Ozgiir L. Ozcep

Data Exchange 2

Lecture 7: Query Answering by Rewriting, Mapping

Management
28 May 2020

Informationssysteme CS4130
(Summer 2020)

Query Answering

Remember: Certain Answers
» Given mapping M = (0,7, My, M)

» Semantics of query answering specified as certain answer
semantics

The certain answers of query @ over 7 for given instance & is
defined as

certp(Q, 6) = ﬂ{ cert(Q, %) | T € SOLp(S) }

» We saw: In many cases it is not necessary to compute all
solutions to get certain answers = universal solutions

» But as universal solution T (usually) is an incomplete DB, we
would have to consider all completions (requires: cert(Q,T))

» Sometimes this is not required = Query rewriting

3/46

Certain Answers Naively

Definition (Naive evaluation strategy for general DBs)
For an arbitrary general DB & the set of answers following a naive
evaluation strategy, for short Qpaive(S), is calculated as follows:

» Treat marked NULLS in & as constants
(i.e. L = L is true but not L = c and not L = L)

» Calculate Q(S) under this perspective
(treating & as ordinary complete DB)

» and then eliminate all tuples from Q(&) containing a NULL

4/46

Certain Answers Naively

For UCQs Q:

Cert(6> Q) = Qnaive(G)

Proof sketch:
» For every &’ € Rep(S) there is & hom &

» As homomorphisms preserve answers of CQs:
Qnaive(©) = NULL-free tuples in Q(S) € g/cgep(e) Q)

> Qnaive(S) 2 mG’ERep(G) Q&)
because & can be considered as its own completion (when
treating NULLs consistently as constants).
Lit: T. Imielinski and W. Lipski, Jr. Incomplete information in relational

databases. J. ACM, 31(4):761-791, Sept. 1984.

5 /46

Use of naive strategy for DE

Definition (Naive Evaluation Strategy for DEs)

certpm (S, Q) = Qnaive(T)

where T is a universal solution for M and &.

» This strategy works also for Datalog programs as constraints
for the target schema 7

» Reason: Datalog programs are preserved under homomorphisms
» Even if one adds inequalities, naive evaluation works
» Hence certain answering is here in PTime

6 /46

Rewritability

» Naive evaluation is a form of

» Again: Fundamental method that re-appears in different areas
of CS

» Rewrite a query w.r.t. a given KB into a new query that
“contains” the knowledge of KB

v

Challenges
» Preserve the semantics in the rewriting process:
ensure correctness (easy) and completeness (difficult)
» The language of the output query is constraint to a “simple
language” (so rewritability not always guaranteed)

7/46

Rewritability for DE

Definition (FOL Rewritability)
Let M = (0,7, M-, M;) be a mapping and Q be a query over 7.

Then @ is said to be FOL-rewritable over canonical universal
solutions () under M iff there is a FOL query Qe, over 7€ st

certM(Q, 6) = Qrew(z)

» Here 7¢ = 7 U {C} where
unary predicate C depicts all constants (not NULLs) in targets

» C works like a type predicate

8/ 46

Rewritability for DE

Definition (FOL Rewritability)

Let M = (0,7, M,-, M;) be a mapping and Q be a query over 7.

Then Q is said to be FOL-rewritable over canonical universal
solutions (¥) under M iff there is a FOL query Qe over 7€ st.

certpm(Q, &) = Qrew(T)

Note: One must find one rewriting for any given pair of source &
and universal solution T

» The known component is the mapping M

» The unknown components are all pairs (S, T)

9/46

Rewritability for DE

Definition (FOL Rewritability)
Let M = (0,7, My,, M;) be a mapping and @ be a query over 7.

Then Q is said to be FOL-rewritable over canonical universal
solutions under M iff there is a FOL query Qe,, over 7€ such that

CertM(Q7 6) = Qrew(s)

If, in the definition, one talks about cores T instead of universal
solutions then Q is said to be FOL-rewritable over cores

Theorem

For mappings without target dependencies:
FOL-rewrit. over core = FOL-rewrit. over universal solution,
but not vice versa.

10 /46

Rewritability for DE
Definition (FOL-Rewritability)
Let M = (0,7, My,, M;) be a mapping and @ be a query over 7.

Then @ is said to be FOL-rewritable over canonical universal
solutions under M iff there is a FOL query Qe,, over 7€ such that

certM(Q, 6) = Qrew(g)

» Q(X): a conjunctive query

> Qrew: Q()?) A C(Xl) Neoo N C(X,-,)
This is actually the syntactic form of Qe

» The rewriting is even independent of M
» So: (U)CQs are rewritable for any mapping

11/46

Adding Negations to Query Language

» Negations in query languages lead to loss of naive rewriting
technique
» Even if one allows negation only within inequalities

Definition (Conjunctive Queries with inequalities CQ7)

A conjunctive query with inequalities is a query of the form
Q()?) = 3}7 (al()?laﬁ) ASERRA an()(_;lay;l))

where «; is either an atomic relational formula or an inequality

=5 Vi

12 /46

Example (No Naive Evaluation Possible)

Source DB Target DB

Flight (src, dest, airl, dep) Routes(fno, src, dest)

vvyy

paris sant. airFr 2320 .
paris sant. lan 2200 Info(fno, ~dep, —arr, airl)

Dependencies M, ,

Flight(src, dest, airl, dep) —
3fno 3 arr(Routes(fno, src, dest) A Info(fno, dep, arr, airl))

Any universal solution T’ contains as sub-instance universal 7-solution

% = { Routes(Ll1, paris, sant), Info(L1,2320, Lo, airFr),
Routes(L3, paris, sant), Info(L3,2320, L4, lan) }

Query Q(x, z) = Jy3y’(Routes(y, x,z) A Routes(y’,x,z) Ay #y')
Qnaive(T') = {(paris, sant)} (for any universal solution T")
But: certp(Q(x, z), S) = () because there is a solution

T = { Routes(l1, paris, sant), Info(L1,2320, L, airFr),
Info(L1,2320, 1>, /an) } 13/46

CQ7 is in coNP

» In case of CQ7 one cannot even find a tractable means to
answer them w.r.t. certain answer semantics

Theorem

Let M = (0,7, My,, M;) be a mapping where M. is the union of
egds and weakly acyclic tgds, and let Q be a UCQ7 query. Then:

CERTAIN(Q) is in coNP

14/ 46

Non-rewritability

» Generally it is not possible to decide whether rewritability holds

For mappings without target constraints one can not decide

whether a given FOL query is rewritable over the canonical
solutions (over the core).

» Showing Non-FOL-rewritability can be done with locality tools
» Actually: One uses (adapted) Hanf-locality

15 /46

Not Covered in our DE Lectures

» Different semantics for query answering

» Combinations of open-world (certain answers) and closed-word
semantics

» DE for non-relational DBs

» e.g., DE for semi-structured data (XML)
» requires techniques other than that for relational DE

» Rest of this lecture: mapping management
» How to maintain mappings w.r.t. consistency (only a few
remarks today)
» How to compose mappings
» How to invert mappings: Get back source DB from target DB

16 /46

Motivation Mapping Management

Consistency of Mappings

» So far: Considered existence of 7-solutions given o-instance in
mapping M
» Now: Given only M

» consistency/local consistency of M: Is there a o-instance s.t.
there is a 7-solution

» Absolute consistency/Global consistency: Is there for each
o-instance a 7-solution?

18 /46

Mapping Evolution

» Mappings may change due to schema evolution

» Target schema changes: need
» Source schema changes: need
» Can think of other operations (merge of mappings ...)

19/ 46

Composition for Target Schema Change

| <

T

mapping rules

 ——
Mg+

source schema o target schema 7

............ >

Exchange Exchange

materialized =~ materialized

Exchange

20/ 46

Example (DE in Flig main)

Source schema o Target schema 7
Geo(city, coun, pop) Route(fno, src, dest)
Flight(src, dest, airl, dep) Info(fno, dep, arr, airl)
Serves(airl, city, coun, phone)

Mapping rules M, -

1. Flight(src, dest, airl, dep) ~— 3fno Jarr (Route(fno, src, dest) A Info(fno, dep, arr, airl))
2. Flight(city, dest, airl, dep) N\ Geo(city, coun, pop) — 3phone (Serves(airl, city, coun, phone))
3. Flight(src, city, airl, dep) N\ Geo(city, coun, pop) ~ — phone (Serves(airl, city, coun, phone))

New target schema 7’

InfoAirline(airline, city, coun, phone, year)
InfoJourney(fno, source, dep, dest, arr, airl)
Mapping rules M__,
1. Serves(airl, city, coun, phone) ~ —— Jyear InfoAirline(airl, city, coun, phone, year)

2. Route(fno, src, dest) A Info(fno, dep, arr, airl) ~ — InfoJourney(fno, dep, dest, arr, airl)

Composed rules M, o M__,

1. Flight(src, dest, airl, dep) ~ —— 3fno Jarr (InfoJourney(fno, src, dep, dest, arr, airl))

2. Flight(city, dest, airl, dep) N\ Geo(city, coun, pop) — —
Iphone Tyear InfoAirline(airl, city, coun, phone, year)

3. Flight(src, city, airl, dep) N\ Geo(city, coun, pop) — —
Iphone Tyear InfoAirline(airl, city, coun, phone, year)

21/46

Inverse for Source Schema Change

Composed mapping (M,,/)~1 o M,/

T

| \ 4

mapping rules

mapping rules

—_— target schema 7
My~

source schema o’ source schema o

Exchange

materialized

22 /46

Main question: Closure

» Are mappings closed under
» composition?
> inverse?

> In general they are not

» Solution: Use second order logic with

23 /46

Mapping Composition

» Treat mappings as binary relations
[M,7,] = set of pairs (source 71-instance, m»-solution)

Definition (Mapping composition)

Given schemata o, 7, 7/ and mappings M., M ... The
composition of M., M./ is defined by

Mor] o [Mrr] = {(&,F')]| thereis T-instance T s.t.
(6,%) € [Mor] and (T,T') € [M-~]}

» Note: Semantics of composition does not say whether there
exist rule set M representing [M.] o [M,/].

(That is the whole point of the closure problem)

25 /46

» o : { Takes(name, course)}

» 7 : {Takes1l(name, course), Student(name, sid)}
» 7' : {Enrolled(sid, course)}

> Mor:
{Takes(n,c) — Takesl(n,c), Takes(n, c) — 3IsStudent(n,s)}

» M., : {Student(n,s) N\ Takesl(n,c) — Enrolled(s,c)}

» No st-tgd represents M, o M./, in particular not st-tgd:
Takes(n, c) — JyEnrolled(y, c)

» Intuitively need to express dependency f : n — sid
Takes(n, c) — Enrolled(f(n), c)

» f called Skolem function
26 /46

Complexity of Relational Composition

Problem COMPOSITION(M ., M)

» INPUT: Instance G of o and instance T’ of 7/
» Output: Is (&,F') € [My,] o [M]?

» For mappings M, and M. ... specified by st-tgds,
COMPOSITION(M g7y M11) is NP.

» One can find M and M _, represented by st-tgds for which
COMPOSITION(M, ., M) is NP-complete.

Proof by reducing from NP-hard problem of 3-colorability

27 /46

Non-closure of FOL

Corollary

For the mappings M, and M’ _, specified by st-tgds there is no
finite set of FOL formulae representing their composition.
Proof sketch

» Assume for contradiction there is set X of FOL formulae for
the composition.

» Then the NP-hard COMPOSITION(M, ., M) reduces to
checking (6.%) |= X

» which is in ACO
» But ACY C NP, 7.

28 /46

Definition (SO tgds)

Given disjoint schemata o, 7, a second-order tuple-generating
dependency from o to 7 is a formula of the form

3. I (VR (B = 1) A - - AVRR(bn —)

where
» each f; is a function symbol

» each ¢; is conjunction of relational formulae R(yi, ..., yx) or
identities t = t’ with y; from X and ¢, t" are terms built from

{Xiyfiy. ooy}

» 1; is conjunction of form R(t1,....t;) and t; built from
{Xi, iy}

» each variable in X; appears in some relational atom of ¢;

fi,...,fy are called Skolem functions

29 /46

Semantics of SO tgds

» As in second order logic but requiring that (k-ary) fs are
interpreted by k-ary functions of form

f : (CONST U VAR)¥ —s CONST U VAR

30/46

SO tgds do the job

» For mappings M. and M ... specified by SO tgds > ,,, > ../,
resp., there is a set of SO tgds representing [M] o [M,/].

» Moreover there is an exponential-time algorithm computing
the composition.

» This theorem applicable to mappings described by FOL st-tgds:
Transform st-tgds into SO tgds using skolemization

31/46

Composing relational schema mappings
Require: on the source side reuse of variables only in equalities
Input 2, X
Output: >,

ZUT’ = (Z),
m 1= maxgpex||0]);
forall p1 — 71,..., ¢k = 7k € Lo, k < mdo

in case of repetitions rename variables;
pi=m1 N N\ Tk,
forall m Ao — 7’ € X+ and all homomorphisms h: 7 — p do
| Tor =Xor U{p1 A+ Ak A h(a) = h(')}
end
end
return X ,./;

Notation used in algorithm
> ||¢|| = number of atoms in ¢
» use 7 for conjunctions of relational atoms and « for equality atoms
» So each SO tgd can be written as 7 A a — 7/
32/46

Inverting Mappings

First Definition of Inverse

» Harder than composition.

» Intuition: M o M~ = “identity mapping” /D

» But even semantics not clear: what should /D be?
Let us start with

v

Definition (Inverse)

The mapping M7} is an inverse of mapping M, iff

Myro ML ={(6,8') | 6,8 are o-instances with & C &'}

34 /46

> Inverses may not be unique
» Myr i S(x) = T(x),S(x) = T'(x)
» First inverse M_!: T(x) — S(x).
» Another inverse: M~1: T'(x) — S(x).

» Inverse of union requires disjunction
» Myr:S(x) = T(x),S'(x) = T(x)
» ML T(x) = S(x)V S'(x)
» So inverse (in some mapping language such as st-tgd) may not
exist
— Criteria for existence of inverse mappings

35/46

Subset property

Definition (Subset property)

Mapping M, satisfies the subset property iff for all pairs (&, &’):

If Solp,.(S) C Soly,. (&) then & C &

Let M., be specified by a set of st-tgds. Then it is invertible iff it
fulfils the subset property.

36 /46

Complexity of Checking Invertibility

Let M, be specified by a set of st-tgds. Checking invertibility is
coNP-complete.

Surprisingly the seemingly simpler problem is not decidable:

Theorem

Let M, and M’ be specified by finite sets of st-tgds. It is
undecidable whether M’ is an inverse of M.,

37/46

Relaxed Notions of Invertibility

» Not considered here, because
» even for this relaxed notion existence of st-tgd mappings not
guaranteed

» We consider notion of

» Recover sound information w.r.t. mappings
» Existence of covers guaranteed

38/46

Definition (Recovery)
A mapping M' = M’ _is a
» recovery of mapping M = M, iff for every o instance & on
which M is defined (for short: & € Dom(M)) it holds that
(6,86) e Mo M.
» maximum recovery of mapping M, iff it is a recovery and is

maximal: for every recovery M” of M it holds that
MoM C MoM

» The smaller the space of possible solutions by inverse M’ the
more informative is M’

39/46

Example (Recoveries)

> o: {E(x,)}
» 7 {F(x,y), G(x)}
» M = (o,7,X) with

Y ={E(x,z) NE(z,y) — F(x,y) A G(z)}

» My = (7,0,X1) with

Y1 ={F(x,y) — 3z(E(x,z) N E(z,y)}

» My is a recovery of M

» For any instance & let T be universal canonical solution for M.
» Then (T,6) € M; (so (6,8) € Mo M)

40/ 46

Example (Recoveries)

o: {E(x, y)}
T {F(x,y), G(x)}
M = (o, 7,%) with

v

v

\{

Y ={E(x,z) NE(z,y) = F(x,y) N G(2)}

v

Mo = (7,0,X5) with

Yo ={G(z) = Ix,y(E(x,z) NE(z,y)}

» Mo, is a recovery of M

41 /46

Example (Recoveries)

o {E(x,y)}
7 {F(x,y), G(x)}
M = (0,7, %) with

v

v

\{

Y ={E(x,z) NE(z,y) = F(x,y) A G(2)}

v

M3 = (1,0,X3) with

Y3={F(x,y) AN G(z) = E(x,z) NE(z,y)}

» M3 is not a recovery of M
> See exercise

42 /46

Example (Recoveries)

> o {E(x, ¥)}
> 7 {F(x,y), G(x)}
» M = (0,7,X) with

Y ={E(x,z) NE(z,y) — F(x,y) A G(z)}

» My = (7,0,X4) with

24a=21UX>

» M, is a maximum recovery of M
> can be shown by the following criteria (exercise).

43 /46

Closure of st-tgds for Maximum Recovery

Proposition
Let M’ be a recovery of M. Then M’ is a maximal recovery
iff

1. Forevery (6,6') € Mo M': & € Dom(M) and

2 M=MoM oM.

Using this one can show

Theorem

Every mapping specified by a finite set of st-tgds admits a
maximum recovery.

44/ 46

Computing Inverses

» Remember algorithms for view rewriting

Let M = (o, 7,%) with st-tgds > and Q be a CQ over 7.
> There exists an algorithm QueryRewriting that computes UCQ
with equalities Q,e, that is a rewriting of Q over the source
(i.e. certp(Q, S) = Qrew(S) for all source DBs &).
» The algorithm runs in exponential time and its output is of

exponential size in the size of X, Q.

» Based on QueryRewriting can define algorithm
MaximumRecovery

Algorithm MaximumRecovery produces a maximum recovery in

exponential time.

45/ 46

Algorithm MaximumRecovery

Input : M, = (o,7,%) with & finite set of st-tgds
Output : A maximum recovery M., = (7,0,I)
r:=0;
forall ¢(x) — IyyY(X,y) € X do
Q(X) = 37 e(%, 7);
a(x) := QueryRewriting(Myr, Q);
F=TU{y(x,y)ACKX) = a(X)}; // C 1is predicate
testing for constant

end
return M., = (1,0,I);

46 / 46

	Query Answering
	Motivation Mapping Management
	Mapping Composition
	Inverting Mappings

