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Application Context

For multimedia interpretation and for the combined
interpretation of information coming from different
modalities a semantically well-founded formalization is
required

Images, Text, Video, Audio...

Low-level percepts represent the observations (e.g., of
an agent).

Symbolic observations require interpretation

Interpretations in turn are seen as explanations for the
observations.



General Approach

We propose an abduction-based formalism that uses
description logics for the ontology and Horn rules for
defining the space of hypotheses for explanations.
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Abduction example:

V X,y causes(x,y) € 7z CarEnry(z), Car(x), DoorSlam(y), hasObject(z,x), hasEffect(z,y)
V X,y causes(x,y) € 3z CarExit(z), Car(x), DoorSlam(y), hasObject(z,x), hasEffect(z,y)

Multiple explanations possible with simple scores
e Makes ranking difficult

Why should an agent look for explanations?
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Probabilistic Abduction

Agent wants to minimize its uncertainty about
observations

Agent considers probability that observations are true
given certain explanations

Need to combine probability theory with
first-order logic

We use the Markov logic formalism to define the

motivation for the agent to generate explanations
and for ranking different explanations.
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In Detail:

Idea of ranking:

Probability that the observations are true given the
evidences.

P(observation|explanation)
Idea of controlling the interpretation process :
Accept (additional) explanations only if the

probability that observations are true (given the
additional explanations) is significantly increased.



Markov Logic Networks

A Markov Logic KB (ML-KB) is a set of pairs (F,w,) where

F; is a formula in first-order Logic

w; is a real number weight

Together with a finite set of constants it defines a
Markov Logic Network (MLN) with

one node for each ground atom
of predicates in ML-KB

one edge between two nodes < corresponding
ground atoms appear together
in grounding of some F;

[Domingos et al. 2007]



Example
Weighted rules:

5Vz CarEntry(z) A hasObject(z,x) A hasE f fect(z,y) —
Car(z) A DoorSlam(y) A causes(z,y)

5Vz EnvConference(z) A hasSubEvent(z,x) A hasLocation(z.y) —
CarEntry(z) A Building(y) A OccursAt(z,y)



/ Knowledge Representation
in Markov Logic: Probability Distributions

o Log-linear model for specifying the probability
distribution (probability of possible world x):

P(x) = %exp(zhv nl.(x))
AR

\

Weight of F; Number of true groundings of F; in x

e Zis the partition function given by:
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Inference Problem 1: MLN Query Answering
Probability query:

PMLN(Lb‘l/\.../\ZCm ‘ 6?)

Used for computing scores assigned
to the interpretation Aboxes (see below)



/
_ tnference Problem 2: Maximum A-Posteriori

in MLN
MAP approach determines the most probable world

given the evidence.

Most-probable world query (Maximum A-Posterior, MAP)

e

1
MAPyN(E) :=€U argma:z:57 exp ( w;n; (T, 5))
which can be slightly optimized s.th.

MAPypN(€) :=eUargmazz Z w;n; (T, €)



.
Abduction Example

- For the explanation of Causes(c1,ds1) :

Causes(x,y) < CarEntry(z), HasObject(z, x), HasEffect(z, y),Car(x), DoorSlam(y)
OccursAt(x,y) < EnvConference(z), HasSubEvent(z, x), HasLocation(z, y),CarEntry(x), Building(y)

Abduction rules (new vars on the righthand side existentially quantified):

* Abduction requires consistent input
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“Prerequisites

Gound atoms W
1.3 Car(C,) Car(C1) 1
' |12 DoorSlam(DS,) = DoorSlam(DS1) |1
0.7 EngineSound(DS,) ‘ EngineSound(DS1)| 0
Causes(C1,DS1) Causes(C1,DS1) 1
Combination of audio DoorSlam [ 4 EngineSound Sel
and video for this focus glect

T’ 1.3 Car(Cy)
1.2 DoorSlam(DSy)
Causes(C1,DSy).
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Ganfept-basmbductiorrEﬁe:
Basic Idea

Forward chain rules on Abox A,

Given a set of observations I | try to explain a
selected assertion

Each explanation possibly introduces new assertions
Add new assertions to A,

Continue with step 1. unless none of the
explanations derived in this round cause the
probability that the initial observations are true to
increase “substantially”

Return the explanations (to be ranked afterwards)
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~—Complete Example

Tbox:
CarEntry C ~DoorSlam

Abduction rules (new vars on the righthand side existentially quantified):
Causes(x,y) <= CarEntry(z), HasObject(z, x), HasEffect(z, y),Car(x), DoorSlam(y)
OccursAt(x,y) < EnvConference(z), HasSubEvent(z, x), HasLocation(z, y),CarEntry(x), Building(y)

Forward rules:
Ve CarEntry(x) — dy Building(y),OccursAt(x,y)

Weighted rules:

5Yz CarEntry(z) A hasObject(z,z) A hasE f fect(z,y) —
Car(z) A DoorSlam(y) A causes(z,y)

5Vz EnvConference(z) A hasSubEvent(z,z) A hasLocation(z.y) —
CarEntry(z) A Building(y) A OccursAt(z,y)

Formulas are extremely simplified to make them fit on a'slide.



~ Example (Batkwafrdﬁtule/s%/‘ﬂ

Causes(x,y) < CarEntry(z), HasObject(z, x), HasEffect(z, y),Car(x), DoorSlam(y)
OccursAt(x,y) < EnvConference(z), HasSubEvent(z, x), HasLocation(z, y),CarEntry(x), Building(y)

CarEntry(Ind42)

HasObject(Ind42,C1) HasEffect(Ind42,DS1)

Causes(C1,DS1)
0 Causes(C1,DS1)

Car(C1) DoorSlam(DS1) Car(C1) DoorSlam(DS1)

Hypothesized assertions in red 15
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1.3 Car(Cy)
| 1.2 DoorSlam(DSy)
Causes(Cy,DSy).

Ay = {CarEntry(Indys), HasObject(Indyo, C1), HasEffect(Indye, DSy)}

1.3 Car(Cy)
1.2 DoorSlam(DSy)
Abox Ay Causes(Cy, DSy).

CarEntry(Indys).
HasObject(Indys,Ch).
HasEffect(Indyy, DSy).

P(Car(Ci) A DoorSlam(DS1) A Causes(C1,DS7) | A1) = 0.840
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~Example (Forwaradrules,

Yo CarEntry(r) — Jy Building(y), OccursAt(z,y)

Ay = {Building(Indys), OccursAt(Indys, Indys)}

1.3 Car(Cy)
1.2 DoorSlam(DS)
Causes(Cy,DSy).

CarEntry(Indys).
HasObject(Indys,Cy).
HasEffect(Indys, DSy).

Building(Ind,s).
OccursAt(Indyo, Ind,s).
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~Example (Backward rules

Causes(x,y) <= CarEntry(z), HasObject(z, x), HasEffect(z, y),Car(x), DoorSlam(y)
OccursAt(x,y) < EnvConference(z), HasSubEvent(z, x), HasLocation(z, y),CarEntry(x), Building(y)

Abduction rules (new vars on the righthand side existentially quantified):

CarEntry(Ind42) OccursAt(Ind42,Ind43)

*© Building(Ind43)
c/ |
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~ Example

Causes(x,y) < CarEntry(z), HasObject(z, x), HasEffect(z, y), Car(x), DoorSlam( y)
OccursAt(x,y) < EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

EnvConference(Ind44)

HasSubEvent(Ind44,Ind42) HasLocation(Ind44,Ind43)

CarEntry(Ind42 OccursAt(Ind42,Ind43)

Building(Ind43)
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<ample (Backward rules

1.3 Car(Cy)
1.2 DoorSlam(DSy)
Causes(Cy,DSy).

CarEntry(Indys).
HasObject(Indyy, Cy).
HasEffect(Indys, DSy).

Building(Ind,s).
OccursAt(Indyo, Ind,s).

Ay = {EnvConference(Indss), hasSubEvent(Indss, Inds2), hasLocation(Indss, Indss), ...}
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«cample (rankingsteg

1.3 Car(Cy)
1.2 DoorSlam(DSy)
Causes(Cy,DSy).

CarEntry(Indys).
HasObject(Indy, Ch). Ay
Abox As HasEffect(Indy, DS,).

Building(Indys). A
OccursAt(Indys, Indys). f

EnvConference(Indyy).
HasSubEvent(Indyy, Indys). A
HasLocation(Indyy, Indys). 2

P(Car(Ci) A DoorSlam(DS;) A Causes(C1,DS1) | A1 UAfU Az) = 0.819
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Example : Results

Prob. Values
Po 0.650
oF 0.840
P, 0.819

The termination condition is fulfilled.
=== Abox A, is considered as the final interpretation Abox.
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Scoring

For every interpretation (explained, non-explained)
 For every explained add P( Obs | Interpretation )
e For every non-explained add o.5
e Average w.r.t. number of assertions in interpretation
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