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Instance-Based Learning

« So far: Statistical learning as parameter learning

« Given a specific parameter-dependent family of

probability models fit it to the data by tweaking
parameters

+ Often simple and effective
+ Fixed complexity
* Maybe good for some problem classes

« Adapting the structure of the hypothesis proved to
be very difficult



Instance-Based Learning

 Nonparametric learning methods allow
hypothesis complexity to grow with
the data

* “The more data we have, the ‘wigglier’ the
hypothesis can be”



Characteristics

 An instance-based learner is a /azy-
learner and does all the work when the
test example is presented. This is
opposed to so-called eager-learners,
which build a parameterised compact
model of the target.

|t produces /ocal approximation to the
target function (different with each
test instance)



Nearest Neighbor Classifier

e Basic idea

Store all labelled instances (i.e., the training set)
and compare new unlabeled instances (i.e., the
test set) to the stored ones to assign them an
appropriate label.

Comparison is performed, for instance, by
means of the Euclidean distance, and the labels
of the k nearest neighbors of a new instance
determine the assigned label

Other distance measures: Mahalanobis distance
(for multidimensional space), ...
* Parameter: k
(the number of nearest neighbors)



Nearest Neighbor Classifier

 1-Nearest neighbor:
Given a query instance x,,
e first locate the nearest training example x
o then f(x,):= f(x,)
* K-Nearest neighbor:
Given a query instance x,,

e First locate the k nearest training examples

o |f discrete values target function then take vote

among its k nearest nbrs
else if real valued target fct then take the mean of the
f values of the k nearest nbrs
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Distance Between Examples

e We need a measure of distance in order to know
who are the neighbours

« Assume that we have T attributes for the

learning problem. Then one example point x has
elementsx, e, t=1,..T

« The distance between two points x;x;jis often
defined as the Euclidean distance:

d(x,;,X ;)= \/i [ X, —x, 2

t=1




Difficulties

* For higher dimensionality, neighborhoods

must be large in the average case - curse
of dimensionality

 There may be irrelevant attributes
amongst the attributes

e Have to calculate the distance of the test
case from all training cases
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FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.



kNN vs 1NN: Voronoi Diagram
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FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



When to Consider kNN Algorithms?

» Instances map to points in h”

 Not more then say 20 attributes per
Instance

* Lots of training data

* Advantages:
* Training is very fast
+ Can learn complex target functions
* Don’t lose information

* Disadvantages:
+ ? (will see them shortly...)



seven eight ?



Training data

Number | Lines |Line types | Rectangles | Colours | Mondrian?
1 6 1 10 4 No
4 2 8 5 No
3 5 2 7 4 Yes
4 5 1 8 4 Yes
5 5 1 10 5 No
6 6 1 8 6 Yes
7 7 1 14 5 No
Test instance
Number | Lines |Line types | Rectangles | Colours | Mondrian?
8 7 2 9 4




Keep Data in Normalized Form

One way to normalize the data
a(x)toa’ (x)Is

" X — Xt

X, =

O,

x: = mean of ¢" attribute

o, = standard deviationof ™ attribute

average distance of the data values from their mean



Mean and standard deviation

If the random variable X takes on the values X1, - - -, Iy (which are real numbers) with equal
probability, then its standard deviation can be computed as follows. First, the mean of X, 7 , is

defined as a summation:

T—l R S ol e sl
N & N
where N is the number of samples taken. Next, the standard deviation simplifies to
1 N
o = W 121(33, — _)2.

Source: Wikipedia



Normalized Training Data

Number |Lines |Line Rectangles | Colours | Mondrian?
types
1 0.632 | -0.632 0.327 -1.021 No
2 -1.581 1.581 -0.588 0.408 No
3 -0.474| 1.581 -1.046 -1.021 Yes
4 -0.474| -0.632 -0.588 -1.021 Yes
5 -0.474 | -0.632 0.327 0.408 No
6 0.632 | -0.632 -0.588 1.837 Yes
7 1.739 | -0.632 2.157 0.408 No
T
2
d(Xi,Xj)= E[xit_xjt]
t=1
Number |Lines |Line Rectangles | Colours |Mondrian?
types
8 1.739 1.581 -0.131 -1.021




Normalized Training Data

Number |Lines |Line Rectangles | Colours | Mondrian?
types
1 0.632 | -0.632 0.327 -1.021 No
2 -1.581 1.581 -0.588 0.408 No
3 -0.474 1.581 -1.046 -1.021 Yes
4 -0.474| -0.632 -0.588 -1.021 Yes
5 -0.474| -0.632 0.327 0.408 No
6 0.632 | -0.632 -0.588 1.837 Yes
| 7 1.739 | -0.632 2.157 0.408 No |

\/(0+4,89+523+2,04) = 3,489
Test instance

Number |Lines |Line Rectangles | Colours |Mondrian?
types
8 1.739 | 1.581 -0.131 -1.021




Distances of Test Instance
From Training Data

Example |Distance | Mondrian? . .
of test Classification
from 1-NN Ves
example
1237 | No 3-NN Yes
2 | 3644 | No 5-NN No
31 23% | Yes 7-NN No
41 3164 | Yes
b | 3472 | No
6 | 3808 | Yes
713490 | No




What if the target function is real valued?

 The k-nearest neighbor algorithm
would just calculate the mean of the
k nearest neighbours



Variant of KkNN: Distance-Weighted kNN

« We might want to weight nearer
neighbors more heavily

f(x,):= EH v:if(xi) where w, = !

2
W, d(x,,X;)

« Then it makes sense to use all
training examples instead of just k



Variant of KNN: Distance-Weighted kNN

k-NN using a weighted-sum voting scheme

kNN (k =5)
. qt , : " T4l
V27 Assign "white" to x because

the weighted sum of "whites" is

larger then the sum of "blacks".

Lod X%’Q o

-
o
-

Each neighbor is given a weight according to its nearness.




Remarks

Very simple approach

Behaves well if data cannot be easily
separated

Rank 7 of top 10 data mining
algorithms

In 1993 outperformed all others in
handwritten digit recognition

In 1994 outperformed all in land
usage recognition



Neural Networks

e Feed-forward networks

* Single-layer networks (Perceptrons)
+ Perceptron learning rule

+ Easy to train
= Fast convergence, few data required

+ Cannot learn ,complex” functions

e Multi-Layer networks

+ Backpropagation learning

+ Hard to train
= Slow convergence, many data required



Perceptron

n
1 iwa-x->0
i=0 U1

-1 otherwise

1 if wyg+ wiz1+ - +w,x, >0
—1 otherwise.

Sometimes we’ll use simpler vector notation:
o(F) = 1ifw-2£>0
| =1 otherwise.



Decision Surface of a Perceptron

x> A x> A

(a) (b)

Represents some useful functions
e What weights represent
g(x1,29) = AND(21, )7
But some functions not representable

e e.g., not linearly separable



XOR problem




Perceptron training rule

w; < W; + sz-

where
Aw; = n(t — o)x;
Where:
o iy = ¢(T) is target value
® 0 is perceptron output

e 7 is small constant (e.g., .1) called learning rate



Perceptron training rule

T ——— oo,
e
Can prove it will converge

e If training data is linearly separable

e and 7 sufficiently small (learning rate)



XOR problem




XOR problem




Multilayer Networks of Sigmoid Units
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Sigmoid Unit

3 @ »O
net =X w; x; !
=0

l o = G(net) = —
l+e

o(x) is the sigmoid function

1
1+ e*

Nice property: %vﬂ =o(x)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation
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FIGURE 6.2. A 2-4-1 network {with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f(-). In the case shown, the hidden unit outputs are paired in

opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley
& Sons, Inc.
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FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



Support Vector Machine Classifier

e Basic idea

* Mapping the instances from the two
classes into a space where they become
linearly separable. The mapping is
achieved using a kernel function that

operates on the instances near to the
margin of separation.

 Parameter: kernel type



Nonlinear Separation







Support Vectors

margin

separator

@ support vectors
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