
Özgür L. Özçep

Data Exchange 1
Lecture 6: Incomplete DBs, universal solutions, core, chase

14 May 2020

Informationssysteme CS4130

(Summer 2020)

References

Lit: M. Arenas, P. Barceló, L. Libkin, and F. Murlak: Foundations of Data Exchange.

Cambridge University Press, 2014.

2 / 48

Data Exchange: Motivation

Data Exchange History
I Much research in DB community

I Formal treatment starts in 2003
Lit: R. Fagin et al. Data exchange: Semantics and query answering. In:

Database Theory - ICDT 2003, Proceedings, volume 2572 of LNCS, pages

207–224. Springer, 2003.

Lit: R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y.

Velegrakis. Conceptual modeling: Foundations and applications. chapter Clio:

Schema Mapping Creation and Data Exchange, pages 198–236. Springer-Verlag,

Berlin, Heidelberg, 2009.

I Incorporated into IBM Clio
http://dblab.cs.toronto.edu/project/clio/

I A non-commercial DE system:
http://www.db.unibas.it/projects/llunatic/

4 / 48

http://dblab.cs.toronto.edu/project/clio/
http://www.db.unibas.it/projects/llunatic/

Data Exchange (DE): Main Setting

� DB

source schema � target schema ⌧

⌧ query

⌧ DB

materialized

Exchange

mapping rules

M�⌧

5 / 48

DE systems

I DE system (�, ⌧,M�⌧ ,M⌧) = DI sytem

I A DE scenario = DE system + source (�) DB-instance

I We call here a DE system also a (relational) mapping M
(following Arenas et al. 2014)

I We will deal in detail with target constraints M⌧ for DE
systems (similar treatment for DI scenarios in virtual mode)

6 / 48

Relational Mappings Formally
Definition

A relational mapping M is a tuple of the form

M = (�, ⌧,M�⌧ ,M⌧)

where
I � is the source schema
I ⌧ is the target schema with all relation symbols different from

those in �
I M�⌧ is a finite set of FOL formulae over � [⌧ called

source-to-target dependencies
I As in DI will consider source-to-target tuple generating

dependencies (see lecture on DI)

I But: In DE (according to Arenas et al. 2014) exact rules not

considered: rules always from sources (body) to target (head)

I M⌧ is a set of constraints on the target schema called target
dependencies

7 / 48

Target Dependencies M⌧

I These define constraints on target schema known also from
classical DB theory

I Two different types of dependencies are sufficiently general to
capture the classical DB constraints

Definition

A tuple-generating dependency (tgd) is a FOL formula of the form

8~x~y(�(~x , ~y) �! 9~z (~x , ~z))

where �, are conjunctions of atoms over ⌧ .

An equality-generating (egd) is a FOL formula of the form

8~x(�(~x) �! xi = xj)

where �(~x) is a conjunction of atoms over ⌧ and xi , xj occur in ~x .

8 / 48

Data Exchange: Challenges

� DB

source schema � target schema ⌧

⌧ query

⌧ DBExchange

mapping rules

M�⌧

Consistency: Is there a ⌧ DB
fitting the rules?

Materialization: If yes, can one construct
solution (effectively)?

Goodness: Are some solutions “better”?
(universal, core)

Semantics of QA: What answers are intended?
certain answers

QA algorithm: How to calculate answers?Semantics of mappings

Maintenance of mappings

9 / 48

Data Exchange: Challenges

� DB

source schema � target schema ⌧

⌧ query

⌧ DBExchange

mapping rules

M�⌧

Consistency: Is there a ⌧ DB
fitting the rules?

Materialization: If yes, can one construct
solution (effectively)?

Goodness: Are some solutions “better”?
(universal, core)

Semantics of QA: What answers are intended?
certain answers

QA algorithm: How to calculate answers?Semantics of mappings

Maintenance of mappings

9 / 48

Data Exchange: Challenges

� DB

source schema � target schema ⌧

⌧ query

⌧ DBExchange

mapping rules

M�⌧

Consistency: Is there a ⌧ DB
fitting the rules?

Materialization: If yes, can one construct
solution (effectively)?

Goodness: Are some solutions “better”?
(universal, core)

Semantics of QA: What answers are intended?
certain answers

QA algorithm: How to calculate answers?

Semantics of mappings

Maintenance of mappings

9 / 48

Data Exchange: Challenges

� DB

source schema � target schema ⌧

⌧ query

⌧ DBExchange

mapping rules

M�⌧

Consistency: Is there a ⌧ DB
fitting the rules?

Materialization: If yes, can one construct
solution (effectively)?

Goodness: Are some solutions “better”?
(universal, core)

Semantics of QA: What answers are intended?
certain answers

QA algorithm: How to calculate answers?Semantics of mappings

Maintenance of mappings

9 / 48

Running Example

Example (DE in Flight Domain)

Source schema �

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)

Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

Target constraints M⌧

primary key: fno foreign key: Info[fno] ✓FK Route[fno]

11 / 48

Example (DE in Flight Domain)

Source schema �

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

M�⌧ = source-to-target tuple generating dependencies

Sufficiently expressive FOL formula of feasible form
(see lecture on DI)

11 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧ and instance

Route(fno, src, dest)
?1, paris, sant.

Info(fno, dep, arr, airl)
?1, 2320, ?2, airFr

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

11 / 48

Solutions and Certain Answers

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧ and instance

Route(fno, src, dest)
?1, paris, sant.

Info(fno, dep, arr, airl)
?1, 2320, ?2, airFr

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

. . .

Materialization of a ⌧ instance (⌧ solution)

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}
I Non-complete DB: contains marked NULLs ?1,?2

I Can answer ⌧ -queries on T using Certain-Answer Semantics

13 / 48

DB Instances of Schemata

I Schemata are relational signatures
I Concrete/Complete database instance

I For a given schema � a concrete DB instance is a � FOL

structure with active domain

I Active domain: Domain contains all and only individuals (also

called constants) occurring in relations

I Usually: All source instances are concrete DBs

I Generalized/Incomplete DB instances
I For some attributes in target schema no corresponding

attribute in source may exist (Example: flight number fno)

I Next to constants CONST allow disjoint set VAR of marked

NULLs

I May contain elements from CONST [VAR

14 / 48

Definition (Certain answers over incomplete DB (formally))

cert(Q,T) = Q(T) =
\

T02Rep(T)

Q(T0)

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants

Example (Answer for ⌧ solution from flight domain)

I T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}
Rep(T) = {{Route(123, paris, sant), Info(123, 2320, 0815, airFr)},

{{Route(124, paris, sant), Info(124, 2320, 0915, airFr)},
. . . , }

I Q1 = 9fno Route(fno, paris, sant) cert(Q1,T) = {()} = yes

I Q2 = Route(123, paris, sant) cert(Q2,T) = ; = no

15 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧ and instance

Route(fno, src, dest)
123, paris, sant.

Info(fno, dep, arr, airl)
123, 2320, ?2, airFr

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

. . .

Many ⌧ solutions SOLM(S)

T = {Route(?1, paris, sant) , Info(?1, 2320,?2, airFr)}
T0 = {Route(?3, paris, sant) , Info(?3, 2320,?2, airFr)}
T00 = {Route(?1, paris, sant) , Info(?1, 2320,?1, airFr)}
T000 = {Route(123, paris, sant) , Info(123, 2320,?2, airFr)} . . .

16 / 48

Good Solutions

One solution to rule them all . . .

I In DE one aims at materializing exactly one ⌧ solution!
I Is there a single solution Tu capturing the certain answers?

certM(Q,S)
?
= Q(Tu)

I Yes! Universal solution
I Contains facts which are as specific as necessary, i.e.,

all other solutions more specific

I Works for CQs = conjunctive queries (= SPJ fragment)

I Universality fundamental property ubiquitous in CS

I e.g., most general unifier in resolution
I If existent, can be constructed by chase procedure

19 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

non-necessary
co-reference

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .
non-necessary
instantiation

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

Why is T
universal?

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

Why is T
universal??1 7! ?3

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

Why is T
universal?

?2 7! ?1

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

Why is T
universal?

?1 7! 123

20 / 48

Example (DE in Flight Domain)

Source schema � and instance S

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

paris sant. airFr 2320

Target schema ⌧

Route(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

Any universal solution works: certM(Q,S) = Q(T) = Q(T0)
20 / 48

Homomorphism

I CONST (T) = set of all constants in T

I VAR(T) = set of all marked nulls in T

Definition

A homomorphism h : T
hom�! T0 is a map

h : Var(T) [CONST ! VAR(T0) [CONST

s.t.
I h(c) = c for all c 2 CONST and
I if R(t1, . . . , tn) 2 T, then R(h(t1), . . . , h(tn)) 2 T0

(for all relations R)

21 / 48

Definition (Universal Solution)

A solution T for S and M is called a universal solution iff
it can be mapped homomorphically into all other solutions.

For all T0 2 SOLM(S) there is h : T
hom�! T0

I Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let h : S
hom�! S0

and Q be a (U)CQ. Then: For all tuples ~a from

the domain of S:

I If ~a 2 Q(S), then h(~a) 2 Q(S0)
I If S is complete, then even Q(S) ✓ Q(S0)
I Corollary: cert(Q,S) ✓ cert(Q,S0)

22 / 48

Example (Non-existence of Universal Solutions)

I M�⌧ = { E (x , y) ! G (x , y) }
I M⌧ = { G (x , y) ! 9z L(y , z), L(x , y) ! 9z G (y , z) }
I Source instance S = {E (a, b)}

I T = {G (a, b), L(b, a)} is a solution
I But there is no universal solution

Proof sketch (by contradiction)
I A universal solution T must have an infinite sequence

(S, {G (a, b), L(b, ⌫1),G (⌫1, ⌫2), L(⌫2, ⌫3),G (⌫3, ⌫4) . . . })
I Consider case where ⌫2i�1 = a and define solution

T0 = {G (a, b), L(b, c1),G (c1, c2), L(c2, c3), . . . ,G (cj , cj�1) for
2i < j and fresh ci

I There must be an h : T
hom�! T0.

I But then h(⌫l) = cl and hence h(⌫2i�1) = c2i�1, but also
h(⌫2i�1) = h(a) = a, so c2i�1 = a, E

23 / 48

Example (Core in Flight Domain)

Source schema � and instance

Geo(city, coun, pop)
paris, france, 2M

Flight (src, dest, airl, dep)
paris amst. klm 1410
paris amst. klm 2230

Target schema ⌧

Route(fno, src, dest)

?1, paris, amst.
?3, paris, amst.

Info(fno, dep, arr, airl)

?1, 1410, ?2, klm
?3, 2320, ?4, klm

Serves(airl, city, coun, phone)

klm, paris, france, ?5

Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

24 / 48

Example (Core in Flight Domain)

Source schema � and instance

Geo(city, coun, pop)
paris, france, 2M

Flight (src, dest, airl, dep)
paris amst. klm 1410
paris amst. klm 2230

Target schema ⌧ and core solution

Route(fno, src, dest)
?1, paris, amst.
?3, paris, amst.

Info(fno, dep, arr, airl)
?1, 1410, ?2, klm
?3, 2320, ?4, klm

Serves(airl, city, coun, phone)
klm, paris, france, ?5
klm, paris, france, ?6

Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

Why not delete similarly Route(?3, paris, amst)?

There are additional facts distinguishing ?1 and ?3

Identification ?1 = ?3 would violate primary key constraint
24 / 48

Better than Universal? The Core! (in some sense)

I Universal solutions may still contain redundant information
I Seeking for smallest universal solutions: cores

I T0 is subinstance of T, for short T0 ✓ T, iff
R
T0 ✓ R

T for all relation symbols R

Definition

A subinstance T0 ✓ T is a core of T iff there is h : T
hom�! T0 but

there is no homomorphism from T to a proper subinstance of T0.

I Intuitively: An instance can be retracted (structure
preservingly) to its core but not further

25 / 48

Properties of Cores

Definition

A subinstance T0 ✓ T is a core of T iff there is h : T
hom�! T0 but

there is not a homomorphism from T to a proper subinstance of T0.

Proposition

1. Every instance has a core.

2. All cores of the same instance are isomorphic (same up to

renaming of NULLs) (=) Talk of the core justified)

3. Two instances are homomorphically equivalent (= there exists

a homomorphism from one into the other and vice versa) iff

their cores are isomorphic

4. If T0
is core of T, then there is h : T

hom�! T0
s.t. h(⌫) = ⌫ for

all ⌫ 2 DOM(T0)

26 / 48

Core Solution vs. Universal Solution

I Core solutions contain less redundant information and are
unique

I but are harder to construct

I Which one to use?
I Aim “only” answering CQs =) universal solution

I Aim goes further =) core solution

I Need to query with more expressive language
(negation, counting)

I Need to calculate sufficient statistics in an ML algorithm

27 / 48

Testing for and Constructing Solutions

Reminder: Solutions

Definition

Given: a mapping M and a � instance S

A ⌧ instance T is called a solution for S under M iff
(S,T) satisfies all rules in M�⌧ (for short: (S,T) |= M�⌧) and T
satisfies all rules in M⌧ .

I (S,T) |= M�⌧ iff S [T |= M�⌧ where
I S [T is the union of the instances S,T: Structure containing

all relations from S and T with domain the union of domains

of S and T
I well defined because schemata are disjoint

I SolM(S): Set of solutions for S under M

29 / 48

Reminder: Solutions

Definition

Given: a mapping M and a � instance S

A ⌧ instance T is called a solution for S under M iff
(S,T) satisfies all rules in M�⌧ (for short: (S,T) |= M�⌧) and T
satisfies all rules in M⌧ .

I (S,T) |= M�⌧ iff S [T |= M�⌧ where
I S [T is the union of the instances S,T: Structure containing

all relations from S and T with domain the union of domains

of S and T
I well defined because schemata are disjoint

I SolM(S): Set of solutions for S under M

29 / 48

First Key Problem: Existence of Solutions

Problem: SOLEXISTENCEM

Input: Source instance S
Output: Answer whether there exists a solution for S under M

I Note: M is assumed to be fixed =) data complexity
I This problem is going to be approached with a well known

proof tool: chase

30 / 48

Trivial Case: No Target Dependencies

I Without target constraints there is always a solution

Proposition

Let M = (�, ⌧,M�⌧) with M�⌧ consisting of st-tgds. Then for any

source instance S there are infinitely many solutions and at least

one solution can be constructed in polynomial time.

Proof Idea
I For every rule and every tuple ~a fulfilling the antecedens

generate facts according to the succedens (using fresh named

nulls for the existentially quantified variables)

I Resulting ⌧ instance T is a solution

I Polynomial: Testing whether ~a fulfills the head (a conjunctive

query) can be done in polynomial time

I Infinity: From T can build any other solution by extension

31 / 48

Undecidability for General Constraints

Theorem

There is a relational mapping M = (�, ⌧,M�⌧ ,M⌧) such that

SOLEXISTENCEM is undecidable.

I Proof by reduction from embedding problem for finite
semigroups which is known to be undecidable (Arenas et al.
2014, Thm 5.3)

I As a consequence: Further restrict mapping rules
I But note that the following chase construction defined for

arbitrary st-tgds

32 / 48

Chase Construction
I A widely used tool in DB theory
I Original use: Calculating entailments of DB constraints

(Maier et al, 1979)

I Idea
I Apply tgds as completion/repair rules in a bottom-up strategy

I until no tgds can be applied anymore

I Chase construction mail fail if one of the egds is violated

I The chase leads to an instance with desirable properties
I It produces not too many redundant facts

I Universality

Lit: D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data

dependencies. ACM Trans. Database Syst., 4(4):455–469, Dec. 1979.

33 / 48

Example (Terminating c(h)ase)

I Source schema � = {E}; target schema ⌧ = {G , L}
I M�⌧ = { E (x , y) ! G (x , y)| {z }

✓1

}

M⌧ = { G (x , y) ! 9z L(y , z)| {z }
�1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ;) (violates ✓1)
I (S, {G (a, b)}) (violates �1)
I (S, {G (a, b), L(b,?)}) (termination)

34 / 48

Example (Non-terminating c(h)ase)

I Source schema � = {E}; target schema ⌧ = {G , L}
I M�⌧ = { E (x , y) ! G (x , y)| {z }

✓1

}

M⌧ = { G (x , y) ! 9z L(y , z)| {z }
�1

, L(x , y) ! 9z G (y , z)| {z }
�2

}

I Source instance S = {E (a, b)}

I (S, ;) (violates ✓1)
I (S, {G (a, b)}) (violates �1)
I (S, {G (a, b), L(b,?)}) (violates �2)
I (S, {G (a, b), L(b,?),G (?,?1)}) (violates �1)
I (S, {G (a, b), L(b,?),G (?,?1), L(?1,?2)}) (violates �2)
I . . . (non-termination)

35 / 48

Chase Definition
I Let S be a � instance and dom(S) its domain

Definition (Chase steps)

S
�,~a; S0 iff

1. � is a tgd of the form �(~x) ! 9~y (~x , ~y) and
I S |= �(~a) for some elements ~a from dom(S)
I S0

extends S with all atoms occurring in (~a, ~?).

2. or � is an egd of form �(~x) ! xi = xj and
I S |= �(~a) for some elements ~a from dom(S) with ai 6= aj and

I (ai is constant or a null, aj is a null and S0 = S[aj/ai] or

ai is a null, aj is constant and S0 = S[ai/aj])

S
�,~a; fail iff

I S |= �(~a) for some elements ~a from dom(S) with ai 6= aj

I and both ai , aj are constants.
36 / 48

Chase

Definition

A chase sequence for S under M is a sequence of chase steps
Si

�i ,~ai; Si+1 such that
I S0 = S

I each �i is in M

I for each distinct i , j also (�i , ~ai) 6= (�j , ~aj)

For a finite chase sequence the last instance is called its result.
I If the result is fail , then the sequence is said to be a failing

sequence
I If no further dependency from M can be applied to a result,

then the sequence is called successful.

37 / 48

Indeterminism in Chase Construction

I Indeterminism regarding choice of nulls (no problem)
I Indeterminism regarding order of chosen tgds and egds

This may lead to different chase results.

38 / 48

Use of Chases in Data Exchange
I A chase sequence for S under a M is a chase sequence for

(S, ;) under M�⌧ [M⌧

I If (S,T) result of a finite sequence, call just T the result

I Chase is the right tool for finding solutions

Proposition

Given M and source instance S.

I If there is a successful chase sequence for S with result T,

then T is a solution.

I If there is a failing chase sequence for S, then S has no

solution.

I The proposition does no cover all cases: non-terminating chase
I In this case there may still be a solution

39 / 48

Weak Acyclicity

I In order to guarantee termination, restrict target constraints
I Reason for non-termination: generation of new nulls with same

dependencies

Example (Cycle in Dependencies)

I �1 = G (x , y) ! 9z L(y , z)
I �2 = L(x , y) ! 9z G (y , z)

Possible infinite generation

G (a, b)
�1; L(b,?1)

�2; G (?1,?2)
�1; L(?2,?3) . . .

I Problem caused by cycle in dependencies

40 / 48

Simple Dependency Graphs
I Nodes: pairs (R , i) of predicate R and argument-position i

I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
8~x8~y�(~x , ~y) ! 9~z (~x , ~z) and

1. Rh occurs in and Rb occurs in � and

2. for x 2 ~x in i-position in Rb
I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified

Example (Simple Dependency Graph with Cycle)

I �1 = G (y , x) ! 9z L(x , z)

I �2 = L(y , x) ! 9z G (x , z)
(L,1)

(G,1)

(L,2)

(G,2)

Set of tgds called acyclic if simple dependency graph is acyclic.
41 / 48

Dependency Graphs (DG)
I Nodes: pairs (R , i) of predicate R and argument-position i

I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
8~x8~y�(~x , ~y) ! 9~z (~x , ~z) and

1. Rh occurs in and Rb occurs in � and

2. for x 2 ~x in i-position in Rb
I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified;
in this case the edge is labelled by *

Example (Not weakly acyclic Dependency Graph)

I �1 = G (y , x) ! 9z L(x , z)

I �2 = L(y , x) ! 9z G (x , z)
(L,1)

(G,1)

(L,2)

(G,2)

* *

TGDs weakly acyclic iff DG has no cycle with a * edge.
42 / 48

Termination for weakly acyclic tgds

Theorem

Let M = (�, ⌧,M�⌧ ,M⌧) be a mapping where M⌧ is the union of

egds and weakly acyclic tgds. Then the length of every chase

sequence for a source S is polynomially bounded w.r.t. the size of

S.

I In particular: Every chase sequence terminates
I Moreover: SOLEXISTENCEM can be solved in polynomial

time
I a solution can be constructed in polynomial time

43 / 48

Undecidability of Universal Solution Existence

UNISOLEXISTENCEM

I Input: A source instance S

I Output: Is there a universal solution for S under M?

I Allowing arbitrary dependencies leads to undecidability
I Shown by reduction of halting problem to this problem

Theorem

There exists a relational mapping M = (�, ⌧,M�⌧ ,M⌧) s.t.

UNISOLEXISTENCEM is undecidable

44 / 48

Desiderata

I Due to the undecidabiltiy result one has to constrain
dependencies

I Constraints such that the following are fulfilled:
(C1) Existence of solutions entails existence of universal solutions

(C2) UNIVSOLEXISTENCE decidable and even tractable

(C3) If solutions exists, then universal solutions should be

constructible in polynomial time

45 / 48

Chase Helps Again

Theorem

Results of successful chase sequences are universal solutions (and

these are sometimes called canonical universal solutions).

Proof Sketch

I Have to show only universality of chase T

I Use the third definition of universality
I Let T0 be any solution
I Lemma: Adding facts in chase step preserves homomorphism

(If T1
�; T2 by dependency �, T3 fulfills � and there is h : T1

hom�! T3, then

there is h0 : T2
hom�! T3)

I Argue inductively starting from empty database ; and identity
homomorphism ; id; T0.

46 / 48

Nice Properties of Universal Solutions

Theorem

Let M = (�, ⌧,M�⌧ ,M⌧) be a mapping where M⌧ is the union of

egds and weakly acyclic tgds. Then:

I UNISOLEXISTENCEM can be solved in PTIME (C2).

I And if solutions exist, then a universal solution exists (C1),

I and a canonical universal solution can be computed in

polynomial time (C3).

47 / 48

Main Theorem for Cores

Theorem

1. If T 2 SOLM(S), then also core(T) 2 SOLM(S)

2. If T 2 UNIVSOLM(S) then also core(T) 2 UNIVSOLM(S)

3. If UNIVSOLM(S) 6= ;, then all T 2 UNIVSOLM(S) have

same core (up to renaming of NULLs), and the core of any

universal solution is the smallest universal solution

48 / 48

	Data Exchange: Motivation
	Running Example
	Solutions and Certain Answers
	Good Solutions
	Testing for and Constructing Solutions

