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PART I: OBDA



Ontology-Based Data Access

Use ontologies as interface ...
to access (here: query)
data stored in some format ...
using mappings

ABox%

mappings%

TBox%

Ontology%

Query%
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Ontologies

Ontologies are structures of the form O = (Sig , T ,A)
Signature: Non-logical vocabulary
Sig = ConstSig ∪ ConcSig ∪ RoleSig
TBox T : set of Sig-axioms in some DL logic to capture
terminological knowledge
ABox A: set of Sig-axioms in (same DL logic) to capture
assertional/contingential knowledge

Note: Sometimes only TBox termed ontology
Semantics defined on the basis of Sig-interpretations I

I |= Ax iff I makes all axioms in Ax true
Mod(Ax) = {I |= Ax}
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General Idea

A: Represents facts in
domain of interest
Open world assumption:
Mod(A) is not a singleton
T : Constrains Mod(A)
with intended Sig readings
In most cases one has only
approximations of intended
models IM
Realize inference services on
the basis of the constrained
interpretations

Mod(Sig)

Mod(A)

Mod(A ∪ T )

IM
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WARNING: A Misconception

With ontologies one does not declare data structures
ABox data in most cases show pattern of data structures
One does not have to re-model patterns/constraints in the
ABox data

Knowing “All A are B” in the ABox is different from stipulating
A v B
Add A v B, if you need to handle this relation for objects not
mentioned in the ABox

Motto: Keep the TBox simple
In so far: Ontology bootstrapping on backend data sources to
be handled with care

OBDA on Temporal and Streaming Data 8 / 95



Ontology-Based Data Access
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Reasoning Services

Different standard and nonstandard reasoning services exists
May be reducible to each other
Examples: consistency check, subsumption check, taxonomy
calculations, ... most specific subsumer, most specific concept,
matching, ...
Focus on

Consistency checking: Mod(A ∪ T ) 6= ∅.
Query answering

Next to ABox and TBox language query language QL over Sig
is a relevant factor for OBDA
Queries are formulas ψ(~x) in QL with open variables
~x = (x1, . . . , xn) (distinguished variables).
Certain query answering

cert(ψ(~x), T ∪ A) = {~a ∈ (ConstSig )
n | T ∪ A |= ψ[~x/~a]}
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Backend Data Sources

Classically: relational SQL DBs with static data
Possible extensions: non-SQL DBs

datawarehouse repositories for statistical applications
pure logfiles
RDF repositories

Non-static data
historical data (stored in temporal DB)
dynamic data coming in streams

Originally intended for multiple DBs but ...
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Federation

... we would have to deal
with federation
not trivial in classical OBDA
...
because one has to integrate
data from different DBs
Ignore federation aspect: we
have one DB but possibly
many tables

ABox%

mappings%

TBox%

Ontology%

Query%
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Mappings

Mappings have an important crucial role in OBDA
Lift data to the ontology level

Data level: (nearly) close world
Ontology Level: open world

Schema of Mappings

m : ψ(~f (~x))←− Q(~x , ~y)

ψ(~f (~x)): Template (query) for generating ABox axioms

Q(~x , ~y) : Query over the backend sources

Function ~f translates backend instantiations of ~x to
constants

Mappings M over backend sources generates ABox A(M,DB).
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Example Scenario: Measurements

Example schema for measurement and event data in DB
SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(catID, catName)

For mapping
m: Sens(x) ∧ name(x , y)←−

SELECT f(SID) as x, Sname as y FROM SENSOR

the row data in SENSOR table
SENSOR
(123, comp45, TC255, TempSens, ‘A temperature sensor’)

generates facts
Sens(f (123)), name(f (123),TempSens) ∈ A(m,DB)
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OBDA in the Classical Sense

Keep the data where they are because of large volume
ABox is virtual (no materialization)

ABox%
virtual%

%

mappings%

TBox%

Ontology%

Rewri8ng%

Qrew%

Unfolding%

Qunf%

Answers% Q%
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OBDA in the Classical Sense

First-order logic (FOL) perfect rewriting + unfolding for
realizing reasoning services

ABox%
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%

mappings%

TBox%

Ontology%
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Unfolding%
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Answers% Q%
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OBDA in the Classical Sense

T language: Some logic of the DL-Lite family
A language: assertions of the form A(a),R(a, b)

QL : Unions of conjuctive queries (UCQs)
Language of Qrew : safe FOL
Allows for perfect rewriting (of consistency checking and) UCQ
answering

cert(Q, (Sig , T ,A)) = cert(Qrew ,A) = ans(Qrew ,DB(A))

and unfolding

cert(Q, (Sig , T ,A(M,DB))) = ans(Qunf ,DB)

Note that query language over DB is relevant for possibility of
unfolding
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A Critical View on DL-Lite

Rewriting may lead to exponential blow up of queries
but argue that this does not occur in practical cases
and use optimizations by looking at the ABox

TBox language weak
Very strict use of functional roles
One has only qualified existentials on the right of GCIs
=⇒ no expressive sufficient conditions

UCQs not that expressive
But may be useful if UCQs are generated automatically
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Extended OBDA

Use more expressive TBox language
ABDEO (Accessing very big data using expressive ontologies)
Rewritability for UCQs not guaranteed
Materialize ABox and use ABox modularization to answer
queries

Use different (more expressive) QL
E.g. SPARQL instead of UCQ; but no full existentials in
combination with DL-Lite
OWL2QL + SPARQL used in Optique platform

Use different reasoning/rewriting paradigm
e.g. combined rewriting: First enhance ABox with TBox
information and then rewrite
Streaming
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PART II: Temporalized and Streamified OBDA



A Confession

Ontology-Based Data Access on temporal and Streaming
Data
But: Streams are temporal streams and we talk about local
temporal reasoning
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Adding a Temporal Dimension to OBDA

Most conservative strategy: handle time as “ordinary” attribute
time meas(x) ∧

val(x , y) ∧
time(x , z)

 ←− SELECT f(MID) AS m, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT

Classical Mapping
Pro: Minimal (no) adaptation
Contra:

No control on “logic of time”
Need reification

sometimes necessary (because DLs provided only predicates up
to arity 2)
but not that “natural”
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Flow of Time

Flow of time (T ,≤T ) is a structure with a time domain T and
a binary relation ≤T over it.
Take points as primitives
Different properties to describe different temporal aspects
We consider non-branching (or: linear) time, i.e., ≤T is

reflexive: ∀t ∈ T : t ≤T t
antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

Existence of first or last element
discreteness (Example: T = N); also used for modeling state
sequences;
density (Example: T = Q);
continuity (Example: T = R)
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Temporalized OBDA

Semantics rests on family of interpretations (It)t∈T
Temporal ABox Ã: Finite set of T -tagged ABox axioms
val(s0, 90◦)〈3s〉 holds in (It)t∈T iff I3s |= val(s0, 90◦)
“sensor s0 has value 90◦ at time point 3s”
Sequence representation of temporal ABox Ã

(At)t∈T ′ (where T ′ are set of timestamps in T)
At = {ax | ax〈t〉 ∈ Ã}

Rewriting w.r.t. temporally extended DLs

cert(Q, (Sig , T , (At)t∈T ′) = ans(Qrew , (DB(At))t∈T ′)
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Temporalized OBDA

Different approaches based on modal (temporal) operators
LTL (linear temporal logic) operators only in QL (Borgwardt et
al. 13)

Critical(x) = ∃y .Turbine(x) ∧ showsMessage(x , y) ∧
FailureMessage(y)

Q(x) = ©−1©−1©−1(♦(Critical(x) ∧©♦Critical(x)))

“turbine has been at least two times in a critical
situation in the last three time units”

CQ embedded into LTL template
Special operators taking care of endpoints of state sequencing
Non-safe
Rewriting simple due to atemporal TBox
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Temporalized OBDA

LTL operators in TBox and T argument in QL (Artale et al. 13)

TBox axiom : showsAnomaly v ♦UnplanedShutDown

“if turbine shows anomaly (now)
then sometime in the future it will shut down”

Query : ∃t.3s ≤ t ≤ 6s ∧ showsAnomaly(x , t)

Can formulate rigidity assumptions
Rewriting not trivial
Both approaches do not deal with unfolding
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Adding a Stream Dimension to OBDA

Definition (Temporal Stream)
A stream S is a sequence of timestamped objects d〈t〉
over some domain D and flow of time (T ,≤T ).

Consider non-branching (or: linear) time, i.e., ≤T is
We assume that there is no last element in T

We do not restrict T further, so it may be
discrete or
dense or
continuous
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Arrival Ordering

Definition (Temporal Stream)
A stream S is a sequence of timestamped objects d〈t〉
over some domain D and flow of time (T ,≤T ).

Sequence fixed by arrival ordering fixed <ar

<ar is a strict total ordering on the elements of S
Synchronuous streams: ≤T compatible with <ar

Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.
Asynchronous streams: ≤T not necessarily compatible with <ar

Convention for the following
Consider only temporal streams
Consider only synchronous streams =⇒ neglect <ar .
Represent streams as a potentially infinite multi-set (bag) of
elements

OBDA on Temporal and Streaming Data 30 / 95



Arrival Ordering

Definition (Temporal Stream)
A stream S is a sequence of timestamped objects d〈t〉
over some domain D and flow of time (T ,≤T ).

Sequence fixed by arrival ordering fixed <ar

<ar is a strict total ordering on the elements of S
Synchronuous streams: ≤T compatible with <ar

Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.
Asynchronous streams: ≤T not necessarily compatible with <ar

Convention for the following
Consider only temporal streams
Consider only synchronous streams =⇒ neglect <ar .
Represent streams as a potentially infinite multi-set (bag) of
elements

OBDA on Temporal and Streaming Data 30 / 95



Arrival Ordering

Definition (Temporal Stream)
A stream S is a sequence of timestamped objects d〈t〉
over some domain D and flow of time (T ,≤T ).

Sequence fixed by arrival ordering fixed <ar

<ar is a strict total ordering on the elements of S
Synchronuous streams: ≤T compatible with <ar

Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.
Asynchronous streams: ≤T not necessarily compatible with <ar

Convention for the following
Consider only temporal streams
Consider only synchronous streams =⇒ neglect <ar .
Represent streams as a potentially infinite multi-set (bag) of
elements

OBDA on Temporal and Streaming Data 30 / 95



Domain Objects for Streams

Definition (Temporal Stream)
A stream S is a sequence of timestamped objects (d , t)
over some domain D and flow of time (T ,≤T ).

In streamified OBDA we have to deal with different types of domains
D is a set of typed tuples adhering to a relational schema

Streams at the backend sources
Srel = {(s1, 90◦)〈1s〉, (s2, 92◦)〈2s〉, (s1, 94◦)〈3s〉, . . . }
Schema: hasSensorRelation(Sensor:string, temperature:integer)

D is a set of untyped tuples (of the same arity)
Stream of tuples resulting as bindings for subqueries

D is a set of assertions (RDF tuples).
Srdf = { val(s0, 90◦)〈1s〉, val(s2, 92◦)〈2s〉, val(s1, 94◦)〈3s〉, . . . }

D is a set of RDF graphs
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Relational Stream Processing

Stream stack
1. Low-level sensor perspective (semantic sensor networks)
2. Relational database perspective (data stream management)
3. Ontology layer streams

Different groups working on Data Stream Management Systems
around 2004

Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL); Aurora/Borealis
(Brandeis, Brown and MIT); PIPES from Marburg University
Commercial systems: StreamBase, Truviso (Satandalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

Though well investigated and many similarities there is no
streaming SQL standard
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Window Operator

Querying on streams is a continuous not a one-shot activity
Fundamental idea to cope with infiniteness of streams

Blocking operators cannot be applied to the whole stream
consider finite updated window content

Window classification
Direction of movement of the endpoints

Both endpoints fixed (needed for “historical” queries)
Both moving/sliding
One moving the other not

Window size
Temporal
Tuple-based
Partitioned window
Predicate window

Window update
tumbling
sampling
overlapping

OBDA on Temporal and Streaming Data 33 / 95



Window Operator

Querying on streams is a continuous not a one-shot activity
Fundamental idea to cope with infiniteness of streams

Blocking operators cannot be applied to the whole stream
consider finite updated window content

Window classification
Direction of movement of the endpoints

Both endpoints fixed (needed for “historical” queries)
Both moving/sliding
One moving the other not

Window size
Temporal
Tuple-based
Partitioned window
Predicate window

Window update
tumbling
sampling
overlapping

OBDA on Temporal and Streaming Data 33 / 95



CQL

Early relational stream query language extending SQL
Assumes synchronous streams
Special data structure next to streams: relations R

R maps times t to ordinary (instantaneous) relations R(t)
Motivation: Use of ordinary SQL operators on instantaneous
relations

Operators: Stream-to-relation, relation-to-relation,
relation-stream
Non-predictability condition for operators op:

If two inputs S1 , S2 are the same up to t, then
op(S1)(t) = op(S2)(t).
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CQL Windows

Window operators are stream-to-relation operators
CQL knows tuple-based, partition based and time-based
windows
R = S [Range wr Slide sl]

with slide parameter sl and range wr
tstart = bt/slc · sl
tend = max{tstart − wr , 0}

R(t) =

{
∅ if t < sl
{s | s〈t ′〉 ∈ S and tend ≤ t ′ ≤ tstart} else

Standard slide = 1: [RANGE wr]
Left end fixed: [Range UNBOUND]
Width 0: [NOW]
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Sliding Window Example in CQL

Flow of time (N,≤)
Input stream

S = {(s0, 90◦)〈0〉, (s1, 94◦)〈0〉, (s0, 91◦)〈1〉, (s0, 92◦)〈2〉,
(s0, 93◦)〈3〉, (s0, 95◦)〈5〉, (s0, 94◦)〈6〉....}

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93),
(s0, 95)}

{(s0, 93),
(s0, 95),
(s0, 94)}
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Sliding Window Example in CQL

S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}
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(s0, 95)}

{(s0, 95),
(s0, 94)}

OBDA on Temporal and Streaming Data 37 / 95



Relation vs. Stream

S = {(s0, 90◦)〈0〉, (s1, 94◦)〈0〉, (s0, 91◦)〈1〉, (s0, 92◦)〈2〉,
(s0, 93◦)〈3〉, (s0, 95◦)〈5〉, (s0, 94◦)〈6〉....}

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93),
(s0, 95)}

{(s0, 93),
(s0, 95),
(s0, 94)}

Note that there are also entries for second 4
Note that timestamps are lost in the bags
Slides are local to streams and may be different over different
streams
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Relation-To-Stream Operators

Output stream of input relation R :

Istream(R) =
⋃
t∈T

(R(t) \ R(t − 1))× {t}

stream of inserted elements
Dstream(R) =

⋃
t∈T

(R(t − 1) \ R(t))× {t}

stream of deleted elements
Rstream(R) =

⋃
t∈T

R(t)× {t}

stream of all elements

In CQL IStream and DStream are syntactic sugar
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Sensor Measurement CQL Example

SELECT Rstream(m.sensorID)
FROM Msmt[Range 1] as m, Events[Range 2] as e
WHERE m.val > 30 AND

e.category = Alarm AND
m.sensorID = e.sensorID

Stream join realized by join of window contents
Output is a stream
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Non-discrete Time Flows

Taken literally, CQL window definitions work only for discrete
flows of times
Time flow: (T ,≤) = (R,≤)
Input stream: S = {i〈i〉 | i ∈ N}
RStream(S [RANGE 1 SLIDE 1]) is “stream” with cardinality of
R
“Solution” in CQL hidden in stream engine layer
Heartbeat with smallest possible time granularity
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Streamified OBDA

Nearly ontology layer stream processing
CEP (Complex event processing)
EP-SPARQL/ETALIS, T-REX/ TESLA, Commonsens/ESPER

RDF-ontology layer stream processing
C-SPARQL (della Valle et al. 09), CQELS

Classical OBDA stream processing
SPARQLStream (Calbimonte et al. 12)

All approaches rely on CQL window semantics
extend SPARQL or use some derivative of it
Treat timestamped RDF triples but use reification
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Example of Reified Handling

SELECT ?windspeed ?tidespeed
FROM NAMED STREAM <http://swiss-experiment.ch/data#WannengratSensors.srdf>
[NOW-10 MINUTES TO NOW-0 MINUTES]
WHERE

?WaveObs a ssn:Observation;
ssn:observationResult ?windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.

?TideObs a ssn:Observation;
ssn:observationResult ?tidespeed;
ssn:observedProperty sweetSpeed:TideSpeed.

FILTER (?tidespeed<?windspeed)
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SRBench (Zhang et al. 2012)

Benchmark for RDF/SPARQL Stream Engines
Contains data from LinkedSensorData, GeoNames, DBPedia
Mainly queries for functionality tests, with eye on SPARQL 1.1.
functionalities
Example Query (to test basic pattern matching)
Q1. Get the rainfall observed once in an hour.
Tested on CQELS, SPARQLStream and C-SPARQL
Test results (for engine versions as of 2012)

Basic SPARQL features supported
SPARQL 1.1 features (property paths) rather not supported
Only C-SPARQL supports reasoning (on RDFS level)
(tested subsumption and sameAs)
Combined treatment of static data plus streaming data only for
CQELS and C-SPARQL
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PART III: STARQL



OPTIQUE

EU 7th framework program
Two big data use cases from industrial partners

STATOIL SAS: Querying data on wellbore related DBs
SIEMENS: Querying sensor and event data from (gas) turbines

Optique platform: OBDA + User Friendliness + Scalable
Rewriting + Elastic Clouds + Real-Time Processing
For more information: http://www.optique-project.eu/
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End-user IT-expert

Data models
Std. ontologies

. . .

Visualisation
& Analysis

Query
Formulation

Ontology & Mapping
Management

Ontology Mappings

Query Transformation
Query Planning

Query Execution Query Execution Query Execution

· · · · · ·
query

re
su
lts

streaming data static data static data



The query framework STARQL

Started development within OPTIQUE
Uses non-reified approach
Use local temporal reasoning on finite state sequences
Has framework character: embed different condition languages
Convention for the following

Use logical ABox/TBox notation for RDF assertions (also in
streams.), i.e.,

{s0 rdf:type TempSensor} written as TempSens(s0).
{s0 val 90} written as val(s0,90)

Use SPARQL notation within STARQL queries.
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Structure of STARQL queries

STARQL Query Template
CREATE STREAM (initializes new stream)
CREATE PULSE (create pulse for

output times)
SELECT/ (specifies output format)
CONSTRUCT
FROM (specifies the input streams)
USING (specifies the static input)
WHERE (selection w.r.t. static data)
SEQUENCE BY (sequencing strategy)
HAVING (FOL template for local temporal

reasoning on states)

OBDA on Temporal and Streaming Data 49 / 95



A Basic STARQL Example
Input: Stream SMsmt of measurement assertions.

SMsmt = { val(s0, 90◦C )〈0s〉,
val(s0, 93◦C )〈1s〉,
val(s0, 94◦C )〈2s〉,
val(s0, 92◦C )〈3s〉,
val(s0, 95◦C )〈5s〉
. . . }

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0
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Information Needs in STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s.

STARQL Representation (STARQL-Mon)
CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 val ?x}<i> AND {s0 val ?y}<j>
THEN ?x <= ?y

OBDA on Temporal and Streaming Data 51 / 95



Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Creates stream named Sout1
Can be referenced under this name within another query
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Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

CONSTRUCT is a SPARQL like constructor
Alternatively, if one is interested only in the bindings one uses
SELECT
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Output Format

SMsmt = { val(s0, 90◦C )〈0s〉,
val(s0, 93◦C )〈1s〉,
val(s0, 94◦C )〈2s〉,
val(s0, 92◦C )〈3s〉,

val(s0, 95◦C )〈5s〉
. . . }

Sout1 = { RecMonInc(s0)〈0s〉,
RecMonInc(s0)〈1s〉,
RecMonInc(s0)〈2s〉,

RecMonInc(s0)〈5s〉
. . . }

OBDA on Temporal and Streaming Data 54 / 95



Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]-> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Pulse fixes output times (bindings of NOW variable)
Needed also for synchronization of streams
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Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]-> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Window specification with window interval and slide parameter
Applied to input stream S_Msmt of timestamped RDF
assertions ( = RDF quadruples)
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Window Semantics

S_Msmt [NOW-2s,NOW]->1s: stream of temporal ABoxes
Sliding movement as in CQL but with timestamp preservation

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

Window sliding every second

Time Window contents
0s val(s0, 90◦)〈0s〉
1s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉
2s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
3s val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
4s val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
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Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Generate every 1 second a sequence of states referred to by
variables i , j
States are annotated with ABoxes (RDF repositories)
StdSeq = Standard Sequencing
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The Sequence View

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

Time Window contents before sequencing
0s val(s0, 90◦)〈0s〉
1s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉
2s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
3s val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
4s val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉

Time Window contents after standard sequencing SEQ1
0s {val(s0, 90◦)}〈0〉 {0}
1s {val(s0, 90◦)}〈0〉, {val(s0, 93◦)}〈1〉 {0, 1}
2s {val(s0, 90◦)}〈0〉, {val(s0, 93◦)}〈1〉, {val(s0, 94◦)}〈2〉 {0, 1, 2}
3s {val(s0, 93◦)}〈0〉, {val(s0, 94◦)}〈1〉, {val(s0, 92◦)}〈2〉 {0, 1, 2}
4s {val(s0, 94◦)}〈0〉, {val(s0, 92◦)}〈1〉 {0, 1}

5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉 {0,1}
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Timestamps to Sequences

Time Window contents before sequencing
. . . . . .

5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
Time Window contents after standard sequencing SEQ1
. . . . . .

5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉 {0,1}

Timestamped assertions are grouped to ABoxes with state index
Information on timestamps and on their distance gets lost
The index set SEQ may be different at every time point NOW
One may think of SEQ as a dynamic relation giving for every
time point the set of states
For unfolding: Additionally SEQ may contain for every state
also the corresponding timestamp.
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Why at all Bother with State Sequences?

Building microcosm for LTL like temporal reasoning on states
But note

Temporal logic frameworks presuppose state sequences
In contrast, sequence construction is part of STARQL query

Can, if needed, regain information by timestamp function on
states
With state approach one can handle non-standard sequencing
techniques

for advanced machine learning techniques
in order to realize pre-processing: Filter out inconsistent ABoxes
in order to realize pre-processing: Roughen time granularity
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Non-Standard Sequencing

Use arbitrary congruence ∼ on time domain for sequencing
Example: x ∼ y iff bx/2c = by/2c for all x , y ∈ T = N.

Time Window contents before sequencing
0s val(s0, 90◦)〈0s〉
1s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉
2s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
3s val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉

4s val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
Time Window contents after ∼ sequencing
0s {val(s0, 90◦)}〈0〉
1s {val(s0, 90◦), val(s0, 93◦)}〈0〉
2s {val(s0, 90◦), val(s0, 93◦)}〈0〉, {val(s0, 94◦)}〈1〉
3s {val(s0, 93◦)}〈0〉, {val(s0, 94◦), val(s0, 92◦)}〈1〉

4s {val(s0, 94◦), val(s0, 92◦)}〈0〉
5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉
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Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

First order condition over states with special “atoms”
Informal epistemic semantics of {s0 :val ?x}<i>:
it is (provably) the case that in state i s0 has value ?x.
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Testing the Conditions

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

RecMonInc(s0)<NOW>? yes yes yes no no yes

SMsmt = { val(s0, 90◦C )〈0s〉,
val(s0, 93◦C )〈1s〉,
val(s0, 94◦C )〈2s〉,
val(s0, 92◦C )〈3s〉,
val(s0, 95◦C )〈5s〉
. . . }

Sout1 = { RecMonInc(s0)〈0s〉,
RecMonInc(s0)〈1s〉,
RecMonInc(s0)〈2s〉,

RecMonInc(s0)〈5s〉
. . . }
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Intricacies of the Monotonicity Condition

Information Need for Monotonicity (IN-Mon)
...
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

RecMonInc(s0)<NOW>? yes yes no no no yes

SMsmt2 :
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Expressive Strength of HAVING Clauses

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0
increased monotonically in the last 2s in stream S_Msmt
and whether the value is functional.

CREATE STREAM S_out_1 AS
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i <= j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Check for i = j means checking of “functionality” of val in
ABox i = j

then “monotonicity” in the usual sense on non-empty bindings
(which must be unique at every time point)
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Monotonicity Variant

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

RecMonInc(s0)<NOW>? no no no no no yes

SMsmt2 :
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Pulse Declarations

STARQL uses window operator as in CQL
but mitigates CQLs “problems” with continuous time flows on
the query language level
STARQL uses pulse declaration for well-defined output stream
with CREATE PULSE

Pulse synchronizes multiples streams
Pulse defines output times
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Operational Semantics

Example template for operational semantics
CREATE STREAM S_out
CREATE PULSE START = st, FREQUENCY = fr
...
FROM S_MSMt [NOW-wr, NOW] -> sl
...

Pulse time vs. stream time
Pulse time tpulse regular according to FREQUENCY
tpulse = st −→ st + fr −→ st + 2fr −→ . . .

Stream time tstr determined by trace of endpoint of sliding
window
Stream time jumping/sliding
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How Streaming Time Evolves I

Example template for operational semantics
CREATE STREAM S_out
CREATE PULSE START = st, FREQUENCY = fr
...
FROM S_MSMt [NOW-wr, NOW] -> sl
...

Evolvement of tstr :

tstr tstr +m × sl
IF tstr +m × sl ≤ tpulse (for m ∈ N maximal)

Window contents at tpulse :
{ax〈t〉 ∈ SMsmt | tstr − wr ≤ t ≤ tstr}
Always tstr ≤ tpulse .
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How Streaming Time Evolves II

Instantiation of example template
CREATE STREAM S_out
CREATE PULSE START = 0s, FREQUENCY = 2s
...
FROM S_MSMt [NOW-3s, NOW] -> 3s
...

tpulse : 0s → 2s → 4s → 6s → 8s → 10s → 12s →

tstr : 0s → 0s → 3s → 6s → 6s → 9s → 12s →
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Multiple Streams

Example for multiple streams
CREAT STREAM Sout AS
PULSE START = 0s, FREQUENCY = 2s
CONSTRUCT ?sens rdf:type RecentMonInc <NOW>
FROM S_Msmt_1 0s<-[NOW-3s, NOW]->3s,

S_Msmt_2 0s<-[NOW-3s, NOW]->2s
SEQUENCE BY StdSeq AS SEQ
HAVING (...)

tpulse : 0s → 2s → 4s → 6s → 8s → 10s → 12s →

tSMsmt1
: 0s → 0s → 3s → 6s → 6s → 9s → 12s →

tSMsmt2
: 0s → 2s → 4s → 6s → 8s → 10s → 12s →
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Reasoning w.r.t. TBox and Static ABox

Extended Information Need (IN-Emon)
Tell every 1s whether the temperature in all temperature
sensors increased monotonically in the last 2s in stream
S_Msmt

CREATE STREAM S_out_2 AS
PULSE START = 0s, FREQUENCY = 1s
SELECT { ?s rdf:type RecentMonInc }<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
USING STATIC ABOX <http://Astatic>,

TBOX <http://TBox>
WHERE { ?s rdf:type TempSens }
SEQUENCE BY StdSeq AS SEQ
HAVING
FORALL i < j IN SEQ,?x,?y:
IF ({ ?s val ?x }<i> AND { ?s val ?y }<j>)
THEN ?x <= ?y
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Reasoning

TBox T
No temporal constructors
Example: BurnerTipTempSensor v TempSens
“At every time point: a burner tip temperature sensor is a
temperature sensor”

Static ABox Ast

Assertions assumed not to change in time
i.e., to hold at every time point
Example: BurnerTipTempSens(s0), hasComponent(turb, s1)

OBDA on Temporal and Streaming Data 74 / 95



WHERE Clause

Extended Information Need (IN-Emon)
...
USING STATIC ABOX <http://Astatic>,

TBOX <http://TBox>
WHERE { ?s rdf:type TempSens }
SEQUENCE BY StdSeq AS SEQ
HAVING
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

Answering WHERE clause by certain answer semantics
ψWHERE (?s) = TempSens(?s)
cert(ψWHERE , T ∪ Ast)
Example: Captures also BurnerTipTempSensors

Gives preselection of constants for instantiation in HAVING
clause
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Semantics of HAVING Clause

Extended Information Need (IN-Emon)
...
HAVING
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

In original STARQL semantics 〈i〉 is interpreted as epistemic
operator
Motivated by framework approach
val(?s, ?x)〈i〉 holds if it is provably the case in ith ABox that
val(?x , ?y)

Note the different uses of 〈·〉
cert(val(?s, ?x),Ai ∪ T ∪ Ast)
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Rewritability of HAVING Clauses

Rewritability of HAVING clause becomes almost trivial for
epistemic semantics

One perfectly rewrites embedded queries in state indexed atoms
w.r.t. T
Resulting HAVING clause can be formulated in FOL with <,+

Example
HAVING clause
. . . EXISTS i {?s val ?x} <i> . . .
TBox axiom: tempVal v val ∈ T
Rewritten HAVING clause
... EXISTS i ({?s val ?x} UNION {?s tempVal ?x})<i>
...

Works only for T without temporal operators
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Rewritability of HAVING Clauses

Non-epistemic semantics of 〈i〉
Read 〈i〉 not as operator but as state-index attachment
val(s, x)〈i〉 read as val(s, x , i)

Same rewriting as for epistemic semantics works for some
fragment of HAVING clauses

No negation
No FORALL over domain variables
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Inconsistency Handling

Want to express that at every time point a sensor has at most
one value
Non-reified view with classical TBox T : (func val) ∈ T
No home-made inconsistencies in STARQL window semantics

Window operator conserves timestamps
Time Window contents before sequencing
. . . . . .

5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉

Otherwise we could have: val(s0, 90), val(s0, 91)
This was the reason to change CQL window semantics to
STARQL window semantic

In reified view no similar problem with window semantics
But more difficult to express functionality
“There are no two measurements having the same sensor but
different times”
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Non-Standard Sequencing Again

SMsmt = {. . . val(s0, 90)〈3s〉, val(s0, 95)〈3s〉 . . . }
With standard sequencing leads to an ABox not consistent with
(func val)

Can test for inconsistencies by FOL query (Consistency is FOL
rewritable for DL-Lite)
How to handle inconsistent ABoxes?
1. Use repair semantics (not classical certain answer semantics)

(perhaps in the future)
2. Use non-standard sequencing eliminating non-consistent ABoxes
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Detecting Inter-Temporal Inconsistencies

Remember: No temporal operators in T

∃tempVal v TempSens,
∃pressVal v PressSens
TempSens v ¬PressSens

SMsmt = {. . . tempVal(s0, 90)〈3s〉, pressVal(s0, 70)〈4s〉 . . . }
Intuitively: Information regarding s0 not consistent
Not detected if s0 not classified in static ABox
Reasoning: Cannot express rigidity on sensor concepts
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Querying Historical Data

Different approaches to handle historical data in STARQL
1. Put slide = 0 and fix window ends
2. Stream historical data according to timestamps

Example solution 1
Return all sensor values of a specific sensor s0 within a
specific time interval [0s, 60s]
CREATE GRAPH Solution-One AS
CONSTRUCT { s0 :val ?x }
FROM S_Msmt[0s, 60s]->0s
USING STATIC ABOX <http://ABox>,

TBOX <http://TBox>
SEQUENCE BY StdSeq AS SEQ
HAVING EXISTS i { s0 :val ?x } <i>

OBDA on Temporal and Streaming Data 82 / 95



Querying Historical Data

Example solution 2
Return all sensor values of a specific sensor s0 within a
specific time interval [0s, 60s]

CREATE STREAM Solution-TWO AS
CREATE PULSE AS

START = 0s, FREQUENCY = 1s, END = 60s
CONSTRUCT { s0 :val ?x }<NOW>
FROM S_Msmt[NOW, NOW]->1s
USING STATIC ABOX <http://ABox>,

TBOX <http://TBox>
SEQUENCE BY StdSeq AS SEQ
HAVING EXISTS i { s0 :val ?x } <i>
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Window Semantics Again

No difference whether S_Msmt is real-time stream or streamed
historical data
Due to tstr ≤ tpulse
Assume otherwise (tstr > tpulse)

Historical query: window may contain future elements from
[tpulse , tstr ]
Stream query: window cannot contain future elements from
[tpulse , tstr ]
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Mapping Temporal and Streaming Data
Mapping historical data

m1 : val(x , y)〈z〉 ←− SELECT f(SID) AS x, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT-TABLE

A(m1,DB) is a temporal ABox
where MEASUREMENT-TABLE in DB

Mapping streams

m2 : val(x , y)〈z〉 ←−
SELECT Rstream(f(SID) AS x, Mval AS y,

MtimeStamp AS z)
FROM MEASUREMENT-REL-STREAM

A(m2,Str − DB) is a stream of timestamped ABox assertions
where MEASUREMENT-REL-STREAM in Str-DB

Convention: Ontology layer streams are specified by one
mapping
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Challenges of Unfolding

HAVING clause language refers to state tagged not time
stamped assertions
Solution

Use simple sequencing mechanisms such as standard sequencing
Keep track of time window processing by stream of SEQ-entries

HAVING clause language uses domain calculus, CQL tuple
calculus
Solution: Use safety mechanisms by adornments for variables to
guarantee domain independence
CQL looses timestamps in window contents
Solution: Assume Stream-To-Stream Operator duplicating
timestamps as time attributes: d〈t〉 7→ (d , t)〈t〉

OBDA on Temporal and Streaming Data 86 / 95



Challenges of Unfolding

HAVING clause language refers to state tagged not time
stamped assertions
Solution

Use simple sequencing mechanisms such as standard sequencing
Keep track of time window processing by stream of SEQ-entries

HAVING clause language uses domain calculus, CQL tuple
calculus
Solution: Use safety mechanisms by adornments for variables to
guarantee domain independence
CQL looses timestamps in window contents
Solution: Assume Stream-To-Stream Operator duplicating
timestamps as time attributes: d〈t〉 7→ (d , t)〈t〉

OBDA on Temporal and Streaming Data 86 / 95



Challenges of Unfolding

HAVING clause language refers to state tagged not time
stamped assertions
Solution

Use simple sequencing mechanisms such as standard sequencing
Keep track of time window processing by stream of SEQ-entries

HAVING clause language uses domain calculus, CQL tuple
calculus
Solution: Use safety mechanisms by adornments for variables to
guarantee domain independence
CQL looses timestamps in window contents
Solution: Assume Stream-To-Stream Operator duplicating
timestamps as time attributes: d〈t〉 7→ (d , t)〈t〉

OBDA on Temporal and Streaming Data 86 / 95



Safety Mechanism

HAVING clause ?y > 3 is not safe: Infinite binding set for ?y
val(s0, ?y)〈i〉 ∧ (?y > 3) is safe
Adornments for variables ensure not only finiteness but domain
independence
Domain independence

Query answer depends only on the interpretations of the
predicates mentioned in the query or the DB but not the domain
A query φ is domain independent iff for all interpretations I,J
such that I is a substructure of J : ans(φ, I) = ans(φ,J ).
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Domain Independence

Counterexample
φ(x , y) = A(x) ∨ B(y)
I = ({α}, (·)I), J = ({α, β}, (·)J )
AI = AJ = {α}
BI = BJ = ∅:
(α, β) ∈ ans(φ,J ) but (α, β) /∈ ans(φ, I).

Arbitrary use of disjunction has strange consequences for
answering on DB

ψ(?x , ?y) = TempSens(?x) ∨ PressureSens(?y)
gives finite set of bindings but is not domain independent
DB: TempSens PressureSens

a1 b1
ans(ψ(?x , ?y),DB) = {(a1, b1), (a1, a1), (b1, b1)}
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Adornments

Safety conditions by variable
adornments in {+,−,−−, ∅}

x+: x is safe variable
x−: x is non-safe variable (but
may become safe by negation)
x−−: x is non-safe variable
x∅: x does not occur in other
formula

Allowed adornment combinations
fixed by table
Grammar rules have form

hCl(~z~g
1∨~g2

) −→ hCl(~z~g
1
) OR hCl(~z~g

2
)

g1 g2 g1 ∨ g2 . . .
−− −− −− . . .
−− − −
−− + −−
−− ∅ −−
− −− −
− − −
− + −
− ∅ −
+ −− −−
+ − −
+ + +
+ ∅ −−
∅ −− −−
∅ − −
∅ + −−
∅ ∅ ∅
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) −→ hCl(~z~g
1
) OR hCl(~z~g

2
)

Example

F ( x−−1 , x+2 , x
−
3 ) −→

F1( x
−−
1 , x+2 , x

−
3 ) OR F2( x

+
1 , x+2 , x

∅
3 )

g1 g2 g1 ∨ g2 . . .
−− −− −− . . .
−− − −
−− + −−
−− ∅ −−
− −− −
− − −
− + −
− ∅ −
+ −− −−
+ − −
+ + +
+ ∅ −−
∅ −− −−
∅ − −
∅ + −−
∅ ∅ ∅
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Safety in Monotonicity Condition

Extended Information Need (IN-Emon)
HAVING
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

Unsafe variables in ?x <= ?y ...
... are bound by antecedens of all quantifier
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Transformation into SQL

Safety mechanism guarantees: HAVING clauses transformable
into formulas in safe range normal form (SRNF)
Folklore theorem: SRNF is domain independent
Transformation into SQL

Rewrite FORALL with NOT EXISTS NOT
Push NOT inwards (stopping at EXISTS) . . .

Transformation Example
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

;; ==== transformed to ====>

NOT EXISTS i,j in SEQ, x,y:
i < j AND { ?s val ?x }<i> AND { ?s val ?y }<j>
AND x > y
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Unfolded Monotonicity Query

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 val ?x}<i> AND {s0 val ?y}<j>
THEN ?x <= ?y

CREATE VIEW windowRel as
SELECT * FROM REL-STREAM-MEASUREMENT[RANGE 2s Slide 1s];

SELECT Rstream(’ s0 rdf:Type RecMonInc ’||’<’||timestamp||’>’)
FROM windowRel
WHERE windowRel.SID = ‘TC255’ AND

NOT EXISTS (
SELECT * FROM
(SELECT timestamp as i, value as x FROM windowRel),
(SELECT timestamp as j, value as y FROM windowRel)
WHERE i < j AND x > y );
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STARQL prototype(s)

Optique prototype
Uses stream extended version of ADP

Highly distributable DBMS
Extend SQL-Lite with window operators (as in CQL)

Mapping handling using ontop and hardcoded timestamp hook
mechanism
Handles multiple streams
Nested queries

Prolog prototype
Translates STARQL queries into safe non-recursive datalog with
negation
Uses mappings to SQL
Stream handling to be implemented

LISP prototype
ABDEO approach
Uses materialization
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Take-Home Message

Research on temporalizing and streamifying OBDA is a new exciting
research area that still calls for robust engines allowing to handle
OBDA in a broader sense.
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