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Overview 
Ø  Full Bayesian Learning 

Ø MAP learning 

Ø Maximun Likelihood Learning 

Ø Learning Bayesian Networks 
•  Fully observable 

•  With hidden (unobservable) variables 



Full Bayesian Learning 
Ø  In the learning methods we have seen so far, the idea was always 

to find the best model that could explain some observations 

Ø  In contrast, full Bayesian learning sees learning as Bayesian 
updating of a probability distribution over the hypothesis space, 
given data 
•  H is the hypothesis variable 

•  Possible hypotheses (values of H) h1…, hn  

•  P(H) = prior probability distribution over hypothesis space 

Ø  jth observation dj gives the outcome of random variable Dj 

•  training data d= d1,..,dk 



Ø  Suppose we have 5 types of candy bags 
•  10% are 100% cherry candies (h100) 
•  20% are 75% cherry + 25% lime candies (h75) 
•  40% are 50% cherry + 50% lime candies (h50) 
•  20% are 25% cherry + 75% lime candies (h25) 
•  10% are 100% lime  candies (h0) 

•  Then we observe candies drawn from some bag 

Example 

Ø Let’s call θ the parameter that defines the fraction of cherry 
candy in a bag, and hθ the corresponding hypothesis 

Ø Which of the five  kinds of bag has generated my 10 
observations? P(h θ |d). 

Ø What flavour will the next candy be? Prediction P(X|d) 



Ø Given the data so far, each hypothesis hi has a posterior 
probability: 
•  P(hi |d) = αP(d| hi) P(hi)  (Bayes theorem) 

•  where P(d| hi) is called the likelihood of the data under each hypothesis 

Ø  Predictions over a new entity X are a weighted average over the 
prediction of each hypothesis: 
•  P(X|d) =  

     = ∑i P(X, hi |d)  

      = ∑i P(X| hi,d) P(hi |d)  

      = ∑i P(X| hi) P(hi |d)  

    ~ ∑i P(X| hi) P(d| hi) P(hi)  

•  The weights are given by the data likelihood and prior of each h 

Ø No need to pick one  
best-guess hypothesis! 

The data does 
not add 
anything to a  
prediction 
given an hp 

Full Bayesian Learning 



Example 
Ø  If we re-wrap each candy and return it to the bag, our 10 

observations are independent and identically distributed, i.i.d, so 
•  P(d| hθ) = ∏j P(dj| hθ)   for j=1,..,10 

Ø  For a given hθ , the value of P(dj| hθ) is 
•  P(dj = cherry| hθ) = θ;   P(dj = lime|hθ) = (1-θ)  

Ø And given N observations, of which c are cherry and l = N-c lime 
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•  Binomial distribution: probability of   # of successes in a sequence of N 
independent  trials with binary outcome, each of which yields success with 
probability θ.  

Ø  For instance, after observing 3 lime candies in a row:  
•  P([lime, lime, lime] | h 50) = 0.53 because the probability of seeing lime for 

each observation is 0.5 under this hypotheses 



Ø  Initially, the hp with higher priors dominate (h50 with prior = 0.4) 

Ø  As data comes in, the finally best hypothesis (h0 ) starts dominating, as the 
probability of seeing this data given the other hypotheses gets increasingly 
smaller 

•  After seeing three lime candies in a row, the probability that the bag is the 
all-lime one starts taking off 

P(h100|d) 
P(h75|d) 
P(h50|d) 
P(h25|d) 
P(h0|d) 

P(hi |d) = αP(d| hi) P(hi) 

All-limes: Posterior Probability of H 



Prediction Probability 

Ø The probability that the next candy is lime increases with the 
probability that the bag is an all-lime one 

∑i P(next candy is lime| hi) P(hi |d) 
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Ø  Full Bayesian Learning 

Ø MAP learning 

Ø Maximun Likelihood Learning 

Ø Learning Bayesian Networks 
•  Fully observable 

•  With hidden (unobservable) variables 



MAP approximation 
Ø  Full Bayesian learning seems like a very safe bet, but 

unfortunately it does not work well in practice 
•  Summing over the hypothesis space is often intractable (e.g., 

18,446,744,073,709,551,616 Boolean functions of 6 attributes) 

Ø Very common approximation: Maximum a posterior (MAP) 
learning:  
§  Instead of doing prediction by considering all possible hypotheses , as in 

o   P(X|d)  = ∑i P(X| hi) P(hi |d)  

§  Make predictions based on hMAP that maximises  P(hi |d)  
o  I.e., maximize P(d| hi) P(hi) 

o P(X|d)~ P(X| hMAP ) 



MAP approximation 
Ø MAP is a good approximation when P(X |d) ≈ P(X| hMAP)  

•  In our example, hMAP is the all-lime bag after only 3 candies, predicting 
that the next candy will be lime with  p =1 

•  the bayesian learner gave a prediction of 0.8, safer after seeing only 3 
candies 

P(h100|d) 
P(h75|d) 
P(h50|d) 
P(h25|d) 
P(h0|d) 



Bias 
Ø As more data arrive, MAP and Bayesian prediction become 

closer, as MAP’s competing hypotheses become less likely 

Ø Often easier to find MAP (optimization problem) than deal with a 
large summation problem 

Ø P(H) plays an important role in both MAP and Full Bayesian 
Learning 
•  Defines the learning bias, i.e. which hypotheses are favoured 

Ø Used to  define a tradeoff between model complexity and its 
ability to fit the data 
•  More complex models can explain the data better => higher P(d| hi) 

danger of overfitting 

•  But they are less likely a priory because there are more of them than 
simpler model => lower P(hi)  

•  I.e. common  learning bias is to penalize complexity 
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Maximum Likelihood (ML)Learning 
Ø  Further simplification over full Bayesian and MAP learning 

•  Assume uniform priors over the space of hypotheses 

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximize P(d| hi)  

Ø When is ML appropriate? 



Maximum Likelihood (ML) Learning 
Ø  Further simplification over Full Bayesian and MAP learning 

•  Assume uniform prior over the space of hypotheses 

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximize P(d| hi)  

Ø When is ML appropriate? 
•  Used in statistics as the standard (non-bayesian) statistical learning method 

by those who distrust subjective nature of hypotheses priors  

•  When the competing hypotheses are indeed equally likely (e.g. have same 
complexity) 

•  With very large datasets, for which P(d| hi) tends to overcome  the 
influence of P(hi)  



Overview 
Ø  Full Bayesian Learning 

Ø MAP learning 

Ø Maximun Likelihood Learning 

Ø Learning Bayesian Networks 
•  Fully observable (complete data) 

•  With hidden (unobservable) variables 



Learning BNets: Complete Data 
Ø We will start by applying  ML to the simplest type  of BNets 

learning: 
•  known structure 

•  Data containing observations for all variables 

ü All variables are observable, no missing data 

Ø The only thing that we need to learn are the network’s 
parameters 



ML  learning: example 
Ø Back to the candy example: 

•  New  candy manufacturer that does not provide data on the probability of 
fraction θ of cherry candy in its bags 

•  Any θ is possible: continuum of hypotheses hθ 
•  Reasonable to assume that all  θ  are  equally likely (we have no evidence 

of the contrary): uniform distribution  P(hθ) 

•  θ  is a parameter for this simple family of models, that we need to learn 

Ø  Simple network to represent this problem 
•  Flavor represents the event of drawing a cherry vs. lime candy 

from the bag 

•  P(F=cherry), or P(cherry) for brevity,  is equivalent to the 
fraction θ  of cherry candies in the bag 

Ø We want to infer θ by unwrapping N candies from the bag  



Ø Unwrap N candies, c cherries and l = N-c lime (and return each 
candy in the bag after observing flavor) 

Ø   As we saw earlier, this is described by a binomial distribution 
•   P(d| h θ) = ∏j P(dj| h θ) = θ c (1- θ) l  

Ø With ML we want to find θ that maximizes this expression, or 
equivalently its log likelihood (L) 
•  L(P(d| h θ))  

    = log (∏j P(dj| h θ))  

    = log (θ c (1- θ) l ) 

    = clogθ  + l log(1- θ) 

ML  learning: example (cont’d) 



Ø To maximise, we differentiate L(P(d| h θ) with respect to θ and 
set the result to 0 

ML  learning: example (cont’d) 
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Frequencies as Priors 

Ø  So this says that the proportion of cherries in the bag is equal 
to the proportion (frequency) of cherries in the data 

  

 

Ø Now we have  justified why this approach provides a 
reasonable estimate of node priors 



General ML procedure 

Ø Express the likelihood of the data as a function of the 
parameters to be learned 

Ø Take the derivative of the log likelihood with respect of each 
parameter 

Ø  Find the parameter value that makes the derivative equal to 0 

Ø The last step can be computationally very expensive in real-
world  learning tasks 



More complex example 
Ø The manufacturer chooses the color of the wrapper 

probabilistically for each candy based on flavor, following an 
unknown distribution 

•  If the flavour is cherry, it chooses a  red wrapper with probability θ1 

•  If the flavour is lime, it chooses a  red wrapper with probability θ2 

Ø The Bayesian network for this problem includes 3 parameters to 
be learned 
•  θ θ 1 θ 2  



More complex example 
Ø The manufacturer choses the color of the wrapper 

probabilistically for each candy based on flavor, following an 
unknown distribution 

•  If the flavour is cherry, it chooses a  red wrapper with probability θ1 

•  If the flavour is lime, it chooses a  red wrapper with probability θ2 

Ø The Bayesian network for this problem includes 3 parameters to 
be learned 
•  θ θ 1 θ 2  



Another example (cont’d) 
Ø  P( W=green,  F = cherry| hθθ1θ2) = (*) 

      = P( W=green|F = cherry, hθθ1θ2) P( F = cherry| hθθ1θ2)  

     = θ (1-θ 1) 

Ø We unwrap N candies 
•  c are cherry and l are lime 

•  rc cherry with red wrapper, gc cherry with green wrapper 

•  rl lime with red wrapper, g l lime with green wrapper 

•  every trial is  a combination of wrapper and candy flavor similar to event (*) above, so 

Ø  P(d| hθθ1θ2)  

      = ∏j P(dj| hθθ1θ2)  

= θc (1-θ) l (θ 1) r
c (1-θ 1) g

c (θ 2) r l (1-θ 2) g l  



Another example (cont’d) 
Ø  I want to maximize the log of this expression 

•  clogθ  + l log(1- θ) + rc log θ 1 + gc log(1- θ 1) + rl log θ 2 + g l log(1- θ 2)  

Ø Take derivative with respect of each of θ, θ 1 ,θ 2  
•  The terms not containing the derivation variable disappear 



ML parameter learning in Bayes nets 

Ø  Frequencies again! 

Ø This process generalizes to every fully observable Bnet.  

Ø With complete data and ML approach: 
•  Parameters learning decomposes into a separate learning problem for 

each parameter (CPT), because of the log likelihood step 

•  Each parameter is given by the frequency of the desired child value 
given the relevant parents values 



Very Popular Application  

Ø Naïve Bayes models: very simple Bayesian networks for 
classification 
•  Class variable (to be predicted) is the root node 

•  Attribute variables Xi (observations) are the leaves 

Ø  Naïve because it assumes that the attributes are conditionally independent of 
each other given the class 

Ø  Deterministic prediction can be obtained by picking the most likely class 

Ø  Scales up really well: with n boolean attributes we just need……. 

C 

X1 
Xn 

X2 

∏==
i

n
n

n
n C)(x(C)

),..,x,x(x
),..,x,xx(C),..,x,x(C|x |,  

21

21
21 PP

P
PP α



Very Popular Application  

Ø Naïve Bayes models: very simple Bayesian networks for 
classification 
•  Class variable (to be predicted) is the root node 

•  Attribute variables Xi (observations) are the leaves 

Ø  Naïve because it assumes that the attributes are conditionally independent of 
each other given the class 

Ø  Deterministic prediction can be obtained by picking the most likely class 

Ø  Scales up really well: with n boolean attributes we just need 2n+1 parameters 
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Problem with ML parameter learning 
Ø With small datasets, some of the frequencies may be 0 just because 

we have not observed the relevant data  

Ø Generates very strong incorrect predictions: 
•  Common fix: initialize the count of every relevant event to 1 before counting 

the observations 



Probability from Experts 
Ø As we mentioned in previous lectures, an alternative to learning 

probabilities from data is to get them from experts 

Ø  Problems 
•  Experts may be reluctant to commit to specific probabilities that cannot be 

refined 

•  How to represent the confidence in a given estimate 

•  Getting the experts and their time in the first place 

Ø One promising approach is to leverage both sources when they are 
available 
•  Get initial estimates from experts 

•  Refine them with data 



Combining Experts and Data 
Ø Get the expert to express her belief on event A as the pair 

                <n,m> 

i.e. how many observations of A they have seen (or expect to see) in m trials 

Ø Combine the pair with actual data 
•  If A is observed, increment both n and m 

•  If ¬A is observed, increment m alone 

Ø The absolute values in the pair can be used to express the expert’s 
level of confidence in her estimate 
•  Small values (e.g., <2,3>) represent low confidence 

•  The larger the values, the higher the confidence  

WHY? 



Combining Experts and Data 
Ø Get the expert to express her belief on event A as the pair 

                <n,m> 

i.e. how many observations of A they have seen (or expect to see) in m trials 

Ø Combine the pair with actual data 
•  If A is observed, increment both n and m 

•  If ¬A is observed, increment m alone 

Ø The absolute values in the pair can be used to express the expert’s 
level of confidence in her estimate 
•  Small values (e.g., <2,3>) represent low confidence, as they are quickly 

dominated by data 

•  The larger the values, the higher the confidence as it takes more and more data 
to dominate the initial estimate (e.g. <2000, 3000>) 



Overview 
Ø  Full Bayesian Learning 

Ø MAP learning 

Ø Maximun Likelihood Learning 

Ø Learning Bayesian Networks 
•  Fully observable (complete data) 

•  With hidden (unobservable) variables 



Learning Parameters with Hidden Variables 
Ø  So far we have assumed that we can collect data on all variables in 

the network 

Ø What if this is not true, i.e. the network has hidden variables? 

Ø Clearly we can‘t use the frequency approach, because we are 
missing all the counts involving H 



Quick Fix 

•  Each  variable has 3 values (low, moderate, high) 

•  the numbers by the nodes represent how many parameters  need to be specified 
for the CPT of that node  

•  78 probabilities to be specified overall 

Ø Get rid of the hidden variables. 

Ø  It may work in the simple network given earlier, but what about  
the following one?  



Not Necessarily a Good Fix 

Ø The symptom variables are no longer conditionally independent 
given their parents 
•  Many more links, and many more probabilities to be specified: 708 overall 

•  Need much more data to properly learn the network 



Example: The cherry/lime candy world again 
 

Ø  Two bags of candies (1 and 2) have been mixed together 

Ø  Candies are described by 3 features: Flavor and Wrapper as before, plus 
Hole (whether they have a hole in the middle) 

Ø  Candies‘ features depend probabilistically from the bag they originally came 
from 

Ø  We want to predict for each candy, which was its original bag, from its 
features: Naïve Bayes model 

θ= P(Bag = 1) 
θFj = P(Flavor = cherry|Bag = j) 
θWj = P(Wrapper = red|Bag = j) 
θHj = P(Hole = yes|Bag = j) 
 
j =1,2 



Expectation-Maximization (EM) 
Ø  If we keep the hidden variables, and want to learn the network 

parameters from data, we have a form of unsupervised learning 
•  The data do not include information on the true nature of each data point 

Ø Expectation-Maximization 
•  General algorithm for learning model parameters from incomplete data 

•  We‘ll see how it works on learning parameters for Bnets with discrete 
variables 
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Bayesian learning: Bayes’ rule 

Ø Given some model space (set of hypotheses hi) and 
evidence (data D): 
•  P(hi|D) = α P(D|hi) P(hi) 

Ø We assume that observations are independent of each 
other, given a model (hypothesis), so: 
•  P(hi|D) = α ∏j P(dj|hi) P(hi) 

Ø To predict the value of some unknown quantity, X (e.g., 
the class label for a future observation): 
•  P(X|D) =  ∑i P(X|D, hi) P(hi|D) = ∑i P(X|hi) P(hi|D) 

These are equal by our 
independence assumption 
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Bayesian learning 

Ø We can apply Bayesian learning in three basic ways: 
•  BMA (Bayesian Model Averaging): Don’t just choose one 

hypothesis; instead, make predictions based on the weighted 
average of all hypotheses (or some set of best hypotheses) 

•  MAP (Maximum A Posteriori) hypothesis:  Choose the 
hypothesis with the highest a posteriori probability, given the data 

•  MLE (Maximum Likelihood Estimate): Assume that all 
hypotheses are equally likely a priori; then the best hypothesis is 
just the one that maximizes the likelihood (i.e., the probability of 
the data given the hypothesis) 

Ø MDL (Minimum Description Length) principle:  Use 
some encoding to model the complexity of the hypothesis, 
and the fit of the data to the hypothesis, then minimize the 
overall description length of hi + D 
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Parameter estimation 
Ø Assume known structure 

Ø Goal: estimate BN parameters θ 
•  entries in local probability models, P(X | Parents(X)) 

Ø A parameterization θ  is good if it is likely to generate the 
observed data: 

 

Ø Maximum Likelihood Estimation (MLE) Principle: Choose θ*  so 
as to maximize Score 

Score(θ) = P(D | θ) = P(x[m] | θ)
m
∏

i.i.d. samples 



EM: general idea 

Ø  If we had data for all the variables in the network, we could learn the 
parameters by using ML (or MAP) models  
•  Frequencies of the relevant events as we saw in previous examples 

Ø  If we had the parameters in the network, we could estimate the 
posterior probability of any event, including the hidden variables 
P(H|A,B,C) 



EM: General Idea 
Ø The algorithm starts from “invented” (e.g., randomly 

generated) information  to solve the learning problem, i.e. 
•  Determine the network parameters 

Ø  It then refines this initial guess by cycling through two basic 
steps 
•  Expectation (E): update the data with predictions generated via the 

current model 

•  Maximization (M): given the updated data, update the model 
parameters using the Maximum Likelihood (ML) approach 

ü This is the same step that we described when learning parameters 
for fully observable networks 



EM: How it Works on Naive Bayes 
Ø Consider the following data,  

•  N examples with Boolean attributes X1, X2, X3, X4 

 

Ø which we want to categorize in one of three possible values of 
class C = {1,2,3} 

Ø We use a Naive Bayes classifier with hidden variable C 

? 
? 
? 
? 
? 



EM: Initialization 
Ø The algorithm starts from  “invented” (e.g., randomly 

generated) information  to solve the learning problem, i.e. 
•  Determine the network parameters 

? 
? 
? 
? 
? 

Define  
arbitrary  
parameters 



EM: Expectation Step (Get Expected Counts) 

Ø What would we need to learn the network parameters using ML 
approach? 
•  for P(C) = Count(datapoints with C=i)/Count(all datapoints)    i=1,2,3 

•  for P(Xh|C) = Count(datapoints with Xh = valk and C=i)/Count(data with C=i) 

                          for all values valk  of Xh and  i=1,2,3 

? 
? 
? 
? 
? 



EM: Expectation Step (Get Expected Counts) 
Ø We only have Count(all datapoints) =N.   

Ø We approximate all other  necessary counts with expected  
counts derived from the model with “invented” parameters 

 

Ø Expected count                is the sum, over all N examples in my 
dataset, of the probability that each example is in category i 
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EM: Expectation Step (Get Expected Counts) 
Ø  How do we get the necessary probabilities from the model?  

Ø  Easy with a Naïve bayes network 
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Naïve bayes “invented 
parameters” 

Also available from Naïve Bayes. You 
do the necessary transformations 



Ø By a similar process we obtain the expected counts of examples 
with attibute Xh= valk and belonging to category i. 

Ø These are needed later for estimating P(Xh | C): 

 

•  for all values valk  of Xh and  i=1,2,3 

EM: Expectation Step (Get Expected Counts) 
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Ø  For instance 

Again, get these probabilities from 
model with current parameters 



EM: General Idea 
Ø The algorithm starts from  “invented” (e.g., randomly 

generated) information  to solve the learning problem, i.e. 
•  the network parameters 

Ø  It then refines this initial guess by cycling through two 
basic steps 
•  Expectation (E): compute expected counts based on the generated 

via the current model 

•  Maximization (M): given the expected counts, update the model 
parameters using the Maximum Likelihood (ML) approach 

ü This is the same step that we described when learning 
parameters for fully observable networks 



Ø Now we can refine the network parameters by applying ML to 
the expected counts 

Maximization Step: (Refining Parameters) 

•  for all values valk  of Xj and  i=1,2,3 
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EM Cycle 
Ø Ready to start the E-step again 

 

Expected Counts 
(“Augmented data”) Probabilities 



Procedure EM(X,D,k)  
   Inputs: X set of features X={X1,...,Xn} ;  D data set on features {X1,...,Xn};  k number of classes    
  Output: P(C), P(Xi|C) for each i∈{1:n}, where C={1,...,k}.  
   Local 
                    real array A[X1,...,Xn,C]  
                    real array P[C]  
                    real arrays Mi[Xi,C] for each i∈{1:n}  
                    real arrays Pi[Xi,C] for each i∈{1:n}  
          s← number of tuples in D  
          Assign P[C], Pi[Xi,C] arbitrarily  
          repeat 
                    // E Step  
                    for each assignment 〈X1=v1,...,Xn=vn〉∈D do  
                              let m ←|〈X1=v1,...,Xn=vn〉∈D|  
                              for each c ∈{1:k} do  
                                        A[v1,...,vn,c]←m×P(C=c|X1=v1,...,Xn=vn)  
                              end for each 
                    end for each 
                    // M Step  
                    for each i∈{1:n} do  
                              Mi[Xi,C]=∑X1,...,Xi-1,Xi+1,...,Xn A[X1,...,Xn,C]  
                              Pi[Xi,C]=(Mi[Xi,C])/(∑C Mi[Xi,C])  
                    end for each 
                    P[C]=∑X1,...,Xn A[X1,...,Xn,C]/s  
          until probabilities do not change significantly  
end procedure 



Example: Back to the cherry/lime candy world. 
 

Ø  Two bags of candies (1 and 2) have been mixed together 

Ø  Candies are described by 3 features: Flavor and Wrapper as before, plus 
Hole (whether they have a hole in the middle) 

Ø  Candies‘ features depend probabilistically from the bag they originally came 
from 

Ø  We want to predict for each candy, which was its original bag, from its 
features: Naïve Bayes model 

θ= P(Bag = 1) 
θFj = P(Flavor = cherry|Bag = j) 
θWj = P(Wrapper = red|Bag = j) 
θHj = P(Hole = yes|Bag = j) 
 
j =1,2 



Data 
Ø Assume that the true parameters are 

•  θ= 0.5;  

•  θF1 = θW1 = θH1 = 0.8;  

•  θF2 = θW2 = θH2 = 0.3; 

Ø The  following counts are “generated” from P(C, F, W, H) 
(N = 1000) 

Ø We want to re-learn the true parameters using EM 



EM: Initialization  
Ø Assign arbitrary initial parameters 

•  Usually done randomly; here we select numbers convenient for 
computation 
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Ø We‘ll work through one cycle of EM to compute θ(1). 



E-step 
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Ø  First, we need the expected count of candies from Bag 1,  
•  Sum of the probabilities that each of the N data points comes from bag 1 

•  Be flavorj, wrapperj, holej the values of the corresponding attributes for the jth 
datapoint 
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E-step 
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Ø  This summation can be broken down into the 8 candy groups in the data table.  

•  For instance the sum over the  273 cherry candies with red wrap and hole (first 
entry in the data table) gives 
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M-step 
Ø  If we do compute the sums over the other 7 candy groups we get 

4.612 1)  (BagN̂ ==

Ø  At this point, we can perform the M-step to refine θ, by taking the expected 
frequency of the data points that come from Bag 1 
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=

=θ



One More Parameter 
Ø  If we want to do the same for parameter θF1  

Ø  E-step: compute the expected count of cherry candies from Bag 1 

N̂(Bag =1 ∧Flavor = cherry) =  P(Bag =1 | Flavorj = cherry ,wrapperj
j:Flavorj=cherry
∑ ,holej )

 
)1(ˆ

)1(ˆ
)1(

1

=

=∧=
=

BagN
cherryFlavorBagN

Fθ

Ø  M-step: refine θF1  by computing the corresponding expected frequencies 

Ø  Can compute the above value from the Naïve model as we did earlier 

Ø  TRY AS AN EXCERCISE 



Ø  For any set of parameters, I can compute the log likelihood as we did in the 
previous class 

 

Learning Performance 
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Ø  After a complete cycle through all the parameters, we get  

Ø  It can be seen that the log likelihood increases with each EM iteration (see 
textbook) 

Ø  EM tends to get stuck in local maxima, so it is often combined with  
gradient-based  techniques in the last phase of learning 



Ø  For any set of parameters, I can compute the log likelihood as we did in the 
previous class 

Learning Performance 

;3827.0    ;3817.0   ;3887.0

  ;658.0    ;6483.0    ;6684.0
  ;6124.0

)1()1()1(

)1()1()1(

)1(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

)|()|( )(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)()(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)(   

1000

1
  i

H
i
W

i
F

i
H

i
W

i
F

ii
H

i
W

i
F

i
H

i
W

i
F

i hdPhP
j

j θθθθθθθθθθθθθθ ∏
=

=d

Ø  After a complete cycle through all the parameters, we get  

Ø  It can be shown that the log likelihood 
increases with each EM iteration, 
surpassing even the likelihood of the 
original model after only 3 iterations 
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EM: Discussion 
Ø  For more complex Bnets the algorithm is basically the same 

•  In general, I may need to compute the conditional probability parameter 
for each variable Xi given its parents Pai 

•  θijk= P(Xi = xij|Pai = paik) 
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Ø The expected counts are computed by summing over the 
examples, after having computed all the necessary P(Xi = xij,Pai 

= paik) using any Bnet inference algorithm 

Ø The inference can be intractable, in which case there are 
variations of EM that use sampling algorithms for the E-Step 



EM: Discussion 
Ø The algorithm is sensitive to “degenerated” local maxima due 

to extreme configurations 
•  e.g., data with outliers  can generate categories  that include only 1 

outlier each because these models have the highest  log likelihoods 

•  Possible solution: re-introduce priors over the learning hypothesis and 
use the MAP version of EM 


