Application: context-aware systems

Our application: situation recognition for context-aware systems

e observe complex hard- & software system
Goal: save energy

e recognize situations, where adaptation is beneficial

e Description Logic-based approach:
TBox for background knowledge, ABox for observations

e employ Description Logic reasoning: conjunctive query answering

e collecting data from several sources! — sensors

W

TU
Dresden

Application setting

W

TU
Dresden

e data (& ontology) stored in a data base

e sliding windows approach to monitored data

- observations are recorded at fixed intervals

- sequence of system snapshots is obtained

e raw data is preprocessed by data base

- raw data is ‘cleaned’ and aggregated

e situation descriptions are stored as DB queries

Why fuzzy information?

Represent sensor values ‘faithfully’

e Logic: symbolic representation of values

e values: low, medium, high

e small change in value — similar classification

e can level out noise

W

TU
Dresden

Description logics and fuzzy information

W

TU
Dresden

Semantics:
e Classical logic: {0, 1} binary
e Fuzzy logic: {0,---,1} infinitely many membership degrees

Results on DL & fuzzy information:

e easily undecidable!

e decidable, if finitely many membership degrees are used.
But: costly reduction!
Our goal: employ reasoner for DL-Liteg (a.k.a. OWL 2 QL)
e DL-Liteg-reasoners: optimized implementations!

e only the ABox and the queries are fuzzy!
(TBox stays crisp)

The description logic DL-Litegr and its fuzzy variant

W

TU
Dresden

DL-Litegr concepts: B —A | 3Q C -T|B|—-B
Q —P| P R —Q | -Q

DL-Liteg axioms: BLC C QLR funct(Q)

Fuzzy DL-Liteg assertions: (B(a),d) (P(a,b),d)

Interpretation for fuzzy DL-Liteg: Z = (AZ, 1)
e individuals: af € A%
e named concepts: AT : AT — [0,1]

e atomic roles: P% : AT x AT — [0,1]

Fuzzy operators and semantics of complex concepts

t-nooma @ b negation Sa

1, a=0
Godel min(a, b) ’

0, a>20
Lukasiewicz max(a +b—1,0) 1 —a

1 =0
Product aXxXb @

0O, a>20

Let: 4,6’ € AT

complex concepts: fuzzy conjunctive query:

¢ (3Q)*(9) = supyeaz Q*(9,9") q(Z) = Jy.p(Z,9) > d
o (—B)*(6) = ©B*(9)
W eTZ) =1

TU
Dresden

Example

T := {Server C JhasCPU, JhasCPU~ C CPU, func(hasCPU™)}

A := {(Server(servery), 1), (hasCPU(server;, cpu;), 1),
(OverUtilized(cpu,),0.6), (hasCPU(servery, cpu,), 1),
(OverUtilized(cpu,), 0.8) }

q1(x) = CPU(x)
q2(x,y) = hasCPU(x,y) A OverUtilized(y)
qs(x) = dy hasCPU(x,y) A OverUtilized(y)

ans((h(m)a O) — {(Cpula 1)? (Cpuz, 1)}
ans(qz(x,y), ©O) = {(servery, cpu;, 0.6), (servery,cpu,,0.8)}

@ ans(gs(x), ©) = {(server;,0.8)}.

TU
Dresden 7

| Approach for query answering in DL-Lite

1.) Use TBox to reformulate query q into a FOL-query g7,
discard the TBox

"Compile TBox information into the query.”

2.) View ABox .A as a relational database Z 4, where
- ATA = {a | A(a) € A}
-r*4 = {(a,b) | r(a,b) € A}

3.) Evaluate g7 in the DB Z 4 using a relational query engine.

W

TU
Dresden

The black box rewriting algorithm for fuzzy queries

1. Compute crisp query rewriting (q(Z) ~ q7r(&))

2. rewrite query g7 () by
e degree variables: placeholders for degrees, e.g.: x4
e replacing
— concepts in concept atoms by binary predicates
—roles in role atoms by ternary predicates
where new argument is a degree variable
(to prepare for the tables storing fuzzy information)
e degree atoms:

— to capture the fuzzy operators, e.g.: ®g(xq, x);), Po(xa)
@ — to ensure conditions on degrees, e.g.: ®>(xq4,0.3)

TU
Dresden

The black box rewriting algorithm for fuzzy queries

W

TU
Dresden

1. Compute crisp query rewriting (q(Z) ~ q7r(&))

2. rewrite query (g7(Z) ~ qr,¢(Z, £3))

3. Evaluate rewritten query g1 ¢(&, 4) over the ‘fuzzy’ database

4. Keep highest degree for each returned tuple

10

FLite

ﬂLite Reasoner \

Fuzzy ABox >
PR ———)
R = Query
= () evaluation by
- Query SQL query >
= Query rewriting to engine Answers to
rewriting by

treat fuzzy

| Ontop degrees <<P’ d>
—_— —

a7 (%) \ ar (@,)

| <
Fuzzy Query (q(&), .d> \ >
T N >

TU
Dresden 1

Context TBox

The FLite reasoner

Our implementation: FLite
e implements the blackbox rewriting approach for Godel semantics

e employs Ontop to compute the crisp rewriting of the query

e stores fuzzy ABox in database

Empirical test:

e Test ontology: TBox with 311 axioms (178 concepts, 39 roles)
ABox (/database) with 10 tables (4 fuzzy ones)

e Test queries: fuzzy conjunctive queries
(with 13 atoms, 9 fuzzy ones ~~ 9 degree variables)

@ e Test set-up: measure running times of FLite and of Ontop

TU
Dresden 12

Performance measurement

W

TU
Dresden

(ms)

<))

L=

m

Query answering

3000
2500
2000
1500
1000
500
0

—FLite reasoner ——Ontop reasoner

Q QQQ QQQ

6Q N QQQ QQQ
N

O
NS o

Q
qf)g Q)QQ Sk

o5

Number of ABox database assertions

13

Temporal fuzzy queries over fuzzy DL-Lite ontologies

Recall:

e temporal operators in the TBox cause undecidability
e temporal information given by sequence of (fuzzy) ABoxes

e navigate “backwards” on the sequence

Temporal queries use the operators from LTL:
[~ ‘always in the past’
O~ ‘eventually in the past’

O~ ‘previous’

@ Temporal query: query “wrapped” in LTL operators O~ LI~ (Q(f), d)

TU
Dresden 14

FLite and QuAnTOn combined

Fuzzy ABox

Temporal fuzzy Reasoner

Context TBox

? |

O (q(@), d)

Fuzzy Query
TU
Dresden

>
= ———————— P ——
Query Query Query
rewriting rewriting to rewriting to
by Ontop treat fuzzy treat LTL
degrees operators
a7 (%) 7.4 (%, J) ar.4(Z, J)

Query
evaluation by
SQL query
engine

>

Answers to

07 (q(&), d)

15

Conclusions

W

TU
Dresden

e introduced a decidable variant of temporal fuzzy query answering

e proposed an pragmatic approach to temporal fuzzy query answering
that enriches crisp query rewritings for DL-Liteg

e method implemented on top of OnTop reasoner

e first evaluation suggest: acceptable overhead for fuzzy information
Temporal fuzzy QA?

16

