
¢+ Chess: b =35 m=100 = nodes = 35 100
if each node takes about 1 ns to explore

then each move will take about 10 °?2 millennia
to calculate.

« Resource (e.g., time, memory) limit: optimal solution not
feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding
portions of the search tree that cannot improve quality result.

2. Evaluation functions: heuristics to evaluate utility of a state
without exhaustive search.



1. a-p pruning

* Pruning: eliminating a branch of the search tree
from consideration without exhaustive examination
of each node (e.g. A¥).

* a-f pruning: the basic idea is to prune portions of
the search tree that cannot improve the utility value
of the max or min node, by just considering the
values of nodes seen so far.

* Does it work? Yes, it roughly cuts the branching
factor from b to Vb resulting in double as far look-
ahead than pure minimax.



o—f pruning: example

MAX =6

MIN 6




o—f pruning: example

>0
MAX
MIN 6 <2
/// \ x x
6 12 8 2




o—f pruning: example

MAX

MIN

6 12 8 2 S

MINIMAX(root) = max(min(6,12,8),min(2,a,b),min(5,b,d))
= max(6,z,y) where z=min(2,a,b)<2 and y=min(5,b,d) <5
=6



o—f pruning: general principle

Player

Opponent a
If o > v then MAX will chose m so
prune tree under n
Similar for B for MIN

Player

Opponent v



More on the a-g algorithm

« Because minimax is depth-first, let’s consider
nodes along a given path in the tree. Then, as we
go along this path, we keep track of:

* o : Best choice so far for MAX
* f: Best choice so far for MIN



The a-pg algorithm;

function ALPHA-BETA-SEARCH( stafe) returns an action
v = MAX-VALUE(state, —0o0, 400)
return the action in ACTIONS(state) with value v / \

— — — /

function MAX-VALUE(state, o, 3) returns a utility value ! \
if TERMINAL-TEST(state) then return UTILITY(state)
v+ —00 MAX
for each a in ACTIONS(state) do
v +— MAX(v, MIN-VALUE(RESULT(s,a), cx, 7))
ifv > [ then return v
o — MaX(a, v)

retumv - _ \/ \/

function MIN-VALUE(state, o, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state) 8 10
V=400
for each a in ACTIONS(state) do
v +— MIN(v, MAX-VALUE(RESULT(s,a) , o, 3))
il v < o then return v
3« MIN(S, v)
return v




More on the a-f

algorithm

In Min-Value:

Y« T0C
for ¢, s in SUCCESSORS(state) do

MAX

MINl Min-Value loops

MAX

v MIN(v, MAX-VALUE(S, o, [3))
if v < a then return v
3« MIN(3, v)

return v

|l




More on the a-f

algorithm

In Min-Value:

Y« T0C
for ¢, s in SUCCESSORS(state) do

I, b MG, MAX-VALUE(S, 0, )

V = =00

MAX
v=>5
MINl Min-Value loops | a = -oo
B=5
MAX

if v < « then return v
3« MIN(3, v)
return v

|l




More on the a-f

algorithm

In Min-Value:

Y« T0C
for ¢, s in SUCCESSORS(state) do

I, b MG, MAX-VALUE(S, 0, )

V = =00

MAX
v=>5
MINl Min-Value loops | a = -oo
B=5
MAX

if v < « then return v
3« MIN(3, v)
return v

|l




More on the a-f

In Max-Value:
algorithm e
for a. s in SUCCESSORS(state) do
T v & a0

5
MAX S

if v > /3 then return v
a— MAX(a, V)
return v

I

+
8

| Max-Value loops |
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More on the a-f

In Max-Value:

algorithm

MAX

V= =0

for a. s in SUCCESSORS(state) do
v +— MAX(v, MIN-VALUE(s, @, (7))
if v > /3 then return v
a— MAX(a, V)

return v

I

| Max-Value loops |

MIN

MAX




More on the a_ﬁ In Min-Value:

algorithm pp——

for ¢, s in SUCCESSORS(state) do

I, - MG, MAX-VALUE(S, o, )

if v < « then return v

V= g 3« MIN(S3, V)
MAX o= return v
B =400
v=>5 v =i_,oo
MINl Min-Value loops | Q= - a=5
p=>5 p =+

MAX




More on the a_ﬁ In Min-Value:

algorithm pp——

for ¢, s in SUCCESSORS(state) do

I, - MG, MAX-VALUE(S, o, )

if v < « then return v

|l

V= g 3« MIN(S3, V)
MAX a= return v
ﬁ = 400
v=>5
v=2
MINl Min-Value loops | Q= - a=5
p=35 p =+
MAX




More on the a_ﬁ In Min-Value:

algorithm pp——

for ¢, s in SUCCESSORS(state) do

I, - MG, MAX-VALUE(S, o, )

if v < « then return v

V= g 3« MIN(S3, V)
MAX a= return v
ﬁ = 400
v=>5
v=2
MINl Min-Value loops | Q= - a=5
p=>5 p =+
MAX




More on the a-f

In Max-Value:

algorithm
—

a O

1 +— —0OC

for a. s in SUCCESSORS(state) do
v +— MAX(v, MIN-VALUE(S, @, (7))
if v > /3 then return v
a— MAX(a, V)

return v

v
a
B

MAX | Max-Value loops |
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Properties of a-f

Pruning does not affect the final result!!!

Good move ordering improves effectiveness of
pruning
With perfect ordering, time complexity = O(b™/2)
+ doubles depth of search
* need a heuristic how to order
+ can easily reach depth 8 => good chess
A simple example of the value of reasoning about
which computations are relevant (a form of
metareasoning)



2. Move evaluation without complete search

« The minimax algorithm generates the entire game search
space, whereas the alpha-beta algorithm allows us to prune
large parts of it.

« Complete search is often too complex and impractical

« Evaluation function: evaluates value of state using heuristics
and cuts off search

New MINIMAX:

* CUTOFF-TEST: cutoff test to replace the termination condition
(e.g., deadline, depth-limit, etc.)

+ EVAL: evaluation function to replace utility function (e.g., number
of chess pieces taken)



Evaluation function

e The evaluation function should order the

terminal states in the same way as the true
utility function (a<b<c...).

 The computation must not take too long!
Significant compared to Minimax?

 For nonterminal states, the evaluation
function should be strongly correlated with
the actual chances of winning.



Evaluation functions

Most calculate features - e.g., number of
pawns

From that we can form categories,
equivalence classes.

Any category represent states that win, lose
or result in draws.

If we know 72% lead to win (+1), 20% to loss
(-1), 8% drawn (0).
Expected value:

(0,72* +1) + (0,20* -1) + (0,08 * 0)= 0,52



Evaluation functions

EIAI*I‘ME
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(a) White to move (b) White to move

Figures8 FILES: fizures/chess-evaluation3.eps (Tue Nov 3 16:22:33 2009). Two chess posiions
that differ only in the pozition of the rook at lower nght. In (3), Black has an advantage of 2 kmught and
two pawns, which should be enough to win the game. In (b), White wall captwre the queen. ziving it an
advantage that should be strong enough towm.

* Weighted linear evaluation function: to combine n heuristics

= wifi+wafo+ .+ Wpfn

E.g, w s could be the values of pieces (1 for prawn, 3 for bishop etc.)
fs could be the number of type of pieces on the board



Note: exact values do not matter

MAX
MIN K 1& 20
1 4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function



With cutoff and eval

function MAX-VALUE(state, «, /1) returns a uflity value
inputs: sfafe, current state in game
cx, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to staie

if CUTOFF-TEST(state, depth) then return EVAL(state)
v — —0C
for . s in SUCCESSORS(state) do
v« MAX(v, MIN-VALUE(s, @, (7))
if © > /3 then return v
a0 +— MAX(cx, v)
return v



Minimax with cutoff: viable algorithm?

MINIMAXCUTOFF 1s identical to MINIMAXVALUE except
1. TERMINAL? is replaced by CUTOFF?
2. UTILITY is replaced by EvAL

Does it work in practice?
b"=10° b=35 = m=4
4-ply lookahead is a hopeless chess player!

4-ply = human novice
8-ply = typical PC, human master
12-ply = Deep Blue, Kasparov




Other Results

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.



Nondeterministic games

E..g, in backgammon, the dice rolls determine the legal moves
Simplified example with coin-flipping instead of dice-rolling:

MAX

CHANCE

MIN




Algorithm for nondeterministic

games
T EE———LhB_m—

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS( state)

A version of a—/3 pruning is possible
but only if the leaf values are bounded. Why??



Remember: Minimax algorithm

function MINIMAX-DECISION( game) returns an operctor

for each op in OPERATORS[game] do

VALUE[0p] ¢ MINIMAX-VALUE(APPLY( 0p, game), game)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE(state, game) returns o utility volue

if TERMINAL-TEST[game](state) then
return UTILITY[game]( state)

if state is a NIAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a NIIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)



Nondeterministic games:
the element of chance

expectimax and expectimin, expected values over all possible outcomes

CHANCE ) 2
0.5 0.5
MAX /\ 3 [\ ?
CHANCE e (-1 ? O (-1
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MIN VAR VAR VAR A VAR VAR RV A VAR AV,

4 7 4 6 b0 5 - 4 17 8 6 b0 5 -



Nondeterministic games:
the element of chance

Expectimax . 4 =0.5*3 + 0.5*5
0.5 0.5
MAX /A 3 7\ 5
Expectimin 3OO (-1 5 ) -1
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

v 2\ 4y Oy 2y 2y 8y oy -2V

4 7 4 6 b 5 - 4 17 8§ 6 b 5 -



Evaluation functions:
Exact values DO matter

Order-preserving transformations do not necessarily behave
the same!

MAX

DICE

MIN




Games of imperfect
information

E.g., card games, where opponent's initial cards are unknown
Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of
the game

ldea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all
deals

Special case: if an action is optimal for all deals, it's optimal.

GIB, current best bridge program, approximates this idea by
+ generating 100 deals consistent with bidding information
+ picking the action that wins most tricks on average



Summary

Games are fun to work on!
They illustrate several important points about agent interation

2

*

*

*

perfection is unattainable = must approximate
good idea to think about what to think about
uncertainty constrains the assignment of values to states

optimal decisions depend on information state, not real
state

Games are to multi-agent systems as grand prix racing is to
automobile design



