
Ecommerce:
 Agents and Rational Behavior

Lecture 8: Decision-Making under Uncertainty
Complex Decisions

Ralf Möller
Hamburg University of Technology



Literature

• Chapter 17

Material from Lise Getoor, Jean-Claude
Latombe, Daphne Koller, and Russell



Sequential Decision Making

• Finite Horizon
• Infinite Horizon



Simple Robot Navigation ProblemSimple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L



Probabilistic Transition ModelProbabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the 
   robot is already in the top row, then it does not move)



Probabilistic Transition ModelProbabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1 the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)



Probabilistic Transition ModelProbabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1 the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)
• With probability 0.1 the robot moves left one square (if the
   robot is already in the leftmost row, then it does not move)



Markov PropertyMarkov Property

The transition properties depend only 
on the current state, not on previous 
history (how that state was reached) 



Sequence of ActionsSequence of Actions

• Planned sequence of actions:  (U, R)
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Sequence of ActionsSequence of Actions

• Planned sequence of actions:  (U, R)
• U is executed
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[4,2][3,3][3,2]



HistoriesHistories

• Planned sequence of actions:  (U, R)
• U has been executed
• R is executed

• There are 9 possible sequences of states 
   – called histories –  and 6 possible final states 
   for the robot!
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[3,3][3,2] [4,1] [4,2] [4,3][3,1]



Probability of Reaching the GoalProbability of Reaching the Goal

•P([4,3] | (U,R).[3,2]) = 
                           P([4,3] | R.[3,3]) x P([3,3] | U.[3,2]) 
                      + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])
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Note importance of Markov property 
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.65



Utility FunctionUtility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
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• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321



Utility FunctionUtility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
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Utility of a HistoryUtility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• The utility of a history is defined by the utility of the last 
   state (+1 or –1) minus n/25, where n is the number of moves
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Utility of an Action SequenceUtility of an Action Sequence
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• Consider the action sequence (U,R) from [3,2]
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Utility of an Action SequenceUtility of an Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
   probability
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[3,3][3,2] [4,1] [4,2] [4,3][3,1]



Utility of an Action SequenceUtility of an Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
   probability
• The utility of the sequence is the expected utility of the histories:

                                    U = ΣhUh P(h)
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]



Optimal Action SequenceOptimal Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
   probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
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Optimal Action SequenceOptimal Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
   probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to 
  compute?
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly! 



Accessible or
observable state

Repeat:
 s  sensed state
 If s is terminal then exit
 a  choose action (given s)
 Perform a

Reactive Agent AlgorithmReactive Agent Algorithm



Policy Policy (Reactive/Closed-Loop Strategy)(Reactive/Closed-Loop Strategy)

• A policy Π is a complete mapping from states to actions
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Repeat:
 s  sensed state
 If s is terminal then exit
 a  Π(s)
 Perform a

Reactive Agent AlgorithmReactive Agent Algorithm



Optimal PolicyOptimal Policy
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• A policy Π is a complete mapping from states to actions
• The optimal policy Π* is the one that always yields a 
   history (ending at a terminal state) with maximal 
   expected utility
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Makes sense because of Markov property 

Note that [3,2] is a “dangerous” 
state that the optimal policy 

tries to avoid



Optimal PolicyOptimal Policy
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• A policy Π is a complete mapping from states to actions
• The optimal policy Π* is the one that always yields a 
   history with maximal expected utility
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This problem is called a
Markov Decision Problem (MDP)

How to compute Π*?



Additive UtilityAdditive Utility

•  History H = (s0,s1,…,sn)
•  The utility of H is additive iff:

    U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)

Reward



Additive UtilityAdditive Utility

•  History H = (s0,s1,…,sn)
•  The utility of H is additive iff:

    U(s0,s1,…,sn) = R(0) + U(s1,…,sn)  = Σ R(i)

•  Robot navigation example:
 R(n) = +1 if sn = [4,3]

 R(n) = -1 if sn = [4,2]

 R(i) = -1/25 if i = 0, …, n-1



Principle of Max Expected UtilityPrinciple of Max Expected Utility

• History H = (s0,s1,…,sn)
• Utility of H: U(s0,s1,…,sn) = Σ R(i)

First-step analysis 

•  U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

•  Π*(i) = arg maxa ΣkP(k | a.i) U(k)
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Value IterationValue Iteration

• Initialize the utility of each non-terminal state si to
U0(i) = 0

• For t = 0, 1, 2, …, do:
     Ut+1(i)  R(i) + maxa ΣkP(k | a.i) Ut(k)
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Value IterationValue Iteration

• Initialize the utility of each non-terminal state si to
U0(i) = 0

• For t = 0, 1, 2, …, do:
     Ut+1(i)  R(i) + maxa ΣkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611
0.5
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0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

Note the importance
of terminal states and
connectivity of the
state-transition graph



Policy IterationPolicy Iteration

•  Pick a policy Π at random



Policy IterationPolicy Iteration

•  Pick a policy Π at random
•  Repeat:

 Compute the utility of each state for Π
 Ut+1(i)  R(i) + ΣkP(k | Π(i).i) Ut(k)



Policy IterationPolicy Iteration

•  Pick a policy Π at random
•  Repeat:

 Compute the utility of each state for Π
 Ut+1(i)  R(i) + ΣkP(k | Π(i).i) Ut(k)

 Compute the policy Π’ given these
utilities
 Π’(i) = arg maxa ΣkP(k | a.i) U(k)



Policy IterationPolicy Iteration

•  Pick a policy Π at random
•  Repeat:

 Compute the utility of each state for Π
 Ut+1(i)  R(i) + ΣkP(k | Π(i).i) Ut(k)

 Compute the policy Π’ given these
utilities
 Π’(i) = arg maxa ΣkP(k | a.i) U(k)

 If Π’ = Π then return Π

Or solve the set of linear equations:

U(i) = R(i) + ΣkP(k | Π(i).i) U(k)

(often a sparse system)



n-Step n-Step decision processdecision process

Assume that:
•  Each state reached after n steps is terminal, hence has

known utility
•  There is a single initial state
•  Any two states reached after i and j steps are different

0 1 2 3



n-Step n-Step Decision ProcessDecision Process

For j = n-1, n-2, …, 0 do:
For every state si attained after step j

 Compute the utility of si

 Label that state with the corresponding action

Π*(i) = arg maxa ΣkP(k | a.i) U(k)

U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

0 1 2 3



What is the Difference?What is the Difference?

Π*(i) = arg maxa ΣkP(k | a.i) U(k)

U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

0 1 2 3
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+1



Infinite HorizonInfinite Horizon
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In many problems, e.g., the robot 
navigation example, histories are 
potentially unbounded and the same 
state can be reached many timesOne trick:

Use discounting to make infinite
Horizon problem mathematically
tractable

What if the robot lives forever?



Example: Tracking a TargetExample: Tracking a Target

targetrobot

• The robot must keep
   the target in view
• The target’s trajectory
   is not known in advance
• The environment may
   or may not be known

An optimal policy cannot be computed ahead
of time:
- The environment might be unknown
- The environment may only be partially observable
- The target may not wait

 A policy must be computed “on-the-fly”



POMDP POMDP (Partially Observable Markov Decision Problem)(Partially Observable Markov Decision Problem)

• A sensing operation returns multiple
  states, with a probability distribution

• Choosing the action that maximizes the
  expected utility of this state distribution 
  assuming “state utilities” computed as
  above is not good enough, and actually
  does not make sense (is not rational)



Example: Target TrackingExample: Target Tracking

There is uncertainty
in the robot’s and target’s 
positions; this uncertainty
grows with further motion

There is a risk that the target 
may escape behind the corner, 
requiring the robot to move 
appropriately

But there is a positioning
landmark nearby. Should
the robot try to reduce its
position uncertainty?



SummarySummary

•  Decision making under uncertainty
•  Utility function
•  Optimal policy
•  Maximal expected utility
•  Value iteration
•  Policy iteration


