
Özgür L. Özçep

Logic, Logic, and Logic

Lecture 2: FOL
16 April 2020

Informationssysteme CS4130
(Summer 2020)

Recap: Role of Logic in CS

Literature Hint: Introductions to Logic

I Logic for CS
Lit: M. Huth and M. Ryan. Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge University Press, 2000.

Lit: M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2. edition,

2001.

Lit: U. Schöning. Logik für Informatiker. Spektrum Akademischer Verlag, 5.

edition, 2000.

Lit: M. Fitting. First-Order Logic and Automated Theorem Proving. Graduate

texts in computer science. Springer, 1996.

I Mathematical Logic
Lit: H.Ebbinghaus, J.Flum,and W.Thomas. Einführung in die mathematische

Logik. Hochschul-Taschenbuch. Spektrum Akademischer Verlag, 2007.

Lit: D. J. Monk. Mathematical Logic. Springer, 1976.

Lit: R. Cori and D. Lascar. Mathematical Logic: Propositional calculus, Boolean

algebras, predicate calculus. Mathematical Logic: A Course with Exercises.

Oxford University Press, 2000.

3 / 44

Recap: First-Order Logic

FOL Structures and Interpretations

I Structures: A = (A,RA
1 , . . .R

A
n , f

A
1 , . . . , f

A
m , c

A
1 , . . . , c

A
l)

I Usually: Universe A assumed to be non-empty
Example: Graphs G = (V ,EG)

I Interpretations I = (A, ν)
Adds assignments ν for free variables.

I Syntax
I Terms (Example: c , f (c , x))
I Atomic formulae (Example: c = d , E (a, d))
I Formulae: (Example: ∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z))

5 / 44

FOL Semantics

I Semantics (Satisfaction/truth/modeling |=)
I ...
I I |= ∃x φ iff: There is d ∈ A s.t. I[x/d] |= φ

Example

(G, x 7→ a) |= ∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z)
a b

Alternative notation:
G |= (∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z))(x/a)

6 / 44

Definition (Derived Semantic Notions)

I Entailment: Φ |= ψ (“Φ entails ψ”) iff for all interpretations I:
if I |= Φ, then I |= ψ

I ψ is satisfiable iff there is an interpretation I s.t. I |= ψ

I Φ is satisfiable iff there is an interpretation I s.t. for all
ψ ∈ Φ: I |= ψ

I Mod(Φ) = {I | I satisfies all ψ ∈ Φ}

I ψ is valid iff for all interpretations I: I |= ψ.

I ψ is contradictory (unsatisfiable) iff for all interpretations I:
Not I |= ψ

END of recap
7 / 44

FOL: Calculi and Algorithmic Problems

Plan for Today

I We investigate corresponding algorithmic problems for FOL
I Because, e.g., the definition of entailment does not say

anything on how to compute that ψ is entailed by Φ

I Moreover, it does not say how much resources (place, time)
are needed

I Example algorithmic problems
I Given a structure A and formula φ: Decide whether A |= φ
I Given a formula decide whether φ is satisfiable (valid,

contradictory, resp.)
I Given Φ, ψ decide whether Φ � ψ.

I Problems are related by reduction (at least for FOL)

9 / 44

Plan for Today

I We investigate corresponding algorithmic problems for FOL
I Because, e.g., the definition of entailment does not say

anything on how to compute that ψ is entailed by Φ

I Moreover, it does not say how much resources (place, time)
are needed

I Example algorithmic problems
I Given a structure A and formula φ: Decide whether A |= φ
I Given a formula decide whether φ is satisfiable (valid,

contradictory, resp.)
I Given Φ, ψ decide whether Φ � ψ.

I Problems are related by reduction (at least for FOL)

9 / 44

Wake-Up Exercise

Show: Φ � ψ iff Φ ∪ {¬ψ} is unsatisfiable

Remember:
I Entailment: Φ |= ψ (“Φ entails ψ”) iff for all interpretations I:

if I |= Φ, then I |= ψ

I ψ is unsatisfiable (or contradictory) iff for all interpretations I:
Not I |= ψ

10 / 44

Challenges of FOL Algorithmic Problems

I First challenge: Domain of structure may be infinite
I But this is not the main problem (as we will see in lecture on

finite model theory)

I Second challenge: Number of possible structures is infinite
I We want to tame the infinite by “syntactifying” the problem

11 / 44

A First Step Towards Algorithmization: Proof Calculi
I How to approach entailment problem Φ � ψ?
I Idea: Break down entailment into smaller entailment steps

I “Smaller” entailment steps (which are “obvious”)
I Realized by applying finite number of rules R
I Apply rules to Φ and intermediate results to yield ψ

General derivation procedure
I Input: Φ, ψ

I Output: Φ
?

� ψ
I DS0 = Encode(Φ, ψ)
I Find derivation DS0, . . . ,DSn

where DSi results from applying a rule from R to finite set of
DSj with j < i .

I Decode(DSn) into answer to Φ � ψ

I Differences among calculi regarding: types of rules in R; used
data structures DS ; proof methodology

12 / 44

A First Step Towards Algorithmization: Proof Calculi
I How to approach entailment problem Φ � ψ?
I Idea: Break down entailment into smaller entailment steps

I “Smaller” entailment steps (which are “obvious”)
I Realized by applying finite number of rules R
I Apply rules to Φ and intermediate results to yield ψ

General derivation procedure
I Input: Φ, ψ

I Output: Φ
?

� ψ
I DS0 = Encode(Φ, ψ)
I Find derivation DS0, . . . ,DSn

where DSi results from applying a rule from R to finite set of
DSj with j < i .

I Decode(DSn) into answer to Φ � ψ

I Differences among calculi regarding: types of rules in R; used
data structures DS ; proof methodology

12 / 44

A First Step Towards Algorithmization: Proof Calculi
I How to approach entailment problem Φ � ψ?
I Idea: Break down entailment into smaller entailment steps

I “Smaller” entailment steps (which are “obvious”)
I Realized by applying finite number of rules R
I Apply rules to Φ and intermediate results to yield ψ

General derivation procedure
I Input: Φ, ψ

I Output: Φ
?

� ψ
I DS0 = Encode(Φ, ψ)
I Find derivation DS0, . . . ,DSn

where DSi results from applying a rule from R to finite set of
DSj with j < i .

I Decode(DSn) into answer to Φ � ψ

I Differences among calculi regarding: types of rules in R; used
data structures DS ; proof methodology

12 / 44

Well Known Calculi

Calculus Rule types Data structures Methodology

Hilbert axioms formulae direct
2 rules (premises to conclusion)

Natural I(ntroduction) and E(limination) formulae direct
deduction rules per constructor

Gentzen style axioms + Entailments direct
I and E rules per constructor

Tableaux “and”, “or” rules formula in a tree refutation proofs
based on DNF

Resolution resolution rule quantifier free formula refutation proofs
in CNF in a tree based on CNF

13 / 44

Resolution

Resolution
I Refutation calculus, i.e., calculus for showing unsatisfiability of

a formula

I Steps
I Data structures: formulas in clausal-normal form

(Corresponds to CNF (conjunctive normal form) in
propositional logic)

I One rule: use satisfiability-preserving resolution rule to reduce
formulae

I Iteratively apply until empty clause (means: contradiction) is
derived

I There are mature and efficient resolution provers
(with many ingenious optimizations)

I Efficient (but nonetheless complete) resolution procedure SLD
part of Prolog

15 / 44

Resolution
I Refutation calculus, i.e., calculus for showing unsatisfiability of

a formula

I Steps
I Data structures: formulas in clausal-normal form

(Corresponds to CNF (conjunctive normal form) in
propositional logic)

I One rule: use satisfiability-preserving resolution rule to reduce
formulae

I Iteratively apply until empty clause (means: contradiction) is
derived

I There are mature and efficient resolution provers
(with many ingenious optimizations)

I Efficient (but nonetheless complete) resolution procedure SLD
part of Prolog

15 / 44

Resolution
I Refutation calculus, i.e., calculus for showing unsatisfiability of

a formula

I Steps
I Data structures: formulas in clausal-normal form

(Corresponds to CNF (conjunctive normal form) in
propositional logic)

I One rule: use satisfiability-preserving resolution rule to reduce
formulae

I Iteratively apply until empty clause (means: contradiction) is
derived

I There are mature and efficient resolution provers
(with many ingenious optimizations)

I Efficient (but nonetheless complete) resolution procedure SLD
part of Prolog

15 / 44

Prenex Normal Form
I Idea of normalization

I Transform formulas into a (syntactically) simpler form
I preserving as much of the semantics as possible

Definition
A formula of the form Q1x1, . . . ,Qnxnψ, where Qi ∈ {∀,∃} and
I ψ, the so-called the matrix, does not contain quantifiers
I no variable occurs free and bounded
I every quantifier bounds a different variable

is said to be in prenex normal form (PNF)

I Here: Simplicity ensured by un-nesting quantifiers (the main
reason for un-feasibility)

I Here “preserve semantic” means: Ensure equivalence ≡
φ ≡ ψ iff φ |= ψ and ψ |= φ

16 / 44

Prenex Normal Form
I Idea of normalization

I Transform formulas into a (syntactically) simpler form
I preserving as much of the semantics as possible

Definition
A formula of the form Q1x1, . . . ,Qnxnψ, where Qi ∈ {∀,∃} and
I ψ, the so-called the matrix, does not contain quantifiers
I no variable occurs free and bounded
I every quantifier bounds a different variable

is said to be in prenex normal form (PNF)

I Here: Simplicity ensured by un-nesting quantifiers (the main
reason for un-feasibility)

I Here “preserve semantic” means: Ensure equivalence ≡
φ ≡ ψ iff φ |= ψ and ψ |= φ

16 / 44

Prenex Normal Form
I Idea of normalization

I Transform formulas into a (syntactically) simpler form
I preserving as much of the semantics as possible

Definition
A formula of the form Q1x1, . . . ,Qnxnψ, where Qi ∈ {∀,∃} and
I ψ, the so-called the matrix, does not contain quantifiers
I no variable occurs free and bounded
I every quantifier bounds a different variable

is said to be in prenex normal form (PNF)

I Here: Simplicity ensured by un-nesting quantifiers (the main
reason for un-feasibility)

I Here “preserve semantic” means: Ensure equivalence ≡
φ ≡ ψ iff φ |= ψ and ψ |= φ

16 / 44

Existence of Prenex Normal Form
Theorem
Every FOL formula has an equivalent formula in PNF

Propositional Equivalences
I ¬¬φ ≡ φ
I ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
I φ→ ψ ≡ ¬φ ∨ ψ
I φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

I φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ)

Equivalence under
bounded substitutions
I ∃xφ ≡ ∃y(φ[x/y])
I where φ[x/y] is result of

substituting every free x
with y in φ

Quantifier-specific equivalences
I ∀xφ ≡ ¬∃x¬φ
I φ ≡ ∃x (where x not free in φ)
I (∃xφ ∧ ψ) ≡ ∃x(φ ∧ ψ)

(where x not free in ψ)
I (∃xφ ∨ ψ) ≡ ∃x(φ ∨ ψ)

(x not free in ψ)
I ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)
I ∃x∃yφ ≡ ∃y∃xφ

I φ ≡ ∀x φ (where x not free in φ)
I (∀xφ ∧ ψ) ≡ ∀x(φ ∧ ψ)

(where x not free in ψ)
I (∀xφ ∨ ψ) ≡ ∀x(φ ∨ ψ)

(x not free in ψ)
I ∀xφ ∧ ∀xψ ≡ ∀x(φ ∧ ψ)
I ∀x∀yφ ≡ ∀y∀xφ

17 / 44

Existence of Prenex Normal Form
Theorem
Every FOL formula has an equivalent formula in PNF

Propositional Equivalences
I ¬¬φ ≡ φ
I ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
I φ→ ψ ≡ ¬φ ∨ ψ
I φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

I φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ)

Equivalence under
bounded substitutions
I ∃xφ ≡ ∃y(φ[x/y])
I where φ[x/y] is result of

substituting every free x
with y in φ

Quantifier-specific equivalences
I ∀xφ ≡ ¬∃x¬φ
I φ ≡ ∃x (where x not free in φ)
I (∃xφ ∧ ψ) ≡ ∃x(φ ∧ ψ)

(where x not free in ψ)
I (∃xφ ∨ ψ) ≡ ∃x(φ ∨ ψ)

(x not free in ψ)
I ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)
I ∃x∃yφ ≡ ∃y∃xφ

I φ ≡ ∀x φ (where x not free in φ)
I (∀xφ ∧ ψ) ≡ ∀x(φ ∧ ψ)

(where x not free in ψ)
I (∀xφ ∨ ψ) ≡ ∀x(φ ∨ ψ)

(x not free in ψ)
I ∀xφ ∧ ∀xψ ≡ ∀x(φ ∧ ψ)
I ∀x∀yφ ≡ ∀y∀xφ

17 / 44

Existence of Prenex Normal Form
Theorem
Every FOL formula has an equivalent formula in PNF

Propositional Equivalences
I ¬¬φ ≡ φ
I ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
I φ→ ψ ≡ ¬φ ∨ ψ
I φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

I φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ)

Equivalence under
bounded substitutions
I ∃xφ ≡ ∃y(φ[x/y])
I where φ[x/y] is result of

substituting every free x
with y in φ

Quantifier-specific equivalences
I ∀xφ ≡ ¬∃x¬φ
I φ ≡ ∃x (where x not free in φ)
I (∃xφ ∧ ψ) ≡ ∃x(φ ∧ ψ)

(where x not free in ψ)
I (∃xφ ∨ ψ) ≡ ∃x(φ ∨ ψ)

(x not free in ψ)
I ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)
I ∃x∃yφ ≡ ∃y∃xφ

I φ ≡ ∀x φ (where x not free in φ)
I (∀xφ ∧ ψ) ≡ ∀x(φ ∧ ψ)

(where x not free in ψ)
I (∀xφ ∨ ψ) ≡ ∀x(φ ∨ ψ)

(x not free in ψ)
I ∀xφ ∧ ∀xψ ≡ ∀x(φ ∧ ψ)
I ∀x∀yφ ≡ ∀y∀xφ

17 / 44

Existence of Prenex Normal Form
Theorem
Every FOL formula has an equivalent formula in PNF

Propositional Equivalences
I ¬¬φ ≡ φ
I ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
I φ→ ψ ≡ ¬φ ∨ ψ
I φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

I φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ)

Equivalence under
bounded substitutions
I ∃xφ ≡ ∃y(φ[x/y])
I where φ[x/y] is result of

substituting every free x
with y in φ

Quantifier-specific equivalences
I ∀xφ ≡ ¬∃x¬φ
I φ ≡ ∃x (where x not free in φ)
I (∃xφ ∧ ψ) ≡ ∃x(φ ∧ ψ)

(where x not free in ψ)
I (∃xφ ∨ ψ) ≡ ∃x(φ ∨ ψ)

(x not free in ψ)
I ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)
I ∃x∃yφ ≡ ∃y∃xφ

I φ ≡ ∀x φ (where x not free in φ)
I (∀xφ ∧ ψ) ≡ ∀x(φ ∧ ψ)

(where x not free in ψ)
I (∀xφ ∨ ψ) ≡ ∀x(φ ∨ ψ)

(x not free in ψ)
I ∀xφ ∧ ∀xψ ≡ ∀x(φ ∧ ψ)
I ∀x∀yφ ≡ ∀y∀xφ

17 / 44

Substituting with Equivalent Formula

Theorem
Assume φ ≡ ψ and χ contains φ as subformula. If χ′ results from
substituting φ with ψ, then χ ≡ χ′.

Proof: By structural induction.

18 / 44

Satisfiably Equivalent

I Formulae in PNF are going to be transformed to formula in
clausal normal form

I Resulting formula are satisfiably equivalent

φ ≡sat ψ iff: Mod(φ) 6= ∅ iff Mod(ψ) 6= ∅

I One cannot guarantee equivalence

19 / 44

Elimination of Exists Quantifiers: Skolemization

I Input a PNF formula φ : ∀1x1, . . .∀nxn∃yψ
I Output φ′ : ∀1x1, . . .∀nxnψ[y/f (x1, . . . , xn)]

where f a fresh n-ary function symbol
φ′ results from skolemization out of φ, f called Skolem
function (or Skolem constant if n = 0)

I Can be iteratively applied (starting with left-most ∃) until all ∃
are eliminated. Result is said to be in Skolem form and to be
the skolemization of the original formula

Theorem
A formula and its skolemization are satisfiably equivalent.

20 / 44

Example (Skolem Form)

Given formula

φ = ∀x∀y(P(x , y)→ Q(x))→ ∃x(∀y¬Q(y)→ ∃y¬P(y , x))

transform it to Skolem form

∀x∀y(P(x , y)→ Q(x))→ ∃x(∀y¬Q(y)→ ∃y¬P(y , x))

≡ ∀x∀y(¬P(x , y) ∨ Q(x))→ ∃x(¬∀y¬Q(y) ∨ ∃y¬P(y , x))

≡ ¬∀x∀y(¬P(x , y) ∨ Q(x)) ∨ ∃x(¬∀y¬Q(y) ∨ ∃y¬P(y , x))

≡ ∃x∃y¬(¬P(x , y) ∨ Q(x)) ∨ ∃x(∃y¬¬Q(y) ∨ ∃y¬P(y , x))

≡ ∃x∃y(¬¬P(x , y) ∧ ¬Q(x)) ∨ ∃x(∃y¬¬Q(y) ∨ ∃y¬P(y , x))

≡ ∃x∃y(P(x , y) ∧ ¬Q(x)) ∨ ∃x(∃yQ(y) ∨ ∃y¬P(y , x))

≡ ∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ ∃x2(∃y2Q(y2) ∨ ∃y3¬P(y3, x2))

≡ ∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ ∃x2∃y2(Q(y2) ∨ ∃y3¬P(y3, x2))

≡ ∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ ∃x2∃y2∃y3(Q(y2) ∨ ¬P(y3, x2))

≡ ∃x2∃y2∃y3(∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ (Q(y2) ∨ ¬P(y3, x2)))

≡ ∃x2∃y2∃y3∃x1∃y1((P(x1, y1) ∧ ¬Q(x1)) ∨ (Q(y2) ∨ ¬P(y3, x2)))

≡sat ((P(d , e) ∧ ¬Q(d)) ∨ (Q(b) ∨ ¬P(c, a)))

21 / 44

Clausal Normal Form

Definition
ψ is in clausal normal form (CLNF) iff it is in Skolem form,
contains no free variables, and its matrix is in CNF

Definition
A quantifier-free formula is in conjunctive normal form (CNF) iff it
is a conjunction of clauses
I Clause: Disjunction of literals
I Literal: atomic FOL formula or negated atomic FOL formula

Example CNF: (R(a, x) ∨ ¬P(x))︸ ︷︷ ︸
clause

∧ (¬P(b) ∨ Q(y))︸ ︷︷ ︸
clause

Theorem
For every ψ there exists a satisfiably equivalent ψ′ in CLNF

22 / 44

Clausal Normal Form

Definition
ψ is in clausal normal form (CLNF) iff it is in Skolem form,
contains no free variables, and its matrix is in CNF

Definition
A quantifier-free formula is in conjunctive normal form (CNF) iff it
is a conjunction of clauses
I Clause: Disjunction of literals
I Literal: atomic FOL formula or negated atomic FOL formula

Example CNF: (R(a, x) ∨ ¬P(x))︸ ︷︷ ︸
clause

∧ (¬P(b) ∨ Q(y))︸ ︷︷ ︸
clause

Theorem
For every ψ there exists a satisfiably equivalent ψ′ in CLNF

22 / 44

Clausal Normal Form

Definition
ψ is in clausal normal form (CLNF) iff it is in Skolem form,
contains no free variables, and its matrix is in CNF

Definition
A quantifier-free formula is in conjunctive normal form (CNF) iff it
is a conjunction of clauses
I Clause: Disjunction of literals
I Literal: atomic FOL formula or negated atomic FOL formula

Example CNF: (R(a, x) ∨ ¬P(x))︸ ︷︷ ︸
clause

∧ (¬P(b) ∨ Q(y))︸ ︷︷ ︸
clause

Theorem
For every ψ there exists a satisfiably equivalent ψ′ in CLNF

22 / 44

Resolution Idea
I Observation used for resolution:

(α ∨ φ) ∧ (¬α ∨ ψ) ∧ χ ≡sat (φ ∨ ψ) ∧ χ

where
I {α,¬α} is a pair of complementary literals
I φ, ψ, χ arbitrary formulae

I Apply this equivalence iteratively on the matrix of formula in
CLNF until empty clause (i.e. contradiction) is derived

I More convenient set notation for clauses
I Clause L1 ∨ · · · ∨ Ln written as set {L1, . . . , Ln}
I Li is complement of Li

E.g.: R(a) = ¬R(a), ¬R(a) = R(a)

23 / 44

Resolution Idea
I Observation used for resolution:

(α ∨ φ) ∧ (¬α ∨ ψ) ∧ χ ≡sat (φ ∨ ψ) ∧ χ

where
I {α,¬α} is a pair of complementary literals
I φ, ψ, χ arbitrary formulae

I Apply this equivalence iteratively on the matrix of formula in
CLNF until empty clause (i.e. contradiction) is derived

I More convenient set notation for clauses
I Clause L1 ∨ · · · ∨ Ln written as set {L1, . . . , Ln}
I Li is complement of Li

E.g.: R(a) = ¬R(a), ¬R(a) = R(a)

23 / 44

Lazy Proof Strategy by Unification
I Want to identify literals as complementary using unification
I Substitution σ: function from variables to terms

I σ unifies literals L1, L2 iff L1σ = L2σ
I Example

I L1 = P(x , y), L2 = P(g(z), a)
I σ1 = [x/g(z), y/a]

I Laziness: Find a most general unifier (mgu)
I σ1 more general than σ2 = [x/g(a), y/a, z/a].
I σ is an mgu iff for all unifiers σ′ there is substitution σ′′ such

that σ′ = σ ◦ σ′′.

Theorem (Robinson)

Every unifyable finite set of literals has a mgu.

24 / 44

Lazy Proof Strategy by Unification
I Want to identify literals as complementary using unification
I Substitution σ: function from variables to terms

I σ unifies literals L1, L2 iff L1σ = L2σ
I Example

I L1 = P(x , y), L2 = P(g(z), a)
I σ1 = [x/g(z), y/a]

I Laziness: Find a most general unifier (mgu)
I σ1 more general than σ2 = [x/g(a), y/a, z/a].
I σ is an mgu iff for all unifiers σ′ there is substitution σ′′ such

that σ′ = σ ◦ σ′′.

Theorem (Robinson)

Every unifyable finite set of literals has a mgu.

24 / 44

Lazy Proof Strategy by Unification
I Want to identify literals as complementary using unification
I Substitution σ: function from variables to terms

I σ unifies literals L1, L2 iff L1σ = L2σ
I Example

I L1 = P(x , y), L2 = P(g(z), a)
I σ1 = [x/g(z), y/a]

I Laziness: Find a most general unifier (mgu)
I σ1 more general than σ2 = [x/g(a), y/a, z/a].
I σ is an mgu iff for all unifiers σ′ there is substitution σ′′ such

that σ′ = σ ◦ σ′′.

Theorem (Robinson)

Every unifyable finite set of literals has a mgu.

24 / 44

Resolution Step

Definition
Given clauses Cl1,Cl2, the clause RCl is a resolvent of Cl1,Cl2 iff
1. There are variable renamings σ1, σ2 s.t. Cl1σ1 and Cl2σ2

contain different variables.
2. There is a literal L1 ∈ Cl1σ1 and L′1 ∈ Cl2 s.t. {L1, L′1}

unifiable with mgu σ
3. RCl = (CL1σ1 \ {L1} ∪ CL2σ2 \ {L′1})σ

A convenient graphical notation
Cl1

σ ""

Cl2

σ||
RCl

25 / 44

Example (Resolution)

{¬P(x1, y1),Q(x1)}

##

{¬Q(y2)}

��

{P(y3, x2)}

��

[x1/y2]

{¬P(y2, y1)}

��

[y3/y2][x2/y1]

2

26 / 44

Correctness and Completeness

Definition
A calculus C is
I correct w.r.t. entailment iff: Whenever Φ `C ψ, then Φ � ψ

I complete w.r.t. entailment iff: Whenever Φ � ψ, then Φ `C ψ

I Correctness means: you can prove entailments only that really
hold

I Completeness means: Whenever an entailment holds then
there is also a proof for it. (Proved by ingenious Gödel)

Theorem
All aforementioned calculi are correct and complete

27 / 44

Resolution Theorem

I Let ψ be a clause set
I Res(ψ) = ψ ∪ {RCl | RCl is a resolvent of clauses in ψ}
I R i+1 = Res(Res i (ψ))

I Res∗(ψ) =
⋃
Res i (ψ)

Theorem
Every φ in CLNF with matrix ψ is unsatisfiable iff 2 ∈ Res∗(ψ)
(or equivalently: if there is a derivation graph ending in 2.)

I This shows correctness and completeness w.r.t. unsatisfiability
testing

I But entailment can be reduced to it (remember wake-up
question).

I Possible proof based on Herbrand models

28 / 44

Optional Slide: Completeness and Correctness for Resolution
I Herbrand structures blur syntax-semantic distinctions.

I Given ψ in Skolem form.
I Herbrand terms HT (ψ): all possible closed terms from

function symbols (and constants) in ψ
I Herbrand structure HS(ψ)

I Domain: HT (ψ)
I Interpretation of function symbols:

f HS(ψ)(t1, . . . , tn) = f (t1, . . . , tn)
I Relation symbols arbitrarily

Theorem
A formula is satisfiable iff it (its CLNF) has a Herbrand model

I Construction of Herband model: Interpret relation symbols R
as RHS(ψ)(t1, . . . , tn) if I(t1), . . . , I(tn) ∈ RI for satisfying I.

29 / 44

Optional Slide: Herbrand Expansion

I Given ψ in Skolem form ∀x1, . . . ,∀xnφ
I HE (ψ): All “groundings” of the matrix with Herbrand terms

{ψ[x1/t1, . . . , xn/tn] | ti ∈ HS(ψ)}

Theorem (Herbrand)

Skolem formula ψ is satisfiable iff a finite subset of HE (ψ) is
satisfiable

Proof idea
I Show that ψ is satisfiable iff it has a Herbrand model
I Show that ψ has a Herbrand model iff HE (ψ) is satisfiable
I Use compactness of propositional logic (discussed later)

30 / 44

But wait....

I We have shown completeness of calculi
I Doesn’t this mean that we have a decision procedure for

entailment (unsatisfiability)?

I NO!

Theorem
Deciding validity (unsatisfiability, entailment) is un-decidable

I But semi-decidability holds:
if formula is valid you will eventually find a derivation; if
formula not valid you won’t know

31 / 44

But wait....

I We have shown completeness of calculi
I Doesn’t this mean that we have a decision procedure for

entailment (unsatisfiability)?
I NO!

Theorem
Deciding validity (unsatisfiability, entailment) is un-decidable

I But semi-decidability holds:
if formula is valid you will eventually find a derivation; if
formula not valid you won’t know

31 / 44

Turing Machines

I One of the first precise computation models are Turing
machines (TMs)

I Specifies precisely what it means to solve a problem
algorithmically

I Starting from a finite input (encoding)
I give after a (finite number) of discrete steps
I an encoding of the desired output

I Other alternative computation models: recursive functions,
lambda calculus, register machines

I These computation models have been shown to be equivalent

Church Turing Thesis

What is intuitively computable is computable by a Turing machine

VIDEO: A LegoTM Turing machine
https://www.youtube.com/watch?v=FTSAiF9AHN4

32 / 44

https://www.youtube.com/watch?v=FTSAiF9AHN4

Turing Machines

I One of the first precise computation models are Turing
machines (TMs)

I Specifies precisely what it means to solve a problem
algorithmically

I Starting from a finite input (encoding)
I give after a (finite number) of discrete steps
I an encoding of the desired output

I Other alternative computation models: recursive functions,
lambda calculus, register machines

I These computation models have been shown to be equivalent

Church Turing Thesis

What is intuitively computable is computable by a Turing machine

VIDEO: A LegoTM Turing machine
https://www.youtube.com/watch?v=FTSAiF9AHN4

32 / 44

https://www.youtube.com/watch?v=FTSAiF9AHN4

Turing Machines

I One of the first precise computation models are Turing
machines (TMs)

I Specifies precisely what it means to solve a problem
algorithmically

I Starting from a finite input (encoding)
I give after a (finite number) of discrete steps
I an encoding of the desired output

I Other alternative computation models: recursive functions,
lambda calculus, register machines

I These computation models have been shown to be equivalent

Church Turing Thesis

What is intuitively computable is computable by a Turing machine

VIDEO: A LegoTM Turing machine
https://www.youtube.com/watch?v=FTSAiF9AHN4

32 / 44

https://www.youtube.com/watch?v=FTSAiF9AHN4

Semi-decidability

Theorem
FOL entailment is semi-decidable, i.e., there is a TM s.t.
I If Φ and ψ are inputs with Φ � ψ, then TM stops with yes

I otherwise it stops with no or it does not stop.

Proof sketch:
I Given a calculus C with derivation relation `C complete and

correct for entailment
I The possible inferences starting from Φ make up a tree (with

finite set of children for every node)
I The root (level 0) is Encode(Φ, ψ)
I The finitely many children at level n + 1 are those Di that are

generated from children at level up to n
I Do a breadth first search until Encode(Φ � ψ) appears

33 / 44

Why is FOL so Important?

Why is FOL so Successful (w.r.t.) CS

I Theoretical Answer: FOL is most expressive logic w.r.t.
relevant properties (Lindström Theorems)
=⇒ today

I Practical Answer: Has proven useful for query answering on
SQL DBs and much more
=⇒ next lectures

35 / 44

Compactness in Topology

“Ah, Kompaktheit, eine wundervolle Eigenschaft” (Jaenich 2008, S.24)

I Compactness notion stems from mathematical field topology

I Topologies T = (X ,O)
I Domain X and open sets O ⊆ Pot(X) with
I Every union of open sets is open
I Every finite intersection is open
I X and ∅ are open

I Open covering of X
Family of open sets {Ui}i∈I with Ui ∈ O and

⋃
i∈I Ui = X

Lit: K. Jänich. Topologie. Springer, 8th edition, 2008.

36 / 44

Compactness in Topology

Definition
(X ,O) is compact iff every open covering of X has a finite
sub-covering.

I How compactness is used to infer global properties from local
properties

I Let P be a property such that if open U,V have it, then also
U ∪ V has it.

I Then: If for every point a ∈ X there is an open Ua having P,
then X has P.

37 / 44

Wake-Up Exercise

Prove the correctness of this type of reasoning from local to global
within compact spaces!

Proof
I Assume that if open U,V have P , then also U ∪ V has it. (*)
I Assume further that for all a there is Ua having P .
I {Ua}a∈X is a covering of X .
I Because of compactness there is a finite covering

Ua1 ∪ · · · ∪ Uan = X .
I Because of (*) it follows that Ua1 , . . . ,Uan has P , i.e., X has

P .

38 / 44

Wake-Up Exercise

Prove the correctness of this type of reasoning from local to global
within compact spaces!

Proof
I Assume that if open U,V have P , then also U ∪ V has it. (*)
I Assume further that for all a there is Ua having P .
I {Ua}a∈X is a covering of X .
I Because of compactness there is a finite covering

Ua1 ∪ · · · ∪ Uan = X .
I Because of (*) it follows that Ua1 , . . . ,Uan has P , i.e., X has

P .

38 / 44

Definition ((Logical) Compactness)

A logic L has the compactness property if the following holds: For
all sets Φ of formulae in L: If every finite subset of Φ has a model,
then Φ has a model.

I Equivalent definition:
If Φ � ψ, then already Φ0 � ψ for a finite Φ0

I Intuitively: Infiniteness adds not additional expressive power for
FOL

Theorem
FOL has the compactness property.

I Logical compactness derived from topological notion
I FOL compactness is a corollary of Tychonoff’s Theorem

(“Any product of compact topological spaces is compact”)

39 / 44

Definition ((Logical) Compactness)

A logic L has the compactness property if the following holds: For
all sets Φ of formulae in L: If every finite subset of Φ has a model,
then Φ has a model.

I Equivalent definition:
If Φ � ψ, then already Φ0 � ψ for a finite Φ0

I Intuitively: Infiniteness adds not additional expressive power for
FOL

Theorem
FOL has the compactness property.

I Logical compactness derived from topological notion
I FOL compactness is a corollary of Tychonoff’s Theorem

(“Any product of compact topological spaces is compact”)

39 / 44

Definition ((Logical) Compactness)

A logic L has the compactness property if the following holds: For
all sets Φ of formulae in L: If every finite subset of Φ has a model,
then Φ has a model.

I Equivalent definition:
If Φ � ψ, then already Φ0 � ψ for a finite Φ0

I Intuitively: Infiniteness adds not additional expressive power for
FOL

Theorem
FOL has the compactness property.

I Logical compactness derived from topological notion
I FOL compactness is a corollary of Tychonoff’s Theorem

(“Any product of compact topological spaces is compact”)

39 / 44

Application: Reachability is not FOL Expressible

Query Qreach: List all cities reachable from Hamburg!

Qreach(x) = Flight(Hamburg , x) ∨
∃x1Flight(Hamburg , x1) ∧ Flight(x1, x) ∨
∃x1, x2Flight(Hamburg , x2) ∧ Flight(x2, x1) ∧ Flight(x1, x) ∨ . . .

Theorem
Reachability is not expressible in FOL.

Proof
I For contradiction assume there is FOL φreach(x , y)

expressing reachability over edges E
I Consider FOL formulae φn: “There is an n-path from c to c ′”
I Let Ψ = {¬φi | i ∈ N} ∪ {φreach(c, c ′)}
I Ψ is unsatisfiable, but every finite subset is satisfiable E

40 / 44

Application: Infinitesimal Probabilities
I Over continuous domains “low-dimensional” events have

probability 0
I Conditional probability P(B|A) undefined for P(A) = 0
I But P(point on east hemisphere | point on equator) should

be 1/2 (and not undefined)
=⇒ Need infinitesimal positive probability weights

I Consider T = Th(R) ∪ {a < Ω | a is name of a real number}
I Every finite subset of T satisfiable; with compactness T is

satisfiable
I 1/Ω infinitesimal element

Lit: J. Weisberg. Varieties of bayesianism. In D. M. Gabbay, S. Hartmann, and

J. Woods, editors, Inductive Logic, volume 10 of Handbook of the History of

Logic, pages 477–551. North-Holland, 2011.

Lit: A. Robinson. Non-standard Analysis. Princeton Landmarks in Mathematics.

Princeton University Press, 1996.

41 / 44

FOL has the Löwenheim-Skolem-Property

Theorem (Downward Löwenheim-Skolem-Property)

Every satisfiable, countable set of FOL sentences (theory) has a
countable model.

I Intuitively: If you can talk with countably many sentences
about structures, then there is a countable model verifying this
fact.

I Can be shown by Herbrand expansions
I Leads to Skolem’s paradox

I You can formalize mathematics within countable FOL theory,
namely, Zermelo-Fränkel Set Theory (ZFC)

I ZFC � “there are uncountable sets”.

42 / 44

Why FOL is so Important: Lindström Theorems

Theorem (First Lindström Theorem)

There is no (regular) logic that is more expressive than FOL and
fulfills compactness and Löwenheim-Skolem Property

I Meta theorem
I Intuitively: FOL is the most expressive (regular) logic fulfilling

compactness and the Löwenheim-Skolem Property

I Regularity of logic
I Contains boolean operators
I Allows relativizing formula to domains
I Allows substituting constants and function symbols by relation

symbols

43 / 44

Limits of FOL

I Positive: FOL can be used for effective query answering on one
model (in data complexity)!

I Negative
I Entailment problem, satisfiability etc. not decidable

=⇒ Calls for restriction to feasible fragments
I Expressivity not sufficient (no recursion)

=⇒ Calls for extensions (and restrictions)

44 / 44

	Recap: Role of Logic in CS
	Recap: First-Order Logic
	FOL: Calculi and Algorithmic Problems
	Resolution
	Why is FOL so Important?

