
Intelligent Autonomous
Agents  

Agents and Rational Behavior:  
Adversarial Agents

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Adversarial Agents

•  Competitive environments

 Agents’ goals are in conflict,

 Giving rise to adversarial search problems …

 … often known as games.

•  Mathematical game theory

 Branch of economics, views any multiagent

environment as a game, …

 … provided that the impact of each agent on the

others is significant,

 regardless of whether the agents are cooperative

or competitive.

Games

•  Agents must anticipate what other agents do

•  Criteria:

  Abstraction: To describe a game we must capture every
relevant aspect of the game.

  Accessible environments: Such games are characterized
by perfect information

  Search: game-playing then consists of a search through
possible game positions

  Unpredictable opponent: introduces uncertainty thus
game-playing must deal with contingency problems

Two-player games

•  A game formulated as a search problem:

 Initial state:
 ?

 Operators:
 ?

 Terminal state: ?

 Utility function: ?
  

Two-player games

•  A game formulated as a search problem:

 Initial state:
 board position and turn

 Operators:
 definition of legal moves

 Terminal state: conditions for when game is over

 Utility function:
  

a numeric value that describes the outcome of the  
game. E.g., -1, 0, 1 for loss, draw, win (AKA payoff
function)

Example: Tic-Tac-Toe

Types of
Games

Searching

•  For small games, search the game tree for
an optimal solution

 Depth first search

 Breadth first search

 Informed/Uniformed search

Searching

•  Standard search methods:

  Depth first

  Breadth first

•  Alternative approach 
selective expansion 
of search space

Heuristic search

Example Heuristic Functions

Example A* Search

Path finding example - A*

A* example

A* example

A* example

A* Search Algorithm

A*

•  A* heuristics reduces the number of
branches to be evaluated in typical cases

•  A* always finds the optimal solution.  

•  NOW we are interested in searching in the
context of two-player, zero-sum games.

The minimax algorithm

•  Perfect play for deterministic environments with perfect
information

•  Basic idea: choose move with highest minimax value  

 = best achievable payoff against best play

•  Algorithm:

1.  Generate game tree completely

2.  Determine utility of each terminal state

3.  Propagate the utility values upward in the three by applying MIN

and MAX operators on the nodes in the current level

4.  At the root node use minimax decision to select the move with

the max (of the min) utility value

•  Steps 2 and 3 in the algorithm assume that the opponent will
play perfectly.

Generate Game Tree

Generate Game Tree

x x x
x

Generate Game Tree

x

o x x
o

x
o

x o

Generate Game Tree

x

x
o

x
o

1 ply

1 move

o xx o

A subtree

win

lose

draw

x x
o

o

o
x

x x
o

o

o
x

x x
o

o

o
x x

x x
o

o

o
x

x x

x x
o

o

o
x x

x x
o

o

o
x x

x x
o

o

o
x

x

x x
o

o

o
x

x

x x
o

o

o
x

x

x x
o

o

o
x

x
o

o o o
o

o

x x
o

o

o
x x

o x x x

x x
o

o

o
x

x
o

x x
o

o

o
x

x
o x

x x
o

o

o
x

x o

What is a good move?

win

lose

draw

x x
o

o

o
x

x x
o

o

o
x

x x
o

o

o
x x

x x
o

o

o
x

x x

x x
o

o

o
x x

x x
o

o

o
x x

x x
o

o

o
x

x

x x
o

o

o
x

x

x x
o

o

o
x

x

x x
o

o

o
x

x
o

o o o
o

o

x x
o

o

o
x x

o x x x

x x
o

o

o
x

x
o

x x
o

o

o
x

x
o x

x x
o

o

o
x

x o

Minimax

3 8 12 4 6 14 2 5 2

• Minimize opponent’s chance
• Maximize your chance

Minimax

3 2

3

2

8 12 4 6 14 2 5 2

MIN

• Minimize opponent’s chance
• Maximize your chance

Minimax

3

3

2

3

2

8 12 4 6 14 2 5 2

MAX

MIN

• Minimize opponent’s chance
• Maximize your chance

Minimax

3

3

2

3

2

8 12 4 6 14 2 5 2

MAX

MIN

• Minimize opponent’s chance
• Maximize your chance

minimax = maximum of the minimum

1st ply

2nd ply

Minimax: Recursive implementation

Complete: ?
Optimal: ?

Time complexity: ?
Space complexity: ?

Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes

Time complexity: O(bm)
Space complexity: O(bm) (= DFS
Does not keep all nodes in memory.)

Game vs. search problem

Searching for the next move

•  Complexity: many games have a huge search space

  Chess:
 b = 35, m=100 ⇒ nodes = 35 100  

 if each node takes about 1 ns to explore  

 then each move will take about 10 50 millennia  

 to calculate.  

•  Resource (e.g., time, memory) limit: optimal solution not
feasible/possible, thus must approximate  

1.  Pruning: makes the search more efficient by discarding
portions of the search tree that cannot improve quality result.  

2.  Evaluation functions: heuristics to evaluate utility of a state
without exhaustive search.

1. α-β pruning

•  Pruning: eliminating a branch of the search tree
from consideration without exhaustive examination
of each node (e.g. A*).

•  α-β pruning: the basic idea is to prune portions of
the search tree that cannot improve the utility value
of the max or min node, by just considering the
values of nodes seen so far.

•  Does it work? Yes, it roughly cuts the branching
factor from b to √b resulting in double as far look-
ahead than pure minimax.

α-β pruning: example

≥ 6

6

MAX

6 12 8

MIN

α-β pruning: example

≥ 6

6

MAX

6 12 8 2

≤ 2 MIN

α-β pruning: example

≥ 6

6

MAX

6 12 8 2

≤ 2

5

≤ 5 MIN

MINIMAX(root) = max(min(6,12,8),min(2,a,b),min(5,b,d))
 = max(6,z,y) where z=min(2,a,b)≤ 2 and y=min(5,b,d) ≤ 5
 = 6

α-β pruning: general principle

Player

Player

Opponent

Opponent

m

n

α

v!

If α > v then MAX will chose m so
prune tree under n !
Similar for β for MIN!

More on the α-β algorithm

•  Because minimax is depth-first, let’s consider
nodes along a given path in the tree. Then, as we
go along this path, we keep track of:

  α : Best choice so far for MAX

  β : Best choice so far for MIN

The α-β algorithm:

8 10

MAX

More on the α-β
algorithm

…

MAX

MIN

MAX

v = -∞ 
α = -∞!
β = +∞!

5 10 6 2 8 7

Min-Value loops

In Min-Value:

v = 5!
α = -∞!
β = 5!

More on the α-β
algorithm

…

MAX

MIN

MAX

v = -∞ 
α = -∞!
β = +∞!

5 10 6 2 8 7

Min-Value loops

In Min-Value:

v = 5!
α = -∞!
β = 5!

More on the α-β
algorithm

…

MAX

MIN

MAX

v = -∞ 
α = -∞!
β = +∞!

5 10 6 2 8 7

Min-Value loops

In Min-Value:

v = 5!
α = -∞!
β = 5!

More on the α-β
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Max-Value:

Max-Value loops

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

More on the α-β
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Max-Value:

Max-Value loops

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

v = -∞ 
α = 5!
β = +∞!

More on the α-β
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Min-Value:

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

v = -∞ 
α = 5!
β = +∞!

Min-Value loops

More on the α-β
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Min-Value:

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

v = 2  
α = 5!
β = +∞!

Min-Value loops

More on the α-β
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Min-Value:

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

v = 2  
α = 5!
β = +∞!

Min-Value loops

More on the α-β
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Max-Value:

v = 5!
α = -∞!
β = 5!

v = 5  
α = 5!
β = +∞!

v = 2  
α = 5!
β = +∞!

Max-Value loops

Properties of α-β

•  Pruning does not affect the final result!!!

•  Good move ordering improves effectiveness of

pruning

•  With perfect ordering, time complexity = O(bm/2)

  doubles depth of search

  need a heuristic how to order

  can easily reach depth 8 => good chess

•  A simple example of the value of reasoning about
which computations are relevant (a form of
metareasoning)

2. Move evaluation without complete search

•  The minimax algorithm generates the entire game search
space, whereas the alpha-beta algorithm allows us to prune
large parts of it.

•  Complete search is often too complex and impractical

•  Evaluation function: evaluates value of state using heuristics
and cuts off search

•  New MINIMAX:

  CUTOFF-TEST: cutoff test to replace the termination condition

(e.g., deadline, depth-limit, etc.)

  EVAL: evaluation function to replace utility function (e.g., number

of chess pieces taken)

Evaluation function

•  The evaluation function should order the
terminal states in the same way as the true
utility function
 (a<b<c…).

•  The computation must not take too long!
Significant compared to Minimax?

•  For nonterminal states, the evaluation
function should be strongly correlated with
the actual chances of winning.

Evaluation functions

•  Most calculate features – e.g., number of
pawns

•  From that we can form categories,
equivalence classes.

•  Any category represent states that win, lose
or result in draws.

•  If we know 72% lead to win (+1), 20% to loss
(-1), 8% drawn (0).  
Expected value:

•  (0,72* +1) + (0,20* -1) + (0,08 * 0)= 0,52

Evaluation functions

•  Weighted linear evaluation function: to combine n heuristics 

 f = w1f1 + w2f2 + … + wnfn

E.g, w’s could be the values of pieces (1 for prawn, 3 for bishop etc.)
 f’s could be the number of type of pieces on the board

Note: exact values do not matter

With cutoff and eval

Minimax with cutoff: viable algorithm?

Assume we have
100 seconds,
evaluate 104
nodes/s; can
evaluate 106
nodes/move

Other Results

Nondeterministic games

Algorithm for nondeterministic
games

Remember: Minimax algorithm

Nondeterministic games:  
the element of chance

3 ?

0.5 0.5

8 17

8

?

CHANCE ?

expectimax and expectimin, expected values over all possible outcomes

Nondeterministic games:  
the element of chance

3 5
0.5 0.5

8 17

8

5

CHANCE 4 = 0.5*3 + 0.5*5 Expectimax

Expectimin

Evaluation functions:  
Exact values DO matter

Order-preserving transformations do not necessarily behave
the same!

Games of imperfect
information

•  E.g., card games, where opponent's initial cards are unknown

•  Typically we can calculate a probability for each possible deal

•  Seems just like having one big dice roll at the beginning of

the game

•  Idea: compute the minimax value of each action in each deal,

then choose the action with highest expected value over all
deals

•  Special case: if an action is optimal for all deals, it's optimal.

•  GIB, current best bridge program, approximates this idea by

  generating 100 deals consistent with bidding information

  picking the action that wins most tricks on average

Summary

•  Games are fun to work on!

•  They illustrate several important points about agent interation

  perfection is unattainable  must approximate

  good idea to think about what to think about

  uncertainty constrains the assignment of values to states

  optimal decisions depend on information state, not real

state  

•  Games are to multi-agent systems as grand prix racing is to
automobile design

