
1

Vorlesung "Software-Engineering"

z Vorige Vorlesung: Opportunistische Wiederverwendung
y Enterprise Application Integration

y Software-Architekturen u.a. für EAI-Anforderungen

z Heute: Organisierte / strategische Wiederverwendung
y Software Product Lines

Prof. Ralf Möller, TUHH, Arbeitsbereich STS

2

Danksagung

z Diese Vorlesung verwendet folgende Präsentation:

z Reuse That Pays -
Linda M. Northrop ,
ICSE 2001

z siehe:
http://www.sei.cmu.edu/plp/presentations.html

Carnegie Mellon University
Software Engineering Institute

1© 2001 Carnegie Mellon University

Reuse that PaysReuse that PaysReuse that Pays

 Linda M. Northrop

 Software Engineering Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213

 This work is sponsored by the U.S. Department of Defense.

 Linda M. Northrop

 Software Engineering Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213

 This work is sponsored by the U.S. Department of Defense.

Carnegie Mellon University
Software Engineering Institute

2© 2001 Carnegie Mellon University

Imagine

Reuse

not for the sake of reuse

 but reuse as a strategy to
 achieve business goals

Carnegie Mellon University
Software Engineering Institute

4© 2001 Carnegie Mellon University

Cummins Inc.: Diesel Engine Control Systems

 Over 20 product groups with
over 1000 separate engine
applications

•product cycle time was
slashed from 250 person-
months to a few person-
months

•Build and integration time
was reduced from one year
to one week

•quality goals are exceeded
•customer satisfaction is
high

•product schedules are met

Carnegie Mellon University
Software Engineering Institute

6© 2001 Carnegie Mellon University

Market Maker GmbH: MERGER

 Internet-based stock market
software

•each product “uniquely”
configured

•three days to put up a
customized system

Carnegie Mellon University
Software Engineering Institute

7© 2001 Carnegie Mellon University

How Did They Do It?

strategic
reuse

business strategy
and

technical strategy

employed to achieve explicit business goals

Carnegie Mellon University
Software Engineering Institute

8© 2001 Carnegie Mellon University

Beginning of the 21st Century

 Software has become the bottom line for many
organizations who never envisioned themselves in
the software business.

Carnegie Mellon University
Software Engineering Institute

9© 2001 Carnegie Mellon University

Universal Business Goals

 High quality

 Quick time to market

 Effective use of limited resources

 Product alignment

 Low cost production

 Low cost maintenance

 Mass customization

 Mind share

 High qualityHigh quality

 Quick time to marketQuick time to market

 Effective use of limited resourcesEffective use of limited resources

 Product alignmentProduct alignment

 Low cost productionLow cost production

 Low cost maintenanceLow cost maintenance

 Mass customizationMass customization

 Mind shareMind share

 improved
 efficiency

 and
 productivity

Carnegie Mellon University
Software Engineering Institute

10© 2001 Carnegie Mellon University

Software (System) Strategies

 Process Improvement

 Technology Innovation

 Reuse

Carnegie Mellon University
Software Engineering Institute

11© 2001 Carnegie Mellon University

Ah, Reuse

 First introduced at the 1968 NATO
conference on software engineering

 My thesis is that the software industry is
weakly founded, in part because of the
absence of a software components sub-
industry. [McIlroy, 1969]

Carnegie Mellon University
Software Engineering Institute

12© 2001 Carnegie Mellon University

Reuse: a Recurring Theme-1

 Most industry observers agree that improved software
development productivity and product quality will
bring an end to the software crisis. In such a world,
reusable software would abound.

[Pressman, 1982]

 What is needed is the ability to create templates of
program units that can be written just once and then
tailored to particular needs at translation time. As we
shall see, Ada provides a general and very powerful
tool to do just this.

 [Booch, 1986]

Carnegie Mellon University
Software Engineering Institute

13© 2001 Carnegie Mellon University

Reuse: a Recurring Theme-2

 If one accepts that reusability is essential to better
software quality, the object-oriented approach
provides a promising set of solutions.
[Meyer, 1987]

 Inheritance is the most promising concept we have to
help us realize the goal of constructing software
systems from reusable parts.

[Korson and McGregor, 1990]

Carnegie Mellon University
Software Engineering Institute

14© 2001 Carnegie Mellon University

Reuse: a Recurring Theme-3

 A fundamental problem in software reuse is the lack of
tools to locate potential code for reuse… information
retrieval systems have the power and flexibility to
ameliorate this problem. [Frakes and
Nejmeh, 1987]

 Reusable components would be schematized and
placed in a large library that would act as a clearing
house for reusable software, and royalties would be
paid for use of reusable components.

 [Lubars, 1988]

Carnegie Mellon University
Software Engineering Institute

15© 2001 Carnegie Mellon University

Reuse History

1960’s
Subroutines

1970’s
Modules

1980’s
Objects

1990’s
Components

Results fell short of expectations

Carnegie Mellon University
Software Engineering Institute

16© 2001 Carnegie Mellon University

Strategic Reuse is Different

Software
Product

Lines

Carnegie Mellon University
Software Engineering Institute

17© 2001 Carnegie Mellon University

Reuse History: From Ad-Hoc to
Systematic

1960’s
Subroutines

1970’s
Modules

1980’s
Objects

1990’s
Components

2000’s
Software

Product Lines

Carnegie Mellon University
Software Engineering Institute

18© 2001 Carnegie Mellon University

What is a Software Product Line?

 A software product line is a set of software-
intensive systems sharing a common,
managed set of features that satisfy the
specific needs of a particular market
segment or mission and that are developed
from a common set of core assets in a
prescribed way.

Carnegie Mellon University
Software Engineering Institute

19© 2001 Carnegie Mellon University

Software Product Lines

Market strategy/

Application domain

Architecture

Components

pertain to

share an

are built from

is satisfied by

used to structure
Products

CORE
ASSETS

Product lines
• take economic advantage of commonality
• bound variability

Carnegie Mellon University
Software Engineering Institute

20© 2001 Carnegie Mellon University

How Do Product Lines Help?

 Product lines amortize the investment in these
and other core assets:
•requirements and requirements analysis
•domain model
•software architecture and design
•performance engineering
•documentation
•test plans, test cases, and data
•people: their knowledge and skills
•processes, methods, and tools
•budgets, schedules, and work plans
•components

 product lines = strategic reuse

earlier life-
cycle

reuse

more
benefit

Carnegie Mellon University
Software Engineering Institute

21© 2001 Carnegie Mellon University

The Key Concepts

 Use of a
common

asset base
in production of a related

set of products

Carnegie Mellon University
Software Engineering Institute

22© 2001 Carnegie Mellon University

The Key Concepts

Use of a
common

asset base
in production of a related

set of products

Architecture Production Plan Scope Definition
Business Case

Carnegie Mellon University
Software Engineering Institute

23© 2001 Carnegie Mellon University

Software Product Lines Are Not

Just
•libraries of objects,

components, or
algorithms

•reuse when the software
engineer is so inclined

•reuse with no repeatable
production process

•a configurable
architecture

Carnegie Mellon University
Software Engineering Institute

24© 2001 Carnegie Mellon University

Software Product Lines Are Not

Just
•libraries of objects,

components, or
algorithms

•reuse when the software
engineer is so inclined

•reuse with no repeatable
production process

•a configurable
architecture

Opportunistic
Reuse

Carnegie Mellon University
Software Engineering Institute

25© 2001 Carnegie Mellon University

Organizational Benefits
 Improved productivity
 by as much as 10x

 Decreased time to market (to field, to launch...)
 by as much as an order of magnitude

 Decreased cost
 by as much as 60%

 Decreased labor needs
 by as much as 10X fewer software developers

 Increased quality
 by as much as 10X fewer defects

Carnegie Mellon University
Software Engineering Institute

26© 2001 Carnegie Mellon University

Costs of a Product Line
Asset Costs
architecture must support variation inherent in the

product line
software
components

must be designed to be general without
loss of performance; must build in
variation points

performance
modeling and
analysis

reusing the analysis may constrain
processor allocation

test plans, test
cases, test data

must consider variation points and
multiple instances of product line

project plans Single plans will be largely dependent
upon degree of reuse

tools and processes must be more robust
people, skills,
training

Must involve training and expertise
centered around the assets and
procedures associated with the product
line

Carnegie Mellon University
Software Engineering Institute

27© 2001 Carnegie Mellon University

Economics of Product Lines

Derived from data supplied by
Lucent Technologies

Bell Laboratories Innovations

With Product Line Approach

Current
Practice

Cumulative
Cost

Number of Products

Carnegie Mellon University
Software Engineering Institute

30© 2001 Carnegie Mellon University

Necessary Changes

Organizational Organizational
structure and structure and

personnelpersonnel

ManagementManagement

Business Business
approachapproach

ArchitectureArchitecture

Development Development
approachapproach

The architecture is the
foundation of everything.

Carnegie Mellon University
Software Engineering Institute

31© 2001 Carnegie Mellon University

Product Line Practice
 Contexts for product
 lines vary widely

•nature of products
•nature of market or
mission

•business goals
•organizational
infrastructure

•workforce distribution
•process maturity
•artifact maturity

 But there are
 universal essential
activities and
practices.

Carnegie Mellon University
Software Engineering Institute

32© 2001 Carnegie Mellon University

Product Line Essential Activities

Core Asset
Development

Management

Product
Development

Application EngineeringDomain Engineering

Carnegie Mellon University
Software Engineering Institute

33© 2001 Carnegie Mellon University

Core Asset Development

Product Constraints
Styles, Patterns,
Frameworks
Production Constraints
Production Strategy
Inventory of Pre-existing
Assets

Core Asset
Development

Management

Product Line Scope
Core Assets

Production Plan

Carnegie Mellon University
Software Engineering Institute

34© 2001 Carnegie Mellon University

Attached Processes

Core Asset
DevelopmentCore

Assets

Management

Production
Plan

+ + +

Attached
Processes

Core Asset Repository

Carnegie Mellon University
Software Engineering Institute

35© 2001 Carnegie Mellon University

Product Development

Requirements
Product Line Scope
Core Assets

Production Plan
+ + +

Management

Product
Development

Products

Carnegie Mellon University
Software Engineering Institute

36© 2001 Carnegie Mellon University

Management

Core Asset
Development

Management

Product
Development

Application EngineeringDomain Engineering

Carnegie Mellon University
Software Engineering Institute

37© 2001 Carnegie Mellon University

Management
 Management plays a critical role in the
successful building of a product line by

• allocating resources
• coordinating and supervising
• achieving the right organizational structure
• rewarding employees appropriately
• providing training
• developing and communicating an acquisition strategy
• managing external interfaces
• creating and implementing a product line adoption plan

Managing a software product line
requires leadership.

Carnegie Mellon University
Software Engineering Institute

38© 2001 Carnegie Mellon University

Driving the Essential Activities

 Beneath the level of the essential activities
are essential practices that fall into practice
areas.

 A practice area is a body of work or a
collection of activities that an organization
must master to successfully carry out the
essential work of a product line.

Carnegie Mellon University
Software Engineering Institute

39© 2001 Carnegie Mellon University

Practice Areas Categories

Software Engineering

Technical Management

Organizational Management

Carnegie Mellon University
Software Engineering Institute

40© 2001 Carnegie Mellon University

The 29 Practice Areas

Software
Engineering

Architecture Definition
Architecture Evaluation
Component

Development
COTS Utilization
Mining Existing Assets
Requirements

Engineering
Software System

Integration
Testing
Understanding

Relevant Domains

Technical
Management

Configuration
Management

Data Collection, Metrics,
and Tracking

Make/Buy/Mine/
Commission Analysis

Process Definition
Scoping
Technical Planning
Technical Risk

Management
Tool Support

Organizational
Management

Building a Business Case
Customer Interface
Management

Developing an Acquisition
Strategy

Funding
Launching and
Institutionalizing

Market Analysis
Operations
Organizational Planning
Organizational Risk
Management

Structuring the
Organization

Technology Forecasting
Training

Carnegie Mellon University
Software Engineering Institute

41© 2001 Carnegie Mellon University

Software Engineering Practice Areas

specifies components

Architecture

Components

drive

Requirements

Domain Understanding

feeds

Carnegie Mellon University
Software Engineering Institute

42© 2001 Carnegie Mellon University

Software Engineering Practice Areas

Understanding Relevant Domains

Architecture Definition
Architecture Evaluation

feeds

drive

Architecture

Requirements

Domain Understanding

Make Buy Mine

Software System Integration TestingComponents

specifies components
Make/Buy/Mine/Commission Analysis

Component
Development

COTS
Utilization

Mining
Existing
Assets

[Developing an
Acquisition
Strategy]

Requirements Engineering

CommissionCommission

Carnegie Mellon University
Software Engineering Institute

43© 2001 Carnegie Mellon University

Software Engineering Practice Areas

Software System Integration Testing

Understanding Relevant Domains

Architecture Definition
Architecture Evaluation

feeds

drive

specifies components
Make/Buy/Mine/Commission Analysis

Make Buy Mine

Components

Architecture

Requirements

Domain Understanding

Component
Development

existing
talent

COTS
Utilization

market availability

Mining
Existing
Assets

legacy base

Commission

[Developing an
Acquisition
Strategy]

organizational
policy

Requirements Engineering

Carnegie Mellon University
Software Engineering Institute

55© 2001 Carnegie Mellon University

Closing Comments

 Software product lines epitomize the concept of
strategic, planned reuse.

 The product line concept is about more than a new
technology. It is about a purposeful re-invention of
an organization, a disciplined way of doing one’s
software business.

 There are essential product line activities and
practices areas as well as product line patterns to
make the move to product lines more manageable.

Carnegie Mellon University
Software Engineering Institute

56© 2001 Carnegie Mellon University

What’s Different About Reuse with
Software Product Lines?
 Business dimension

 Iteration

 Architecture focus

 Pre-planning

 Process and product connection

Carnegie Mellon University
Software Engineering Institute

57© 2001 Carnegie Mellon University

At the Heart of Successful Product Lines
 A pressing need that addresses the heart of the
business

 Long and deep domain experience

 A legacy base from which to build

 Architectural excellence

 Process discipline

 Management commitment

 Loyalty to the product line as a single entity

Carnegie Mellon University
Software Engineering Institute

58© 2001 Carnegie Mellon University

The Time is Right
 Rapidly maturing, increasingly sophisticated software development
technologies including object technology, component technology,
standardization of commercial middleware.

 A global realization of the importance of architecture

 A universal recognition of the need for process discipline.

 Role models and case studies that are emerging in the literature and
trade journals.

 Conferences, workshops, and education programs that are now
including product lines in the agenda.

 Company and inter-company product line initiatives.

 Rising recognition of the amazing cost/performance savings that are
possible.

Carnegie Mellon University
Software Engineering Institute

59© 2001 Carnegie Mellon University

Remaining Challenges
 Definition of product line architectures

 Evolution of product line architectures and assets

 Product line migration strategies for legacy systems

 Collection of relevant data to track against business goals

 Funding models to support strategic reuse decisions

 Acquisition strategies that support systematic reuse through
product lines

 Codified, integrated technical and management practices

 Product line tool support

Carnegie Mellon University
Software Engineering Institute

60© 2001 Carnegie Mellon University

SEI Contribution

 Practice Integration: A Framework for Software Product Lines,
 Version 3, http://www.sei.cmu.edu/plp/framework.html

• essential activities
• practice area identification and descriptions
• FAQ

 Techniques and Methods
• architecture definition – ADD
• architecture evaluation – ATAMSM

• mining assets – OAR
• product line analysis
• Product Line Technical Probe

 Software Product Lines: Practices and Patterns
• practices
• patterns
• case studies

 SPLC2 – August 19-22, 2002 – San Diego

Carnegie Mellon University
Software Engineering Institute

61© 2001 Carnegie Mellon University

Conclusion

 If properly managed, the benefits of a product line
approach far exceed the costs.

 Strategic software reuse through a well-managed
product line approach achieves business goals
for:

-efficiency
-time to market
-productivity, and
-quality

Software product lines are reuse that pays.

