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RDF Stream Data layout 
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RDF Stream Data Layout (cont.) 

Social network data stream in RDF 
Stream data: GPS, Posts & comments, Photos 
Static data: User metadata (user profile, users’ relationships) 

6 

User 

GPS Photo 
Post 

“Kabul” “117.55.192.14” “130” “46” 

User metadata 

User 

User 

User 
Profile 

:based_near 

: moderator_of 

comment 

:trackedAt 

:reply_of 

:creator_of 

:creator_of 

“Russia” 

“Britney” 
“Ivan” 

:lastName 

:ip
_a

dd
 

“2010-09-28”
^^xsd:date 

“149” 

:long :lat 

“35” 

:usertag 

:like 

:like 

:long :lat 

Channel 

:container_of 

: subscriber_of 



 
Continuous Query Execution over Linked Stream -CQELS 

7 

Stream pattern Construct new RDF stream 
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CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 3s] {?person2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} }

Query Q2

SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc}
STREAM <http://deri.org/streams/rfid> [RANGE 5s] {?coAuth lv:detectedAt ?loc}
{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.

?auth foaf:name ‘‘$Name$’’. ?coAuth foaf:name ?coAuthorName}
FILTER (?auth != ?coAuth) }

Query Q3

SELECT ?editorName
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 15s] {?editor lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms:partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$’’ }

Query Q4

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 30s] {?coAuth lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc2 lv:name ?locName. loc2 lv:connected ?loc1}
{?paper dc:creator ?auth. ?paper dc:creator ?coAuth. ?auth foaf:name ‘‘$Name$’’}
FILTER (?auth != ?coAuth)}
GROUP BY ?loc2 ?locName

Query Q5

4.2 Data encoding

When dealing with large data collections, it is very likely that data will not fit into the
machine’s main memory for processing, and parts of it will have to be temporarily stored on
disk. In the particular case of RDF data, with IRIs or literals stored as strings, a simple join
operation on strings could generate enough data to trigger a large number of disk reads/writes.
However, these are among the most expensive operations in query processing and should be
avoided whenever possible. While we cannot entirely avoid disk access, we try to reduce it by
encoding the data such that more triples can fit into main memory.

We apply dictionary encoding, a method commonly used by triple stores [1, 16, 13]. An
RDF node, i.e., literal, IRI or blank node, is mapped to an integer identifier. The encoded
version of an RDF node is considerably smaller than the original, allowing more data to fit
into memory. Moreover, since data comparison is now done on integers rather than strings,
operations like pattern matching, perhaps the most common operator in RDF streams and
datasets, are considerably improved.

However, in context of RDF streams, data is often fed into the system at a high rate,
and there are cases when the cost of updating a dictionary and decoding the data might
significantly hinder the performance. Therefore, our engine does not encode the RDF nodes
into dictionary if they can be represented in 63 bits. As such, a node identifier is presented as
a 64-bit integer. The first bit is used to indicate whether the RDF node is encoded or not. If

10 D. Le-Phuoc, M. Dao-Tran, J. X. Parreira and M. Hauswirth

CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [NOW] {?person1 lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 3s] {?person2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} }

Query Q2

SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc}
STREAM <http://deri.org/streams/rfid> [RANGE 5s] {?coAuth lv:detectedAt ?loc}
{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.

?auth foaf:name ‘‘$Name$’’. ?coAuth foaf:name ?coAuthorName}
FILTER (?auth != ?coAuth) }

Query Q3

SELECT ?editorName
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 15s] {?editor lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms:partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$’’ }

Query Q4

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 30s] {?coAuth lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc2 lv:name ?locName. loc2 lv:connected ?loc1}
{?paper dc:creator ?auth. ?paper dc:creator ?coAuth. ?auth foaf:name ‘‘$Name$’’}
FILTER (?auth != ?coAuth)}
GROUP BY ?loc2 ?locName

Query Q5

4.2 Data encoding

When dealing with large data collections, it is very likely that data will not fit into the
machine’s main memory for processing, and parts of it will have to be temporarily stored on
disk. In the particular case of RDF data, with IRIs or literals stored as strings, a simple join
operation on strings could generate enough data to trigger a large number of disk reads/writes.
However, these are among the most expensive operations in query processing and should be
avoided whenever possible. While we cannot entirely avoid disk access, we try to reduce it by
encoding the data such that more triples can fit into main memory.

We apply dictionary encoding, a method commonly used by triple stores [1, 16, 13]. An
RDF node, i.e., literal, IRI or blank node, is mapped to an integer identifier. The encoded
version of an RDF node is considerably smaller than the original, allowing more data to fit
into memory. Moreover, since data comparison is now done on integers rather than strings,
operations like pattern matching, perhaps the most common operator in RDF streams and
datasets, are considerably improved.

However, in context of RDF streams, data is often fed into the system at a high rate,
and there are cases when the cost of updating a dictionary and decoding the data might
significantly hinder the performance. Therefore, our engine does not encode the RDF nodes
into dictionary if they can be represented in 63 bits. As such, a node identifier is presented as
a 64-bit integer. The first bit is used to indicate whether the RDF node is encoded or not. If

CQELS Language (CQELS-QL) – an extension to SPARQL 
1.1 
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Complex Event Detection:  Linked/
Connected Event 
“notify about recent repeated delays of subways 
    following by no arrival at stops that according to the 

network plan can be reached by subways” 
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Fig. 1: Public Transportation Scenario

applications that require not only high performance but also high expressiveness,
for example, as in the motivating scenario below.

Towards a more powerful CQELS, in this paper, we enrich the current query
language of CQELS to support the desired features. Our contributions are:

– extending the RDF stream processing model to work on time intervals in-
stead of time points;

– proposing an extension of the CQELS-QL to handle navigational paths and
complex event processing. For the former, we make use of nSPARQL [16]
and SPARQL 1.1 property paths; for the latter, we start the sequence oper-
ator SEQ, which is the most popular CEP operator in practice;

– giving a semantics of the new language in the SPARQL style, by lifting the
join and sequence-related operators to work on sets of mappings with inter-
vals, and introducing evaluation functions that make use of these operators.

The proposed new language features and semantics will be illustrated with the
following scenario.

Motivating Scenario. Suppose that the tra�c center at city of Vienna wants
to improve the quality of public transportation by means of smart services. For
this purpose, the center has background datasets regarding available vehicles
such as subways, trams, buses, and connections between every pair of consecutive
stops, including the stop names, types of vehicles and the duration of time needed
to travel between them. Moreover, the center receives sensor data reporting the
arrival and delay of vehicles with respect to stops. Passengers who register to
the smart service also provide their locations as input streams.

On top of these background and streaming data, the center can o↵er smart
services (i) to aid tra�c o�cers in monitoring and quickly identifying potential
problems in the transportation network or (ii) to notify passengers of potential
tra�c delays and recommend alternative routes.

Example 1 To make sure smooth connections to the city center, a continuous
query can be placed to notify about recent repeated delays of subways follow-

ing by no arrival at stops that according to the network plan can be reached by

subways. When such information is instantly available to an o�cer, he/she can
immediately react by triggering rerouting or providing complementary vehicles
to solve the tra�c.
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applications that require not only high performance but also high expressiveness,
for example, as in the motivating scenario below.

Towards a more powerful CQELS, in this paper, we enrich the current query
language of CQELS to support the desired features. Our contributions are:

– extending the RDF stream processing model to work on time intervals in-
stead of time points;

– proposing an extension of the CQELS-QL to handle navigational paths and
complex event processing. For the former, we make use of nSPARQL [16]
and SPARQL 1.1 property paths; for the latter, we start the sequence oper-
ator SEQ, which is the most popular CEP operator in practice;

– giving a semantics of the new language in the SPARQL style, by lifting the
join and sequence-related operators to work on sets of mappings with inter-
vals, and introducing evaluation functions that make use of these operators.

The proposed new language features and semantics will be illustrated with the
following scenario.

Motivating Scenario. Suppose that the tra�c center at city of Vienna wants
to improve the quality of public transportation by means of smart services. For
this purpose, the center has background datasets regarding available vehicles
such as subways, trams, buses, and connections between every pair of consecutive
stops, including the stop names, types of vehicles and the duration of time needed
to travel between them. Moreover, the center receives sensor data reporting the
arrival and delay of vehicles with respect to stops. Passengers who register to
the smart service also provide their locations as input streams.

On top of these background and streaming data, the center can o↵er smart
services (i) to aid tra�c o�cers in monitoring and quickly identifying potential
problems in the transportation network or (ii) to notify passengers of potential
tra�c delays and recommend alternative routes.

Example 1 To make sure smooth connections to the city center, a continuous
query can be placed to notify about recent repeated delays of subways follow-

ing by no arrival at stops that according to the network plan can be reached by

subways. When such information is instantly available to an o�cer, he/she can
immediately react by triggering rerouting or providing complementary vehicles
to solve the tra�c.

Take a simplified public transportation map in Figure 1 where `1 and `2 are
subway lines, and `3 is a tram line. Assume that delays and arrivals of vehicles
wrt. stops are reported along the time lines. At time point 14, a repeated delay
for the subway d1 on the way to h is detected, but this is not reported as getting
from h to c needs to use the tram line `3. At time point 16, the repeated delay for
the subway a1 at m is however reported as one can get from m to c by subways. ⌅

2 Preliminaries

This section briefly reviews the basic building blocks of this work, namely RDF,
SPARQL, RDF stream processing, the navigation language nSPARQL, and CEP.

2.1 RDF and SPARQL

RDF is a W3C recommendation for data interchange on the Web [8]. It models
data as directed labeled graphs whose nodes are resources and edges represent
relations among them. Each node can be a named resource (identified by an IRI),
an anonymous resource (a blank node), or a literal. We denote by I, B, L the sets
of IRIs, blank nodes, and literals, respectively. Let IB = I [B, IBL = I [B[L.

A triple (s, p, o) 2 IB ⇥ I ⇥ IBL) is an RDF triple, where s is the subject, p
the predicate, and o the object. An RDF graph is a set of RDF triples.

Example 2 (cont’d) The background dataset in Example 1 can be represented
by the following RDF graph:

D=

8
>>>>>>>>>>><

>>>>>>>>>>>:

:conn1 :beg :m, :conn1 :end :b, :conn1 :means :subway, :conn1 :dur :3m,
:conn2 :beg :b, :conn2 :end :c, :conn2 :means :subway, :conn2 :dur :2m,
:conn3 :beg :h, :conn3 :end :g, :conn3 :means :subway, :conn3 :dur :3m,
:conn4 :beg :g, :conn4 :end :c, :conn4 :means :tram, :conn4 :dur :5m,

...
:a1 rdf:type :subway, :d1 rdf:type :subway,

...

9
>>>>>>>>>>>=

>>>>>>>>>>>;

A triple pattern is a tuple (sp, pp, op) 2 (IB [ V )⇥(I [ V )⇥(IBL[ V ), where V
is a set of variables. A basic graph pattern is a set of triple patterns.

SPARQL [12], a W3C recommendation for querying RDF graphs, is essen-
tially a graph-matching query language. A SPARQL query is of the formH  B,
where B, the body of the query, is a complex RDF graph pattern composed of
basic graph patterns with di↵erent algebraic operators such as UNION, OPTIONAL,
etc.; and H, the head of the query, is an expression that indicates how to con-
struct the answer to the query [15].

The semantics of SPARQL is defined via mappings. A mapping is a partial
function µ : V ! IBL. The result of a SELECT SPARQL query is a set of mappings
that match the query’s body, projected to the variables specified in the SELECT
clause. However, one-shot queries by themselves are not able to give answers
under dynamic input as in the running scenario. For this purpose, we need RDF
stream processing.



RDF Stream 

2.2 RDF Stream Processing

RDF Streams and Temporal RDF Graphs. In continuous query process-
ing over dynamic data, the temporal nature of the data is crucial and needs
to be captured in the data representation. This applies to both Linked Stream
Data and Linked Data, as updates in Linked Data collections are also possible.
In [17], RDF streams and instantaneous RDF datasets were defined by intro-
ducing timestamps (time points) to input triples of the former and RDF graphs
of the latter. In this paper, we adapt these notions by using time intervals as
timestamps. Thereby,

1. An RDF graph at timestamp t, denoted by G(t), is a set of RDF triples valid
at time t and called an instantaneous RDF graph. A temporal RDF graph is
a sequence G = [G(t)], t 2 N, ordered by t.

2. An RDF stream S is a sequence of elements hg : [t1, t2]i, where g is an RDF
graph and [t1, t2] is a time interval.

Example 3 (cont’d) The sensor data regarding delay and arrival of vehicles
as in Figure 1 can be represented as the following RDF stream.3

S =
h{(a1, delay, m)}, [10, 10]i, h{(d1, delay, h)}, [12, 12]i,

h{(d1, delay, h)}, [14, 14]i, h{(a1, delay, m)}, [16, 16]i, . . . ⌅

Continuous Queries. Queries in CQELS are inspired by the Continuous Query
Language (CQL) [4], where a continuous query is composed from three classes
of operators, namely stream-to-relation (S2R), relation-to-relation (R2R), and
relation-to-stream (R2S) operators. In CQELS, the former are captured by ex-
tending SPARQL 1.1 grammar4 with a “stream graph” pattern, while the latter
are taken care of by SPARQL’s operators. For more details on the query syntax,
we refer the reader to [17].

Example 4 (cont’d) The following continuous query in the CQELS-QL noti-
fies stops with delays of subways during the last 10 minutes to users:

1 SELECT ?s
2 FROM ex:transportationMap
3 FROM NAMED WINDOW :W ON ex:publicTransport [RANGE 10m]
4 WHERE {
5 WINDOW :W { ?v :delayAt ?s }
6 ?v rdf:type :subway.
7 }

3 Note that the notification of delay or arrival here is considered atomic event; there-
fore, the time intervals associated with this data is of the form [t, t]. On the other
hand, the output of a CQELS query containing non-atomic events (cf. Example 9)
can be fed as input stream to another query. In such situation, input events are
associated with time interval [t1, t2] with t1  t2.

4 http://www.w3.org/TR/sparql11-query/#grammar
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applications that require not only high performance but also high expressiveness,
for example, as in the motivating scenario below.

Towards a more powerful CQELS, in this paper, we enrich the current query
language of CQELS to support the desired features. Our contributions are:

– extending the RDF stream processing model to work on time intervals in-
stead of time points;

– proposing an extension of the CQELS-QL to handle navigational paths and
complex event processing. For the former, we make use of nSPARQL [16]
and SPARQL 1.1 property paths; for the latter, we start the sequence oper-
ator SEQ, which is the most popular CEP operator in practice;

– giving a semantics of the new language in the SPARQL style, by lifting the
join and sequence-related operators to work on sets of mappings with inter-
vals, and introducing evaluation functions that make use of these operators.

The proposed new language features and semantics will be illustrated with the
following scenario.

Motivating Scenario. Suppose that the tra�c center at city of Vienna wants
to improve the quality of public transportation by means of smart services. For
this purpose, the center has background datasets regarding available vehicles
such as subways, trams, buses, and connections between every pair of consecutive
stops, including the stop names, types of vehicles and the duration of time needed
to travel between them. Moreover, the center receives sensor data reporting the
arrival and delay of vehicles with respect to stops. Passengers who register to
the smart service also provide their locations as input streams.

On top of these background and streaming data, the center can o↵er smart
services (i) to aid tra�c o�cers in monitoring and quickly identifying potential
problems in the transportation network or (ii) to notify passengers of potential
tra�c delays and recommend alternative routes.

Example 1 To make sure smooth connections to the city center, a continuous
query can be placed to notify about recent repeated delays of subways follow-

ing by no arrival at stops that according to the network plan can be reached by

subways. When such information is instantly available to an o�cer, he/she can
immediately react by triggering rerouting or providing complementary vehicles
to solve the tra�c.
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2.2 RDF Stream Processing

RDF Streams and Temporal RDF Graphs. In continuous query process-
ing over dynamic data, the temporal nature of the data is crucial and needs
to be captured in the data representation. This applies to both Linked Stream
Data and Linked Data, as updates in Linked Data collections are also possible.
In [17], RDF streams and instantaneous RDF datasets were defined by intro-
ducing timestamps (time points) to input triples of the former and RDF graphs
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as in Figure 1 can be represented as the following RDF stream.3

S =
h{(a1, delay, m)}, [10, 10]i, h{(d1, delay, h)}, [12, 12]i,

h{(d1, delay, h)}, [14, 14]i, h{(a1, delay, m)}, [16, 16]i, . . . ⌅
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fore, the time intervals associated with this data is of the form [t, t]. On the other
hand, the output of a CQELS query containing non-atomic events (cf. Example 9)
can be fed as input stream to another query. In such situation, input events are
associated with time interval [t1, t2] with t1  t2.

4 http://www.w3.org/TR/sparql11-query/#grammar



nSPARQL path navigation operators 
[[self ::a]]G = {(a, a)}
[[next ::a]]G = {(x, y) | 9z : (x, z, y) 2 G}

[[axis�1 ::a]]G = {(x, y) | (y, x) 2 [[axis ::a]]G}, where axis 2 {next, node, edge}
...

Table 1: Formal semantics of nested regular expressions

2.3 Navigating RDF Graphs with nSPARQL

For a data model with graph structure like RDF, being able to navigate through
the graphs is fundamentally important. In [16], the authors proposed nSPARQL,
a language that incorporates navigational capabilities to a fragment of SPARQL
using nested regular expressions. nSPARQL allows to pose interesting and nat-
ural queries over RDF data, and has an attractive computational property that
nested regular expressions can be e�ciently evaluated in polynomial time.

The new SPARQL 1.1 query language introduced property paths

5 that covers
a fragment of nSPARQL without nesting. In this paper, we augment CQELS-QL
with the full functionalities of nSPARQL based on the syntax of SPARQL 1.1.
We now briefly recall nSPARQL, the following grammar defines the syntax of
nested regular expressions:

exp ::= axis | axis :: a(a 2 IBL) | axis :: [exp] | exp/exp | exp|exp | exp⇤ | exp+,

where axis 2 {self, next, next�1, edge, edge�1, node, node�1}. The evaluation
of a nested regular expression exp in a graph G is formally defined as a binary
relation [[exp]]G, denoting the pairs of nodes (x, y) such that y is reachable from x
in G by following a path that conforms to exp. Table 1 partly shows the formal
semantics of nSPARQL on constructs that are used in our running example. For
the full semantics, we refer the reader to [16].

Example 5 (cont’d) To find all stops from which one can reach the city center
by subway connections, we can use the following expression:

?s (next�1::beg[next::means/self::subway]/next::end)+ :c. ⌅

Based on nSPARQL, we define an extended triple pattern as either a triple pat-
tern or a triple (sp, exp, op), where sp, op 2 I [L[V and exp is a nested regular
expression. An extended graph pattern P is a set of extended triple patterns.

2.4 Complex Event Processing

Complex Event Processing [14] emerged from publish-subscribe systems [19].
While the latter refer only to single isolated events, CEP aims at timely detecting

5 http://www.w3.org/TR/sparql11-query/#propertypaths
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Sequence operators for CEP 

high-level events as complex patterns of incoming single atomic events whose
order is crucial. The defined complex events can in turn be used to compose
even more complex events and so forth.

To express ordering between events, CEP languages assign time intervals
as timestamps for events and make use of operators rooted from Allen’s in-
terval algebra [2]. In this paper, we take the first step to incorporate CEP
into CQELS-QL by adopting the sequencing operator SEQ from the SASE sys-
tem [21] and applies it to time intervals. The version of SEQ with time points
in SASE can be briefly described as follows.

Let Ai be an event type. Its semantics represented as Ai(t), is that at a
given point t in time, Ai(t) is True if an Ai type event occurs at t, and is False
otherwise. The SEQ operator takes a list of n > 1 event types as its parameters,
e.g., SEQ(A1, . . . , An) and specifies a particular order in which the events of
interest should occur. Formally speaking:

SEQ(A1, . . . , An) ⌘ 9 t1 < t2 < . . . < tn : A1(t1) ^A2(t2) ^ . . . ^An(tn).

When an event type is negatively specified in the sequence, that is:

SEQ(A1, . . . , Ai�1, !Ai, Ai+1, . . . , An),

this corresponds to the SEQ WITHOUT operator (abbreviated as SEQ WO in
this paper), which intuitively detects sequences of events of types A1, . . . , Ai�1,
Ai+1, . . . , An where no event of typeAi occurs in between two events of typesAi�1

and Ai+1. Formally:

SEQ(A1, . . . , Ai�1, !Ai, Ai+1, . . . , An) ⌘
9t1< . . . <ti�1<ti+1< . . . <tn : A1(t1)^ . . .^Ai�1(ti�1)^Ai+1(ti+1)^ . . .^An(tn)

^ (8ti 2 (ti�1, ti+1) : ¬Ai(ti)).

In this paper, we extend the SEQ operator to work with time intervals and RDF
triple patterns, as shown next.

3 Complex Events with Graph Pattern Matching and
Navigational Path

This section proposes the first step to extend CQELS with CEP and naviga-
tional capabilities by augmenting its syntax and semantics with the sequence
operator SEQ and nested regular expressions from nSPARQL.

3.1 Extending CQELS Query Language

Let TrTemp be the short-cut for the TriplesTemplate pattern in SPARQL 1.1.
The syntax for triple sequence patterns TSP , window specifications WinSpec,

high-level events as complex patterns of incoming single atomic events whose
order is crucial. The defined complex events can in turn be used to compose
even more complex events and so forth.

To express ordering between events, CEP languages assign time intervals
as timestamps for events and make use of operators rooted from Allen’s in-
terval algebra [2]. In this paper, we take the first step to incorporate CEP
into CQELS-QL by adopting the sequencing operator SEQ from the SASE sys-
tem [21] and applies it to time intervals. The version of SEQ with time points
in SASE can be briefly described as follows.

Let Ai be an event type. Its semantics represented as Ai(t), is that at a
given point t in time, Ai(t) is True if an Ai type event occurs at t, and is False
otherwise. The SEQ operator takes a list of n > 1 event types as its parameters,
e.g., SEQ(A1, . . . , An) and specifies a particular order in which the events of
interest should occur. Formally speaking:

SEQ(A1, . . . , An) ⌘ 9 t1 < t2 < . . . < tn : A1(t1) ^A2(t2) ^ . . . ^An(tn).

When an event type is negatively specified in the sequence, that is:

SEQ(A1, . . . , Ai�1, !Ai, Ai+1, . . . , An),

this corresponds to the SEQ WITHOUT operator (abbreviated as SEQ WO in
this paper), which intuitively detects sequences of events of types A1, . . . , Ai�1,
Ai+1, . . . , An where no event of typeAi occurs in between two events of typesAi�1

and Ai+1. Formally:

SEQ(A1, . . . , Ai�1, !Ai, Ai+1, . . . , An) ⌘
9t1< . . . <ti�1<ti+1< . . . <tn : A1(t1)^ . . .^Ai�1(ti�1)^Ai+1(ti+1)^ . . .^An(tn)

^ (8ti 2 (ti�1, ti+1) : ¬Ai(ti)).

In this paper, we extend the SEQ operator to work with time intervals and RDF
triple patterns, as shown next.

3 Complex Events with Graph Pattern Matching and
Navigational Path

This section proposes the first step to extend CQELS with CEP and naviga-
tional capabilities by augmenting its syntax and semantics with the sequence
operator SEQ and nested regular expressions from nSPARQL.

3.1 Extending CQELS Query Language

Let TrTemp be the short-cut for the TriplesTemplate pattern in SPARQL 1.1.
The syntax for triple sequence patterns TSP , window specifications WinSpec,

and event clauses EC is defined by the following grammar:

TSP ::= TrTemp

| SEQ ‘(’ TrTemp (‘, ’ TrTemp)⇤ (‘, !’ TrTemp) (‘, ’ TrTemp)⇤ ‘)’

| SEQ ‘(’ (‘, ’ TrTemp)⇤ (‘, !’ TrTemp) (‘, ’ TrTemp)⇤ TrTemp ‘)’

WinSpec ::= ‘WINDOW ’ :WName ON VarOrIRIref ‘[’Window ‘]’ ‘{’ TSP ‘}’

EC ::= WName

| SEQ ‘(’ WName (‘, ’ WName)⇤ (‘, !’WName)? (‘, ’ WName)⇤ ‘)’

| SEQ ‘(’ (WName ‘, ’)⇤ (‘!’WName ‘, ’)? (WName ‘, ’)⇤ WName ‘)’

To add the navigational capabilities as in nSPARQL to the CQELS-QL, we
extend the grammar of the SPARQL 1.1 property paths with one more case for
nested path, namely elt ::= elt [elt ], where elt is a path element. We call the new
query language CQELS-CEP.

Example 6 (cont’d) The following continuous query in CQELS-CEP identify
stops (i) from which one can travel to the city center by subways, and (ii) report
repeated delays of a subway during the last 10 minutes.

1 SELECT ?s
2 FROM ex:transportationMap
3 FROM NAMED WINDOW :W ON ex:publicTransport [RANGE 10m]
4 WHERE {
5 WINDOW :W {
6 SEQ({?v :delayAt ?s}, {?v :delayAt ?s}, !{?v :arriveAt ?s})
7 }
8 ?v rdf:type :subway.
9 ?s (^:beg/[: means :subway ]/:end)+ :c.

10 }

Line 6 uses operator SEQ to specify an event pattern in which two delays of
the same vehicle ?v wrt. a stop ?s was reported following by no arrival of ?v
at ?s. Line 9 is the expression in Example 5 in SPARQL 1.1 syntax extended
with nested regular expression described above. ⌅

3.2 Modeling

This section presents a formal model for the syntax proposed in Section 3.1.
Let P1, . . . , P` be basic graph patterns. A triple sequence pattern TSP is either
a graph pattern Pj or a sequence of graph patterns having at most one element
negated by ‘!’, i.e., TSP = SEQ(P1, . . ., Pi�1, !Pi, Pi+1, . . ., P`).

A window specification is a tuple W = (s,!,TSP) where s is an IRI identify-
ing an input stream Ss, ! is a window expression, and TSP is a triple sequence
pattern. Intuitively, ! specifies how a snapshot of recent input is extracted from
the (potentially infinite) stream s. However, unlike traditional stream processing
approaches that drop temporal information after the application of windows, this
information is kept in our setting. The pattern TSP is then carried out based on

and event clauses EC is defined by the following grammar:

TSP ::= TrTemp

| SEQ ‘(’ TrTemp (‘, ’ TrTemp)⇤ (‘, !’ TrTemp) (‘, ’ TrTemp)⇤ ‘)’

| SEQ ‘(’ (‘, ’ TrTemp)⇤ (‘, !’ TrTemp) (‘, ’ TrTemp)⇤ TrTemp ‘)’

WinSpec ::= ‘WINDOW ’ :WName ON VarOrIRIref ‘[’Window ‘]’ ‘{’ TSP ‘}’

EC ::= WName

| SEQ ‘(’ WName (‘, ’ WName)⇤ (‘, !’WName)? (‘, ’ WName)⇤ ‘)’

| SEQ ‘(’ (WName ‘, ’)⇤ (‘!’WName ‘, ’)? (WName ‘, ’)⇤ WName ‘)’

To add the navigational capabilities as in nSPARQL to the CQELS-QL, we
extend the grammar of the SPARQL 1.1 property paths with one more case for
nested path, namely elt ::= elt [elt ], where elt is a path element. We call the new
query language CQELS-CEP.

Example 6 (cont’d) The following continuous query in CQELS-CEP identify
stops (i) from which one can travel to the city center by subways, and (ii) report
repeated delays of a subway during the last 10 minutes.

1 SELECT ?s
2 FROM ex:transportationMap
3 FROM NAMED WINDOW :W ON ex:publicTransport [RANGE 10m]
4 WHERE {
5 WINDOW :W {
6 SEQ({?v :delayAt ?s}, {?v :delayAt ?s}, !{?v :arriveAt ?s})
7 }
8 ?v rdf:type :subway.
9 ?s (^:beg/[: means :subway ]/:end)+ :c.

10 }

Line 6 uses operator SEQ to specify an event pattern in which two delays of
the same vehicle ?v wrt. a stop ?s was reported following by no arrival of ?v
at ?s. Line 9 is the expression in Example 5 in SPARQL 1.1 syntax extended
with nested regular expression described above. ⌅

3.2 Modeling

This section presents a formal model for the syntax proposed in Section 3.1.
Let P1, . . . , P` be basic graph patterns. A triple sequence pattern TSP is either
a graph pattern Pj or a sequence of graph patterns having at most one element
negated by ‘!’, i.e., TSP = SEQ(P1, . . ., Pi�1, !Pi, Pi+1, . . ., P`).

A window specification is a tuple W = (s,!,TSP) where s is an IRI identify-
ing an input stream Ss, ! is a window expression, and TSP is a triple sequence
pattern. Intuitively, ! specifies how a snapshot of recent input is extracted from
the (potentially infinite) stream s. However, unlike traditional stream processing
approaches that drop temporal information after the application of windows, this
information is kept in our setting. The pattern TSP is then carried out based on



Put all together 
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Why nSPARQL and SEQ for CQELS 
engine implementations? 
§  New attractive features to CQELS-QL: 

u  Path Navigation through the RDF graph/Stream 

u  Support RDFS reasoning 

u  Support SEQ for CEP 

§  Efficient Implementation 

u  Polynomial  

u  Efficient algorithms 



Web-scale 
Scalable and Elastic 

Graph of thinngs 
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IoT devices 

Open and Enterprise 
Knowledge Base 

Unified Data Integration Bus 



Interactive Exploration of Things as 
Web-based Use Case in HTML/

Javascript 
Live at http://graphofthings.org 



Setup for http://
graphofthings.org/ 
ü  Serves 400,000+ things (8.5 billion data entries ≈ 140 billion 

RDF triples ) 
 
ü  Hardware: a cluster of 7 servers( shared 10 GBps network 

backbone with 10Gbps) 

ü  Software libraries: 
•  CQELS Cloud 
•  Apache Zookeeper 3.4.5-cdh4.2 
•  Apache Storm 0.9.2 
•  ElasticSearch 1.5.2 
•  OpenTSDB 2.0 
•  HBase 0.98.4. 



SMALLER 
How to fit the 
software stack 

devices 



Smaller software stack for 
smaller graph? 

Smaller data size 

Smaller code 
Use less memory 



Embedded CQELS engine 
§  Current attempt 

§  Code foot print : 4MB-8MB 
§  Data size : 4-8 million RDF triples 
§ Memory foot print : 4MB-64MB 
§  Supporting OSs : Android, embedded Linuxes 
§  Hardware : RaspberyPI, BeagleBone, Intel 

Galileo, Android phones, Tablets, etc 

§  There are plenty room for making it smaller, faster and 
more scalable!!! 

 
 



Conclusion & Implementation plan 
§  New attractive but efficient extension to CQELS-QL: CQELS-CEP 

u  Path Navigation through the RDF graph/Stream 

u  Support RDFS reasoning 

u  Support SEQ for CEP 

§  Implementation 

u  New features will be available in next release of CQELS 

u  Visual Query Editor for CQELS-CEP 

u  Open Source in LGPL license 


