

Özgür L.Özçep

Finite Model Theory

Lecture 4: Locality, 0-1 law, Fixed Points 30 April 2020

> Informationssysteme CS4130 (Summer 2020)

Recap of Lecture 3

- Finite Model Theory approach
 - consider DBs as finite structures
 - FOL as query language
- FOL works because
 - Though FOL model checking in PSPACE w.r.t. combined complexity
 - ▶ it is in *AC*⁰ for data complexity
- Inexpressivity Tools
 - Games as basic tool for proving inexpressivity
 - Reduction tricks

End of Recap

Locality

Proving Inexpressibility by Locality

- ► FOL has a fundamental property: locality
- Intuition
 - Binary query $Q: STRUCT(\sigma) \longrightarrow STRUC(ans)$
 - Q to be defined in FOL
 - ► So, we need a formula ϕ_Q in two open variables x, y
 - ► The way how to describe constraints between x and y is restricted by the number of atoms and elements occurring in φ_Q.

Proving Inexpressibility by Locality

► FOL has a fundamental property: locality

Intuition

- Binary query $Q: STRUCT(\sigma) \longrightarrow STRUC(ans)$
- Q to be defined in FOL
- ► So, we need a formula ϕ_Q in two open variables x, y
- ► The way how to describe constraints between x and y is restricted by the number of atoms and elements occurring in φ_Q.
- Different (comparable) locality notions
 - Bounded number of degrees property (BNDP)
 - Gaifman locality
 - Hanf locality

BNDP

- $in(\mathfrak{G}) = set of in-degrees of nodes in \mathfrak{G}$
- $out(\mathfrak{G}) = set of out-degrees of nodes in \mathfrak{G}$
- $degs(\mathfrak{G}) = in(\mathfrak{G}) \cup out(\mathfrak{G})$

Definition

Q has the bounded number of degrees property (BNDP) iff there is $f_Q : \mathbb{N} \longrightarrow \mathbb{N}$ s.t. for all graphs \mathfrak{G} :

If there is $k \in \mathbb{N}$ s.t. $\max(degs(\mathfrak{G})) \leq k$, then $|degs(Q(\mathfrak{G}))| \leq f_Q(k)$.

Intuitively: Q disallowed to arbitrarily increase degrees of nodes

Theorem

Every FOL query has the BNDP.

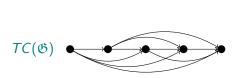
Example: TC on Successor Relation Graph

•
$$\mathfrak{G} = (\{a_0, \ldots, a_n\}, \{E(a_0, a_1), \ldots, E(a_{n-1}, a_n)\})$$

•
$$in(\mathfrak{G}) = out(\mathfrak{G}) = \{0, 1\}$$

G

•
$$in(TC(\mathfrak{G})) = out(TC(\mathfrak{G})) = \{0, \ldots, n-1\}$$



It's (sometimes) sufficient to Consider Graphs Only

Definition (Gaifman Graph)

For any σ structure \mathfrak{A} one can define the Gaifman graph $\mathfrak{G} = (G, E)$ as follows:

- $G = dom(\mathfrak{A})$
- ► There is an edge between two elements a, b of 𝔄 iff they co-occur within a relation of 𝔄, formally:

 $(a, b) \in E^{\mathfrak{G}}$ iff $a \neq b$ and there is some (*n*-ary) relation $R^{\mathfrak{A}}$ and a tuple (a_1, \ldots, a_n) such that a, b are among those elements and such that $(a_1, \ldots, a_n) \in R^{\mathfrak{A}}$

It's (sometimes) sufficient to Consider Graphs Only

Definition (Gaifman Graph)

For any σ structure \mathfrak{A} one can define the Gaifman graph $\mathfrak{G} = (G, E)$ as follows:

- $G = dom(\mathfrak{A})$
- ► There is an edge between two elements *a*, *b* of 𝔄 iff they co-occur within a relation of 𝔄, formally:

 $(a, b) \in E^{\mathfrak{G}}$ iff $a \neq b$ and there is some (*n*-ary) relation $R^{\mathfrak{A}}$ and a tuple (a_1, \ldots, a_n) such that a, b are among those elements and such that $(a_1, \ldots, a_n) \in R^{\mathfrak{A}}$

- ► d(a, b) = distance between two vertices a, b = path of minimal length between a, b
- → d(ā, b) = min_{ai∈ā}{d(ai, b)} = distance of vertex b from tuple
 of vertices ā

Gaifman locality defined here on graphs $\mathfrak{G} = (G, E)$ (can be generalized to arbitrary structures with Gaifman graph)

Gaifman Locality (Intuitively)

An *m*-ary query Q is Gaifman local iff there is a threshold (radius) r such that for all graphs:

Q cannot distinguish between tuples if their *r*-neighbourhoods in the graph are the same.

Theorem

Every FOL-definable query is Gaifman local.

►
$$\overline{a} = (a_1, \ldots, a_n) \in G^n$$

(vector of elements)

► $\overline{a} = (a_1, \ldots, a_n) \in G^n$

(vector of elements)

• $B_r^{\mathfrak{G}}(\overline{a}) = \{ b \in G \mid d(\overline{a}, b) \leq r \}$

(radius r ball around \overline{a})

- ► $\overline{a} = (a_1, ..., a_n) \in G^n$ (vector of elements)
- ► $B_r^{\mathfrak{G}}(\overline{a}) = \{ b \in G \mid d(\overline{a}, b) \leq r \}$ (radius *r* ball around \overline{a})
- ► $N_r^{\mathfrak{G}}(\overline{a})$ (r-neighbourhood of \overline{a}) subgraph induced by $B_r^{\mathfrak{G}}(\overline{a})$ in the structure (G, E, \overline{a})

► $\overline{a} = (a_1, ..., a_n) \in G^n$ (vector of elements)

- ► $B_r^{\mathfrak{G}}(\overline{a}) = \{ b \in G \mid d(\overline{a}, b) \leq r \}$ (radius *r* ball around \overline{a})
- ► $N_r^{\mathfrak{G}}(\overline{a})$ (r-neighbourhood of \overline{a}) subgraph induced by $B_r^{\mathfrak{G}}(\overline{a})$ in the structure (G, E, \overline{a})
 - ► Note: (G, E, ā) is a graph where some elements (namely that of ā) are named by constants: they are fixed
 - In N^𝔅_r(ā) the elements ā have the same names as in (G, E, ā) (say c₁,..., c_n) and there is an edge between a pair of elements B^𝔅_r(ā) iff there is an edge in (G, E, ā) between them

►
$$\overline{a} = (a_1, ..., a_n) \in G^n$$
 (vector of elements)

- ► $B_r^{\mathfrak{G}}(\overline{a}) = \{ b \in G \mid d(\overline{a}, b) \leq r \}$ (radius *r* ball around \overline{a})
- ► $N_r^{\mathfrak{G}}(\overline{a})$ (r-neighbourhood of \overline{a}) subgraph induced by $B_r^{\mathfrak{G}}(\overline{a})$ in the structure (G, E, \overline{a})

Definition

An *m*-ary query Q (with m > 0) is Gaifman-local iff: There exists a radius *r* s.t. for all \mathfrak{G} : If $N_r^{\mathfrak{G}}(\overline{a}) \simeq N_r^{\mathfrak{G}}(\overline{b})$, then $\overline{a} \in Q(\mathfrak{G})$ exactly when $\overline{b} \in Q(\mathfrak{G})$.

Example: TC is not Gaifman local

Proof

- Suppose TC were FOL definable with query Q
- ► Then *Q* would be Gaifman local with some radius *r*
- N^𝔅_r((a, b)) ≃ N^𝔅_r((b, a)) because both subgraphs are disjoint unions of two 2r-chains
- ▶ But $(a, b) \in TC(\mathfrak{G})$ and $(b, a) \notin TC(\mathfrak{G})$, *f*

Hanf locality

Definition (Hanf locality (informally))

A Boolean query Q is Hanf-local iff there is a threshold (radius) r s.t. any pair of graphs $\mathfrak{G}, \mathfrak{G}'$ that can be made pointwise similar w.r.t. r-neighbourhoods cannot be told apart by Q.

Have to make precise "pointwise similar"

Hanf locality

• $\mathfrak{G} = (A, E), \mathfrak{G}' = (A', E')$

▶
$$\mathfrak{G} \rightleftharpoons_r \mathfrak{G}'$$
 iff
there exists bijection $f : A \longrightarrow A'$ s.t. for all $a \in A$:
 $N_r^{\mathfrak{G}}(a) \simeq N_r^{\mathfrak{G}'}(f(a))$

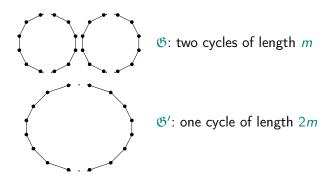
Definition (Hanf locality (formal))

A Boolean query Q is Hanf-local iff a radius r exists s.t. for any graphs $\mathfrak{G}, \mathfrak{G}'$ with $\mathfrak{G} \rightleftharpoons_r \mathfrak{G}'$ one has $Q(\mathfrak{G}) = Q(\mathfrak{G}')$.

Theorem

Every FOL definable Boolean query is Hanf-local.

Example: CONN is not Hanf-local



Proof

- ► For contradiction assume CONN is Hanf-local with parameter r
- Choose m > 2r + 1; f an arbitrary bijection of \mathfrak{G} and \mathfrak{G}'
- r-neighbourhood of any a the same: 2r-chain with a in the middle
- ▶ Hence $\mathfrak{G} \rightleftharpoons_r \mathfrak{G}'$, but: \mathfrak{G}' is connected and \mathfrak{G} is not. \mathfrak{F}

Comparison of Locality Notions

Theorem

Hanf local ⊨ Gaifmann local ⊨ BNDP

Optional Slide: Adding Order

- \blacktriangleright Many applications have finite models with a linear order <
- Locality conditions in its original form not applicable: 1-radius already whole structure
- Consider invariant queries

Definition

A query Q over ordered structures is invariant iff for all structures \mathfrak{A} , all tuples \overline{b} and all linear orders $<_1, <_2$ on \mathfrak{A} : $\overline{b} \in Q((\mathfrak{A}, <_1))$ iff $\overline{b} \in Q((\mathfrak{A}, <_2))$

For an invariant Q define Q_{inv} on arbitrary structures as: $Q_{inv}(\mathfrak{A}) = Q((\mathfrak{A}, <))$ for arbitrarily chosen <. Q_{inv} called invariant FO-query.

Optional Slide: Adding Order

- Invariant FO-queries (over finite (!) structures) may still be more expressive than FO-queries (without order)
- ► Hint
 - ► The pure existence of an order suffices to talk about evenness
 - Consider Boolean algebras (BA) with even number of atoms.
 - Not axiomatizable in FOL (show using Ehrenfeucht-Fraïsse) but by order invariant FO
 - Axiom states that there is an element in BA containing all atoms in even position and the last one.

Optional Slide: Adding Order

- Invariant FO-queries (over finite (!) structures) may still be more expressive than FO-queries (without order)
- ► Hint
 - The pure existence of an order suffices to talk about evenness
 - Consider Boolean algebras (BA) with even number of atoms.
 - Not axiomatizable in FOL (show using Ehrenfeucht-Fraïsse) but by order invariant FO
 - Axiom states that there is an element in BA containing all atoms in even position and the last one.
- Nonetheless, we have

Theorem

Every invariant FOL query is Gaifman-local (and so has BNDP).

0-1 law

0-1 law

An inexpressibility tool based on a probabilistic property of FOL queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do not

Example

Consider the following boolean queries on graphs

 $\blacktriangleright Q_1 = \forall x, y \ E(x, y)$

Almost all graphs do not satisfy Q_1 (only the complete ones)

• $Q_2 = \forall x \forall y \exists z \ E(z,x) \land \neg E(z,y)$

Almost all graphs satisfy Q_2

Formal definition 0-1 laws

- Here it is important that signature σ is relational!!
- STRUC(σ, n): structures with domain [n] := {0, 1, ..., n − 1} over σ.
- ► For a Boolean query *Q* let

$$\mu_n(Q) = \frac{|\{\mathfrak{A} \in STRUC(\sigma, n) \mid Q(\mathfrak{A}) = true\}|}{|STRUC(\sigma, n)|}$$

- μ_n(Q) is the probability that a randomly chosen structure on
 [n] satisfies Q
- $\mu(Q) = \lim_{n \to \infty} \mu_n(Q)$ (if limit exists)

Definition

A logic has the 0-1-law if for every Boolean query Q expressible in it either $\mu(Q) = 0$ or $\mu(Q) = 1$.

Inexpressibility with 0-1 laws

Theorem

FOL has the 0-1-law.

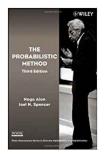
Helpful for proving inexpressibility of counting properties

Example (EVEN is not expressible in FOL)

 $\mu(EVEN)$ not defined because $\mu_n(EVEN)$ alternates between 0 and 1.

Probability and Logic

- The 0-1 law exemplifies a general strategy of using methods for handling uncertainty (probability theory) in order to solve crisp questions (here: FOL expressibility)
- Compare "probabilistic method" as applied to combinatorics
 - Also called "Erdös method"
 - Take a time to learn about the great Hungarian mathematician Erdös, e.g., from biography "The man who loved only numbers" http://www.nytimes.com/ books/first/h/hoffman-man.html



Beyond FOL

Counting and Aggregation

► Practical languages s.a. SQL allow counting and aggregation.

Example (Aver. Salary in Depts. with Total Salary > 100,000)

```
SELECT S1.Dept, AVG(S2.Salary)
FROM S1, S2
WHERE S1.Empl = S2.Empl
GROUP BY S1.Dept
HAVING SUM(S2.Salary) > 100,000
```

Schema: S1(Empl, Dept), S2(Empl, Salary)

- Consider corresponding extensions of FOL
- Some of the tools shown so far still work (when non-ordered structures are considered)

FOL with counting quantifiers

Definition (FOL-AllCnt)

FOL-AllCnt is the extension of FOL with counting quantifiers and counting terms:

- ► $\exists^{\geq i} x.\phi(x)$: There are at least *i* elements *x* fulfilling ϕ .
- $\sharp \overline{x}.\phi(\overline{x})$: the number of \overline{x} fulfilling $\phi(\overline{x})$.
- ► Semantics defined w.r.t. 2-sorted FOL structures $\mathfrak{A} = (A, \mathbb{N}, (R^{\mathfrak{A}})_{R \in \sigma}, Arith)$
- ▶ Second domain (sort) N is infinite!
- Arith contains (interpreted) arithmetic predicates and functions

Example

Parity of a unary predicate symbol U can be expressed by the following formula using counting quantifiers:

 $\exists j \exists i((i+i=j) \land \exists^{\geq j} x U(x) \land \forall k (\exists^{\geq k} x U(x) \to k \leq j))$

"There is an even number (j) of Us and there are no more than j Us"

Theorem

FOL+AllCtn queries are Hanf local (and thus Gaifman local and have the BNDP).

Aggregation

- \mathcal{F} = aggregate function = family of functions f_1, f_2, \ldots with
- ► f_n maps *n*-element multisets from \mathbb{Q} to elements from \mathbb{Q} . E.g.: $SUM = \{s_1, s_2, \dots, \}$ with $s_k(\{d_1, \dots, d_k\}) = \sum_{i=1}^k d_i$

Aggregation

- \mathcal{F} = aggregate function = family of functions f_1, f_2, \ldots with
- f_n maps *n*-element multisets from \mathbb{Q} to elements from \mathbb{Q} . E.g.: $SUM = \{s_1, s_2, \dots, \}$ with $s_k(\{d_1, \dots, d_k\}) = \sum_{i=1}^k d_i$

Definition (FOL-Aggr)

 $\mathsf{FOL}\text{-}\mathsf{Aggr}=\mathsf{FOL}\text{-}\mathsf{AllCnt}$ + <code>aggregate terms</code> + $\mathbb Q$ instead of $\mathbb N$

- ▶ Syntax: Terms $t(\overline{x})$ of the form $Aggr_{\mathcal{F}}\overline{y}.(\phi(\overline{x},\overline{y}),t'(\overline{x},\overline{y}))$
 - Note the possibility of nesting with term t' (as in SQL)
- Semantics over \mathfrak{A} for tuple \overline{b}
 - ► $t^{\mathfrak{A}}(\overline{b}) = f_{|B|}(\{t'^{\mathfrak{A}}(\overline{b}, \overline{c}) \mid \overline{c} \in B\})$ where $B := \{\overline{c} \mid \mathfrak{A} \models \phi(\overline{b}, \overline{c})\}$

Aggregation

- \mathcal{F} = aggregate function = family of functions f_1, f_2, \ldots with
- f_n maps *n*-element multisets from \mathbb{Q} to elements from \mathbb{Q} . E.g.: $SUM = \{s_1, s_2, \dots, \}$ with $s_k(\{d_1, \dots, d_k\}) = \sum_{i=1}^k d_i$

Definition (FOL-Aggr)

 $\mathsf{FOL}\mathsf{-}\mathsf{Aggr}=\mathsf{FOL}\mathsf{-}\mathsf{AllCnt}+\mathsf{aggregate}\;\mathsf{terms}+\mathbb{Q}\;\mathsf{instead}\;\mathsf{of}\;\mathbb{N}$

- ► Syntax: Terms $t(\overline{x})$ of the form $Aggr_{\mathcal{F}}\overline{y}.(\phi(\overline{x},\overline{y}),t'(\overline{x},\overline{y}))$
 - Note the possibility of nesting with term t' (as in SQL)
- Semantics over \mathfrak{A} for tuple \overline{b}
 - ► $t^{\mathfrak{A}}(\overline{b}) = f_{|B|}(\{t'^{\mathfrak{A}}(\overline{b}, \overline{c}) \mid \overline{c} \in B\})$ where $B := \{\overline{c} \mid \mathfrak{A} \models \phi(\overline{b}, \overline{c})\}$

Correspondence to SQL:

- \overline{x} = grouping attributes
- $\phi(\overline{x}, \overline{y}) = HAVING$ clause

Locality for FOL+Aggr

Theorem

FOL-Aggr queries are Hanf-local (and thus Gaifmann-local and have the BNDP).

If order is added, then locality is lost

Higher-Order Logics

- Second order logic (SO): Allow quantification over relations
- ► Vocabulary: FOL vocabulary + predicate variables X, Y,...
- Syntax: FOL syntax +
 - $Xt_1 \dots t_n$ is a formula (for *n*-ary relation variable X and terms t_i)
 - If ϕ is a formula, then so are $\exists X \phi, \forall X \phi$

Higher-Order Logics

- Second order logic (SO): Allow quantification over relations
- ► Vocabulary: FOL vocabulary + predicate variables X, Y,...
- Syntax: FOL syntax +
 - $Xt_1 \dots t_n$ is a formula (for *n*-ary relation variable X and terms t_i)
 - If ϕ is a formula, then so are $\exists X \phi$, $\forall X \phi$
- Higher-order quantification adds expressivity, e.g.,
- EVEN(σ) (for any signature σ, in particular for σ = {}) expressible. (Exercise)

Porminent example: MSO

- Monadic Second order logic (MSO): SO with second order quantifiers over unary predicates
- (Finite) words/strings w over alphabet Σ as (finite) structures over signature Str = {<, P_a}_{a∈Σ}
 - Domain = $[n] = \{0, 1, \dots, n-1\}$ = positions in word of length n
 - For each symbol a ∈ Σ unary predicate P_a of positions at wich a occurs
 - Binary order < on positions
 - Example: w = abba is structure ([0, 1, 2, 3], $\langle \{0, 3\}, \{1, 2\}$)

Theorem (Regular languages = MSO)

The regular languages are exactly those definable by MSO sentences.

Fixed Point Logics (FPLs)

- Reachability queries call for extension of FOL with "iteration" mechanism
- ► FPLs use a well-behaved self-referential process/bootstrapping
 - Fixed points as limits of this process
 - Different fixed points may exist

Fixed Point Logics (FPLs)

- Reachability queries call for extension of FOL with "iteration" mechanism
- ► FPLs use a well-behaved self-referential process/bootstrapping
 - Fixed points as limits of this process
 - Different fixed points may exist
- Different fixed point logics exist (e.g. largest, least)
- Most prominent in DB theory: Datalog

- $E(x, y) = edge of graph \mathfrak{G}$,
- R(x, y) = transitively closed relation between vertices

 $\forall x, \forall y \ R(x, y) \quad \leftrightarrow \quad E(x, y) \lor (\exists z. E(x, z) \land \ R(z, y))$

- $E(x, y) = edge of graph \mathfrak{G}$,
- R(x, y) = transitively closed relation between vertices

 $\forall x, \forall y \ R(x, y) \quad \leftrightarrow \quad E(x, y) \lor (\exists z. E(x, z) \land \ R(z, y))$

► For all graphs 𝔅 find extension 𝔅' = (𝔅, 𝔅^{𝔅'}) s.t. Ihs and rhs evaluate to the same relation.
(*)

- $E(x, y) = edge of graph \mathfrak{G}$,
- R(x, y) = transitively closed relation between vertices

 $\forall x, \forall y \ R(x, y) \quad \leftrightarrow \quad E(x, y) \lor (\exists z. E(x, z) \land \ R(z, y))$

- ► For all graphs \mathfrak{G} find extension $\mathfrak{G}' = (\mathfrak{G}, R^{\mathfrak{G}'})$ s.t. lhs and rhs evaluate to the same relation. (*)
- ► Read equivalence as a iteratively applied rule from right to left

 $\underbrace{X_{new}}_{(x,y)} \leftarrow \underbrace{E(x,y) \lor (\exists z.E(x,z) \land \underbrace{X_{old}}_{\phi(x,y,X_{old})}(z,y))}_{\phi(x,y,X_{old})}$

- $E(x, y) = edge of graph \mathfrak{G}$,
- R(x, y) = transitively closed relation between vertices

 $\forall x, \forall y \ R(x, y) \quad \leftrightarrow \quad E(x, y) \lor (\exists z. E(x, z) \land \ R(z, y))$

- ► For all graphs \mathfrak{G} find extension $\mathfrak{G}' = (\mathfrak{G}, R^{\mathfrak{G}'})$ s.t. lhs and rhs evaluate to the same relation. (*)
- ► Read equivalence as a iteratively applied rule from right to left

$$\underbrace{X_{new}}_{\phi(x,y,X_{old})}(x,y) \leftarrow \underbrace{E(x,y) \lor (\exists z.E(x,z) \land X_{old}(z,y))}_{\phi(x,y,X_{old})}$$

Induces a step(-jump)-operator F on the semantical side

• For $X \subseteq G \times G$:

 $F: \mathbf{X} \mapsto \overline{\{(d_1, d_2) \mid (\mathfrak{G}, X, x/d_1, y/d_2) \models \phi(x, y, \mathbf{X})\}}$

- $E(x, y) = edge of graph \mathfrak{G}$,
- R(x, y) = transitively closed relation between vertices

 $\forall x, \forall y \ R(x,y) \quad \leftrightarrow \quad E(x,y) \lor (\exists z. E(x,z) \land \ R(z,y))$

- ► For all graphs \mathfrak{G} find extension $\mathfrak{G}' = (\mathfrak{G}, R^{\mathfrak{G}'})$ s.t. lhs and rhs evaluate to the same relation. (*)
- ► Read equivalence as a iteratively applied rule from right to left

$$\underbrace{X_{new}}_{\phi(x,y,X_{old})}(x,y) \leftarrow \underbrace{E(x,y) \lor (\exists z.E(x,z) \land X_{old}(z,y))}_{\phi(x,y,X_{old})}$$

Induces a step(-jump)-operator *F* on the semantical side
 For X ⊂ G × G:

 $F: \mathbf{X} \mapsto \overline{\{(d_1, d_2) \mid (\mathfrak{G}, X, x/d_1, y/d_2) \models \phi(x, y, \mathbf{X})\}}$

• Condition (*) reread: find fixed point R, i.e., F(R) = R

Constructing Least Fixed Points

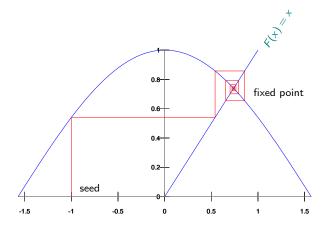
- Start with extension \emptyset (seed) and proceed iteratively
- ▶ Progress schema: \emptyset , $F(\emptyset)$, $F(F(\emptyset))$, $F^3(\emptyset)$, $F^4(\emptyset)$,...
- In our example
 - $X^0 = \text{seed} = \emptyset$
 - $X^1 = E^{\mathfrak{G}} = \text{direct edges}$
 - ► $X^2 = F(X^1) = X^1 \cup \{(x, y) \mid \exists z. E(x, z) \land X^1(z, y)\} =$ direct edges or paths of length 2
 - $R^{\mathfrak{G}'} = \bigcup_{i \in \mathbb{N}} X^i$
- The fixed point here is the least fixed point.

Constructing Least Fixed Points

- \blacktriangleright Start with extension \emptyset (seed) and proceed iteratively
- ▶ Progress schema: \emptyset , $F(\emptyset)$, $F(F(\emptyset))$, $F^3(\emptyset)$, $F^4(\emptyset)$,...
- In our example
 - \blacktriangleright X⁰ = seed = Ø
 - $X^1 = E^{\mathfrak{G}} = \text{direct edges}$
 - $X^2 = F(X^1) = X^1 \cup \{(x, y) \mid \exists z. E(x, z) \land X^1(z, y)\} =$ direct edges or paths of length 2
 - ...
 - ► $R^{\mathfrak{G}'} = \bigcup_{i \in \mathbb{N}} X^i$
- The fixed point here is the least fixed point.
- Nota bene
 - A fixed point may not exist
 - There may be many fixed points
 - There may not be a least fixed point. (Exercise)

Fixed Point Construction Graphically

- Fixed point for F(x) = cos(x).
- Attractor



"Cosine fixed point". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https:

//commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg

Recursive Humor

 Wiki entry Recursive humor (last access 27 April 2020).

It is not unusual for such books to include a joke entry in their glossary along the lines of: Recursion, see Recursion.[6]

[...] An alternative form is the following, from Andrew Plotkin: "If you already know what recursion is, just remember the answer. Otherwise, find someone who is standing closer to Douglas Hofstadter than you are; then ask him or her what recursion is."

Lit: D. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid.Vintage Books, 1979.

Blog Recursively Recursive https://recursivelyrecursive.wordpress.com/category/ recursive-humour/page/2/

Datalog

- Developed around 1980s
- Renaissance (not only as proof tool but) as industrially applied tool
- EXPTIME-complete in combined complexity; PTIME-complete data complexity
- Simple evaluation strategy for positive fragment (no negation)
- Negation calls for hierarchical evaluation (stratification)
- Different fragments; optimizations ...

Datalog

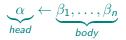
► General Logic Programm: Finite set of rules of the form

$$\underbrace{\alpha}_{head} \leftarrow \underbrace{\beta_1, \ldots, \beta_n}_{body}$$

- α atomic formula; β_i are literals
- \blacktriangleright Free variables \forall quantified; comma , read as \wedge
- Fact = rule with empty body.
- Intensional relation: occurs in some head
- Extensional relation: not in head (unless rule is a fact)

Datalog

► General Logic Programm: Finite set of rules of the form



- α atomic formula; β_i are literals
- \blacktriangleright Free variables \forall quantified; comma , read as \wedge
- Fact = rule with empty body.
- Intensional relation: occurs in some head
- Extensional relation: not in head (unless rule is a fact)
- Datalog program = logic program with
 - no function symbols
 - no intensional relation negated in body
 - Sometimes additionally safety constraints:
 - all free variables in head also in body
 - all variables in negated atoms (or arithmetical expressions such as identity) also in non-negated atom in body
 - Semantics for datalog programs: by step-operator used in parallel for intensional relations

Datalog example: ancestors of Mary

 $ans(x) \leftarrow ancestor(x, mary)$ $ancestor(x, y) \leftarrow parentOf(x, y)$ $ancestor(x, y) \leftarrow parentOf(x, z), ancestor(z, y)$

In FOL notation:

 $\begin{aligned} \forall x \ ancestor(x, mary) \to ans(x) \\ \forall x \forall y \ parent Of(x, y) \to ancestor(x, y) \\ \forall x, \forall y \ (\exists z \ parent Of(x, z), ancestor(z, y)) \to ancestor(x, y) \end{aligned}$

SQL 3 Recursion example

```
%Find Mary's ancestors from ParentOf(parent,child)
WITH RECURSIVE Ancestor(anc,desc) AS
        ( (SELECT parent as anc, child as desc FROM ParentOf)
        UNION
        (SELECT Ancestor.anc, ParentOf.child as desc
        FROM Ancestor, ParentOf
        WHERE Ancestor.desc = ParentOf.parent) )
SELECT anc FROM Ancestor WHERE desc = "Mary"
```

FOL with Least Fixed Points

- Datalog extends FOL w.r.t. the semantics (subcutaneous)
- There are different extensions of FOL with fixed point operators available in the syntax
- Example ∃FO(LFP): existential fragment of FOL extended with relation variables and with least fixed point operator [LFP_{y,Y}φ]

$\exists FO(LFP)$

- ► Syntax: $FORM_{\exists FO(LFP)}$ = set of $\exists FO(LFP)$ formulae
 - ► Every second-order atomic formula is in FORM_{∃FO(LFP)}
 - $\neg \phi$ for ϕ an atomic FOL formula
 - $\phi \land \psi \in FORM_{\exists FO(LFP)}$
 - $\phi \lor \psi \in FORM_{\exists FO(LFP)}$
 - ► $\exists x \phi \in FORM_{\exists FO(LFP)}$ (only (existential) quantification over first-order variables)
 - $[LFP_{\vec{x},X}\phi]\vec{t}$
- Semantics
 - **۱**...
 - $\mathfrak{A} \models [LFP_{\vec{x},X}\phi]\vec{t}$ iff

"For X chosen as least fixed point, \vec{t} fulfills ϕ in \mathfrak{A} "

► Restriction: X has to occur positively (i.e. after an even number of ¬) in φ (Needed to guarantee existence of lfp)

Theorem

Existential fragment of $\exists FO(LFP)$ is equivalent to Datalog.

0-1 law for Datalog

Theorem

Datalog (without negation and ordering) has the 0-1 law.

In particular you can not express EVEN

0-1 law for Datalog

Theorem

Datalog (without negation and ordering) has the 0-1 law.

- In particular you can not express EVEN
- (Adding negation allows to express EVEN, which does not fulfill 0-1 law)
- In fact a successor relation together with min- and max-predicates is sufficient.

 $\begin{array}{rcl} odd(x) &\leftarrow \min(x) \\ odd(x) &\leftarrow S(x,y), even(y) \\ even(x) &\leftarrow S(y,x), odd(y) \\ EVEN &\leftarrow \max(x), even(x) \end{array}$

Very many FMT topics were not covered in these two lectures, in particular \ldots

- Proving equivalence of languages (using types)
- Descriptive Complexity
- Algorithmic Model Theory (Infer meta-theorems on algorithmic properties by constraining some input parameters (parameterized complexity))

Descriptive Complexity

- There is a close relationship between complexity classes and logics (queries expressible in a logic)
- Hints to astonishing correspondences between prima facie two different worlds
- ► The world of representation (what?) and of calculation (how?)
- Results talk about data complexity (!)
- Results mainly for ordered structures

Fagin lays the foundations

 One of the first insights which founded descriptive complexity goes back to Fagin

Theorem ($SO\exists$ captures NPTIME)

Existential second order logic (SO \exists) captures the class of problems verifiable in polynomial time (NP)

 $SO\exists$ = second order logic where second order quantifiers are restricted to \exists

Definition

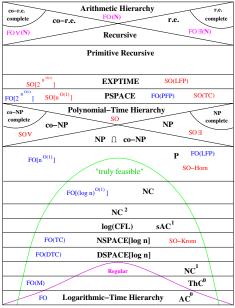
A logic \mathcal{L} captures a complexity class \mathcal{C} iff for all σ with $\langle \in \sigma$ and classes of structures $K \subseteq STRUC(\sigma)$: $K \in \mathcal{C}$ iff K is axiomatizable in \mathcal{L}

If you want to become famous

 ... prove or disprove the following: There is a "natural" logic characterizing *PTIME* over non-ordered finite structures.

If you want to become famous

- ... prove or disprove the following: There is a "natural" logic characterizing *PTIME* over non-ordered finite structures.
- If you can show there is no such logic, then $NP \neq PTIME$



The Descriptive World

N.Immerman: Descriptive Complexity, ACM SIGACT NEWS, vol. 34, no. 3, 2003, p.5)