Application: context-aware systems

Our application: situation recognition for context-aware systems

- observe complex hard- & software system
 Goal: save energy
- recognize situations, where adaptation is beneficial
- Description Logic-based approach:
 TBox for background knowledge, ABox for observations
- employ Description Logic reasoning: conjunctive query answering
- collecting data from several sources! sensors

Application setting

- data (& ontology) stored in a data base
- sliding windows approach to monitored data
 - observations are recorded at fixed intervals
 - sequence of system snapshots is obtained
- raw data is preprocessed by data base
 - raw data is 'cleaned' and aggregated
- situation descriptions are stored as DB queries

Why fuzzy information?

Represent sensor values 'faithfully'

- Logic: symbolic representation of values
- values: low, medium, high
- small change in value → similar classification
- can level out noise

Description logics and fuzzy information

Semantics:

• Classical logic: $\{0,1\}$ binary

• Fuzzy logic: $\{0, \cdots, 1\}$ infinitely many membership degrees

Results on DL & fuzzy information:

• easily undecidable!

decidable, if finitely many membership degrees are used.
 But: costly reduction!

Our goal: employ reasoner for DL-Lite_R (a.k.a. OWL 2 QL)

- DL-Lite_R-reasoners: optimized implementations!
- only the ABox and the queries are fuzzy!
 (TBox stays crisp)

The description logic DL-LiteR and its fuzzy variant

$$\mathsf{DL\text{-}Lite}_R \; \mathsf{concepts} \colon \;\; B o A \mid \exists Q \;\;\; C o \top \mid B \mid \neg B$$

$$Q \rightarrow P \mid P^- \qquad R \rightarrow Q \mid \neg Q$$

$$\mathsf{DL\text{-}Lite}_R \mathsf{\ axioms:} \quad B \sqsubseteq C \qquad Q \sqsubseteq R \qquad \mathsf{funct}(Q)$$

Fuzzy DL-Lite
$$_R$$
 assertions: $\langle B(a),d
angle$ $\langle P(a,b),d
angle$

Interpretation for fuzzy $\mathsf{DL} ext{-Lite}_R$: $\mathcal{I}=(\Delta^\mathcal{I}, \cdot^\mathcal{I})$

- ullet individuals: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- ullet named concepts: $A^{\mathcal{I}}:\Delta^{\mathcal{I}} o [0,1]$
- ullet atomic roles: $P^{\mathcal{I}}:\Delta^{\mathcal{I}} imes\Delta^{\mathcal{I}} o[0,1]$

Fuzzy operators and semantics of complex concepts

	t-norm $a\otimes b$	negation $\ominus a$
Gödel	$\min(a,b)$ $\max(a+b-1,0)$	$\begin{cases} 1, & a = 0 \\ 0, & a > 0 \end{cases}$
Lukasiewicz	$\max(a+b-1,0)$	1-a
Product	a imes b	$egin{cases} 1, & a=0 \ 0, & a>0 \end{cases}$

Let: $\delta, \delta' \in \Delta^{\mathcal{I}}$

complex concepts:

ullet $(\exists Q)^{\mathcal{I}}(\delta) = \sup_{\delta' \in \Delta^{\mathcal{I}}} Q^{\mathcal{I}}(\delta, \delta')$

$$ullet (
eg B)^{\mathcal{I}}(\delta) = \ominus B^{\mathcal{I}}(\delta)$$

$$ullet$$
 $au^{\mathcal{I}}(\delta)=1$

fuzzy conjunctive query:

$$q(ec{x}) = \exists ec{y}. arphi(ec{x}, ec{y}) \ \geqslant \ d$$

Example

```
\mathcal{T} := \{ \mathsf{Server} \sqsubseteq \exists \mathsf{hasCPU}, \exists \mathsf{hasCPU}^- \sqsubseteq \mathsf{CPU}, \mathsf{func}(\mathsf{hasCPU}^-) \}
\mathcal{A} := \{ \langle \mathsf{Server}(\mathsf{server}_1), 1 \rangle, \langle \mathsf{hasCPU}(\mathsf{server}_1, \mathsf{cpu}_1), 1 \rangle, \}
                \langle \text{OverUtilized}(\text{cpu}_1), 0.6 \rangle, \langle \text{hasCPU}(\text{server}_1, \text{cpu}_2), 1 \rangle,
               \langle OverUtilized(cpu_2), 0.8 \rangle
                      q_1(x) = \mathsf{CPU}(\mathsf{x})
                q_2(x,y) = \mathsf{hasCPU}(\mathsf{x},\mathsf{y}) \land \mathsf{OverUtilized}(\mathsf{y})
                      q_3(x) = \exists y \text{ hasCPU}(x, y) \land \text{OverUtilized}(y)
```


 $ans(q_1(x),\mathcal{O}) = \{(\mathsf{cpu}_1,1),\ (\mathsf{cpu}_2,1)\} \ ans(q_2(x,y),\mathcal{O}) = \{(\mathsf{server}_1,\mathsf{cpu}_1,0.6),\ (\mathsf{server}_2,\mathsf{cpu}_2,0.8)\} \ ans(q_3(x),\mathcal{O}) = \{(\mathsf{server}_1,0.8)\}.$

Approach for query answering in DL-Lite

1.) Use TBox to reformulate query q into a FOL-query $q_{\mathcal{T}}$, discard the TBox

"Compile TBox information into the query."

2.) View ABox \mathcal{A} as a relational database $\mathcal{I}_{\mathcal{A}}$, where

$$-A^{\mathcal{I}_{\mathcal{A}}}=\{a\mid A(a)\in\mathcal{A}\}$$

$$-\,r^{\mathcal{I}_{\mathcal{A}}}=\{(a,b)\mid r(a,b)\in\mathcal{A}\}$$

3.) Evaluate $q_{\mathcal{T}}$ in the DB $\mathcal{I}_{\mathcal{A}}$ using a relational query engine.

The black box rewriting algorithm for fuzzy queries

- 1. Compute crisp query rewriting $(q(ec{x}) \leadsto q_{\mathcal{T}}(ec{x}))$
- 2. rewrite query $q_{\mathcal{T}}(\vec{x})$ by
 - ullet degree variables: placeholders for degrees, e.g.: x_d
 - replacing
 - concepts in concept atoms by binary predicates
 - roles in role atoms by ternary predicates

where new argument is a degree variable (to prepare for the tables storing fuzzy information)

- degree atoms:
 - to capture the fuzzy operators, e.g.: $\Phi_{\otimes}(x_d,x_d'), \Phi_{\ominus}(x_d)$
 - to ensure conditions on degrees, e.g.: $\Phi_{\geq}(x_d,0.3)$

The black box rewriting algorithm for fuzzy queries

1. Compute crisp query rewriting $(q(\vec{x}) \leadsto q_{\mathcal{T}}(\vec{x}))$

2. rewrite query $(q_{\mathcal{T}}(\vec{x}) \leadsto q_{\mathcal{T},f}(\vec{x},\vec{x_d}))$

3. Evaluate rewritten query $q_{\mathcal{T},f}(\vec{x},\vec{x_d})$ over the 'fuzzy' database

4. Keep highest degree for each returned tuple

FLite

The FLite reasoner

Our implementation: FLite

- implements the blackbox rewriting approach for Gödel semantics
- employs Ontop to compute the crisp rewriting of the query
- stores fuzzy ABox in database

Empirical test:

- Test ontology: TBox with 311 axioms (178 concepts, 39 roles)
 ABox (/database) with 10 tables (4 fuzzy ones)
- Test queries: fuzzy conjunctive queries
 (with 13 atoms, 9 fuzzy ones → 9 degree variables)
- Test set-up: measure running times of FLite and of Ontop

Performance measurement

Temporal fuzzy queries over fuzzy DL-Lite ontologies

Recall:

- temporal operators in the TBox cause undecidability
- temporal information given by sequence of (fuzzy) ABoxes
- navigate "backwards" on the sequence

Temporal queries use the operators from LTL:

- \square^- 'always in the past'
- \Diamond^- 'eventually in the past'
- 'previous'

Temporal query: query "wrapped" in LTL operators $\bigcirc^- \Box^- \langle q(\vec{x}), d \rangle$

FLite and QuAnTOn combined

9

Fuzzy Query

Conclusions

- introduced a decidable variant of temporal fuzzy query answering
- ullet proposed an pragmatic approach to temporal fuzzy query answering that enriches crisp query rewritings for DL-Lite $_R$
- method implemented on top of OnTop reasoner
- first evaluation suggest: acceptable overhead for fuzzy information Temporal fuzzy QA?

