
Özgür L.Özçep

Finite Model Theory

Lecture 3: Motivation, Games, Reduction Tricks
23 April 2020

Informationssysteme CS4130
(Summer 2020)

Recap of Lecture 2: FOL

FOL as a Representation Language

I FOL provides expressive language with neat semantics to
represent assertions relevant for CS

I System descriptions
I Desired requirements
I System behavior description
I Domain constraints

3 / 44

Solving Algorithmic Problems in FOL
I Definitions for important semantical properties (satisfaction,

satisfiability, entailment) do not tell how to compute them

I Proof calculi to the rescue
I Various FOL calculi exist that have desired properties of being

correct and complete
I Prominent ones that are “directed” and hence well

implementable: Tableaux and Resolution

I Resolution calculi
I Refutation calculus (un-satisfiability tester)
I Data structure: Formula in Clausal Normal Form
I Resolution rule:

(A ∨ ¬B) ∧ (B ∨ C) �res A ∨ C

4 / 44

Solving Algorithmic Problems in FOL
I No decidability for validity (unsatisfiability, entailment) but

semi-decidability
I Hence we will have to consider different variants of FOL
I Undecidability still holds when changing to finite model

semantics; the situation is even worse:

Theorem (Trakhtenbrot)

Validity of FOL sentences under finite model semantics is not
semi-decidable

I Nonetheless FOL has important role (for CS)
I FOL “open” (has parameters) for restrictions to more feasible

fragments: number of variables, predicates, arity of predicates,
complex formulae construction, quantifier nesting, quantifier
alternation etc.

I FOL (per se) is useful as a query language on DBs: constant
time in data complexity (=⇒ to be discussed today)

End of Recap
5 / 44

Literature Hints

I Lit: L. Libkin. The finite model theory toolbox of a database theoretician. In

PODS ’09: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pages 65–76, New York, NY,

USA, 2009. ACM.

I Lit: L. Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer

Science. An Eatcs Series). SpringerVerlag, 2004.

I Lit: H. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in

mathematical logic. Springer, 1999.

6 / 44

Aim
Understand: “Finite Model Theory (FMT) is the backbone of
database theory”

7 / 44

Finite Model Theory

I Fundamental ideas

1. Consider DBs as finite FOL structures
2. Consider FOL as query language over DBs

I Starting with FOL investigate all relevant (algorithmic)
problems with finite structure semantics

I These ideas make up an approximative but nonetheless very
fruitful theoretical approach to studying DB related problems

I Showing expressivity bounds for query languages
I Showing equivalence of DB query languages
I Showing the inherent complexity of DB query languages

8 / 44

FOL as a Query Language
I FOL query formula φ(~x) (for ~x = x1 . . . , xn) over signature σ

I ~x = distinguished variables, answer variables.

Definition (Answers of a query on a structure)

ans(φ(~x),A) = Aφ(~x)

= { ~d = (d1, . . . , dn) | di ∈ A and A |= φ(~x/~d) }

I Set of answers can be considered as a structure with n-ary
predicate ans

I n-ary query induced by φ:

Qφ : STRUCT (σ) −→ STRUCT (ans)

9 / 44

Boolean Queries

I Boolean FOL query formula = FOL formulae without free
variables (also called sentences)

I According to definition possible answers are {()} (stands for
true) and ∅ (false)

I Boolean queries can be identified with the class of σ-structures
making them true

10 / 44

Answering (Boolean) FOL queries

I Why is FOL so successful in DB theory?
I E.g., is model checking problem (A |= φ) feasible?

I Answer is NOT really if considering A, φ both as inputs
=⇒ Combined complexity

Theorem (Stockmeyer 74, Vardi 82)

Model-checking for FOL (and monadic second-order logic MSO) is
PSPACE complete.

Lit: L. J. Stockmeyer. The complexity of decision problems in automata theory and

logic. PhD thesis, MIT, 1974.

Lit: M. Y. Vardi. The complexity of relational query languages (extended abstract). In

Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,

STOC ’82, pages 137–146, New York, NY, USA, 1982. ACM.

11 / 44

Reminder: Complexity Classes
I Encode algorithmic problem Π as a language Π ⊆ Σ∗, i.e., as

set of words over an alphabet Σ.
I Decision problem: w ∈ Π?

I Example complexity classes
I PTIME = Problems solvable in polynomial time (w.r.t. the

input size) by a deterministic Turing machine
I PSPACE = Problems solvable in polynomial space (w.r.t. the

input size) by a deterministic Turing machine

I Usually, as computer scientist, you do not refer directly to
TMs for getting complexity results

I Instead you (should) train yourself in the art of reducing and
learning paradigmatic problems in complexity classes.

Lit: Complexity Zoo: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Lit: M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.
12 / 44

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Complete Problems

I “Paradigmatic” problems in a complexity class C called
C-complete problems

I C complete problems (w.r.t. C′ reductions)=
Most difficult problems in C =
{Π | Π ∈ C and all other C problems are C′-reducible to Π}

I Problem Π ⊆ Σ is C-reducible to problem Π′ ⊆ Σ′, for short:
Π ≤C Π′, iff there is a C-computable function such that for all
w ∈ Σ∗: w ∈ Π iff f (w) ∈ Π′

13 / 44

Example for PSPACE Complete Problem

I Quantified Boolean Formula (QBF)
I All propositional symbols pi are QBF
I All boolean combinations of QBFs are QBFs
I If φ is a QBF, then so are ∀pφ and ∃pφ.
I Semantics: Structures here are truth value assignments

Theorem
Satisfiability of QBFs is PSPACE complete

Example

I ∃p∃q p ∧ q is satisfiable, because
there is assignment ν(q) = 1 and ν(p) = 1 making p ∧ q true.

I ∃p p ∧ ¬p is not satisfiable

14 / 44

FOL is in PSPACE
Complexity estimation for query answering

Time complexity for checking A |= φ is O(nk), where
I n = size of input structure A and
I k = size of input query φ

Note: Size of query k is responsible for exponential blow up

Reminder: Landau-Notation
I f ∈ O(g) means: f has function g as upper bound
I Formally: There are constants c > 0 and x0, s.t. for all x > x0:

|f (x)| ≤ c ∗ |g(x)|

15 / 44

FOL is in PSPACE

Complexity estimation for query answering

Time complexity for checking A |= φ is O(nk), where
I n = size of input structure A and
I k = size of input query φ

I Naive recursive algorithm showing time complexity of order
O(nk) and space complexity of order O(k ∗ log(n))

I Atomic formula: Look up in structure
I Boolean cases: apply semantics of Boolean connectors
I ∃xφ(x): Check (until successful) for all d ∈ A whether

A |= φ(x/d)

I PSPACE hardness by reducing QBF satisfiability to FOL model
checking

16 / 44

FOL is in AC 0 in Data Complexity

I In practical scenarios DB size n much bigger than query size k

I Therefore: Consider only DB as input; query fixed
=⇒ data complexity

I This helps a lot, as only query size responsible for exponential
complexity, indeed:

Theorem
Data complexity for FOL query answering is in LOGSPACE
and even in AC 0.

I LOGSPACE = Problems solvable in logarithmic space on the
read-write tape by a deterministic 2-tape Turing machine

I AC 0 (LOGSPACE .

17 / 44

The Class AC 0

I Intuitively AC 0 = class of problems solvable in constant time
on polynomially many processors (in parallel)

I Formally, AC 0 is defined using a computation model based on
boolean circuits

p or

and out

q or

Boolean circuit above computes (¬p ∨ q) ∧ (p ∨ ¬q)

18 / 44

The class AC 0

I Encode problems as 0/1 vector inputs
I Computability by circuits: There is (infinite) family of circuits

(for every possible size of input) computing desired boolean
function

I In many cases one also has a uniformity condition: family not
arbitrarily constructed but computable as output of single TM

Definition
AC 0 = Problems solvable by families of circuits with
I constant depth,
I polynomial size and
I using NOT gates, unlimited-fanin AND gates and OR gates.

19 / 44

FOL is in AC 0 data complexity

Proof idea
I Query modelled as boolean circuit family for every possible

instance of given DB schema R and “super-domain” Dom
I Every ground atom R(d1, . . . , dn) is represented as

propositional input symbol
I Gates for every subexpression of query
I Boolean operators in subexpression modelled by corresponding

boolean gates
I ∃ (∀) quantifier modelled by unbounded fan-in OR (AND) gate

Lit: S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. 1995.

20 / 44

Proving Expressivity Bounds for FOL

Expressivity of Languages

I We defined above the query Qφ induced by a formula φ
(syntax → semantics direction)

I For expressivity considerations one goes the other way round
(semantics → syntax):

I Given a query

Q : STRUC (σ) −→ STRUC (ans)

test whether there is formula φ in the given logic s.t. Q = Qφ

I In this case one says that Q is definable in the logic (for the
given set of structures STRUC (σ))

I For Boolean queries definability amounts to:
Given a class X ⊆ STRUC (σ) of structures over a signature σ:
there is a sentence φ (over the given logic) s.t. Mod(φ) = X

22 / 44

Need for New Proof Techniques

Convention for the Following

All structures are finite, so

STRUC (σ) = set of finite structures over σ

I Main classical techniques used for classical FOL do not work
I Because corresponding theorems do not hold for FMT

I Reminder: Main properties of FOL
I Compactness (Comp)
I Löwenheim-Skolem (Löko)

I These properties characterize FOL for arbitrary structures:
Lindström theorems

23 / 44

Finite Compactness Pendant?

Fin-Comp

If every finite subset of Φ has a finite model, then Φ has a finite
model.

I The finite version of compactness (Fin-Comp) does not hold
for FOL.

I Falsifier
I λn := ∃x1, . . . , xn

∧
i 6=j ¬(xi = xj)

(says: “There are at least n elements”)
I {λn | n ∈ N} has not finite model though every subset has

24 / 44

What’s the Right “Proof Technique”?

25 / 44

We Prefer to Proof/Argue ... without Being a Poser ...

Pinguin Video
URL: https://www.youtube.com/watch?v=7iDn5d9q9Y8

26 / 44

https://www.youtube.com/watch?v=7iDn5d9q9Y8

Convention for the Following

Assume all structures are finite and relational, i.e., there are no
function symbols other than constants—unless stated otherwise

27 / 44

Games

Games as Essence of Being a Human

“Der Mensch spielt nur, wo er in voller Bedeutung des Wortes Mensch ist,
und er ist nur da ganz Mensch, wo er spielt”

(F. Schiller, Briefe Über die Ästhetische Erziehung des Menschen (1795))

Games as a CS Tool

I In logic, Fraïssé games are an important proof tool
I Different variations (w.r.t. rules, winning strategies)
I We will consider a basic game type and show how to use it.

I But: games have high “cognitive complexity” even for
non-trivial problems

I Therefore: Use games for simple but generic problems and
reduce others to these

I Games have role similar to that of TMs

30 / 44

Ehrenfeucht-Fraïssé Games
I Notation: Gn(A,B)

n-round game played for structures on same signature

I Input: structures A,B

I Players: spoiler and duplicator

I Output: a function relating elements from A with elements
from B

I Rules: see next slide

I Spoiler’s aim: show A,B are “different”
I Duplicator’s aim: show A,B are “the same”

31 / 44

Rules of the Game

I In turn, spoiler choose structure and element i in it and
I duplicator chooses other structure and element in it

I After n rounds: n elements a1, . . . , an from A and n elements
b1, . . . , bn from B are chosen.

Winning condition
Duplicator wins iff
(a1, . . . , an) plays in A the same role as (b1, . . . , bn) in B

32 / 44

Partial Isomorphism
Formalize sameness of tuples’ roles by notion of partial
isomorphism

Definition (Partial Isomorphism)

For structures A, B over signature σ, let f : A −→ B be a (possibly
partial) function with domain dom(f). f is a partial isomorphism iff

I f is injective
I For every constant c : cA ∈ dom(f) and f (cA) = cB

I For all (n-ary) relation symbols R (including identity) and all
a1, . . . , an ∈ dom(f)
RA(a1, . . . , an) iff RB(f (a1), . . . , f (an))

If f is total and bijective, then f is called an isomorphism, and
A,B are said to be isomorphic, for short A ' B

33 / 44

Winning Condition Formalized

I After n rounds: up to n elements a1, . . . , an from A and up to
n elements b1, . . . , bn from B are chosen.
(Note that we allow ai = aj)

I Winning condition
Duplicator wins iff
f : ai 7→ bi is a partial isomorphism of A and B.

I Game equivalence
A ∼Gn B iff: Duplicator has a winning strategy in Gn(A,B)
(A and B are the same w.r.t. n-round games)

34 / 44

Quantifier Rank
I How do we use games for proving in-expressivity?

I We need two more technical notions
1. to capture nesting depth of quantifiers
2. to capture property that two structures model the same

sentences (up to some syntactical complexity)

Definition (Quantifier Rank qr(φ))

I qr(φ) = 0 for atoms φ
I qr(φ ∨ ψ) = qr(φ ∧ ψ) = qr(φ→ ψ) = max{qr(φ), qr(ψ)}
I qr(¬φ) = qr(φ)

I qr(∃x φ) = qr(∀x φ) = qr(φ) + 1

I Example: qr(∀x [∃w(P(x ,w)) ∧ ∃y∃zR(x , y , z)]) = 3

Definition (Equivalence Up to Rank n)

A ≡n B iff A and B agree on all FOL sentences of quantifier rank
up to n.

35 / 44

How to Use Games?

Theorem
A ∼Gn B iff A ≡n B

This gives a non-FOL-expressibility tool
I Aim: Show that boolean query Q is not expressible in FOL

I Construct families of structures (An)n∈N, (Bn)n∈N s.t.
1. All An satisfy Q
2. No Bn satisfies Q
3. An ∼Gn Bn

I Assume Q expressible as FOL formula φ of quantifier rank n.
Then An |= φ and Bn |= ¬φ, but An ∼Gn Bn and by the
theorem An ≡n Bn E

36 / 44

Example: Inexpressibility of EVEN

I EVEN(σ): structures over signature σ with domain of even
cardinality

I The signature is relevant for the proofs
I Simpel case: σ = ∅ =⇒ structures are sets

Proposition

EVEN(∅) is not expressible in FOL

Proof
I Choose An as 2n-element set, Bn as 2n + 1-element set.
I An ∈ EVEN(∅) and Bn /∈ EVEN(∅)
I An ∼Gn Bn: Duplicator plays already played element in the

other set iff spoiler does

37 / 44

Inexpressibility of EVEN(σ) with Games

I What about EVEN(σ) for non-empty σ?
I Consider: σ = {<} and class of structures = linear orders
I Ln: total ordering on set of n elements

Theorem
For every m, k ≥ 2n: Lm ∼Gn Lk .

I (Not so simple) proof works with different sub-cases
I Corollary: EVEN(<) not expressible over linear orders: take

An = L2n , Bn = L2n+1.

38 / 44

Wake-Up Question

In the theorem before, why it is not sufficient to presume m, k
which are not exponentially large in n in order to show that
Lm ∼Gn Lk?

Solution:
I The spoiler has n (= rounds) possibilities to dived the linear

order (left or right). So there are at least 2n possibilities.
I If m 6= k , say m > k , spoiler could go for the larger structure

Lm and do division by halves on the larger part. At some point
the duplicator will have less possibilities to choose a
corresponding element.

39 / 44

Proving Inexpressivity: Reduction Tricks (not Tools)

I Showing FOL inexpressibility of
I graph connectivity CONN
I acyclicity ACYCL
I transitive closure TC

by reduction of EVEN(<) to each of them

40 / 44

Reduce EVEN(<) to Graph Connectivity

imaginative names such as player 1 and player 2 are also often
used). Think of the spoiler as someone trying to show thatA
andB differ, and of the duplicator as someone trying to show
that they are the same. Even if A andB are not isomorphic,
the games goes only for a fixed number of rounds, and this
gives the duplicator a chance of winning.

The game goes as follows. In each round i, the spoiler
picks a structure and an element of that structure. The dupli-
cator goes to the other structure and picks an element there.
So if the spoiler picks A and an element ai ∈ A, the duplica-
tor responds with an element bi ∈ B; and if the spoiler picks
B and bi ∈ B, then the duplicator responds with an element
ai ∈ A. After n rounds, we have points a1, . . . , an played in
A and b1, . . . , bn played inB. The duplicator wins the game
if the mapping ai "→ bi is a partial isomorphism between A
and B. For example, if the structures are graphs, it means
that ai = aj iff bi = bj and thatE(ai, aj) iffE(bi, bj) for all
i, j ≤ n. We say that the duplicator has a winning strategy
in the n-round game if he can win no matter how the spoiler
plays. In that case, we write A ≡n B.

The reason this is important is due to the following: A ≡n

B iff A and B agree on all FO sentences of quantifier rank
up to n. So now we have a nice tool to prove that a property
P is notFO-expressible: come up with families of structures
An, Bn, n ∈ N, so that:

1. all An’s satisfy P ; noBn satisfies P ; and
2. An ≡n Bn for all n.

Why does this work? Assume P is expressible in FO by a
sentenceϕ of quantifier rankn. ThenAn |= ϕ andBn |= ¬ϕ
by 1), but 2) tells us that An andBn have to agree on ϕ.

So why not just stop there? The method of games looks
nice, and it is in a certain sense complete: any inexpressibility
result – even relative to a class of structures – can in principle
be proved by games. The problemwith the technique is that,
even if we find good classes of structures An and Bn, it is
often hard to prove that An ≡n Bn.

To illustrate this, we start with a very simple example,
where playing the game is actually easy, and then show how
the complexity rises quickly as structures get a bit more
complicated. The easy example is again the query even on
sets, i.e. structures of the empty vocabulary. Note that in the
n-round game on any two sets with at least n elements, the
duplicator has a very simple winning strategy: if the spoiler
plays an already played element, the duplicator does the same
in the other set, and if the spoiler plays a new element, so
does the duplicator: the sizes of the sets ensure that in n
rounds, the duplicator won’t run out of elements to play.

So to show that even is not expressible, we can take, for
example,An to be a 2n-element set andBn to be a (2n+1)-
element set; bywhat we just saw,An ≡n Bn. So far so good,
but what if we have something in the vocabulary? After all,
databases without relations aren’t very interesting!

Let’s try to look at a little extension: suppose we deal not
with sets, but with orders, i.e. graphswith one binary relation

interpreted as a linear order. We denote an n-element linear
ordering by Ln. Can we prove that even is not expressible
over linear orders?

A moment’s reflection shows that the previous proof does
not work. But the followingwas observed by several authors,
e.g., [37]:

Theorem 3.1. For every m, k ≥ 2n, we have Lm ≡n Lk.

In particular, even is not expressible over orders: we take
L2n as An, and L2n+1 asBn.

But it is more important to observe that a small addition to
the structure leads to an “exponential” blowup in the com-
plexity of the proof. In fact one does not even need an order
relation: the successor relation would do. And what if we
have two successor relations? Or three? Game-based proofs
become very heavy combinatorially. In fact, [10] suggested
that we build a library of winning strategies for the dupli-
cator. We now start working towards such a library, first by
showing a few simple tricks, and then creating powerful tools
for proving inexpressibility results.

3.3 Inexpressibility results: tricks

We have shown very little so far – only that even cannot
be expressed over sets and linear orders – but with that, we
can already derive surprisingly strong bounds on the expres-
siveness of FO. We are about to show, with a simple trick,
that graph connectivity, acyclicity, and the transitive closure
query are not FO-definable.

For graph connectivity, we start with linear orders. The
following query is easily definable: for each element in the
order, put an edge to its 2nd successor; also put edges between
the last element of the order and the 2nd element, and the
penultimate element and the first element. This construction
is illustrated below for orders on 5 and 6 elements.

⇒

⇒

It is now easy to observe that: a) the construction we pre-
sented is expressible in FO; and b) the resulting graph is
connected for orders of odd size, and contains two connected
components for orders of even size. Hence, if we could ex-
press graph connectivity in FO, we would be able to express
even on linear orders, contradicting Theorem 3.1.

This trick, observed by [19], also gives an easy proof that
testing whether a graph is acyclic is notFO-definable. In this
case, simply put one back edge, from the last element to the
first. The resulting graph is acyclic for orders of even size,
and cyclic for orders of odd size. With the transitive closure
query one can check if a graph is connected: add an edge
(x, y) for each edge (y, x), compute the transitive closure,
and see if the resulting graph is complete. So we get:

67

linear order is odd

ifflinear order is even

iff graph connected

graph is disconnected

I Construction of graph from linear order is expressible as an
FOL query Qred : LinOrd −→ GRAPH

41 / 44

A Very General Notion of Query
I In this discussion of the reduction of LinORD to CONN we use a very general

notion of a FOL query. For completeness the exact definition is given below (See
Immerman: Descriptive Complexity, p. 18)

Definition
Let τ, σ be two signatures with τ = (Ra1

1 , . . . ,Rar
r , c1, . . . , cs) and k be a fixed natural

number. A k-ary first-order query Q : STRUCT (σ) −→ STRUCT (τ) is given by an
r + s + 1-tuple of σ-formulae φ0, φ1, . . . , φr , ψ1, . . . , ψs . For each σ-structure
A ∈ STRUC(σ) the formulae describe a τ -structure Q(A)

Q(A) = (dom(Q(A)),R
Q(A)
1 , . . . ,R

Q(A)
r , c

Q(A)
1 , . . . c

Q(A)
s)

with
I dom(Q(A)) = {(b1, . . . , bk) | A |= φ0(b1, . . . , bk)}
I R

Q(A)
i = {(b1

1 , . . . , b
k
1), . . . , (b

1
i , . . . , b

k
i) ∈ dom(Q(A))ai | A |= φi (b

1
1 , . . . , b

k
ai
)}

I c
Q(A)
j = the unique (b1, . . . , bk) ∈ dom(Q(A)) s.t. A |= ψj (b

1, . . . , bk)

Example:Qred : LinOrd → CONN

I τ = E , σ =<, r = 1, s = 0
I k = 1, φ0 = an arbitrary tautology
I φ1 = see the following slide

Note: k-arity does not talk about the
number of answer variables—but the tuple
size of elements over domain A

42 / 44

Finding the reduction
I Helper formulae

I succ(x , y) : x < y ∧ ¬∃z .x < z ∧ z < y
I last(x) : ¬∃z .x < z
I first(x) : ¬∃z .z < x

I Define Qred : LinOrd −→ GRAPH as

E (x , y) = ψ(x , y) =

(∃z(succ(x , z) ∧ succ(z , y))) ∨
(last(x) ∧ ∃z(first(z) ∧ succ(z , y))) ∨
(∃z(last(z) ∧ succ(x , z) ∧ first(y)))

I Assume that CONN is expressible as FOL query φconn over
signature {E} for graphs.

I Then EVEN(<) would be FOL expressible as:
φconn[E/ψ]E
(Note: φconn[E/ψ] is shorthand for replacing every occurrence of atom E(u,w)

by formula ψ(u,w) in φconn.) 43 / 44

ACYCL and TC are not FOL expressible

I ACYCL: Reduction EVEN ⇒ ACYCL as above but with one
back edge from last node to first node

I Reduction for TC : CONN ⇒ TC
I Add edge E (x , y) for every edge E (y , x)
I Compute TC on resulting graph
I Test whether graph is complete

44 / 44

	Recap of Lecture 2: FOL
	Proving Expressivity Bounds for FOL
	Games

