Bayesian Learning and Learning
Bayesian Networks

Artificial Intelligence “+5,
A Modern Approach

Chapter 20

some slides by
Cristina Conati

Stuart Russell ® Peter Norvig

Overview
» Full Bayesian Learning

» MAP learning
» Maximun Likelihood Learning

» Learning Bayesian Networks

« Fully observable
» With hidden (unobservable) variables

Full Bayesian Learning

» In the learning methods we have seen so far, the idea was always
to find the best model that could explain some observations

» In contrast, full Bayesian learning sees learning as Bayesian
updating of a probability distribution over the hypothesis space,
given data

» H is the hypothesis variable
* Possible hypotheses (values of H) 4;..., &,
« P(H) = prior probability distribution over hypothesis space

> J,, observation d, gives the outcome of random variable D,

* training data d=d,,..,d,

Example

» Suppose we have 5 types of candy bags
10% are 100% cherry candies (%,,,)

20% are 75% cherry + 25% lime candies (/5
40% are 50% cherry + 50% lime candies (7,)
20% are 25% cherry + 75% lime candies (7,5)
10% are 100% lime candies (%)

HDDDD

* Then we observe candies drawn from some bag

> Let s call 6 the parameter that defines the fraction of cherry
candy 1n a bag, and /,the corresponding hypothesis

» Which of the five kinds of bag has generated my 10
observations? P(h , |d).

» What flavour will the next candy be? Prediction P(X|d)

Full Bayesian Learning

» Given the data so far, each hypothesis /. has a posterior
probability:

* P(h;|d) =aP(d| h) P(h,) (Bayes theorem)
» where P(d| h)) is called the likelihood of the data under each hypothesis

» Predictions over a new entity X are a weighted average over the
prediction of each hypothesis:

* P(X|d) =

\
— The data does
~ 2 PA By ld) not add
=2 P(X] h;,d) P(h; |d) anything to a
B prediction
= 3, P(X] hy) P(; |d) venanlp

~ Zi P(X] hi) P(d| hi) P(hi)
« The weights are given by the data likelihood and prior of each 4

» No need to pick one

best-guess hypothesis! S~ P(X|Y)P(Y)

P(X)

— aP(X|Y)P(Y)

Example

» If we re-wrap each candy and return it to the bag, our 10
observations are independent and 1dentically distributed, i.i.d, so

« P@| hy) = [[,P(d| hy) forj=1,.10
» For a given A, , the value of P(d)| hy) is
« P(d = cherry| hy) = 6; P(d, = limelhy) = (1-0)

» And given N observations, of which ¢ are cherry and | = N-c lime

P h,) =TT, QH; (1-0)=6°(1-6)'

» Binomial distribution: probability of # of successes in a sequence of N
independent trials with binary outcome, each of which yields success with

probability 6.

» For instance, after observing 3 lime candies in a row:

« P([lime, lime, lime] | h 5)) = 0.5% because the probability of seeing lime for
each observation is 0.5 under this hypotheses

All-limes: Posterior Probability of H

P(h100|d) ——
P(hys|d)

P(hg|d) me
P(hyld) ~m

o
w

o
™

% P(h,|d) = aP(d| h,) P(h)

Posterior probability of hypothesis

Number of samples in d
» Initially, the 4p with higher priors dominate (hs, with prior = 0.4)
» As data comes in, the finally best hypothesis (h,) starts dominating, as the

probability of seeing this data given the other hypotheses gets increasingly
smaller

» After seeing three lime candies in a row, the probability that the bag is the
all-lime one starts taking off

Prediction Probability

o
(%]

o
oo

P(next candy is lime | d)
(=
"-J

0.6 Y. P(next candy is lime| h,) P(h; |d)
0.5
0.4 - ' ' : |

Mumber of samples in d

» The probability that the next candy is lime increases with the
probability that the bag is an all-lime one

Overview
» Full Bayesian Learning

» MAP learning
» Maximun Likelihood Learning

» Learning Bayesian Networks

« Fully observable
« With hidden (unobservable) variables

MAP approximation

» Full Bayesian learning seems like a very safe bet, but
unfortunately 1t does not work well in practice

* Summing over the hypothesis space is often intractable (e.g.,
18,446,744,073,709,551,616 Boolean functions of 6 attributes)

» Very common approximation: Maximum a posterior (MAP)
learning:
= [Instead of doing prediction by considering all possible hypotheses , as in
o PX|d) =2, P(X|) P(h;|d)
= Make predictions based on hy,,p that maximises P4, |d)
o L.e., maximize P(d| h,) P(h,)
o P(X|d)~ P(X]| hyp)

MAP approximation

» MAP is a good approximation when P(X |d) = P(X]| hy;.p)

* In our example, hy,,p 1s the all-lime bag after only 3 candies, predicting
that the next candy will be lime with p =1

 the bayesian learner gave a prediction of 0.8, safer after seeing only 3
candies

—_

1
o P(hypp|d) —=—
% P(h;‘:“‘d) cameafllessnn -‘_:D’g
[[=
= 08 P(hgold) ™~
= P(hyd) " £08
<= =
=] @
20° 307
= :
= 04 |, v
=] . =
§ - = 8 = . ;_ 08
2 " g E
= - A
% 0.2 T m 05

. { |
0 |\ — - k-4 - PoTT—— 04

o
(8]
I
[1a)
—
=]
—

2 4 6 8 10

Number of samples in d Number of samples in d

Bias

» As more data arrive, MAP and Bayesian prediction become
closer, as MAP’ s competing hypotheses become less likely

» Often easier to find MAP (optimization problem) than deal with a
large summation problem

» P(H) plays an important role in both MAP and Full Bayesian
Learning

» Defines the learning bias, 1.e. which hypotheses are favoured

» Used to define a tradeoff between model complexity and its
ability to fit the data

* More complex models can explain the data better => higher P(d| h;)
danger of overfitting

« But they are less likely a priory because there are more of them than
simpler model => lower P(h,)

* I.e. common learning bias is to penalize complexity

Overview
» Full Bayesian Learning

» MAP learning
» Maximun Likelihood Learning

» Learning Bayesian Networks

« Fully observable
« With hidden (unobservable) variables

Maximum Likelihood (ML)Learning

» Further simplification over full Bayesian and MAP learning

« Assume uniform priors over the space of hypotheses

* MAP learning (maximize P(d| /,) P(h;)) reduces to maximize P(d| &,)

» When is ML appropriate?

Maximum Likelihood (ML) Learning

» Further simplification over Full Bayesian and MAP learning
* Assume uniform prior over the space of hypotheses

* MAP learning (maximize P(d| h;,) P(h,)) reduces to maximize P(d| h,)

» When is ML appropriate?

» Used 1n statistics as the standard (non-bayesian) statistical learning method
by those who distrust subjective nature of hypotheses priors

* When the competing hypotheses are indeed equally likely (e.g. have same
complexity)

» With very large datasets, for which P(d| &) tends to overcome the
influence of P(h;)

Overview
» Full Bayesian Learning

» MAP learning
» Maximun Likelihood Learning

» Learning Bayesian Networks

« Fully observable (complete data)
« With hidden (unobservable) variables

Learning BNets: Complete Data

» We will start by applying ML to the simplest type of BNets
learning:

 known structure

« Data containing observations for all variables

v" All variables are observable, no missing data

» The only thing that we need to learn are the network’ s
pararr\pfnro

Model Data — Probabilities

AB CDE| ppy
(e) t f t t f P(B)
f t t t t P(EAB)
t t f t f P(CE)
OO, P(DIE)

ML learning: example

» Back to the candy example:

 New candy manufacturer that does not provide data on the probability of
fraction @ of cherry candy 1n its bags

* Any 6 1s possible: continuum of hypotheses /4,

« Reasonable to assume that all § are equally likely (we have no evidence
of the contrary): uniform distribution P(h,)

* 0 1s a parameter for this simple family of models, that we need to learn

» Simple network to represent this problem

P(F=cherry)

» Flavor represents the event of drawing a cherry vs. lime candy (o)

from the bag
 P(F=cherry), or P(cherry) for brevity, 1s equivalent to the

fraction 6 of cherry candies in the bag

» We want to infer 8 by unwrapping N candies from the bag

ML learning: example (cont d)

» Unwrap N candies, ¢ cherries and | = N-c¢ lime (and return each
candy 1n the bag after observing flavor)

» As we saw earlier, this is described by a binomial distribution
* PA|hy=[[Pd[hy=0°(-0)

» With ML we want to find 4 that maximizes this expression, or
equivalently 1its log likelihood (L)

* L(P@|hy)
= log (T[;Pd} h)
=log (G°(1-6)")
= clogf + Il log(1-6)

ML learning: example (cont d)
» To maximise, we differentiate L(P(d| & ,) with respect to 6 and
set the result to 0
d(clogf + ¢ log(1-8))
00

Frequencies as Priors

» So this says that the proportion of cherries in the bag is equal
to the proportion (frequency) of cherries in the data

» Now we have justified why this approach provides a
reasonable estimate of node priors

General ML procedure

» Express the likelihood of the data as a function of the
parameters to be learned

» Take the derivative of the log likelithood with respect of each
parameter

» Find the parameter value that makes the derivative equal to 0

» The last step can be computationally very expensive in real-
world learning tasks

More complex example

» The manufacturer chooses the color of the wrapper
probabilistically for each candy based on flavor, following an
unknown distribution

* If the flavour 1s cherry, it chooses a red wrapper with probability &,

 If the flavour 1s /ime, 1t chooses a red wrapper with probability 6,

» The Bayesian network for this problem includes 3 parameters to
be learned

.- 00,0,

More complex example

» The manufacturer choses the color of the wrapper
probabilistically for each candy based on flavor, following an
unknown distribution

* If the flavour is cherry, it chooses a red wrapper with probability 0,

 If the flavour 1s /ime, 1t chooses a red wrapper with probability 0,

» The Bayesian network for this problem includes 3 parameters to
be learned

.- 00,0,

P(F=cherry)

(&)

P(W=red | F)

Another example (cont” d)

> P(W=green, F = cherry| hy,q,) = (*) P

= P(W=green|F = cherry, heelez) P(F = cherry]| h99192)

P(W—red | F)

:9(1-9 1) 91
o,

» We unwrap N candies

» c are cherry and | are lime

 1°cherry with red wrapper, g¢ cherry with green wrapper

e 1! lime with red wrapper, g ' lime with green wrapper

e every trial 1s a combination of wrapper and candy flavor similar to event (*) above, so

> P(d| h99192)

- Hj P(dj| heelez)
=0°(10) 1 (0) (1-0) £(0,) ' (1-0.) ¢!

Another example (cont d)

» | want to maximize the log of this expression

« clogd +1log(1-0)+r°log6, + g®log(1-6,)+r'logh, + g'log(l-6,)

» Take derivative with respect of each of 6, 9 , ,0 ,

« The terms not containing the derivation variable disappear

OL C (| C

06 g 1-—106 c+/

()L I (e : Ie
(),Hl Hl [—(7)1 I'e — (e
oL _ 1o _ 9 _ 0 — =

65 &5 | — 6 o 'y — (i

ML parameter learning in Bayes nets

» Frequencies again!
» This process generalizes to every fully observable Bnet.

» With complete data and ML approach:

« Parameters learning decomposes into a separate learning problem for
each parameter (CPT), because of the log likelihood step

» Each parameter is given by the frequency of the desired child value
given the relevant parents values

Very Popular Application

» Naive Bayes models: very simple Bayesian networks
classification

* C(Class variable (to be predicted) 1s the root node

* Attribute variables X, (observations) are the leaves

» Naive because it assumes that the attributes are conditionally independent of
each other given the class

PC, x,x,,.,x,)
P(x,x,,...x,)

P(C|x,.x,,..,X,) = = aP(C)H P(x,|C)

» Deterministic prediction can be obtained by picking the most likely class

» Scales up really well: with n boolean attributes we just need.......

Very Popular Application

» Naive Bayes models: very simple Bayesian networks
classification

* C(Class variable (to be predicted) 1s the root node

* Attribute variables X, (observations) are the leaves

» Naive because it assumes that the attributes are conditionally independent of
each other given the class

PC, x,x,,.,x,)
P(x,x,,...x,)

P(C|x,.x,,..,X,) = = aP(C)H P(x,|C)

» Deterministic prediction can be obtained by picking the most likely class

» Scales up really well: with n boolean attributes we just need 2n+1 parameters

Problem with ML parameter learning

» With small datasets, some of the frequencies may be 0 just because
we have not observed the relevant data

» Generates very strong incorrect predictions:

« Common fix: initialize the count of every relevant event to 1 before counting
the observations

Probability from Experts

» As we mentioned in previous lectures, an alternative to learning
probabilities from data is to get them from experts

» Problems

« Experts may be reluctant to commit to specific probabilities that cannot be
refined

* How to represent the confidence in a given estimate
» @Getting the experts and their time 1n the first place
» One promising approach is to leverage both sources when they are
available
« Get 1nitial estimates from experts

» Refine them with data

Combining Experts and Data

» Get the expert to express her belief on event A as the pair
<n,m>

1.e. how many observations of A they have seen (or expect to see) in m trials

» Combine the pair with actual data

* If A is observed, increment both » and m

» If—A1s observed, increment m alone

> The absolute values in the pair can be used to express the expert’ s
level of confidence in her estimate

* Small values (e.g., <2,3>) represent low confidence

» The larger the values, the higher the confidence

Combining Experts and Data

» Get the expert to express her belief on event A as the pair
<n,m=>

1.e. how many observations of A they have seen (or expect to see) in m trials

» Combine the pair with actual data
* If A is observed, increment both » and m

» If—A1s observed, increment m alone

> The absolute values in the pair can be used to express the expert’ s
level of confidence in her estimate

* Small values (e.g., <2,3>) represent low confidence, as they are quickly
dominated by data

* The larger the values, the higher the confidence as it takes more and more data
to dominate the 1nitial estimate (e.g. <2000, 3000>)

Overview
» Full Bayesian Learning
» MAP learning
» Maximun Likelihood Learning

» Learning Bayesian Networks

* Fully observable (complete data)

« With hidden (unobservable) variables

Learning Parameters with Hidden Variables

> So far we have assumed that we can collect data on all variables in
the network

» What if this is not true, 1.e. the network has hidden variables?

» Clearly we can‘t use the frequency approach, because we are
missing all the counts involving H

™~ Th N
N vy
S L e

Quick Fix
» Get rid of the hidden variables.

» It may work in the simple network given earlier, but what about
the following one?

« Each variable has 3 values (low, moderate, high)

 the numbers by the nodes represent how many parameters need to be specified
for the CPT of that node

« 78 probabilities to be specified overall

Not Necessarily a Good Fix

» The symptom variables are no longer conditionally independent
given their parents

* Many more links, and many more probabilities to be specified: 708 overall

* Need much more data to properly learn the network

Example: The cherry/lime candy world again

Two bags of candies (1 and 2) have been mixed together

Candies are described by 3 features: Flavor and Wrapper as before, plus
Hole (whether they have a hole in the middle)

Candies® features depend probabilistically from the bag they originally came
from

We want to predict for each candy, which was its original bag, from its
features: Naive Bayes model

0=P(Bag=1)

Of; = P(Flavor = cherry|Bag =)
Ow; = P(Wrapper = red/Bag =)
0y; = P(Hole = yes|Bag =)

Expectation-Maximization (EM)

» If we keep the hidden variables, and want to learn the network
parameters from data, we have a form of unsupervised learning

« The data do not include information on the true nature of each data point

» Expectation-Maximization

* General algorithm for learning model parameters from incomplete data

* We‘ll see how it works on learning parameters for Bnets with discrete
variables

Bayesian learning: Bayes’ rule

» Given some model space (set of hypotheses h.) and
evidence (data D):

* P(hD) = a P(D|h;) P(h))
» We assume that observations are independent of each
other, given a model (hypothesis), so:
* P(hjD)=a Hj P(d;[h;) P(h;)
» To predict the value of some unknown quantity, X (e.g.,
the class label for a future observation):

» P(XD)= X, P(XD, hy) P(h|D) = 3, P(X|h;) P(h;D)

o~

These are equal by our
40 independence assumption

Bayesian learning

» We can apply Bayesian learning in three basic ways:

« BMA (Bayesian Model Averaging): Don’t just choose one
hypothesis; instead, make predictions based on the weighted
average of all hypotheses (or some set of best hypotheses)

« MAP (Maximum A Posteriori) hypothesis: Choose the
hypothesis with the highest a posteriori probability, given the data

e MLE (Maximum Likelihood Estimate): Assume that all
hypotheses are equally likely a priori; then the best hypothesis is
just the one that maximizes the likelihood (i.e., the probability of
the data given the hypothesis)

» MDL (Minimum Description Length) principle: Use
some encoding to model the complexity of the hypothesis,
and the fit of the data to the hypothesis, then minimize the

41 overall description length of h. + D

Parameter estimation

> Assume known structure

» Goal: estimate BN parameters 0

 entries in local probability models, P(X | Parents(X))

» A parameterization 0 is good if it is likely to generate the
observed data:

Score(0) = P(D10) = HP(x[m] 19)

]

» Maximum Likelihood Estimation (MLE) Principle: Choose 6* so
as to maximize Score

42

EM: general 1dea
(D

A W o I SN
:"fﬁ‘hm
e e

» If we had data for all the variables in the network, we could learn the
parameters by using ML (or MAP) models

* Frequencies of the relevant events as we saw in previous examples

» If we had the parameters in the network, we could estimate the
posterior probability of any event, including the hidden variables

P(H|A,B,C)

EM: General Idea

> The algorithm starts from “invented” (e.g., randomly
generated) information to solve the learning problem, 1.e.

« Determine the network parameters
> It then refines this initial guess by cycling through two basic
steps

« Expectation (E): update the data with predictions generated via the
current model

« Maximization (M): given the updated data, update the model
parameters using the Maximum Likelithood (ML) approach

v This is the same step that we described when learning parameters
for fully observable networks

EM: How 1t Works on Naive Bayes

. . Data
» Consider the following data, O
* N examples with Boolean attributes X1, X2, X3, X4 ; f ; ;
ff t

» which we want to categorize in one of three possible values of
class C = {1,2,3}

» We use a Naive Bayes classifier with hidden variable C

Model — Probabiliti

P(C)
P(X|C)
P(X>|C)

OJOICIOIEEE

QQ og QQ QQ QQ

EM: Initialization

> The algorithm starts from “invented” (e.g., randomly
generated) information to solve the learning problem, 1.e.

« Determine the network parameters

— Probabiliti
g 2
P(C) .
P(X '\C‘w ? Deﬁne
P:XI o9 arbitrary
OCICICIR T Bl
3 L) °
P(X4|C) ?

EM: Expectation Step (Get Expected Counts)

Model Data — Probabilities

X1 X X3 X P(C) 9

tof ot P(X,|C) 9

%Q\‘ for ot f P(X5|C) 9
O[OIOIO) RN
P(X4|C) ?

» What would we need to learn the network parameters using ML
approach?

» for P(C) = Count(datapoints with C=i)/Count(all datapoints) i=1,2,3
» for P(X,|C) = Count(datapoints with X, = val, and C=i)/Count(data with C=i)

for all values val, of X, and i=1,2,3

EM: Expectation Step (Get Expected Counts)

» We only have Count(all datapoints) =N.

» We approximate all other necessary counts with expected
counts derived from the model with “invented” parameters

» Expected count N(C=i) is the sum, over all N examples in my
dataset, of the probability that each example 1s in category i

N
N(C=1)= E P(C =1] attributes of examplee;)
=1

N
= Y P(C=i| x1;,x2;,x3;, x4))
1=1

EM: Expectation Step (Get Expected Counts)

» How do we get the necessary probabilities from the model?

N
N(C=1)= E P(C =1 attributes of examplee j)
1=1

N
= EP(C =1|x1;,x2;,x3;,x4,)
=1

» Easy with a Naive bayes network
P(C=1,x1;,x2;,x3;,x4;)
P(x1;,x2;,x3;,x4,)
P(Xlj |C = i)..,P(X4J- I C=1)P(C=1)

P(le’X2j9X3j’X4j) \

Also available from Naive Bayes. You } LNa’ive bayes “invented}

P(C=1|x1,,x2;,x3;,x4;) =

do the necessary transformations parameters”

EM: Expectation Step (Get Expected Counts)

» By a similar process we obtain the expected counts of examples
with attibute X, = va/, and belonging to category i.

» These are needed later for estimating P(X, | C):

Exp. Counts(examples with X, =val. andC =i) N(X, = val ,C=1
P(Xh|C)= p (p h k)= (h k)

Exp.Counts(examples with C =1) N(C =i

« for all values val, of X, and i1=1,2,3

> For instance

N(X, =t,C=1)= YP(C=i|xl, =t,x2,x3,x4)

e;with X =t

Again, get these probabilities from
model with current parameters

EM: General Idea

> The algorithm starts from “invented” (e.g., randomly
generated) information to solve the learning problem, i.e.

e the network parameters

» It then refines this initial guess by cycling through two
basic steps

« Expectation (E): compute expected counts based on the generated
via the current model

 Maximization (M): given the expected counts, update the model
parameters using the Maximum Likelihood (ML) approach

v This is the same step that we described when learning
parameters for fully observable networks

Maximization Step: (Refining Parameters)

» Now we can refine the network parameters by applying ML to
the expected counts

N(C=1)
N

P(C=1)=

N(X, =val,C=i)
N(C=1)

P(X;=val [C=1)=

* for all values val, of X;and i=1,2,3

EM Cycle

» Ready to start the E-step again

Expected Counts
(“Augmented data”) M-step Probabilities

X; Xo X5 Xy C | count /\
. . . . P(C)

) ' P(X;1C)
AL POXIC)
rf ot ot 2 | -‘

: P(X;lC)
f /ot I3 .

'- . _/I)(/Y-Il()

E-step

Procedure EM(X,D, k)
Inputs: X set of features X={X,,...,.X } ; D data set on features {X,,...,.X }; knumber of classes
Output: P(C), P(X,|C) for each i €{1:n}, where C={1,...,k}.
Local
real array 4/X,,....X,,C]
real array P/C]
real arrays M,/X,C] for each i €{1.:n}
real arrays P,/X,C] for eachi €{1:n}
s<— number of tuples in D
Assign P[C], P,/X,C] arbitrarily
repeat
/I E Step
for each assignment {X,=v,...X,=v) €D do
let m | {X,=v,...X,=v) €D)|
for each ¢ €{1:k} do
Alv,,...v, c][<m*xP(C=c|X,=v,...X =V)
end for each
end for each
/' M Step
for eachi€{/:n} do
Py X, C]=(M[X, C))/(2c Mi[X, C])
end for each
until probabilities do not change significantly
end procedure

Example: Back to the cherry/lime candy world.

Two bags of candies (1 and 2) have been mixed together

Candies are described by 3 features: Flavor and Wrapper as before, plus
Hole (whether they have a hole in the middle)

Candies® features depend probabilistically from the bag they originally came
from

We want to predict for each candy, which was its original bag, from its
features: Naive Bayes model

0=P(Bag=1)

Of; = P(Flavor = cherry|Bag =)
Ow; = P(Wrapper = red/Bag =)
GHJ- = P(Hole = yes|Bag =)

Data

» Assume that the true parameters are
« 0=0.5;
¢ 0., =0y, =0, =0.8;
¢ 0, =0y,=0,,=0.3;

» The following counts are “genecrated” from P(C, F, W, H)
(N =1000)

H=1 [H=0 || H=1 [H=0
F=cherry || 273 [93 H104 90

W=red d W=green

F=lime 79 | 100)| 94 | 167

» We want to re-learn the true parameters using EM

EM: Initialization

» Assign arbitrary initial parameters

» Usually done randomly; here we select numbers convenient for
computation

9" =0.6;
00 =6 =62 =0.6
00 =6 =62 =04

» We‘ll work through one cycle of EM to compute 61

E-step
» First, we need the expected count of candies from Bag 1,

* Sum of the probabilities that each of the N data points comes from bag 1

* Be flavor;, wrapper;, hole; the values of the corresponding attributes for the j™®
datapomt

N
N(Bag=1) = E P(Bag = l|flavor,,wrapper,,whole;) =
=1

_ i P(flavor;,wrapper;, hole |Bag =1)P(Bag =1)
. P(flavor L, wrapper;, ho lej)

j=1

P(flavor |Bag =1)P(wrapper |Bag =1)P(hole |Bag =1)P(Bag =1)

EEP(]‘lazvoﬂBazg i)P(wrapper|Bag = i)P(hole |Bag = i)P(Bag =1i)

E-step

P(flavor|Bag =1)P(wrapper |Bag =1)P(hole |Bag =1)P(Bag =1)
E E P(flavor|Bag =i)P(wrapper;|Bag = i)P(hole |Bag = i)P(Bag = i)

» This summation can be broken down into the 8 candy groups in the data table.

» For instance the sum over the 273 cherry candies with red wrap and hole (first
entry in the data table) gives

W=red II W=green

H=1| H=0 || H=1 | H=0
F=cherry | 273 | 93 104 | 90
F=lime 79 100 94 167
(9(0)9(0)9(0)9(0)

_ 273 Fl w1 Hl _ o .

6969090 + 920969 (1-6) o7 =06
0y =6 =65 =0.6;

0.6" 0.1296

273 =273 =227.97 69 =02 =% =04

0.6% +0.4" 0.1552

M-step
» If we do compute the sums over the other 7 candy groups we get

NBag=1) =612.4

» At this point, we can perform the M-step to refine 0, by taking the expected
frequency of the data points that come from Bag 1

N(Bag=1) _ 0.6124

(1) =

One More Parameter

» If we want to do the same for parameter 0,

» E-step: compute the expected count of cherry candies from Bag 1

IQI(Bag =1A Flavor = cherry) = P(Bag =11 Flavor, = cherry ,wrapper;,hole)
J J J

JiFlavorj=cherry

» Can compute the above value from the Naive model as we did earlier
» TRY AS AN EXCERCISE

» M-step: refine O, by computing the corresponding expected frequencies

N(Bag = 1A Flavor = cherry)

6 = -
N(Bag =1)

Learning Performance
» After a complete cycle through all the parameters, we get
6" =0.6124;
6) =0.6684; 6!) =0.6483; 6.) =0.658;
6') =0.3887; 6Y) =0.3817; 6.)=0.3827;

» For any set of parameters, I can compute the log likelihood as we did in the
previous class

» It can be seen that the log likelihood increases with each EM iteration (see
textbook)

» EM tends to get stuck in local maxima, so it is often combined with
gradient-based techniques in the last phase of learning

Learning Performance
» After a complete cycle through all the parameters, we get

6" =0.6124;
6 =0.6684;) =0.6483; 6) =0.658;
6) =0.3887: 6')=03817; 6Y) =0.3827;

» For any set of parameters, I can compute the log likelihood as we did in the
previous class

1000
P|h R I LCAL

(g o) gli) gli)
0 eFlﬁWleHl QFZ 6W26

(1) (i) g(i) o(i) p(i) (i) (i))
0" 01951011 952 Oyt

» It can be shown that the log likelihood
increases with each EM iteration,
surpassing even the likelthood of the
original model after only 3 iterations 2015

Log-likelihood L
[\]
S
S
S

0 20 40 60 80 100 120

Iteration number

EM: Discussion

» For more complex Bnets the algorithm is basically the same

» In general, I may need to compute the conditional probability parameter
for each variable X, given its parents Pa;

* eijk: P(X; = Xij|Pai _pay)

lj’

N(Pa, = pa,,)

N(Xl. =x,;Pa;, = pa,)

i

» The expected counts are computed by summing over the
examples, after having computed all the necessary P(X; = x;, Pa,
_pa,) using any Bnet inference algorithm

» The inference can be intractable, in which case there are
variations of EM that use sampling algorithms for the E-Step

EM: Discussion

> The algorithm is sensitive to “degenerated” local maxima due
to extreme configurations

* ¢.g., data with outliers can generate categories that include only 1
outlier each because these models have the highest log likelihoods

« Possible solution: re-introduce priors over the learning hypothesis and
use the MAP version of EM

