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Instance-Based Learning


•  So far: Statistical learning as parameter learning

•  Given a specific parameter-dependent family of 

probability models fit it to the data by tweaking 
parameters

  Often simple and effective

  Fixed complexity

  Maybe good for some problem classes


•  Adapting the structure of the hypothesis proved to 
be very difficult




Instance-Based Learning


• Nonparametric learning methods allow 
hypothesis complexity to grow with 
the data

 “The more data we have, the ‘wigglier’ the 

hypothesis can be” 




Characteristics


•  An instance-based learner is a lazy-
learner and does all the work when the 
test example is presented. This is 
opposed to so-called eager-learners, 
which build a parameterised compact 
model of the target.


•  It produces local approximation to the 
target function (different with each 
test instance)




Nearest Neighbor Classifier


•  Basic idea

 Store all labelled instances (i.e., the training set) 

and compare new unlabeled instances (i.e., the 
test set) to the stored ones to assign them an 
appropriate label.


 Comparison is performed, for instance, by 
means of the Euclidean distance, and the labels 
of the k nearest neighbors of a new instance 
determine the assigned label


 Other distance measures: Mahalanobis distance 
(for multidimensional space), ...


•  Parameter: k  
(the number of nearest neighbors)




•  1-Nearest neighbor:

Given a query instance xq, 

•  
 first locate the nearest training example xn

•  
 then f(xq):= f(xn)


•  K-Nearest neighbor:

Given a query instance xq, 

•  First locate the k nearest training examples 

•  If discrete values target function then take vote 

among its k nearest nbrs  
else if real valued target fct then take the mean of the 
f values of the k nearest nbrs


Nearest Neighbor Classifier




Distance Between Examples 


•  We need a measure of distance in order to know 
who are the neighbours


•  Assume that we have T attributes for the 
learning problem. Then one example point x has 
elements xt ∈ ℜ, t=1,…T. 

•  The distance between two points xi xj is often 
defined as the Euclidean distance:




Difficulties


•  For higher dimensionality, neighborhoods 
must be large in the average case – curse 
of dimensionality


•  There may be irrelevant attributes 
amongst the attributes 


•  Have to calculate the distance of the test 
case from all training cases 






kNN vs 1NN: Voronoi Diagram






When to Consider kNN Algorithms?


•  Instances map to points in

•  Not more then say 20 attributes per 

instance

•  Lots of training data

•  Advantages:


 Training is very fast

 Can learn complex target functions

 Don’t lose information 


•  Disadvantages:

 ? (will see them shortly…)
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Training data


Test instance




Keep Data in Normalized Form


One way to normalize the data  
ar(x) to a´r(x) is 

average distance of the data values from their mean"



Mean and standard deviation


Source: Wikipedia 



Normalized Training Data


Test instance




Normalized Training Data


Test instance


€ 

(0 + 4,89 + 5,23+ 2,04) = 3,489



Distances of Test Instance  
From Training Data


Classification 
1-NN  Yes 

3-NN  Yes 

5-NN  No 

7-NN  No 



What if the target function is real valued?


•  The k-nearest neighbor algorithm 
would just calculate the mean of the 
k nearest neighbours




Variant of kNN: Distance-Weighted kNN


• We might want to weight nearer 
neighbors more heavily 


•  Then it makes sense to use all 
training examples instead of just k




Variant of kNN: Distance-Weighted kNN




Remarks


•  Very simple approach

•  Behaves well if data cannot be easily 

separated

•  Rank 7 of top 10 data mining 

algorithms

•  In 1993 outperformed all others in 

handwritten digit recognition

•  In 1994 outperformed all in land 

usage recognition




Neural Networks


•  Feed-forward networks

•  Single-layer networks (Perceptrons)


 Perceptron learning rule

 Easy to train


  Fast convergence, few data required

 Cannot learn „complex“ functions


•  Multi-Layer networks

 Backpropagation learning

 Hard to train


  Slow convergence, many data required








XOR problem






(learning rate) 



XOR problem




XOR problem








Z = y1 AND NOT y2 = (x1 OR x2) AND NOT(x1 AND x2) 







Support Vector Machine Classifier


•  Basic idea

 Mapping the instances from the two 

classes into a space where they become 
linearly separable. The mapping is 
achieved using a kernel function that 
operates on the instances near to the 
margin of separation.


•  Parameter: kernel type




y = +1 

y = -1 

Nonlinear Separation






margin separator 

support vectors 

Support Vectors
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