
Ecommerce:
 Agents and Rational Behavior

Lecture 8: Decision-Making under Uncertainty
Complex Decisions

Ralf Möller
Hamburg University of Technology

Literature

• Chapter 17

Material from Lise Getoor, Jean-Claude
Latombe, Daphne Koller, and Russell

Sequential Decision Making

• Finite Horizon
• Infinite Horizon

Simple Robot Navigation ProblemSimple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L

Probabilistic Transition ModelProbabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the
 robot is already in the top row, then it does not move)

Probabilistic Transition ModelProbabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1 the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)

Probabilistic Transition ModelProbabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1 the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
• With probability 0.1 the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

Markov PropertyMarkov Property

The transition properties depend only
on the current state, not on previous
history (how that state was reached)

Sequence of ActionsSequence of Actions

• Planned sequence of actions: (U, R)

2

3

1

4321

[3,2]

Sequence of ActionsSequence of Actions

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

HistoriesHistories

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• There are 9 possible sequences of states
 – called histories – and 6 possible final states
 for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Probability of Reaching the GoalProbability of Reaching the Goal

•P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov property
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.65

Utility FunctionUtility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

Utility FunctionUtility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

Utility FunctionUtility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states

-1

+1

2

3

1

4321

Utility of a HistoryUtility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• The utility of a history is defined by the utility of the last
 state (+1 or –1) minus n/25, where n is the number of moves

-1

+1

2

3

1

4321

Utility of an Action SequenceUtility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]

2

3

1

4321

Utility of an Action SequenceUtility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
 probability

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Utility of an Action SequenceUtility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
 probability
• The utility of the sequence is the expected utility of the histories:

 U = ΣhUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action SequenceOptimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
 probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action SequenceOptimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
 probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to
 compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

Accessible or
observable state

Repeat:
 s sensed state
 If s is terminal then exit
 a choose action (given s)
 Perform a

Reactive Agent AlgorithmReactive Agent Algorithm

Policy Policy (Reactive/Closed-Loop Strategy)(Reactive/Closed-Loop Strategy)

• A policy Π is a complete mapping from states to actions

-1

+1

2

3

1

4321

Repeat:
 s sensed state
 If s is terminal then exit
 a Π(s)
 Perform a

Reactive Agent AlgorithmReactive Agent Algorithm

Optimal PolicyOptimal Policy

-1

+1

• A policy Π is a complete mapping from states to actions
• The optimal policy Π* is the one that always yields a
 history (ending at a terminal state) with maximal
 expected utility

2

3

1

4321

Makes sense because of Markov property

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

Optimal PolicyOptimal Policy

-1

+1

• A policy Π is a complete mapping from states to actions
• The optimal policy Π* is the one that always yields a
 history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute Π*?

Additive UtilityAdditive Utility

• History H = (s0,s1,…,sn)
• The utility of H is additive iff:

 U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)

Reward

Additive UtilityAdditive Utility

• History H = (s0,s1,…,sn)
• The utility of H is additive iff:

 U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)

• Robot navigation example:
 R(n) = +1 if sn = [4,3]

 R(n) = -1 if sn = [4,2]

 R(i) = -1/25 if i = 0, …, n-1

Principle of Max Expected UtilityPrinciple of Max Expected Utility

• History H = (s0,s1,…,sn)
• Utility of H: U(s0,s1,…,sn) = Σ R(i)

First-step analysis

• U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

• Π*(i) = arg maxa ΣkP(k | a.i) U(k)

-1

+1

Value IterationValue Iteration

• Initialize the utility of each non-terminal state si to
U0(i) = 0

• For t = 0, 1, 2, …, do:
 Ut+1(i) R(i) + maxa ΣkP(k | a.i) Ut(k)

-1

+1

2

3

1

4321

Value IterationValue Iteration

• Initialize the utility of each non-terminal state si to
U0(i) = 0

• For t = 0, 1, 2, …, do:
 Ut+1(i) R(i) + maxa ΣkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611
0.5

0
-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

Note the importance
of terminal states and
connectivity of the
state-transition graph

Policy IterationPolicy Iteration

• Pick a policy Π at random

Policy IterationPolicy Iteration

• Pick a policy Π at random
• Repeat:

 Compute the utility of each state for Π
 Ut+1(i) R(i) + ΣkP(k | Π(i).i) Ut(k)

Policy IterationPolicy Iteration

• Pick a policy Π at random
• Repeat:

 Compute the utility of each state for Π
 Ut+1(i) R(i) + ΣkP(k | Π(i).i) Ut(k)

 Compute the policy Π’ given these
utilities
 Π’(i) = arg maxa ΣkP(k | a.i) U(k)

Policy IterationPolicy Iteration

• Pick a policy Π at random
• Repeat:

 Compute the utility of each state for Π
 Ut+1(i) R(i) + ΣkP(k | Π(i).i) Ut(k)

 Compute the policy Π’ given these
utilities
 Π’(i) = arg maxa ΣkP(k | a.i) U(k)

 If Π’ = Π then return Π

Or solve the set of linear equations:

U(i) = R(i) + ΣkP(k | Π(i).i) U(k)

(often a sparse system)

n-Step n-Step decision processdecision process

Assume that:
• Each state reached after n steps is terminal, hence has

known utility
• There is a single initial state
• Any two states reached after i and j steps are different

0 1 2 3

n-Step n-Step Decision ProcessDecision Process

For j = n-1, n-2, …, 0 do:
For every state si attained after step j

 Compute the utility of si

 Label that state with the corresponding action

Π*(i) = arg maxa ΣkP(k | a.i) U(k)

U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

0 1 2 3

What is the Difference?What is the Difference?

Π*(i) = arg maxa ΣkP(k | a.i) U(k)

U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

0 1 2 3

-1

+1

Infinite HorizonInfinite Horizon

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many timesOne trick:

Use discounting to make infinite
Horizon problem mathematically
tractable

What if the robot lives forever?

Example: Tracking a TargetExample: Tracking a Target

targetrobot

• The robot must keep
 the target in view
• The target’s trajectory
 is not known in advance
• The environment may
 or may not be known

An optimal policy cannot be computed ahead
of time:
- The environment might be unknown
- The environment may only be partially observable
- The target may not wait

 A policy must be computed “on-the-fly”

POMDP POMDP (Partially Observable Markov Decision Problem)(Partially Observable Markov Decision Problem)

• A sensing operation returns multiple
 states, with a probability distribution

• Choosing the action that maximizes the
 expected utility of this state distribution
 assuming “state utilities” computed as
 above is not good enough, and actually
 does not make sense (is not rational)

Example: Target TrackingExample: Target Tracking

There is uncertainty
in the robot’s and target’s
positions; this uncertainty
grows with further motion

There is a risk that the target
may escape behind the corner,
requiring the robot to move
appropriately

But there is a positioning
landmark nearby. Should
the robot try to reduce its
position uncertainty?

SummarySummary

• Decision making under uncertainty
• Utility function
• Optimal policy
• Maximal expected utility
• Value iteration
• Policy iteration

