

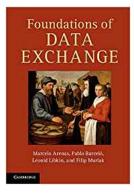
Özgür L. Özçep

Data Exchange 1

Lecture 6: Incomplete DBs, universal solutions, core, chase 14 May 2020

> Informationssysteme CS4130 (Summer 2020)

References



Lit: M. Arenas, P. Barceló, L. Libkin, and F. Murlak: Foundations of Data Exchange. Cambridge University Press, 2014.

Data Exchange: Motivation

Data Exchange History

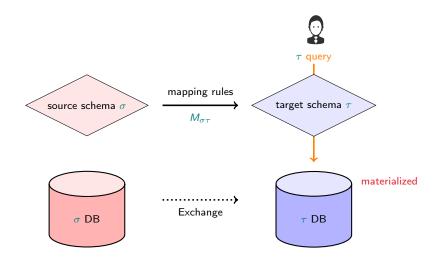
- Much research in DB community
- Formal treatment starts in 2003

Lit: R. Fagin et al. Data exchange: Semantics and query answering. In: Database Theory - ICDT 2003, Proceedings, volume 2572 of LNCS, pages 207–224. Springer, 2003.

Lit: R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y. Velegrakis. Conceptual modeling: Foundations and applications. chapter Clio: Schema Mapping Creation and Data Exchange, pages 198–236. Springer-Verlag, Berlin, Heidelberg, 2009.

- Incorporated into IBM Clio http://dblab.cs.toronto.edu/project/clio/
- A non-commercial DE system: http://www.db.unibas.it/projects/llunatic/

Data Exchange (DE): Main Setting



DE systems

- DE system $(\sigma, \tau, M_{\sigma\tau}, M_{\tau}) = \mathcal{DI}$ sytem
- A DE scenario = DE system + source (σ) DB-instance
- ► We call here a DE system also a (relational) mapping M (following Arenas et al. 2014)
- We will deal in detail with target constraints M_τ for DE systems (similar treatment for DI scenarios in virtual mode)

Relational Mappings Formally

Definition

A relational mapping ${\mathcal M}$ is a tuple of the form

 $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$

where

- σ is the source schema
- $\blacktriangleright~\tau$ is the target schema with all relation symbols different from those in σ
- ► $M_{\sigma\tau}$ is a finite set of FOL formulae over $\sigma \cup \tau$ called source-to-target dependencies
 - ► As in DI will consider source-to-target tuple generating dependencies (see lecture on DI)
 - But: In DE (according to Arenas et al. 2014) exact rules not considered: rules always from sources (body) to target (head)
- ► M_{\(\tau\)} is a set of constraints on the target schema called target dependencies

Target Dependencies M_{τ}

- These define constraints on target schema known also from classical DB theory
- Two different types of dependencies are sufficiently general to capture the classical DB constraints

Definition

A tuple-generating dependency (tgd) is a FOL formula of the form

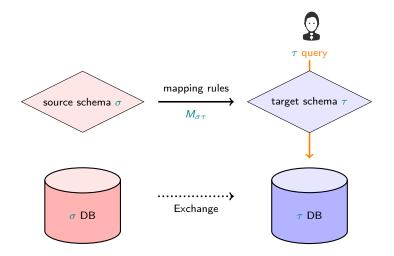
 $\forall \vec{x} \vec{y} (\phi(\vec{x}, \vec{y}) \longrightarrow \exists \vec{z} \ \psi(\vec{x}, \vec{z}))$

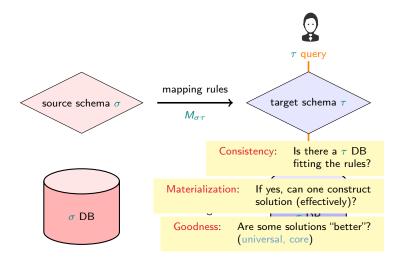
where ϕ, ψ are conjunctions of atoms over τ .

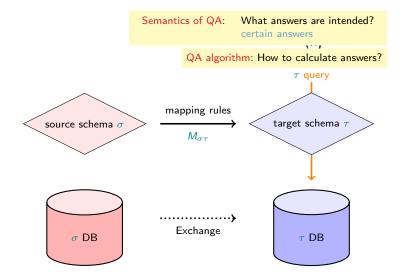
An equality-generating (egd) is a FOL formula of the form

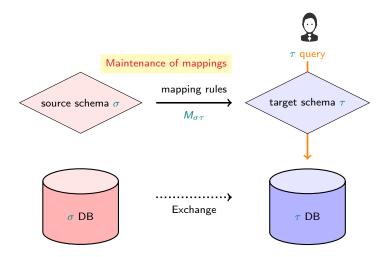
 $\forall \vec{x} (\phi(\vec{x}) \longrightarrow x_i = x_j)$

where $\phi(\vec{x})$ is a conjunction of atoms over τ and x_i, x_j occur in \vec{x} .









Running Example

Source schema σ

Geo(city,	coun,	pop)	
Flight(src,	dest,	airl,	dep)

Target schema τ

Route(fno, src, dest)

Info(<u>fno</u>, dep, arr, airl)

Serves(airl, city, coun, phone)

Target constraints $M_{ au}$

primary key: fno

foreign key: $Info[\underline{fno}] \subseteq_{FK} Route[\underline{fno}]$

Source schema σ Target schema τ Route(fno, src, dest) Geo(city, coun, pop) Flight(src, dest, airl, dep) Info(fno, dep, arr, airl) Serves(airl, city, coun, phone) Mapping rules $M_{\sigma\tau}$ 1. $Flight(src, dest, airl, dep) \longrightarrow$ $\exists fno \exists arr (Route(fno, src, dest) \land Info(fno, dep, arr, airl))$ 2. Flight(city, dest, airl, dep) \land Geo(city, coun, pop) \longrightarrow ∃phone (Serves(airl, city, coun, phone)) 3. Flight(src, city, airl, dep) \land Geo(city, coun, pop) \longrightarrow ∃phone (Serves(airl, city, coun, phone))

$M_{\sigma\tau}$ = source-to-target tuple generating dependencies

Sufficiently expressive FOL formula of feasible form (see lecture on \mathcal{DI})

Source schema σ and instance \mathfrak{S}	Target schema $ au$ and instance					
Geo(city, coun, pop) Flight(src, dest, airl, dep) paris sant. airFr 2320	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Mapping rules $M_{\sigma\tau}$						
1. $Flight(src, dest, airl, dep) \longrightarrow \\ \exists fno \exists arr (Route(fno, src, dest) \land Info(fno, dep, arr, airl))$						
2. $Flight(city, dest, airl, dep) \land Geo(city, coun, pop) \longrightarrow \exists phone (Serves(airl, city, coun, phone))$						
3. $Flight(src, city, airl, dep) \land Geo(city, coun, pop) \longrightarrow \exists phone (Serves(airl, city, coun, phone))$						

Solutions and Certain Answers

Materialization of a τ instance (τ solution)

 $\mathfrak{T} = \{ \textit{Route}(\perp_1, \textit{paris}, \textit{sant}), \textit{Info}(\perp_1, 2320, \perp_2, \textit{airFr}) \}$

- ▶ Non-complete DB: contains marked NULLs \bot_1, \bot_2
- Can answer τ -queries on \mathfrak{T} using Certain-Answer Semantics

DB Instances of Schemata

- Schemata are relational signatures
- Concrete/Complete database instance
 - For a given schema σ a concrete DB instance is a σ FOL structure with active domain
 - Active domain: Domain contains all and only individuals (also called constants) occurring in relations
 - Usually: All source instances are concrete DBs
- ► Generalized/Incomplete DB instances
 - For some attributes in target schema no corresponding attribute in source may exist (Example: flight number fno)
 - Next to constants CONST allow disjoint set VAR of marked NULLs
 - \blacktriangleright May contain elements from CONST \cup VAR

Definition (Certain answers over incomplete DB (formally))

$$cert(Q,\mathfrak{T}) = Q(\mathfrak{T}) = \bigcap_{\mathfrak{T}' \in Rep(\mathfrak{T})} Q(\mathfrak{T}')$$

 $Rep(\mathfrak{T}) =$ all complete DBs resulting from \mathfrak{T} by substituting marked NULLs (consistently) with constants

Example (Answer for au solution from flight domain)

• $\mathfrak{T} = \{ Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr) \}$

 $\begin{aligned} & \textit{Rep}(\mathfrak{T}) &= \{\{\textit{Route}(123,\textit{paris},\textit{sant}),\textit{Info}(123,2320,0815,\textit{airFr})\}, \\ & \{\{\textit{Route}(124,\textit{paris},\textit{sant}),\textit{Info}(124,2320,0915,\textit{airFr})\}, \end{aligned} \end{aligned}$

•
$$Q_1 = \exists fno Route(fno, paris, sant)$$

Q₂ = Route(123, paris, sant)

 $cert(Q_1, \mathfrak{T}) = \{()\} = yes$ $cert(Q_2, \mathfrak{T}) = \emptyset = no$

Source schema σ and instance \mathfrak{S} Target schema τ and instanceGeo(city, coun, pop)
Flight(src, dest, airl, dep)
paris sant. airFr 2320Route(fno, src, dest)
123, paris, sant.Info(fno, dep, arr, airl)
123, 2320, \bot_2 , airFr
Serves(airl, city, coun, phone)

Mapping rules $M_{\sigma\tau}$

1. Flight(src, dest, airl, dep) → ∃fno ∃arr (Route(fno, src, dest) ∧ Info(fno, dep, arr, airl))

Many au solutions $SOL_{\mathcal{M}}(\mathfrak{S})$

$$\begin{split} \mathfrak{T} &= \{ \textit{Route}(\bot_1,\textit{paris},\textit{sant}) \;, \; \textit{Info}(\bot_1,2320,\bot_2,\textit{airFr}) \} \\ \mathfrak{T}' &= \{ \textit{Route}(\bot_3,\textit{paris},\textit{sant}) \;, \; \textit{Info}(\bot_3,2320,\bot_2,\textit{airFr}) \} \\ \mathfrak{T}'' &= \{ \textit{Route}(\bot_1,\textit{paris},\textit{sant}) \;, \; \textit{Info}(\bot_1,2320,\bot_1,\textit{airFr}) \} \\ \mathfrak{T}''' &= \{ \textit{Route}(123,\textit{paris},\textit{sant}) \;, \; \textit{Info}(123,2320,\bot_2,\textit{airFr}) \} \\ \end{split}$$

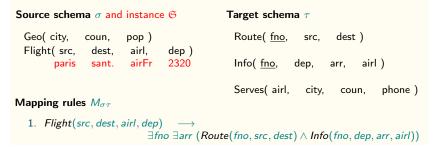
Good Solutions

One solution to rule them all ...

- In DE one aims at materializing exactly one τ solution!
- Is there a single solution \mathfrak{T}_u capturing the certain answers?

$$cert_{\mathcal{M}}(Q,\mathfrak{S}) \stackrel{?}{=} Q(\mathfrak{T}_u)$$

- Yes! Universal solution
 - Contains facts which are as specific as necessary, i.e., all other solutions more specific
 - ▶ Works for CQs = conjunctive queries (= SPJ fragment)
 - Universality fundamental property ubiquitous in CS
 - e.g., most general unifier in resolution
 - If existent, can be constructed by chase procedure



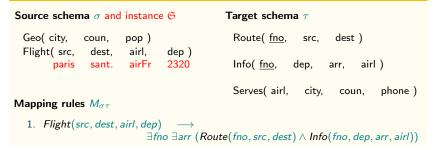
Universal solutions

 $\mathfrak{T} = \{Route(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr)\}$

 $\mathfrak{T}' = \{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$

 $\mathfrak{T}'' = \{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_1, airFr)\}$

$$\mathfrak{T}^{\prime\prime\prime\prime} = \{ Route(123, paris, sant), Info(123, 2320, \bot_2, airFr) \} \dots$$



Universal solutions

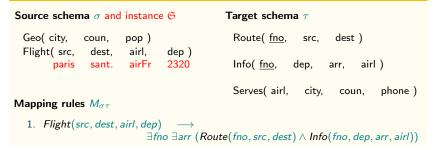
T	=	$\{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)\}$
---	---	--

 $\mathfrak{T}' = \{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$

 $\mathfrak{T}'' = \{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_1, airFr)\}$

 $\mathfrak{T}''' = \{ Route(123, paris, sant), Info(123, 2320, \bot_2, airFr) \} \dots$

non-necessary co-reference



Universal solutions

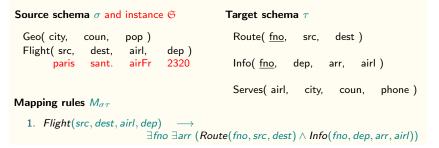
T	=	$\{$ Route $(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)\}$
---	---	--

 $\mathfrak{T}' = \{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$

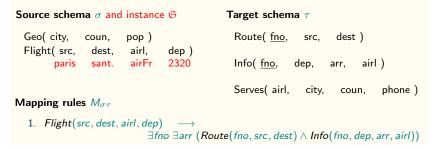
 $\mathfrak{T}'' = \{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_1, airFr)\}$

 $\mathfrak{T}^{\prime\prime\prime} = \{Route(123, paris, sant), Info(123, 2320, \perp_2, airFr)\}$

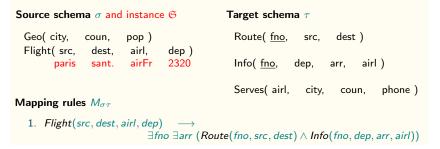
non-necessary instantiation



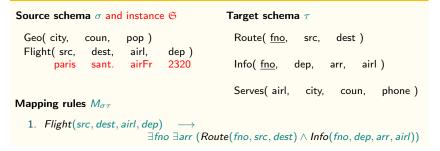
Universal solutions							
T	=	$\{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)\}$	Why is \mathfrak{T} universal?				
\mathfrak{T}'	=	$\{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$					
\mathfrak{T}''	=	$\{\textit{Route}(\perp_1,\textit{paris},\textit{sant}),\textit{Info}(\perp_1,2320,\perp_1,\textit{airFr})\}$					
$\mathfrak{T}^{\prime\prime\prime}$	=	$\{Route(123, paris, sant), Info(123, 2320, \bot_2, airFr)\}$					



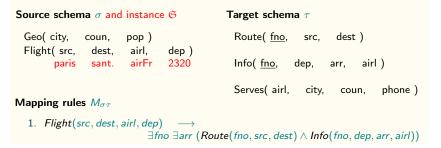
Universal solutions						
$ 1 \mapsto 2 \int_{1}^{2}$	=	${Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)}$ ${Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)}$	Why is \mathfrak{T} universal?			
$\pm 1 $ $\rightarrow \pm 3 $ $\qquad \qquad $	=	$\{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$				
\mathfrak{T}''	=	$\{\textit{Route}(\perp_1,\textit{paris},\textit{sant}),\textit{Info}(\perp_1,2320,\perp_1,\textit{airFr})\}$				
$\mathfrak{T}^{\prime\prime\prime}$	=	{ $Route(123, paris, sant), Info(123, 2320, \bot_2, airFr)$ }				



Universal solutions						
(- T	=	{Route(\perp_1 , paris, sant), Info(\perp_1 , 2320, \perp_2 , airFr)} {Route(\perp_3 , paris, sant), Info(\perp_3 , 2320, \perp_2 , airFr)} {Route(\perp_1 , paris, sant), Info(\perp_1 , 2320, \perp_1 , airFr)}	Why is ${\mathfrak T}$ universal?		
$\perp_2 \mapsto \perp_1$	\mathfrak{T}'	=	$\{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$			
\$	\mathfrak{T}''	=	$\{\textit{Route}(\perp_1,\textit{paris},\textit{sant}),\textit{Info}(\perp_1,2320,\perp_1,\textit{airFr})\}$			
a a	Σ′′′	=	$\{Route(123, paris, sant), Info(123, 2320, \bot_2, airFr)\}$			



	Unive	rsal s	oluti	ions	
	/	<u> </u>	=	$\{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)\}$	Why is ${\mathfrak T}$ universal?
$\perp_1 \mapsto$	→ 123	\mathfrak{T}'	=	$\{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$	
		$\mathfrak{T}^{\prime\prime}$	=	$\{Route(\bot_3, paris, sant), Info(\bot_3, 2320, \bot_2, airFr)\}$ $\{Route(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_1, airFr)\}$	
		₹‴	=	{ $Route(123, paris, sant), Info(123, 2320, \perp_2, airFr)}$	



Universal solutions

 $\mathfrak{T} = \{Route(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr)\}$

 $\mathfrak{T}' = \{Route(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_2, airFr)\}$

 $\mathfrak{T}'' = \{Route(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_1, airFr)\}$

 $\mathfrak{T}^{\prime\prime\prime} = \{Route(123, paris, sant), Info(123, 2320, \perp_2, airFr)\}\dots$

Any universal solution works: $cert_{\mathcal{M}}(Q,\mathfrak{S}) = Q(\mathfrak{T}) = Q(\mathfrak{T})$

Homomorphism

- $CONST(\mathfrak{T}) = set of all constants in \mathfrak{T}$
- $VAR(\mathfrak{T}) = \text{set of all marked nulls in }\mathfrak{T}$

Definition

A homomorphism $h: \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ is a map

 $h: Var(\mathfrak{T}) \cup CONST \rightarrow VAR(\mathfrak{T}') \cup CONST$

s.t.

- h(c) = c for all $c \in CONST$ and
- ▶ if $R(t_1, ..., t_n) \in \mathfrak{T}$, then $R(h(t_1), ..., h(t_n)) \in \mathfrak{T}'$ (for all relations R)

Definition (Universal Solution)

A solution \mathfrak{T} for \mathfrak{S} and \mathcal{M} is called a universal solution iff it can be mapped homomorphically into all other solutions.

```
For all \mathfrak{T}' \in SOL_{\mathcal{M}}(\mathfrak{S}) there is h : \mathfrak{T} \stackrel{hom}{\longrightarrow} \mathfrak{T}'
```

Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let $h : \mathfrak{S} \xrightarrow{hom} \mathfrak{S}'$ and Q be a (U)CQ. Then: For all tuples \vec{a} from the domain of \mathfrak{S} :

- If $\vec{a} \in Q(\mathfrak{S})$, then $h(\vec{a}) \in Q(\mathfrak{S}')$
- If \mathfrak{S} is complete, then even $Q(\mathfrak{S}) \subseteq Q(\mathfrak{S}')$
- Corollary: $cert(Q, \mathfrak{S}) \subseteq cert(Q, \mathfrak{S}')$

Example (Non-existence of Universal Solutions)

•
$$M_{\sigma\tau} = \{ E(x, y) \rightarrow G(x, y) \}$$

- ► $M_{\tau} = \{ G(x, y) \rightarrow \exists z \ L(y, z), \quad L(x, y) \rightarrow \exists z \ G(y, z) \}$
- Source instance $\mathfrak{S} = \{E(a, b)\}$
- $\mathfrak{T} = \{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

Proof sketch (by contradiction)

- ► A universal solution T must have an infinite sequence (𝔅, {G(a, b), L(b, ν₁), G(ν₁, ν₂), L(ν₂, ν₃), G(ν₃, ν₄)...})
- Consider case where $\nu_{2i-1} = a$ and define solution $\mathfrak{T}' = \{G(a, b), L(b, c_1), G(c_1, c_2), L(c_2, c_3), \dots, G(c_j, c_{j-1}) \text{ for } 2i < j \text{ and fresh } c_i$
- There must be an $h: \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$.
- ▶ But then $h(\nu_l) = c_l$ and hence $h(\nu_{2i-1}) = c_{2i-1}$, but also $h(\nu_{2i-1}) = h(a) = a$, so $c_{2i-1} = a$, **4**

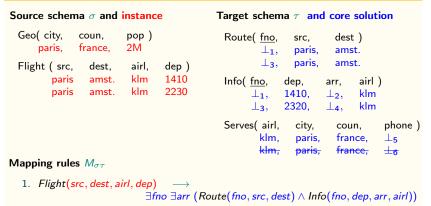
Example (Core in Flight Domain)

Source schem	na σ and	instance	e	Target schema $ au$			
Geo(city, <mark>paris</mark> ,	coun, <mark>france</mark> ,	pop) <mark>2M</mark>		Route(<u>fno</u> ,	src,	dest)	
Flight (src, paris paris	amst.		dep) 1410 2230	Info(<u>fno</u> , c	lep,	arr, airl)
				Serves(airl,	city,	coun,	phone)

Mapping rules $M_{\sigma\tau}$

 Flight(src, dest, airl, dep) → ∃fno ∃arr (Route(fno, src, dest) ∧ Info(fno, dep, arr, airl))
 Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) → ∃phone (Serves(airl, city, coun, phone))
 Flight(src, city, airl, dep) ∧ Geo(city, coun, pop) → ∃phone (Serves(airl, city, coun, phone))

Example (Core in Flight Domain)



2. $Flight(city, dest, airl, dep) \land Geo(city, coun, pop) \longrightarrow$

∃phone (Serves(airl, city, coun, phone))

3. Flight(src, city, airl, dep)

Why not delete similarly $Route(\perp_3, paris, amst)$?

There are additional facts distinguishing \bot_1 and \bot_3 Identification $\bot_1 = \bot_3$ would violate primary key constraint Better than Universal? The Core! (in some sense)

- Universal solutions may still contain redundant information
- Seeking for smallest universal solutions: cores
- \mathfrak{T}' is subinstance of \mathfrak{T} , for short $\mathfrak{T}' \subseteq \mathfrak{T}$, iff $R^{\mathfrak{T}'} \subseteq R^{\mathfrak{T}}$ for all relation symbols R

Definition

A subinstance $\mathfrak{T}' \subseteq \mathfrak{T}$ is a core of \mathfrak{T} iff there is $h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ but there is no homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}' .

Intuitively: An instance can be retracted (structure preservingly) to its core but not further

Properties of Cores

Definition

A subinstance $\mathfrak{T}' \subseteq \mathfrak{T}$ is a core of \mathfrak{T} iff there is $h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}' .

Proposition

- 1. Every instance has a core.
- All cores of the same instance are isomorphic (same up to renaming of NULLs) (⇒ Talk of the core justified)
- 3. Two instances are homomorphically equivalent (= there exists a homomorphism from one into the other and vice versa) iff their cores are isomorphic
- 4. If \mathfrak{T}' is core of \mathfrak{T} , then there is $h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ s.t. $h(\nu) = \nu$ for all $\nu \in DOM(\mathfrak{T}')$

Core Solution vs. Universal Solution

- Core solutions contain less redundant information and are unique
- but are harder to construct

- Which one to use?
 - Aim "only" answering CQs \implies universal solution
 - Aim goes further \implies core solution
 - Need to query with more expressive language (negation, counting)
 - Need to calculate sufficient statistics in an ML algorithm

Testing for and Constructing Solutions

Reminder: Solutions

Definition

Given: a mapping \mathcal{M} and a σ instance \mathfrak{S}

A τ instance \mathfrak{T} is called a solution for \mathfrak{S} under \mathcal{M} iff ($\mathfrak{S},\mathfrak{T}$) satisfies all rules in $M_{\sigma\tau}$ (for short: ($\mathfrak{S},\mathfrak{T}$) $\models M_{\sigma\tau}$) and \mathfrak{T} satisfies all rules in M_{τ} .

Reminder: Solutions

Definition

Given: a mapping \mathcal{M} and a σ instance \mathfrak{S}

A τ instance \mathfrak{T} is called a solution for \mathfrak{S} under \mathcal{M} iff ($\mathfrak{S},\mathfrak{T}$) satisfies all rules in $M_{\sigma\tau}$ (for short: ($\mathfrak{S},\mathfrak{T}$) $\models M_{\sigma\tau}$) and \mathfrak{T} satisfies all rules in M_{τ} .

- ▶ $(\mathfrak{S},\mathfrak{T}) \models M_{\sigma\tau}$ iff $\mathfrak{S} \cup \mathfrak{T} \models M_{\sigma\tau}$ where
 - $\mathfrak{S} \cup \mathfrak{T}$ is the union of the instances $\mathfrak{S}, \mathfrak{T}$: Structure containing all relations from \mathfrak{S} and \mathfrak{T} with domain the union of domains of \mathfrak{S} and \mathfrak{T}
 - well defined because schemata are disjoint
- $Sol_{\mathcal{M}}(\mathfrak{S})$: Set of solutions for \mathfrak{S} under \mathcal{M}

First Key Problem: Existence of Solutions

Problem: SOLEXISTENCE $_{\mathcal{M}}$

Input: Source instance \mathfrak{S} Output: Answer whether there exists a solution for \mathfrak{S} under $\mathcal M$

- \blacktriangleright Note: ${\cal M}$ is assumed to be fixed \Longrightarrow data complexity
- This problem is going to be approached with a well known proof tool: chase

Trivial Case: No Target Dependencies

Without target constraints there is always a solution

Proposition

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau})$ with $M_{\sigma\tau}$ consisting of st-tgds. Then for any source instance \mathfrak{S} there are infinitely many solutions and at least one solution can be constructed in polynomial time.

Proof Idea

- ► For every rule and every tuple a fulfilling the antecedens generate facts according to the succedens (using fresh named nulls for the existentially quantified variables)
- Resulting au instance \mathfrak{T} is a solution
- Polynomial: Testing whether a fulfills the head (a conjunctive query) can be done in polynomial time
- \blacktriangleright Infinity: From ${\mathfrak T}$ can build any other solution by extension

Undecidability for General Constraints

Theorem

There is a relational mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ such that SOLEXISTENCE_{\mathcal{M}} is undecidable.

- Proof by reduction from embedding problem for finite semigroups which is known to be undecidable (Arenas et al. 2014, Thm 5.3)
- As a consequence: Further restrict mapping rules
- But note that the following chase construction defined for arbitrary st-tgds

Chase Construction

- A widely used tool in DB theory
- Original use: Calculating entailments of DB constraints (Maier et al, 1979)
- Idea
 - Apply tgds as completion/repair rules in a bottom-up strategy
 - until no tgds can be applied anymore
 - Chase construction mail fail if one of the egds is violated
- The chase leads to an instance with desirable properties
 - It produces not too many redundant facts
 - Universality

Lit: D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM Trans. Database Syst., 4(4):455–469, Dec. 1979.

Example (Terminating c(h)ase)

► Source schema $\sigma = \{E\}$; target schema $\tau = \{G, L\}$

•
$$M_{\sigma\tau} = \{ \underbrace{E(x,y) \to G(x,y)}_{\theta_1} \}$$

 $M_{\tau} = \{ \underbrace{G(x,y) \to \exists z \ L(y,z)}_{\chi_1} \}$

- ► Source instance S = {E(a, b)}
- ► Going to build stepwise potential target instances \$\mathcal{I}_i\$ considering pairs (\$\mathcal{S},\$\mathcal{I}_i\$)
- ► (𝔅,∅)
- ▶ (𝔅, {(a, b)})
- ($\mathfrak{S}, \{G(a, b), L(b, \bot)\}$)

(violates θ_1) (violates χ_1) (termination)

Example (Non-terminating c(h)ase)

► Source schema $\sigma = \{E\}$; target schema $\tau = \{G, L\}$

$$M_{\sigma\tau} = \{ \underbrace{E(x,y) \to G(x,y)}_{\theta_1} \}$$

$$M_{\tau} = \{ \underbrace{G(x,y) \to \exists z \ L(y,z)}_{\chi_1}, \underbrace{L(x,y) \to \exists z \ G(y,z)}_{\chi_2} \}$$

► Source instance S = {E(a, b)}

▶ (\mathfrak{S}, \emptyset) (violates θ_1) ▶ ($\mathfrak{S}, \{G(a, b)\}$) (violates χ_1) ▶ ($\mathfrak{S}, \{G(a, b), L(b, \bot)\}$) (violates χ_2) ▶ ($\mathfrak{S}, \{G(a, b), L(b, \bot), G(\bot, \bot_1)\}$) (violates χ_1) ▶ ($\mathfrak{S}, \{G(a, b), L(b, \bot), G(\bot, \bot_1), L(\bot_1, \bot_2)\}$) (violates χ_2) ▶ (non-termination)

Chase Definition

• Let \mathfrak{S} be a σ instance and $dom(\mathfrak{S})$ its domain

Definition (Chase steps)

 $\mathfrak{S} \stackrel{\chi,\vec{a}}{\leadsto} \mathfrak{S}'$ iff

- 1. χ is a tgd of the form $\phi(\vec{x}) \rightarrow \exists \vec{y} \psi(\vec{x}, \vec{y})$ and
 - $\mathfrak{S} \models \phi(\vec{a})$ for some elements \vec{a} from $dom(\mathfrak{S})$
 - \mathfrak{S}' extends \mathfrak{S} with all atoms occurring in $\psi(\vec{a}, \vec{\perp})$.
- 2. or χ is an egd of form $\phi(\vec{x}) \rightarrow x_i = x_j$ and
 - $\mathfrak{S} \models \phi(\vec{a})$ for some elements \vec{a} from $dom(\mathfrak{S})$ with $a_i \neq a_j$ and
 - (a_i is constant or a null, a_j is a null and G' = G[a_j/a_i] or a_i is a null, a_j is constant and G' = G[a_i/a_j])

 $\mathfrak{S} \stackrel{\chi,\vec{a}}{\leadsto} \mathit{fail}$ iff

• $\mathfrak{S} \models \phi(\vec{a})$ for some elements \vec{a} from $dom(\mathfrak{S})$ with $a_i \neq a_j$

• and both a_i, a_j are constants.

Chase

Definition

A chase sequence for \mathfrak{S} under M is a sequence of chase steps $\mathfrak{S}_i \overset{\chi_i, \vec{a}_i}{\leadsto} \mathfrak{S}_{i+1}$ such that

- $\mathfrak{S}_0 = \mathfrak{S}$
- each χ_i is in M
- for each distinct i, j also $(\chi_i, \vec{a_i}) \neq (\chi_j, \vec{a_j})$

For a finite chase sequence the last instance is called its result.

- If the result is *fail*, then the sequence is said to be a failing sequence
- ► If no further dependency from *M* can be applied to a result, then the sequence is called successful.

Indeterminism in Chase Construction

- Indeterminism regarding choice of nulls (no problem)
- Indeterminism regarding order of chosen tgds and egds This may lead to different chase results.

Use of Chases in Data Exchange

- A chase sequence for S under a M is a chase sequence for
 (S, ∅) under M_{στ} ∪ M_τ
- If $(\mathfrak{S}, \mathfrak{T})$ result of a finite sequence, call just \mathfrak{T} the result
- Chase is the right tool for finding solutions

Proposition

Given \mathcal{M} and source instance \mathfrak{S} .

- ► If there is a successful chase sequence for S with result S, then S is a solution.
- ► If there is a failing chase sequence for G, then G has no solution.
- ► The proposition does no cover all cases: non-terminating chase
- In this case there may still be a solution

Weak Acyclicity

- In order to guarantee termination, restrict target constraints
- Reason for non-termination: generation of new nulls with same dependencies

Example (Cycle in Dependencies)

•
$$\chi_1 = G(x, y) \rightarrow \exists z \ L(y, z)$$

• $\chi_2 = L(x, y) \rightarrow \exists z \ G(y, z)$

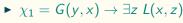
Possible infinite generation

 $G(a,b) \stackrel{\chi_1}{\sim} L(b,\perp_1) \stackrel{\chi_2}{\sim} G(\perp_1,\perp_2) \stackrel{\chi_1}{\sim} L(\perp_2,\perp_3) \dots$

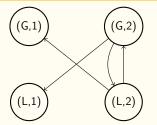
Simple Dependency Graphs

- ▶ Nodes: pairs (R, i) of predicate R and argument-position i
- ► Edges: From (R_b, i) to (R_h, j) iff there is a tgd $\forall \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y}) \rightarrow \exists \vec{z} \psi(\vec{x}, \vec{z})$ and
 - 1. R_h occurs in ψ and R_b occurs in ϕ and
 - 2. for $x \in \vec{x}$ in *i*-position in R_b
 - either x occurs in *j*-position in R_h
 - or the variable in *j*-position in R_h is existentially quantified

Example (Simple Dependency Graph with Cycle)



•
$$\chi_2 = L(y, x) \rightarrow \exists z \ G(x, z)$$



Set of tgds called acyclic if simple dependency graph is acyclic.

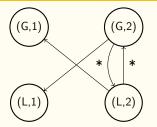
Dependency Graphs (DG)

- ▶ Nodes: pairs (R, i) of predicate R and argument-position i
- ► Edges: From (R_b, i) to (R_h, j) iff there is a tgd $\forall \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y}) \rightarrow \exists \vec{z} \psi(\vec{x}, \vec{z})$ and
 - 1. R_h occurs in ψ and R_b occurs in ϕ and
 - 2. for $x \in \vec{x}$ in *i*-position in R_b
 - either x occurs in *j*-position in R_h
 - or the variable in *j*-position in *R_h* is existentially quantified; in this case the edge is labelled by *

Example (Not weakly acyclic Dependency Graph)

•
$$\chi_1 = G(y, x) \rightarrow \exists z \ L(x, z)$$

•
$$\chi_2 = L(y, x) \rightarrow \exists z \ G(x, z)$$



TGDs weakly acyclic iff DG has no cycle with a * edge.

Termination for weakly acyclic tgds

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds. Then the length of every chase sequence for a source \mathfrak{S} is polynomially bounded w.r.t. the size of \mathfrak{S} .

- In particular: Every chase sequence terminates
- ► Moreover: SOLEXISTENCE_M can be solved in polynomial time
- a solution can be constructed in polynomial time

Undecidability of Universal Solution Existence

$\mathsf{UNISOLEXISTENCE}_{\mathcal{M}}$

- ► Input: A source instance S
- ▶ Output: Is there a universal solution for 𝔅 under 𝓜?
- Allowing arbitrary dependencies leads to undecidability
- Shown by reduction of halting problem to this problem

Theorem

There exists a relational mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ s.t. UNISOLEXISTENCE_{\mathcal{M}} is undecidable

Desiderata

- Due to the undecidability result one has to constrain dependencies
- Constraints such that the following are fulfilled:
 (C1) Existence of solutions entails existence of universal solutions
 - (C2) UNIVSOLEXISTENCE decidable and even tractable
 - (C3) If solutions exists, then universal solutions should be constructible in polynomial time

Chase Helps Again

Theorem

Results of successful chase sequences are universal solutions (and these are sometimes called canonical universal solutions).

Proof Sketch

- \blacktriangleright Have to show only universality of chase ${\mathfrak T}$
- Use the third definition of universality
- Let \mathfrak{T}' be any solution
- ► Lemma: Adding facts in chase step preserves homomorphism (If $\mathfrak{T}_1 \stackrel{\chi}{\to} \mathfrak{T}_2$ by dependency χ , \mathfrak{T}_3 fulfills χ and there is $h: \mathfrak{T}_1 \stackrel{hom}{\longrightarrow} \mathfrak{T}_3$, then there is $h': \mathfrak{T}_2 \stackrel{hom}{\longrightarrow} \mathfrak{T}_3$)
- Argue inductively starting from empty database Ø and identity homomorphism Ø ^{id}→ 𝔅'.

Nice Properties of Universal Solutions

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds. Then:

- ▶ UNISOLEXISTENCE_M can be solved in PTIME (C2).
- ▶ And if solutions exist, then a universal solution exists (C1),
- ► and a canonical universal solution can be computed in polynomial time (C3).

Main Theorem for Cores

Theorem

- 1. If $\mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S})$, then also $core(\mathfrak{T}) \in SOL_{\mathcal{M}}(\mathfrak{S})$
- 2. If $\mathfrak{T} \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$ then also $core(\mathfrak{T}) \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$
- If UNIVSOL_M(𝔅) ≠ Ø, then all 𝔅 ∈ UNIVSOL_M(𝔅) have same core (up to renaming of NULLs), and the core of any universal solution is the smallest universal solution