Ozgiir L.Ozcep
Finite Model Theory

Lecture 4: Locality, 0-1 law, Fixed Points
30 April 2020

Informationssysteme CS4130
(Summer 2020)

Recap of Lecture 3

» Finite Model Theory approach

» consider DBs as finite structures
» FOL as query language

» FOL works because

» Though FOL model checking in PSPACE w.r.t. combined
complexity
» itis in ACY for data complexity

> |nexpressivity Tools

» Games as basic tool for proving inexpressivity
» Reduction tricks

End of Recap

3/47

Locality

Proving Inexpressibility by Locality
» FOL has a fundamental property:

> Intuition
» Binary query Q : STRUCT (0) — STRUC(ans)
Q to be defined in FOL
So, we need a formula ¢ in two open variables x, y
The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in

0Q-

v vy

» Different (comparable) locality notions
» Bounded number of degrees property (BNDP)
» Gaifman locality
» Hanf locality

5/47

BNDP

» in(®) = set of in-degrees of nodes in &
» out(®) = set of out-degrees of nodes in &
> degs(®) = in(®) U out(®)

Definition
@ has the bounded number of degrees property (BNDP) iff there is
fo : N — N s.t. for all graphs &:

If there is k € N s.t. max(degs(®)) < k
then |degs(Q(®))| < fo(k).

» Intuitively: @ disallowed to arbitrarily increase degrees of nodes

Theorem
Every FOL query has the BNDP.

6/47

Example: TC on Successor Relation Graph
» & = ({a0,...,an},{E(a0,a1),..., E(an—1,an)})
> in(®) = out(®) = {0,1)

> in(TC(®)) = out(TC(®)) = {0,....n— 1}

7/47

It's (sometimes) sufficient to Consider Graphs Only

Definition (Gaifman Graph)

For any o structure 2l one can define the Gaifman graph
® = (G, E) as follows:
» G = dom()
» There is an edge between two elements a, b of 2l iff they
co-occur within a relation of 2I, formally:
(a,b) € E® iff 2 # b and there is some (n-ary) relation R*
and a tuple (a1,...,a,) such that a, b are among those
elements and such that (a1,...,a,) € R¥

» d(a, b) = distance between two vertices a, b = path of
minimal length between a, b

» d(3,b) = min,ecs{d(a;, b)} = distance of vertex b from tuple
of vertices 3

8/47

Gaifman locality

Gaifman locality defined here on graphs & = (G, E)
(can be generalized to arbitrary structures with Gaifman graph)

Gaifman Locality (Intuitively)

An m-ary query Q is Gaifman local iff there is a threshold (radius)
r such that for all graphs:

@ cannot distinguish between tuples if their r-neighbourhoods in
the graph are the same.

Theorem
Every FOL-definable query is Gaifman local.

9/47

Gaifman Locality

» 3=(a1,...,ap) € G" (vector of elements)
» B®(@@)={bec G|d(ab)<r} (radius r ball around 3)
» NO(a) (r-neighbourhood of 3)

subgraph induced by BY(3) in the structure (G, E,3)
» Note: (G, E, 3) is a graph where some elements (namely that
of 3) are named by constants: they are fixed
» In N?(3) the elements 3 have the same names as in (G, £, 3)
(say c1,-..,¢,) and there is an edge between a pair of
elements BY () iff there is an edge in (G, E, 3) between them

Definition
An m-ary query Q (with m > 0) is Gaifman-local iff:

There exists a radius r s.t. for all &: If N®(3) ~ N2 (b), then
3 € Q(®) exactly when b € Q(&).

10/ 47

Example: TC is not Gaifman local

O e e e G D

Proof
» Suppose TC were FOL definable with query @
» Then @ would be Gaifman local with some radius r
N ((a, b)) = NE((b, 2))
because both subgraphs are disjoint unions of two 2r-chains
But (a,b) € TC(®) and (b, a) ¢ TC(®B), ¢

v

v

11/47

Hanf locality

Definition (Hanf locality (informally))

A Boolean query @ is Hanf-local iff there is a threshold (radius) r
s.t. any pair of graphs &, ®’ that can be made pointwise similar
w.r.t. r-neighbourhoods cannot be told apart by Q.

» Have to make precise “pointwise similar”

12 /47

Hanf locality

> & =(AE),® = (A, E)

> 6=, & ff
there exists bijection f : A — A’ s.t. for all 2 € A:
NE(3) = NE'((2))

Definition (Hanf locality (formal))

A Boolean query @ is Hanf-local iff a radius r exists s.t. for any
graphs &, &' with =, &’ one has Q(®) = Q(&').

Every FOL definable Boolean query is Hanf-local.

13 /47

Example: CONN is not Hanf-local

()() ®: two cycles of length m
< > ®’: one cycle of length 2m
Proof

» For contradiction assume CONN is Hanf-local with parameter r

» Choose m > 2r + 1; f an arbitrary bijection of & and &’

» r-neighbourhood of any a the same: 2r-chain with a in the
middle

> Hence & =, &, but: &’ is connected and & is not. /
14 /47

Comparison of Locality Notions

Hanf local = Gaifmann local = BNDP

15/ 47

Optional Slide: Adding Order

» Many applications have finite models with a linear order <

» Locality conditions in its original form not applicable: 1-radius
already whole structure

» Consider invariant queries

Definition

A query @ over ordered structures is invariant iff
for all structures 2L, all tuples b and all linear orders <1, <> on 2:

be Q((A,<1)) iff be Q((A, <2))

For an invariant @ define Q;,, on arbitrary structures as:
Qinv(2) = Q((2, <)) for arbitrarily chosen <.
Qinv called invariant FO-query.

16 / 47

Optional Slide: Adding Order

» Invariant FO-queries (over finite (!) structures) may still be
more expressive than FO-queries (without order)

» Hint

>

>

>

The pure existence of an order suffices to talk about evenness
Consider Boolean algebras (BA) with even number of atoms.
Not axiomatizable in FOL (show using Ehrenfeucht-Fraisse)
but by order invariant FO

Axiom states that there is an element in BA containing all
atoms in even position and the last one.

» Nonetheless, we have

Every invariant FOL query is Gaifman-local (and so has BNDP).

17 /47

0-1 law

0-1 law

An inexpressibility tool based on a probabilistic property of FOL
queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do
not

Consider the following boolean queries on graphs
> Ql - VX,)/ E(Xy)
Almost all graphs do not satisfy Q; (only the complete ones)

> Q =VxVy3dz E(z,x) N —E(z,y)
Almost all graphs satisfy Q>

19 /47

Formal definition 0-1 laws

» Here it is important that signature o is relationall!
» STRUC(o, n): structures with domain [n] := {0,1,...,n— 1}
over o.

» For a Boolean query @ let

{2 € STRUC(o, n) | Q(2A) = true}|
Ha(Q) = ISTRUC(a, n)|

> 11,(Q) is the probability that a randomly chosen structure on
[n] satisfies @

» 1(Q) =limpeo (@) (if limit exists)

A logic has the 0-1-law if for every Boolean query @ expressible in
it either u(Q) =0 or pu(Q) = 1.

20/47

Inexpressibility with 0-1 laws

Theorem
FOL has the 0-1-law.

» Helpful for proving inexpressibility of counting properties

((EVEN) not defined because 1i,(EVEN) alternates between 0 and
1.

21/47

Probability and Logic

» The 0-1 law exemplifies a general strategy
of using methods for handling uncertainty
(probability theory) in order to solve crisp
questions (here: FOL expressibility)

» Compare “probabilistic method" as applied
to combinatorics

» Also called “Erdés method”

» Take a time to learn about the great
Hungarian mathematician Erdds, e.g.,
from biography “The man who loved only
numbers” http://www.nytimes.com/
books/first/h/hoffman-man.html

22 /47

http://www.nytimes.com/books/first/h/hoffman-man.html
http://www.nytimes.com/books/first/h/hoffman-man.html

Beyond FOL

Counting and Aggregation

» Practical languages s.a. SQL allow counting and aggregation.

SELECT S1.Dept, AVG(S2.Salary)
FROM S1, S2

WHERE S1.Empl = S2.Empl

GROUP BY S1.Dept

HAVING SUM(S2.Salary) > 100,000

Schema: S1(Empl, Dept), S2(Empl, Salary)

» Consider corresponding extensions of FOL

» Some of the tools shown so far still work (when non-ordered
structures are considered)

24 /47

FOL with counting quantifiers

Definition (FOL-AIICnt)

FOL-AIICnt is the extension of FOL with counting quantifiers and
counting terms:

» 377x.4(x): There are at least i elements x fulfilling ¢.

> #X.¢(X): the number of X fulfilling ¢ ().

» Semantics defined w.r.t. 2-sorted FOL structures
2 = (AN, (R")reo, Arith)
» Second domain (sort) N is infinite!

» Arith contains (interpreted) arithmetic predicates and functions

25 /47

Parity of a unary predicate symbol U can be expressed by the
following formula using counting quantifiers:

YFi((i + i = j) A FFxU(x) AVK(FZFXU(x) — k <))

“There is an even number () of Us and there are no more than j
Usll

FOL+AIICtn queries are Hanf local (and thus Gaifman local and
have the BNDP).

26 /47

Aggregation

» J = aggregate function = family of functions f, >, ... with
» f, maps n-element multisets from Q to elements from Q.
E.g.: SUM = {51, S2, ... ,} with Sk({dl, Cee dk}) = sz:ldi

Definition (FOL-Aggr)

FOL-Aggr = FOL-AlICnt + aggregate terms + Q instead of N

» Syntax: Terms t(x) of the form Aggrry.(¢(X,y), t'(X,¥))
» Note the possibility of nesting with term t’ (as in SQL)

» Semantics over 2 for tuple b
> t%(b) = fig({t™(b,T) | € € B})
where B := {¢ | A = ¢(b,)}

Correspondence to SQL:
» X = grouping attributes
> ¢(x,y) = HAVING clause

27 /47

Locality for FOL+Aggr

FOL-Aggr queries are Hanf-local (and thus Gaifmann-local and
have the BNDP).

» |If order is added, then locality is lost

28 /47

Higher-Order Logics

> : Allow quantification over relations

v

Vocabulary: FOL vocabulary + predicate variables X, Y, ...
Syntax: FOL syntax +
» Xty...t,is a formula (for n-ary relation variable X and terms
t,')

» If ¢ is a formula, then so are IX¢, VXo

v

v

Higher-order quantification adds expressivity, e.g.,

v

EVEN(c) (for any signature o, in particular for o = {})
expressible. (Exercise)

29 /47

Porminent example: MSO

» Monadic Second order logic (MSO): SO with second order
quantifiers over unary predicates

» (Finite) words/strings w over alphabet X as (finite) structures
over signature Str = {<, Pa}.ex

» Domain = [n] = {0,1,...,n— 1} = positions in word of
length n

» For each symbol a € ¥ unary predicate P, of positions at wich
a occurs

» Binary order < on positions
» Example: w = abba is structure ([0, 1,2, 3], <, {0, 3}, {1,2})

Theorem (Regular languages = MSO)

The regular languages are exactly those definable by MSO
sentences.

30/ 47

Fixed Point Logics (FPLs)

v

Reachability queries call for extension of FOL with “iteration”
mechanism

v

FPLs use a well-behaved self-referential process/bootstrapping

» Fixed points as limits of this process
» Different fixed points may exist

v

Different fixed point logics exist (e.g. largest, least)
» Most prominent in DB theory: Datalog

31/47

Example: Compute the Transitive Closure

» E(x,y) = edge of graph &,
» R(x,y) = transitively closed relation between vertices

Vx,Yy R (x,y) < E(x,y)V(3z.E(x,z) N R (z,y))

» For all graphs & find extension & = (&, R®') s.t. Ihs and rhs
evaluate to the same relation. (*)
» Read equivalence as a iteratively applied rule from right to left

Xnew |(x,y) — E(x,y) V(32.E(x,2) A Xoid (2, ¥))

(*b(Xay7Xo/d)

» Induces a step(-jump)-operator F on the semantical side
» For X C G x G:

F X o | {(d1,cb) | (8, X, x/dv,y/d) = é(x,y. X)}

» Condition (*) reread: find fixed point R, i.e., F(R) =R

32/47

Constructing Least Fixed Points

» Start with extension () (seed) and proceed iteratively
Progress schema: (), F(0)), F(F(0)), F3(0), F*(0),...

v

» |n our example
» X0 =seed = ()
» X! = E%® = direct edges
» X2 =F(XY) = XU {(x,y)|3z.E(x,2) A X (z,y)} =
direct edges or paths of length 2
> .
> RO = Uiy X’
» The fixed point here is the least fixed point.
» Nota bene

» A fixed point may not exist
» There may be many fixed points
» There may not be a least fixed point. (Exercise)

33/47

Fixed Point Construction Graphically

» Fixed point for F(x) = cos(x).
» Attractor

__
Vi
~
N
&
0.6+
fixed point
0.6
0.4
02
| seed | | |
I I Y I I I
1.5 1 05 0 05 1 15

"Cosine fixed point". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https:

//commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg

34 /47

https://commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg
https://commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg

Recursive Humor

> Wiki entry Recursive humor (last access
27 April 2020).

It is not unusual for such books to
include a joke entry in their glossary
along the lines of: Recursion, see
Recursion.[6]

[...] An alternative form is the following,
from Andrew Plotkin: “If you already
know what recursion is, just remember
the answer. Otherwise, find someone who
is standing closer to Douglas Hofstadter
than you are; then ask him or her what
recursion is.”

Lit: D. Hofstadter. Gddel, Escher, Bach: NOTATTEMPT ¢ APTURE BEC s
. . A SC 1

An Eternal Golden Braid.Vintage Books, : e

1979.

> Blog Recursively Recursive
https://recursivelyrecursive.wordpress.com/category/
recursive-humour/page/2/

35 /47

https://recursivelyrecursive.wordpress.com/category/recursive-humour/page/2/
https://recursivelyrecursive.wordpress.com/category/recursive-humour/page/2/

Datalog

» Developed around 1980s

» Renaissance (not only as proof tool but) as industrially applied
tool

» EXPTIME-complete in combined complexity; PTIME-complete
data complexity

» Simple evaluation strategy for positive fragment (no negation)
» Negation calls for hierarchical evaluation (stratification)

» Different fragments; optimizations ...

36 /47

Datalog

> : Finite set of rules of the form

head body

« atomic formula; 3; are literals
Free variables V quantified; comma , read as A
Fact = rule with empty body.
: occurs in some head
: not in head (unless rule is a fact)

vV vy VY VvYyy

> = logic program with
» no function symbols
» no intensional relation negated in body
» Sometimes additionally
> all free variables in head also in body
» all variables in negated atoms (or arithmetical expressions
such as identity) also in non-negated atom in body
» Semantics for datalog programs: by step-operator used in

parallel for intensional relations
37 /47

Datalog example: ancestors of Mary

ans(x) < ancestor(x, mary)
ancestor(x,y) < parentOf(x,y)

ancestor(x,y) < parentOf(x,z),ancestor(z,y)

In FOL notation:

Vx ancestor(x, mary) — ans(x)
VxVy parentOf(x, y) — ancestor(x, y)
Vx,Vy (3z parentOf (x, z), ancestor(z,y)) — ancestor(x, y)

38 /47

SQL 3 Recursion example

%Find Mary’s ancestors from ParentOf (parent,child)
WITH RECURSIVE Ancestor(anc,desc) AS
((SELECT parent as anc, child as desc FROM ParentOf)

UNION
(SELECT Ancestor.anc, ParentOf.child as desc
FROM Ancestor, ParentOf
WHERE Ancestor.desc = ParentOf.parent))

SELECT anc FROM Ancestor WHERE desc = "Mary"

39/47

FOL with Least Fixed Points

» Datalog extends FOL w.r.t. the semantics (subcutaneous)

» There are different extensions of FOL with fixed point
operators available in the syntax

» Example 3FO(LFP): existential fragment of FOL extended
with relation variables and with least fixed point operator
[LFPy y¢]

40/ 47

JFO(LFP)
» Syntax: FORMsro(rp) = set of IFO(LFP) formulae

» Every second-order atomic formula is in FORM=ro(,rp)
¢ for ¢ an atomic FOL formula
¢ AN € FORMafpo(LFp)
¢V 1 € FORMspo(Lrp)
dx¢ € FORMsgo(Lrpy (only (existential) quantification over
first-order variables)
[LFPz x|t
» Semantics
>
> A = [LFPsz x @]t iff
“For X chosen as least fixed point, t fulfills ¢ in 2"
» Restriction: X has to occur positively (i.e. after an even
number of =) in ¢
(Needed to guarantee existence of Ifp)

Existential fragment of 3FO(LFP) is equivalent to Datalog.

vV vy vy

v

41/47

0-1 law for Datalog

Datalog (without negation and ordering) has the 0-1 law.

» In particular you can not express EVEN

» (Adding negation allows to express EVEN, which does not
fulfill 0-1 law)

» In fact a successor relation together with min- and
max-predicates is sufficient.

odd(x) <« min(x)

odd(x) <« S(x,y),even(y)

even(x) <« S(y,x),odd(y)
EVEN <« max(x), even(x)

42 /47

What we Did not Cover

Very many FMT topics were not covered in these two lectures, in
particular ...

» Proving equivalence of languages (using types)

» Descriptive Complexity

» Algorithmic Model Theory (Infer meta-theorems on
algorithmic properties by constraining some input parameters

())

43 /47

Descriptive Complexity

» There is a close relationship between complexity classes and
logics (queries expressible in a logic)

» Hints to astonishing correspondences between prima facie two
different worlds

» The world of representation (what?) and of calculation (how?)
» Results talk about data complexity (!)

» Results mainly for ordered structures

44 /47

Fagin lays the foundations

» One of the first insights which founded descriptive complexity
goes back to Fagin

Theorem (SO captures NPTIME)

Existential second order logic (SO) captures the class of problems
verifiable in polynomial time (NP)

S04 = second order logic where second order quantitiers are
restricted to

Definition
A logic £ captures a complexity class C iff for all o with <€ o and

classes of structures K C STRUC(0):
K € C iff K is axiomatizable in £

45 /47

If you want to become famous

» ... prove or disprove the following:

There is a “natural” logic characterizing PTIME over
non-ordered finite structures.

» |If you can show there is no such logic, then NP £ PTIME

46 / 47

Arithmetic Hierarchy

co-re. re.
complete co-r.e. FON) r.e. complete
FOvN) Recursive FOEMN)
Primitive Recursive
sop n 4 EXPTIME SO(LFP)
FopR" M] s0m°") PSPACE FO(PFP) SO(TC)
co-NP Polynomial-Time Hierarchy NP
complete co_NP SO NP complete
SOV sod
NP (1 co-NP
S p FOLFP)
"truly feasible” SO-Hom
FO[(log m)* "] NC
NC?
log(CFL) sAC!
FO(TC) NSPACE[log n] SO-Krom
FO(DTC) DSPACE[log n]
— - 1
_— ~__ NC
FO(M) / \\\ThCﬂ
- ~Fo Logarithmic-Time Hierarchy ACD\\\\,,

The Descriptive World

47 /47

	Recap of Lecture 3
	Locality
	0-1 law
	Beyond FOL

