
Özgür L. Özçep

Data Exchange 2
Lecture 7: Query Answering by Rewriting, Mapping

Management
28 May 2020

Informationssysteme CS4130
(Summer 2020)

Query Answering

Remember: Certain Answers
I Given mappingM = (σ, τ,Mστ ,Mτ)

I Semantics of query answering specified as certain answer
semantics

Definition
The certain answers of query Q over τ for given instance S is
defined as

certM(Q,S) =
⋂
{ cert(Q,T) | T ∈ SOLM(S) }

I We saw: In many cases it is not necessary to compute all
solutions to get certain answers =⇒ universal solutions

I But as universal solution T (usually) is an incomplete DB, we
would have to consider all completions (requires: cert(Q,T))

I Sometimes this is not required =⇒ Query rewriting
3 / 46

Certain Answers Naively

Definition (Naive evaluation strategy for general DBs)

For an arbitrary general DB S the set of answers following a naive
evaluation strategy, for short Qnaive(S), is calculated as follows:
I Treat marked NULLS in S as constants

(i.e. ⊥ = ⊥ is true but not ⊥ = c and not ⊥ = ⊥′)
I Calculate Q(S) under this perspective

(treating S as ordinary complete DB)
I and then eliminate all tuples from Q(S) containing a NULL

4 / 46

Certain Answers Naively

Theorem
For UCQs Q:

cert(S,Q) = Qnaive(S)

Proof sketch:

I For every S′ ∈ Rep(S) there is S hom−→ S′

I As homomorphisms preserve answers of CQs:
Qnaive(S) = NULL-free tuples in Q(S) ⊆

⋂
S′∈Rep(S) Q(S′)

I Qnaive(S) ⊇
⋂

S′∈Rep(S) Q(S′)
because S can be considered as its own completion (when
treating NULLs consistently as constants).

Lit: T. Imielinski and W. Lipski, Jr. Incomplete information in relational

databases. J. ACM, 31(4):761–791, Sept. 1984.

5 / 46

Use of naive strategy for DE

Definition (Naive Evaluation Strategy for DEs)

certM(S,Q) = Qnaive(T)

where T is a universal solution forM and S.

I This strategy works also for Datalog programs as constraints
for the target schema τ

I Reason: Datalog programs are preserved under homomorphisms
I Even if one adds inequalities, naive evaluation works
I Hence certain answering is here in PTime

6 / 46

Rewritability

I Naive evaluation is a form of rewriting
I Again: Fundamental method that re-appears in different areas

of CS
I Rewrite a query w.r.t. a given KB into a new query that

“contains” the knowledge of KB

I Challenges
I Preserve the semantics in the rewriting process:

ensure correctness (easy) and completeness (difficult)
I The language of the output query is constraint to a “simple

language” (so rewritability not always guaranteed)

7 / 46

Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal
solutions (T) underM iff there is a FOL query Qrew over τC s.t.

certM(Q,S) = Qrew (T)

I Here τC = τ ∪ {C} where
unary predicate C depicts all constants (not NULLs) in targets

I C works like a type predicate

8 / 46

Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal
solutions (T) underM iff there is a FOL query Qrew over τC s.t.

certM(Q,S) = Qrew (T)

Note: One must find one rewriting for any given pair of source S
and universal solution T

I The known component is the mappingM
I The unknown components are all pairs (S,T)

9 / 46

Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal
solutions underM iff there is a FOL query Qrew over τC such that

certM(Q,S) = Qrew (T)

If, in the definition, one talks about cores T instead of universal
solutions then Q is said to be FOL-rewritable over cores

Theorem
For mappings without target dependencies:
FOL-rewrit. over core � FOL-rewrit. over universal solution,
but not vice versa.

10 / 46

Rewritability for DE
Definition (FOL-Rewritability)

LetM = (σ, τ,Mστ ,Mτ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal
solutions underM iff there is a FOL query Qrew over τC such that

certM(Q,S) = Qrew (T)

Example

I Q(~x): a conjunctive query
I Qrew : Q(~x) ∧ C (x1) ∧ · · · ∧ C (xn)

This is actually the syntactic form of Qnaive

I The rewriting is even independent ofM
I So: (U)CQs are rewritable for any mapping

11 / 46

Adding Negations to Query Language

I Negations in query languages lead to loss of naive rewriting
technique

I Even if one allows negation only within inequalities

Definition (Conjunctive Queries with inequalities CQ 6=)

A conjunctive query with inequalities is a query of the form

Q(~x) = ∃~y
(
α1(~x1, ~y1) ∧ · · · ∧ αn(~xn, ~yn)

)
where αi is either an atomic relational formula or an inequality
zi 6= zj .

12 / 46

Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep)
paris sant. airFr 2320
paris sant. lan 2200

Target DB

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

I Dependencies Mστ

Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

I Any universal solution T′ contains as sub-instance universal τ -solution

T = { Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr),

Routes(⊥3, paris, sant), Info(⊥3, 2320,⊥4, lan) }

I Query Q(x , z) = ∃y∃y ′(Routes(y , x , z) ∧ Routes(y ′, x , z) ∧ y 6= y ′)

I Qnaive(T′) = {(paris, sant)} (for any universal solution T′)
I But: certM(Q(x , z),S) = ∅ because there is a solution

T′′ = { Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr),

Info(⊥1, 2320,⊥2, lan) } 13 / 46

CQ 6= is in coNP

I In case of CQ 6= one cannot even find a tractable means to
answer them w.r.t. certain answer semantics

Theorem
LetM = (σ, τ,Mστ ,Mτ) be a mapping where Mτ is the union of
egds and weakly acyclic tgds, and let Q be a UCQ 6= query. Then:

CERTAINM(Q) is in coNP

14 / 46

Non-rewritability

I Generally it is not possible to decide whether rewritability holds

Theorem
For mappings without target constraints one can not decide
whether a given FOL query is rewritable over the canonical
solutions (over the core).

I Showing Non-FOL-rewritability can be done with locality tools
I Actually: One uses (adapted) Hanf-locality

15 / 46

Not Covered in our DE Lectures

I Different semantics for query answering
I Combinations of open-world (certain answers) and closed-word

semantics

I DE for non-relational DBs
I e.g., DE for semi-structured data (XML)
I requires techniques other than that for relational DE

I Rest of this lecture: mapping management
I How to maintain mappings w.r.t. consistency (only a few

remarks today)
I How to compose mappings
I How to invert mappings: Get back source DB from target DB

16 / 46

Motivation Mapping Management

Consistency of Mappings

I So far: Considered existence of τ -solutions given σ-instance in
mappingM

I Now: Given onlyM
I consistency/local consistency ofM: Is there a σ-instance s.t.

there is a τ -solution
I Absolute consistency/Global consistency: Is there for each
σ-instance a τ -solution?

18 / 46

Mapping Evolution

I Mappings may change due to schema evolution
I Target schema changes: need composition of mappings
I Source schema changes: need inverse of mappings
I Can think of other operations (merge of mappings . . .)

19 / 46

Composition for Target Schema Change

σ DB

source schema σ target schema τ

τ query

τ DB

materialized

Exchange

mapping rules

Mστ

target schema τ ′

τ ′ query

τ ′ DB

materialized

Exchange

mapping rules

Mττ ′

Composed mapping Mστ ◦Mττ ′

Exchange

20 / 46

Example (DE in Flight Domain)

Source schema σ

Geo(city, coun, pop)
Flight(src, dest, airl, dep)

Target schema τ

Route(fno, src, dest)
Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)
Mapping rules Mστ

1. Flight(src, dest, airl, dep) −→ ∃fno ∃arr (Route(fno, src, dest) ∧ Info(fno, dep, arr, airl))

2. Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) −→ ∃phone (Serves(airl, city, coun, phone))

3. Flight(src, city, airl, dep) ∧ Geo(city, coun, pop) −→ ∃phone (Serves(airl, city, coun, phone))

New target schema τ ′

InfoAirline(airline, city, coun, phone, year)
InfoJourney(fno, source, dep, dest, arr, airl)

Mapping rules Mττ′

1. Serves(airl, city, coun, phone) −→ ∃year InfoAirline(airl, city, coun, phone, year)

2. Route(fno, src, dest) ∧ Info(fno, dep, arr, airl) −→ InfoJourney(fno, dep, dest, arr, airl)

Composed rules Mστ ◦ Mττ′

1. Flight(src, dest, airl, dep) −→ ∃fno ∃arr (InfoJourney(fno, src, dep, dest, arr, airl))

2. Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) −→
∃phone ∃year InfoAirline(airl, city, coun, phone, year)

3. Flight(src, city, airl, dep) ∧ Geo(city, coun, pop) −→
∃phone ∃year InfoAirline(airl, city, coun, phone, year)

21 / 46

Inverse for Source Schema Change

σ DB

source schema σ target schema τ

τ query

τ DB

materialized

Exchange

mapping rules

Mστ

σ′ DB

source schema σ′
mapping rules

Mσσ′

Composed mapping (Mσσ′)−1 ◦Mττ ′

Exchange

22 / 46

Main question: Closure

I Are mappings closed under
I composition?
I inverse?

I In general they are not
I Solution: Use second order logic with Skolem functions

23 / 46

Mapping Composition

I Treat mappings as binary relations
JMτ1τ2K = set of pairs (source τ1-instance, τ2-solution)

Definition (Mapping composition)

Given schemata σ, τ, τ ′ and mappingsMστ ,Mττ ′ . The
composition ofMστ ,Mττ ′ is defined by

JMστ K ◦ JMττ ′K = {(S,T′) | there is τ -instance T s.t.
(S,T) ∈ JMστ K and (T,T′) ∈ JMττ ′K}

I Note: Semantics of composition does not say whether there
exist rule set M representing JMστ K ◦ JMττ ′K.
(That is the whole point of the closure problem)

25 / 46

Example

I σ : {Takes(name, course)}
I τ : {Takes1(name, course), Student(name, sid)}
I τ ′ : {Enrolled(sid , course)}
I Mστ :
{Takes(n, c)→ Takes1(n, c),Takes(n, c)→ ∃sStudent(n, s)}

I Mττ ′ : {Student(n, s) ∧ Takes1(n, c)→ Enrolled(s, c)}

I No st-tgd representsMστ ◦Mττ ′ , in particular not st-tgd:

Takes(n, c)→ ∃yEnrolled(y , c)

I Intuitively need to express dependency f : n→ sid

Takes(n, c)→ Enrolled(f (n), c)

I f called Skolem function
26 / 46

Complexity of Relational Composition

Problem COMPOSITION(Mστ ,Mττ ′)

I INPUT: Instance S of σ and instance T′ of τ ′

I Output: Is (S,T′) ∈ JMστ K ◦ JMττ ′K?

Theorem

I For mappingsMστ andMττ ′ specified by st-tgds,
COMPOSITION(Mστ ,Mττ ′) is NP.

I One can findM∗στ andM∗ττ ′ represented by st-tgds for which
COMPOSITION(M∗στ ,M∗ττ ′) is NP-complete.

Proof by reducing from NP-hard problem of 3-colorability

27 / 46

Non-closure of FOL

Corollary

For the mappingsM∗στ andM∗ττ ′ specified by st-tgds there is no
finite set of FOL formulae representing their composition.

Proof sketch
I Assume for contradiction there is set X of FOL formulae for

the composition.
I Then the NP-hard COMPOSITION(M∗στ ,M∗ττ ′) reduces to

checking (S,T′) |= X

I which is in AC 0

I But AC 0 (NP , E.

28 / 46

Definition (SO tgds)

Given disjoint schemata σ, τ , a second-order tuple-generating
dependency from σ to τ is a formula of the form

∃f1 . . . ∃fm
(
∀~x1(φ1 → ψ1) ∧ · · · ∧ ∀~xn(φn → ψn)

)
where
I each fi is a function symbol
I each φi is conjunction of relational formulae R(y1, . . . , yk) or

identities t = t ′ with yj from ~x and t, t ′ are terms built from
{~xi , f1, . . . , fm}

I ψi is conjunction of form R(t1, . . . , tl) and tj built from
{~xi , f1, . . . , fm}

I each variable in ~xi appears in some relational atom of φi
f1, . . . , fm are called Skolem functions

29 / 46

Semantics of SO tgds

I As in second order logic but requiring that (k-ary) f s are
interpreted by k-ary functions of form

f : (CONST ∪ VAR)k −→ CONST ∪ VAR

30 / 46

SO tgds do the job

Theorem

I For mappingsMστ andMττ ′ specified by SO tgds Σστ , Σττ ′ ,
resp., there is a set of SO tgds representing JMστ K ◦ JMττ ′K.

I Moreover there is an exponential-time algorithm computing
the composition.

I This theorem applicable to mappings described by FOL st-tgds:
Transform st-tgds into SO tgds using skolemization

31 / 46

Composing relational schema mappings
Require: on the source side reuse of variables only in equalities
Input : Σστ , Σττ ′

Output : Σστ ′

Σστ ′ := ∅;
m := maxφ→ψ∈Σττ ′ ||φ||;
forall φ1 → π1, . . . , φk → πk ∈ Σστ , k ≤ m do

in case of repetitions rename variables;
ρ := π1 ∧ · · · ∧ πk ;
forall π ∧ α→ π′ ∈ Σττ ′ and all homomorphisms h : π → ρ do

Σστ ′ = Σστ ′ ∪ {φ1 ∧ · · · ∧ φk ∧ h(α)→ h(π′)}
end

end
return Σστ ′ ;

Notation used in algorithm
I ||φ|| = number of atoms in φ
I use π for conjunctions of relational atoms and α for equality atoms
I So each SO tgd can be written as π ∧ α→ π′

32 / 46

Inverting Mappings

First Definition of Inverse

I Harder than composition.
I Intuition:M◦M−1 = “identity mapping” ID
I But even semantics not clear: what should ID be?
I Let us start with

Definition (Inverse)

The mappingM−1τσ is an inverse of mappingMστ iff

Mστ ◦M−1τσ = {(S,S′) | S,S′ are σ-instances with S ⊆ S′}

34 / 46

Example

I Inverses may not be unique
I Mστ : S(x)→ T (x),S(x)→ T ′(x)
I First inverseM−1

τσ : T (x)→ S(x).
I Another inverse:M−1

τσ : T ′(x)→ S(x).

I Inverse of union requires disjunction
I Mστ : S(x)→ T (x),S ′(x)→ T (x)
I M−1

τσ : T (x)→ S(x) ∨ S ′(x)
I So inverse (in some mapping language such as st-tgd) may not

exist
=⇒ Criteria for existence of inverse mappings

35 / 46

Subset property

Definition (Subset property)

MappingMστ satisfies the subset property iff for all pairs (S,S′):

If SolMστ (S) ⊆ SolMστ (S′) then S′ ⊆ S

Theorem
LetMστ be specified by a set of st-tgds. Then it is invertible iff it
fulfils the subset property.

36 / 46

Complexity of Checking Invertibility

Theorem
LetMστ be specified by a set of st-tgds. Checking invertibility is
coNP-complete.

Surprisingly the seemingly simpler problem is not decidable:

Theorem
LetMστ andM′τσ be specified by finite sets of st-tgds. It is
undecidable whetherM′τσ is an inverse ofMστ

37 / 46

Relaxed Notions of Invertibility

I Quasi-inverse
I Not considered here, because
I even for this relaxed notion existence of st-tgd mappings not

guaranteed
I We consider notion of (maximum) recover

I Recover sound information w.r.t. mappings
I Existence of covers guaranteed

38 / 46

Definition (Recovery)

A mappingM′ =M′τσ is a

I recovery of mappingM =Mστ iff for every σ instance S on
whichM is defined (for short: S ∈ Dom(M)) it holds that
(S,S) ∈M ◦M′.

I maximum recovery of mappingMστ iff it is a recovery and is
maximal: for every recoveryM′′ ofM it holds that
M◦M′ ⊆M◦M′′

I The smaller the space of possible solutions by inverseM′ the
more informative isM′

39 / 46

Example (Recoveries)

I σ: {E (x , y)}
I τ : {F (x , y),G (x)}
I M = (σ, τ,Σ) with

Σ = {E (x , z) ∧ E (z , y)→ F (x , y) ∧ G (z)}

I M1 = (τ, σ,Σ1) with

Σ1 = {F (x , y)→ ∃z(E (x , z) ∧ E (z , y)}

I M1 is a recovery ofM
I For any instance S let T be universal canonical solution forM.
I Then (T,S) ∈M1 (so (S,S) ∈M ◦M1)

40 / 46

Example (Recoveries)

I σ: {E (x , y)}
I τ : {F (x , y),G (x)}
I M = (σ, τ,Σ) with

Σ = {E (x , z) ∧ E (z , y)→ F (x , y) ∧ G (z)}

I M2 = (τ, σ,Σ2) with

Σ2 = {G (z)→ ∃x , y(E (x , z) ∧ E (z , y)}

I M2 is a recovery ofM

41 / 46

Example (Recoveries)

I σ: {E (x , y)}
I τ : {F (x , y),G (x)}
I M = (σ, τ,Σ) with

Σ = {E (x , z) ∧ E (z , y)→ F (x , y) ∧ G (z)}

I M3 = (τ, σ,Σ3) with

Σ3 = {F (x , y) ∧ G (z)→ E (x , z) ∧ E (z , y)}

I M3 is not a recovery ofM
I See exercise

42 / 46

Example (Recoveries)

I σ: {E (x , y)}
I τ : {F (x , y),G (x)}
I M = (σ, τ,Σ) with

Σ = {E (x , z) ∧ E (z , y)→ F (x , y) ∧ G (z)}

I M4 = (τ, σ,Σ4) with

Σ4 = Σ1 ∪ Σ2

I M4 is a maximum recovery ofM
I can be shown by the following criteria (exercise).

43 / 46

Closure of st-tgds for Maximum Recovery

Proposition

LetM′τσ be a recovery ofMστ . ThenM′τσ is a maximal recovery
iff
1. For every (S,S′) ∈M ◦M′: S′ ∈ Dom(M) and
2. M =M◦M′ ◦M.

Using this one can show

Theorem
Every mapping specified by a finite set of st-tgds admits a
maximum recovery.

44 / 46

Computing Inverses

I Remember algorithms for view rewriting

Proposition
LetM = (σ, τ,Σ) with st-tgds Σ and Q be a CQ over τ .

I There exists an algorithm QueryRewriting that computes UCQ
with equalities Qrew that is a rewriting of Q over the source
(i.e. certM(Q,S) = Qrew (S) for all source DBs S).

I The algorithm runs in exponential time and its output is of
exponential size in the size of Σ,Q.

I Based on QueryRewriting can define algorithm
MaximumRecovery

Theorem
Algorithm MaximumRecovery produces a maximum recovery in
exponential time.

45 / 46

Algorithm MaximumRecovery

Input :Mστ = (σ, τ,Σ) with Σ finite set of st-tgds
Output : A maximum recoveryMτσ = (τ, σ, Γ)
Γ := ∅;
forall φ(~x)→ ∃~yψ(~x , ~y) ∈ Σ do

Q(~x) := ∃~yψ(~x , ~y);
α(~x) := QueryRewriting(Mστ ,Q);
Γ = Γ ∪ {ψ(~x , ~y) ∧ C (~x)→ α(~x)} ; // C is predicate
testing for constant

end
returnMτσ = (τ, σ, Γ);

46 / 46

	Query Answering
	Motivation Mapping Management
	Mapping Composition
	Inverting Mappings

