
Statistical Learning Part 2
Nonparametric Learning:  

The Main Ideas

R. Marrone, R. Moeller

Hamburg University of Technology

Instance-Based Learning

•  So far: Statistical learning as parameter learning

•  Given a specific parameter-dependent family of

probability models fit it to the data by tweaking
parameters

  Often simple and effective

  Fixed complexity

  Maybe good for some problem classes

•  Adapting the structure of the hypothesis proved to
be very difficult

Instance-Based Learning

• Nonparametric learning methods allow
hypothesis complexity to grow with
the data

 “The more data we have, the ‘wigglier’ the

hypothesis can be”

Characteristics

•  An instance-based learner is a lazy-
learner and does all the work when the
test example is presented. This is
opposed to so-called eager-learners,
which build a parameterised compact
model of the target.

•  It produces local approximation to the
target function (different with each
test instance)

Nearest Neighbor Classifier

•  Basic idea

 Store all labelled instances (i.e., the training set)

and compare new unlabeled instances (i.e., the
test set) to the stored ones to assign them an
appropriate label.

 Comparison is performed, for instance, by
means of the Euclidean distance, and the labels
of the k nearest neighbors of a new instance
determine the assigned label

 Other distance measures: Mahalanobis distance
(for multidimensional space), ...

•  Parameter: k  
(the number of nearest neighbors)

•  1-Nearest neighbor:

Given a query instance xq,

• 
 first locate the nearest training example xn

• 
 then f(xq):= f(xn)

•  K-Nearest neighbor:

Given a query instance xq,

•  First locate the k nearest training examples

•  If discrete values target function then take vote

among its k nearest nbrs  
else if real valued target fct then take the mean of the
f values of the k nearest nbrs

Nearest Neighbor Classifier

Distance Between Examples

•  We need a measure of distance in order to know
who are the neighbours

•  Assume that we have T attributes for the
learning problem. Then one example point x has
elements xt ∈ ℜ, t=1,…T.

•  The distance between two points xi xj is often
defined as the Euclidean distance:

Difficulties

•  For higher dimensionality, neighborhoods
must be large in the average case – curse
of dimensionality

•  There may be irrelevant attributes
amongst the attributes

•  Have to calculate the distance of the test
case from all training cases

kNN vs 1NN: Voronoi Diagram

When to Consider kNN Algorithms?

•  Instances map to points in

•  Not more then say 20 attributes per

instance

•  Lots of training data

•  Advantages:

 Training is very fast

 Can learn complex target functions

 Don’t lose information

•  Disadvantages:

 ? (will see them shortly…)

two one

four

three

five six

seven eight ?

Training data

Test instance

Keep Data in Normalized Form

One way to normalize the data
ar(x) to a´r(x) is

average distance of the data values from their mean"

Mean and standard deviation

Source: Wikipedia

Normalized Training Data

Test instance

Normalized Training Data

Test instance

€

(0 + 4,89 + 5,23+ 2,04) = 3,489

Distances of Test Instance  
From Training Data

Classification
1-NN Yes

3-NN Yes

5-NN No

7-NN No

What if the target function is real valued?

•  The k-nearest neighbor algorithm
would just calculate the mean of the
k nearest neighbours

Variant of kNN: Distance-Weighted kNN

• We might want to weight nearer
neighbors more heavily

•  Then it makes sense to use all
training examples instead of just k

Variant of kNN: Distance-Weighted kNN

Remarks

•  Very simple approach

•  Behaves well if data cannot be easily

separated

•  Rank 7 of top 10 data mining

algorithms

•  In 1993 outperformed all others in

handwritten digit recognition

•  In 1994 outperformed all in land

usage recognition

Neural Networks

•  Feed-forward networks

•  Single-layer networks (Perceptrons)

 Perceptron learning rule

 Easy to train

  Fast convergence, few data required

 Cannot learn „complex“ functions

•  Multi-Layer networks

 Backpropagation learning

 Hard to train

  Slow convergence, many data required

XOR problem

(learning rate)

XOR problem

XOR problem

Z = y1 AND NOT y2 = (x1 OR x2) AND NOT(x1 AND x2)

Support Vector Machine Classifier

•  Basic idea

 Mapping the instances from the two

classes into a space where they become
linearly separable. The mapping is
achieved using a kernel function that
operates on the instances near to the
margin of separation.

•  Parameter: kernel type

y = +1

y = -1

Nonlinear Separation

margin separator

support vectors

Support Vectors

Literature

Mitchell (1989). Machine Learning. http://
www.cs.cmu.edu/~tom/mlbook.html

Duda, Hart, & Stork (2000). Pattern Classification.
http://rii.ricoh.com/~stork/DHS.html

Hastie, Tibshirani, & Friedman (2001). The Elements of Statistical
Learning. http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Literature (cont.)

Russell & Norvig (2004). Artificial Intelligence.
http://aima.cs.berkeley.edu/

Shawe-Taylor & Cristianini. Kernel Methods
for Pattern Analysis.
http://www.kernel-methods.net/

