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Data Exchange: Motivation



Data Exchange History
I Much research in DB community

I Formal treatment starts in 2003
Lit: R. Fagin et al. Data exchange: Semantics and query answering. In:

Database Theory - ICDT 2003, Proceedings, volume 2572 of LNCS, pages

207–224. Springer, 2003.

Lit: R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y.

Velegrakis. Conceptual modeling: Foundations and applications. chapter Clio:

Schema Mapping Creation and Data Exchange, pages 198–236. Springer-Verlag,

Berlin, Heidelberg, 2009.

I Incorporated into IBM Clio
http://dblab.cs.toronto.edu/project/clio/

I A non-commercial DE system:
http://www.db.unibas.it/projects/llunatic/
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Data Exchange (DE): Main Setting

� DB

source schema � target schema ⌧

⌧ query

⌧ DB

materialized

Exchange

mapping rules

M�⌧
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DE systems

I DE system (�, ⌧,M�⌧ ,M⌧ ) = DI sytem

I A DE scenario = DE system + source (�) DB-instance

I We call here a DE system also a (relational) mapping M
(following Arenas et al. 2014)

I We will deal in detail with target constraints M⌧ for DE
systems (similar treatment for DI scenarios in virtual mode)
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Relational Mappings Formally
Definition

A relational mapping M is a tuple of the form

M = (�, ⌧,M�⌧ ,M⌧ )

where
I � is the source schema
I ⌧ is the target schema with all relation symbols different from

those in �
I M�⌧ is a finite set of FOL formulae over � [ ⌧ called

source-to-target dependencies
I As in DI will consider source-to-target tuple generating

dependencies (see lecture on DI)

I But: In DE (according to Arenas et al. 2014) exact rules not

considered: rules always from sources (body) to target (head)

I M⌧ is a set of constraints on the target schema called target
dependencies
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Target Dependencies M⌧

I These define constraints on target schema known also from
classical DB theory

I Two different types of dependencies are sufficiently general to
capture the classical DB constraints

Definition

A tuple-generating dependency (tgd) is a FOL formula of the form

8~x~y(�(~x , ~y) �! 9~z  (~x , ~z))

where �, are conjunctions of atoms over ⌧ .

An equality-generating (egd) is a FOL formula of the form

8~x(�(~x) �! xi = xj)

where �(~x) is a conjunction of atoms over ⌧ and xi , xj occur in ~x .

8 / 48



Data Exchange: Challenges

� DB

source schema � target schema ⌧

⌧ query

⌧ DBExchange

mapping rules

M�⌧

Consistency: Is there a ⌧ DB
fitting the rules?

Materialization: If yes, can one construct
solution (effectively)?

Goodness: Are some solutions “better”?
(universal, core)

Semantics of QA: What answers are intended?
certain answers

QA algorithm: How to calculate answers?Semantics of mappings

Maintenance of mappings
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Running Example



Example (DE in Flight Domain)

Source schema �

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

Target schema ⌧

Route( fno, src, dest )

Info( fno, dep, arr, airl )

Serves( airl, city, coun, phone )

Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

Target constraints M⌧

primary key: fno foreign key: Info[fno] ✓FK Route[fno]
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Example (DE in Flight Domain)

Source schema �

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

Target schema ⌧

Route( fno, src, dest )

Info( fno, dep, arr, airl )

Serves( airl, city, coun, phone )
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

M�⌧ = source-to-target tuple generating dependencies

Sufficiently expressive FOL formula of feasible form
(see lecture on DI)
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Example (DE in Flight Domain)

Source schema � and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema ⌧ and instance

Route( fno, src, dest )
?1, paris, sant.

Info( fno, dep, arr, airl )
?1, 2320, ?2, airFr

Serves( airl, city, coun, phone )
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))
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Solutions and Certain Answers



Example (DE in Flight Domain)

Source schema � and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema ⌧ and instance

Route( fno, src, dest )
?1, paris, sant.

Info( fno, dep, arr, airl )
?1, 2320, ?2, airFr

Serves( airl, city, coun, phone )
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

. . .

Materialization of a ⌧ instance (⌧ solution)

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}
I Non-complete DB: contains marked NULLs ?1,?2

I Can answer ⌧ -queries on T using Certain-Answer Semantics
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DB Instances of Schemata

I Schemata are relational signatures
I Concrete/Complete database instance

I For a given schema � a concrete DB instance is a � FOL

structure with active domain

I Active domain: Domain contains all and only individuals (also

called constants) occurring in relations

I Usually: All source instances are concrete DBs

I Generalized/Incomplete DB instances
I For some attributes in target schema no corresponding

attribute in source may exist (Example: flight number fno)

I Next to constants CONST allow disjoint set VAR of marked

NULLs

I May contain elements from CONST [ VAR
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Definition (Certain answers over incomplete DB (formally))

cert(Q,T) = Q(T) =
\

T02Rep(T)

Q(T0)

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants

Example (Answer for ⌧ solution from flight domain)

I T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}
Rep(T) = {{Route(123, paris, sant), Info(123, 2320, 0815, airFr)},

{{Route(124, paris, sant), Info(124, 2320, 0915, airFr)},
. . . , }

I Q1 = 9fno Route(fno, paris, sant) cert(Q1,T) = {()} = yes

I Q2 = Route(123, paris, sant) cert(Q2,T) = ; = no
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Example (DE in Flight Domain)

Source schema � and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema ⌧ and instance

Route( fno, src, dest )
123, paris, sant.

Info( fno, dep, arr, airl )
123, 2320, ?2, airFr

Serves( airl, city, coun, phone )
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

. . .

Many ⌧ solutions SOLM(S)

T = {Route(?1, paris, sant) , Info(?1, 2320,?2, airFr)}
T0 = {Route(?3, paris, sant) , Info(?3, 2320,?2, airFr)}
T00 = {Route(?1, paris, sant) , Info(?1, 2320,?1, airFr)}
T000 = {Route(123, paris, sant) , Info(123, 2320,?2, airFr)} . . .
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Good Solutions



One solution to rule them all . . .

I In DE one aims at materializing exactly one ⌧ solution!
I Is there a single solution Tu capturing the certain answers?

certM(Q,S)
?
= Q(Tu)

I Yes! Universal solution
I Contains facts which are as specific as necessary, i.e.,

all other solutions more specific

I Works for CQs = conjunctive queries (= SPJ fragment)

I Universality fundamental property ubiquitous in CS

I e.g., most general unifier in resolution
I If existent, can be constructed by chase procedure
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Example (DE in Flight Domain)
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Example (DE in Flight Domain)
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Example (DE in Flight Domain)

Source schema � and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema ⌧

Route( fno, src, dest )
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Example (DE in Flight Domain)

Source schema � and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema ⌧
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Example (DE in Flight Domain)

Source schema � and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema ⌧

Route( fno, src, dest )

Info( fno, dep, arr, airl )

Serves( airl, city, coun, phone )
Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(?1, paris, sant), Info(?1, 2320,?2, airFr)}

T0 = {Route(?3, paris, sant), Info(?3, 2320,?2, airFr)}

T00 = {Route(?1, paris, sant), Info(?1, 2320,?1, airFr)}

T000 = {Route(123, paris, sant), Info(123, 2320,?2, airFr)} . . .

Any universal solution works: certM(Q,S) = Q(T) = Q(T0)
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Homomorphism

I CONST (T) = set of all constants in T

I VAR(T) = set of all marked nulls in T

Definition

A homomorphism h : T
hom�! T0 is a map

h : Var(T) [ CONST ! VAR(T0) [ CONST

s.t.
I h(c) = c for all c 2 CONST and
I if R(t1, . . . , tn) 2 T, then R(h(t1), . . . , h(tn)) 2 T0

(for all relations R)
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Definition (Universal Solution)

A solution T for S and M is called a universal solution iff
it can be mapped homomorphically into all other solutions.

For all T0 2 SOLM(S) there is h : T
hom�! T0

I Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let h : S
hom�! S0

and Q be a (U)CQ. Then: For all tuples ~a from

the domain of S:

I If ~a 2 Q(S), then h(~a) 2 Q(S0)
I If S is complete, then even Q(S) ✓ Q(S0)
I Corollary: cert(Q,S) ✓ cert(Q,S0)
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Example (Non-existence of Universal Solutions)

I M�⌧ = { E (x , y) ! G (x , y) }
I M⌧ = { G (x , y) ! 9z L(y , z), L(x , y) ! 9z G (y , z) }
I Source instance S = {E (a, b)}

I T = {G (a, b), L(b, a)} is a solution
I But there is no universal solution

Proof sketch (by contradiction)
I A universal solution T must have an infinite sequence

(S, {G (a, b), L(b, ⌫1),G (⌫1, ⌫2), L(⌫2, ⌫3),G (⌫3, ⌫4) . . . })
I Consider case where ⌫2i�1 = a and define solution

T0 = {G (a, b), L(b, c1),G (c1, c2), L(c2, c3), . . . ,G (cj , cj�1) for
2i < j and fresh ci

I There must be an h : T
hom�! T0.

I But then h(⌫l) = cl and hence h(⌫2i�1) = c2i�1, but also
h(⌫2i�1) = h(a) = a, so c2i�1 = a, E
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Example (Core in Flight Domain)

Source schema � and instance

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. klm 1410
paris amst. klm 2230

Target schema ⌧

Route( fno, src, dest )

?1, paris, amst.
?3, paris, amst.

Info( fno, dep, arr, airl )

?1, 1410, ?2, klm
?3, 2320, ?4, klm

Serves( airl, city, coun, phone )

klm, paris, france, ?5

Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))
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Example (Core in Flight Domain)

Source schema � and instance

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. klm 1410
paris amst. klm 2230

Target schema ⌧ and core solution

Route( fno, src, dest )
?1, paris, amst.
?3, paris, amst.

Info( fno, dep, arr, airl )
?1, 1410, ?2, klm
?3, 2320, ?4, klm

Serves( airl, city, coun, phone )
klm, paris, france, ?5
klm, paris, france, ?6

Mapping rules M�⌧

1. Flight(src, dest, airl , dep) �!
9fno 9arr (Route(fno, src, dest) ^ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ^ Geo(city , coun, pop) �!
9phone (Serves(airl , city , coun, phone))

Why not delete similarly Route(?3, paris, amst)?

There are additional facts distinguishing ?1 and ?3

Identification ?1 = ?3 would violate primary key constraint
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Better than Universal? The Core! (in some sense)

I Universal solutions may still contain redundant information
I Seeking for smallest universal solutions: cores

I T0 is subinstance of T, for short T0 ✓ T, iff
R
T0 ✓ R

T for all relation symbols R

Definition

A subinstance T0 ✓ T is a core of T iff there is h : T
hom�! T0 but

there is no homomorphism from T to a proper subinstance of T0.

I Intuitively: An instance can be retracted (structure
preservingly) to its core but not further
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Properties of Cores

Definition

A subinstance T0 ✓ T is a core of T iff there is h : T
hom�! T0 but

there is not a homomorphism from T to a proper subinstance of T0.

Proposition

1. Every instance has a core.

2. All cores of the same instance are isomorphic (same up to

renaming of NULLs) (=) Talk of the core justified)

3. Two instances are homomorphically equivalent (= there exists

a homomorphism from one into the other and vice versa) iff

their cores are isomorphic

4. If T0
is core of T, then there is h : T

hom�! T0
s.t. h(⌫) = ⌫ for

all ⌫ 2 DOM(T0)
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Core Solution vs. Universal Solution

I Core solutions contain less redundant information and are
unique

I but are harder to construct

I Which one to use?
I Aim “only” answering CQs =) universal solution

I Aim goes further =) core solution

I Need to query with more expressive language
(negation, counting)

I Need to calculate sufficient statistics in an ML algorithm
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Testing for and Constructing Solutions



Reminder: Solutions

Definition

Given: a mapping M and a � instance S

A ⌧ instance T is called a solution for S under M iff
(S,T) satisfies all rules in M�⌧ (for short: (S,T) |= M�⌧ ) and T
satisfies all rules in M⌧ .

I (S,T) |= M�⌧ iff S [ T |= M�⌧ where
I S [ T is the union of the instances S,T: Structure containing

all relations from S and T with domain the union of domains

of S and T
I well defined because schemata are disjoint

I SolM(S): Set of solutions for S under M
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First Key Problem: Existence of Solutions

Problem: SOLEXISTENCEM

Input: Source instance S
Output: Answer whether there exists a solution for S under M

I Note: M is assumed to be fixed =) data complexity
I This problem is going to be approached with a well known

proof tool: chase
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Trivial Case: No Target Dependencies

I Without target constraints there is always a solution

Proposition

Let M = (�, ⌧,M�⌧ ) with M�⌧ consisting of st-tgds. Then for any

source instance S there are infinitely many solutions and at least

one solution can be constructed in polynomial time.

Proof Idea
I For every rule and every tuple ~a fulfilling the antecedens

generate facts according to the succedens (using fresh named

nulls for the existentially quantified variables)

I Resulting ⌧ instance T is a solution

I Polynomial: Testing whether ~a fulfills the head (a conjunctive

query) can be done in polynomial time

I Infinity: From T can build any other solution by extension
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Undecidability for General Constraints

Theorem

There is a relational mapping M = (�, ⌧,M�⌧ ,M⌧ ) such that

SOLEXISTENCEM is undecidable.

I Proof by reduction from embedding problem for finite
semigroups which is known to be undecidable (Arenas et al.
2014, Thm 5.3)

I As a consequence: Further restrict mapping rules
I But note that the following chase construction defined for

arbitrary st-tgds
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Chase Construction
I A widely used tool in DB theory
I Original use: Calculating entailments of DB constraints

(Maier et al, 1979)

I Idea
I Apply tgds as completion/repair rules in a bottom-up strategy

I until no tgds can be applied anymore

I Chase construction mail fail if one of the egds is violated

I The chase leads to an instance with desirable properties
I It produces not too many redundant facts

I Universality

Lit: D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data

dependencies. ACM Trans. Database Syst., 4(4):455–469, Dec. 1979.
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Example (Terminating c(h)ase)

I Source schema � = {E}; target schema ⌧ = {G , L}
I M�⌧ = { E (x , y) ! G (x , y)| {z }

✓1

}

M⌧ = { G (x , y) ! 9z L(y , z)| {z }
�1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti )

I (S, ;) (violates ✓1)
I (S, {G (a, b)}) (violates �1)
I (S, {G (a, b), L(b,?)}) (termination)

34 / 48



Example (Non-terminating c(h)ase)

I Source schema � = {E}; target schema ⌧ = {G , L}
I M�⌧ = { E (x , y) ! G (x , y)| {z }

✓1

}

M⌧ = { G (x , y) ! 9z L(y , z)| {z }
�1

, L(x , y) ! 9z G (y , z)| {z }
�2

}

I Source instance S = {E (a, b)}

I (S, ;) (violates ✓1)
I (S, {G (a, b)}) (violates �1)
I (S, {G (a, b), L(b,?)}) (violates �2 )
I (S, {G (a, b), L(b,?),G (?,?1)}) (violates �1 )
I (S, {G (a, b), L(b,?),G (?,?1), L(?1,?2)}) (violates �2 )
I . . . (non-termination)
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Chase Definition
I Let S be a � instance and dom(S) its domain

Definition (Chase steps)

S
�,~a; S0 iff

1. � is a tgd of the form �(~x) ! 9~y (~x , ~y) and
I S |= �(~a) for some elements ~a from dom(S)
I S0

extends S with all atoms occurring in  (~a, ~?).

2. or � is an egd of form �(~x) ! xi = xj and
I S |= �(~a) for some elements ~a from dom(S) with ai 6= aj and

I ( ai is constant or a null, aj is a null and S0 = S[aj/ai ] or

ai is a null, aj is constant and S0 = S[ai/aj ] )

S
�,~a; fail iff

I S |= �(~a) for some elements ~a from dom(S) with ai 6= aj

I and both ai , aj are constants.
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Chase

Definition

A chase sequence for S under M is a sequence of chase steps
Si

�i ,~ai; Si+1 such that
I S0 = S

I each �i is in M

I for each distinct i , j also (�i , ~ai ) 6= (�j , ~aj)

For a finite chase sequence the last instance is called its result.
I If the result is fail , then the sequence is said to be a failing

sequence
I If no further dependency from M can be applied to a result,

then the sequence is called successful.
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Indeterminism in Chase Construction

I Indeterminism regarding choice of nulls (no problem)
I Indeterminism regarding order of chosen tgds and egds

This may lead to different chase results.
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Use of Chases in Data Exchange
I A chase sequence for S under a M is a chase sequence for

(S, ;) under M�⌧ [M⌧

I If (S,T) result of a finite sequence, call just T the result

I Chase is the right tool for finding solutions

Proposition

Given M and source instance S.

I If there is a successful chase sequence for S with result T,

then T is a solution.

I If there is a failing chase sequence for S, then S has no

solution.

I The proposition does no cover all cases: non-terminating chase
I In this case there may still be a solution
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Weak Acyclicity

I In order to guarantee termination, restrict target constraints
I Reason for non-termination: generation of new nulls with same

dependencies

Example (Cycle in Dependencies)

I �1 = G (x , y) ! 9z L(y , z)
I �2 = L(x , y) ! 9z G (y , z)

Possible infinite generation

G (a, b)
�1; L(b,?1)

�2; G (?1,?2)
�1; L(?2,?3) . . .

I Problem caused by cycle in dependencies
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Simple Dependency Graphs
I Nodes: pairs (R , i) of predicate R and argument-position i

I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
8~x8~y�(~x , ~y) ! 9~z (~x , ~z) and

1. Rh occurs in  and Rb occurs in � and

2. for x 2 ~x in i-position in Rb
I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified

Example (Simple Dependency Graph with Cycle)

I �1 = G (y , x) ! 9z L(x , z)

I �2 = L(y , x) ! 9z G (x , z)
(L,1)

(G,1)

(L,2)

(G,2)

Set of tgds called acyclic if simple dependency graph is acyclic.
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Dependency Graphs (DG)
I Nodes: pairs (R , i) of predicate R and argument-position i

I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
8~x8~y�(~x , ~y) ! 9~z (~x , ~z) and

1. Rh occurs in  and Rb occurs in � and

2. for x 2 ~x in i-position in Rb
I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified;
in this case the edge is labelled by *

Example (Not weakly acyclic Dependency Graph)

I �1 = G (y , x) ! 9z L(x , z)

I �2 = L(y , x) ! 9z G (x , z)
(L,1)

(G,1)

(L,2)

(G,2)

* *

TGDs weakly acyclic iff DG has no cycle with a * edge.
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Termination for weakly acyclic tgds

Theorem

Let M = (�, ⌧,M�⌧ ,M⌧ ) be a mapping where M⌧ is the union of

egds and weakly acyclic tgds. Then the length of every chase

sequence for a source S is polynomially bounded w.r.t. the size of

S.

I In particular: Every chase sequence terminates
I Moreover: SOLEXISTENCEM can be solved in polynomial

time
I a solution can be constructed in polynomial time
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Undecidability of Universal Solution Existence

UNISOLEXISTENCEM

I Input: A source instance S

I Output: Is there a universal solution for S under M?

I Allowing arbitrary dependencies leads to undecidability
I Shown by reduction of halting problem to this problem

Theorem

There exists a relational mapping M = (�, ⌧,M�⌧ ,M⌧ ) s.t.

UNISOLEXISTENCEM is undecidable
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Desiderata

I Due to the undecidabiltiy result one has to constrain
dependencies

I Constraints such that the following are fulfilled:
(C1) Existence of solutions entails existence of universal solutions

(C2) UNIVSOLEXISTENCE decidable and even tractable

(C3) If solutions exists, then universal solutions should be

constructible in polynomial time
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Chase Helps Again

Theorem

Results of successful chase sequences are universal solutions (and

these are sometimes called canonical universal solutions).

Proof Sketch

I Have to show only universality of chase T

I Use the third definition of universality
I Let T0 be any solution
I Lemma: Adding facts in chase step preserves homomorphism

(If T1
�; T2 by dependency �, T3 fulfills � and there is h : T1

hom�! T3, then

there is h0 : T2
hom�! T3)

I Argue inductively starting from empty database ; and identity
homomorphism ; id; T0.
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Nice Properties of Universal Solutions

Theorem

Let M = (�, ⌧,M�⌧ ,M⌧ ) be a mapping where M⌧ is the union of

egds and weakly acyclic tgds. Then:

I UNISOLEXISTENCEM can be solved in PTIME (C2).

I And if solutions exist, then a universal solution exists (C1),

I and a canonical universal solution can be computed in

polynomial time (C3).
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Main Theorem for Cores

Theorem

1. If T 2 SOLM(S), then also core(T) 2 SOLM(S)

2. If T 2 UNIVSOLM(S) then also core(T) 2 UNIVSOLM(S)

3. If UNIVSOLM(S) 6= ;, then all T 2 UNIVSOLM(S) have

same core (up to renaming of NULLs), and the core of any

universal solution is the smallest universal solution
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