

Özgür L. Özçep

Data Exchange 2

Lecture 7: Query Answering by Rewriting, Mapping Management 28 May 2020

> Informationssysteme CS4130 (Summer 2020)

Query Answering

Remember: Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$$cert_{\mathcal{M}}(Q,\mathfrak{S}) = \bigcap \{ cert(Q,\mathfrak{T}) \mid \mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S}) \}$$

- ► We saw: In many cases it is not necessary to compute all solutions to get certain answers ⇒ universal solutions
- ▶ But as universal solution ℑ (usually) is an incomplete DB, we would have to consider all completions (requires: cert(Q, ℑ))
- Sometimes this is not required are Query rewriting

Certain Answers Naively

Definition (Naive evaluation strategy for general DBs)

For an arbitrary general $DB \mathfrak{S}$ the set of answers following a naive evaluation strategy, for short $Q_{naive}(\mathfrak{S})$, is calculated as follows:

- ► Treat marked NULLS in S as constants (i.e. ⊥ = ⊥ is true but not ⊥ = c and not ⊥ = ⊥')
- ► Calculate Q(S) under this perspective (treating S as ordinary complete DB)
- ▶ and then eliminate all tuples from $Q(\mathfrak{S})$ containing a NULL

Certain Answers Naively

Theorem

For UCQs Q:

$$\mathsf{cert}(\mathfrak{S}, \mathcal{Q}) = \mathcal{Q}_{\mathsf{naive}}(\mathfrak{S})$$

Proof sketch:

- For every $\mathfrak{S}' \in Rep(\mathfrak{S})$ there is $\mathfrak{S} \xrightarrow{hom} \mathfrak{S}'$
- ► As homomorphisms preserve answers of CQs: $Q_{naive}(\mathfrak{S}) = \text{NULL-free tuples in } Q(\mathfrak{S}) \subseteq \bigcap_{\mathfrak{S}' \in Rep(\mathfrak{S})} Q(\mathfrak{S}')$
- Q_{naive}(𝔅) ⊇ ∩_{𝔅'∈Rep(𝔅)} Q(𝔅')
 because 𝔅 can be considered as its own completion (when treating NULLs consistently as constants).

Lit: T. Imielinski and W. Lipski, Jr. Incomplete information in relational databases. J. ACM, 31(4):761–791, Sept. 1984.

Use of naive strategy for DE

Definition (Naive Evaluation Strategy for DEs)

```
cert_{\mathcal{M}}(\mathfrak{S}, Q) = Q_{naive}(\mathfrak{T})
```

where ${\mathfrak T}$ is a universal solution for ${\mathcal M}$ and ${\mathfrak S}.$

- \blacktriangleright This strategy works also for Datalog programs as constraints for the target schema τ
 - ► Reason: Datalog programs are preserved under homomorphisms
 - Even if one adds inequalities, naive evaluation works
 - Hence certain answering is here in PTime

Rewritability

- Naive evaluation is a form of rewriting
- Again: Fundamental method that re-appears in different areas of CS
- Rewrite a query w.r.t. a given KB into a new query that "contains" the knowledge of KB
- Challenges
 - Preserve the semantics in the rewriting process: ensure correctness (easy) and completeness (difficult)
 - The language of the output query is constraint to a "simple language" (so rewritability not always guaranteed)

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal solutions (\mathfrak{T}) under \mathcal{M} iff there is a FOL query Q_{rew} over τ^{C} s.t.

 $cert_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{rew}(\mathfrak{T})$

► Here \(\tau^C\) = \(\tau\) \(\{C\)\}\) where unary predicate \(C\) depicts all constants (not NULLs) in targets

C works like a type predicate

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal solutions (\mathfrak{T}) under \mathcal{M} iff there is a FOL query Q_{rew} over τ^{C} s.t.

 $cert_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{rew}(\mathfrak{T})$

Note: One must find one rewriting for any given pair of source \mathfrak{S} and universal solution \mathfrak{T}

- \blacktriangleright The known component is the mapping ${\cal M}$
- The unknown components are all pairs $(\mathfrak{S},\mathfrak{T})$

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal solutions under \mathcal{M} iff there is a FOL query Q_{rew} over τ^{C} such that

 $cert_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{rew}(\mathfrak{T})$

If, in the definition, one talks about cores \mathfrak{T} instead of universal solutions then Q is said to be FOL-rewritable over cores

Theorem

For mappings without target dependencies: FOL-rewrit. over core \models FOL-rewrit. over universal solution, but not vice versa.

Definition (FOL-Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over canonical universal solutions under \mathcal{M} iff there is a FOL query Q_{rew} over τ^{C} such that

 $cert_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{rew}(\mathfrak{T})$

Example

- $Q(\vec{x})$: a conjunctive query
- ► Q_{rew}: Q(x) ∧ C(x₁) ∧ · · · ∧ C(x_n) This is actually the syntactic form of Q_{naive}
- The rewriting is even independent of $\mathcal M$
- So: (U)CQs are rewritable for any mapping

Adding Negations to Query Language

- Negations in query languages lead to loss of naive rewriting technique
- Even if one allows negation only within inequalities

Definition (Conjunctive Queries with inequalities CQ^{\neq})

A conjunctive query with inequalities is a query of the form

$$Q(\vec{x}) = \exists \vec{y} (\alpha_1(\vec{x_1}, \vec{y_1}) \land \cdots \land \alpha_n(\vec{x_n}, \vec{y_n}))$$

where α_i is either an atomic relational formula or an inequality $z_i \neq z_j$.

Example (No Naive Evaluation Possible)

Source DB

Target DB

Flight (src,	dest,	airl,	dep)	Routes(fno	, src,	des	t)	
	paris	sant.	airFr	2320		Info(fno	dan	0 F F	مندا	
	paris	sant.	lan	2200		mo(<u>mo</u> ,	uep,	arr,	airi	

• Dependencies $M_{\sigma\tau}$

 $\begin{array}{l} \textit{Flight(src, dest, airl, dep)} \longrightarrow \\ \exists \textit{fno} \exists \textit{arr(Routes(fno, src, dest) \land \textit{Info(fno, dep, arr, airl))}} \end{array}$

Any universal solution \mathfrak{T}' contains as sub-instance universal au-solution

 $\mathfrak{T} = \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr),$ $Routes(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_4, lan) \}$

- Query $Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$
- $Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}$ (for any universal solution \mathfrak{T}')
- But: $cert_{\mathcal{M}}(Q(x,z),\mathfrak{S}) = \emptyset$ because there is a solution

$$\mathfrak{T}'' = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), \\ Info(\bot_1, 2320, \bot_2, lan) \}$$
 13/46

CQ^{\neq} is in coNP

In case of CQ[≠] one cannot even find a tractable means to answer them w.r.t. certain answer semantics

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds, and let Q be a UCQ^{\neq} query. Then:

 $CERTAIN_{\mathcal{M}}(Q)$ is in coNP

Non-rewritability

Generally it is not possible to decide whether rewritability holds

Theorem

For mappings without target constraints one can not decide whether a given FOL query is rewritable over the canonical solutions (over the core).

- Showing Non-FOL-rewritability can be done with locality tools
- Actually: One uses (adapted) Hanf-locality

Not Covered in our DE Lectures

- Different semantics for query answering
 - Combinations of open-world (certain answers) and closed-word semantics
- DE for non-relational DBs
 - e.g., DE for semi-structured data (XML)
 - requires techniques other than that for relational DE
- Rest of this lecture: mapping management
 - How to maintain mappings w.r.t. consistency (only a few remarks today)
 - How to compose mappings
 - ► How to invert mappings: Get back source DB from target DB

Motivation Mapping Management

Consistency of Mappings

- So far: Considered existence of *τ*-solutions given *σ*-instance in mapping *M*
- ► Now: Given only *M*
 - consistency/local consistency of M: Is there a σ-instance s.t. there is a τ-solution
 - Absolute consistency/Global consistency: Is there for each *σ*-instance a *τ*-solution?

Mapping Evolution

- Mappings may change due to schema evolution
 - Target schema changes: need composition of mappings
 - Source schema changes: need inverse of mappings
 - Can think of other operations (merge of mappings ...)

Composition for Target Schema Change

Example (DE in Flight Domain)

Target schema τ

Geo(city,	coun,	pop)		Route(<u>fno</u> ,	src,	dest)	
Flight(src,	dest,	airl,	dep)	Info(<u>fno</u> ,	dep,	arr,	airl)
				Serves(airl,	city,	coun,	phone)

Mapping rules $M_{\sigma\tau}$

Source schema σ

- 1. $Flight(src, dest, airl, dep) \longrightarrow \exists fno \exists arr (Route(fno, src, dest) \land Info(fno, dep, arr, airl))$
- Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) → ∃phone (Serves(airl, city, coun, phone))
- 3. Flight(src, city, airl, dep) \land Geo(city, coun, pop) $\longrightarrow \exists phone (Serves(airl, city, coun, phone))$

New target schema τ'

	InfoAirline(airline, InfoJourney(<u>fno</u> ,	city, source,	coun, dep,	phone, dest,	year) arr,	airl)
Mapping rules M_{i}						

1. Serves(airl, city, coun, phone) $\longrightarrow \exists y ear InfoAirline(airl, city, coun, phone, year)$

- 2. $Route(fno, src, dest) \land Info(fno, dep, arr, airl) \longrightarrow InfoJourney(fno, dep, dest, arr, airl)$

Composed rules $M_{\sigma\tau} \circ M_{\tau\tau'}$

- 1. $Flight(src, dest, airl, dep) \longrightarrow \exists fno \exists arr (InfoJourney(fno, src, dep, dest, arr, airl))$
- Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) → ∃phone ∃year InfoAirline(airl, city, coun, phone, year)
- Flight(src, city, airl, dep) ∧ Geo(city, coun, pop) → ∃phone ∃year InfoAirline(airl, city, coun, phone, year)

Inverse for Source Schema Change

Main question: Closure

- Are mappings closed under
 - composition?
 - inverse?
- In general they are not
- ► Solution: Use second order logic with Skolem functions

Mapping Composition

Treat mappings as binary relations
 [[M_{τ1τ2}]] = set of pairs (source τ₁-instance, τ₂-solution)

Definition (Mapping composition)

Given schemata σ, τ, τ' and mappings $\mathcal{M}_{\sigma\tau}$, $\mathcal{M}_{\tau\tau'}$. The composition of $\mathcal{M}_{\sigma\tau}, \mathcal{M}_{\tau\tau'}$ is defined by

$$\begin{split} \llbracket \mathcal{M}_{\sigma\tau} \rrbracket \circ \llbracket \mathcal{M}_{\tau\tau'} \rrbracket &= \{ (\mathfrak{S}, \mathfrak{T}') \mid \text{ there is } \tau\text{-instance } \mathfrak{T} \text{ s.t.} \\ & (\mathfrak{S}, \mathfrak{T}) \in \llbracket \mathcal{M}_{\sigma\tau} \rrbracket \text{ and } (\mathfrak{T}, \mathfrak{T}') \in \llbracket \mathcal{M}_{\tau\tau'} \rrbracket \} \end{split}$$

Note: Semantics of composition does not say whether there exist rule set *M* representing [[*M*_{στ}]] ○ [[*M*_{ττ'}]].
 (That is the whole point of the closure problem)

Example

- σ : { *Takes*(*name*, *course*) }
- τ : { Takes1(name, course), Student(name, sid)}
- τ' : {*Enrolled*(*sid*, *course*)}
- ► $\mathcal{M}_{\sigma\tau}$: { $Takes(n, c) \rightarrow Takes1(n, c), Takes(n, c) \rightarrow \exists sStudent(n, s)$ }
- ► $M_{\tau\tau'}$: { $Student(n, s) \land Takes1(n, c) \rightarrow Enrolled(s, c)$ }
- ► No st-tgd represents $\mathcal{M}_{\sigma\tau} \circ \mathcal{M}_{\tau\tau'}$, in particular not st-tgd:

 $Takes(n, c) \rightarrow \exists y Enrolled(y, c)$

• Intuitively need to express dependency $f : n \rightarrow sid$

 $Takes(n, c) \rightarrow Enrolled(f(n), c)$

f called Skolem function

Complexity of Relational Composition

Problem *COMPOSITION*($\mathcal{M}_{\sigma\tau}, \mathcal{M}_{\tau\tau'}$)

- \blacktriangleright INPUT: Instance \mathfrak{S} of σ and instance \mathfrak{T}' of τ'
- Output: Is $(\mathfrak{S}, \mathfrak{T}') \in \llbracket \mathcal{M}_{\sigma\tau} \rrbracket \circ \llbracket \mathcal{M}_{\tau\tau'} \rrbracket$?

Theorem

- For mappings M_{στ} and M_{ττ'} specified by st-tgds, COMPOSITION(M_{στ}, M_{ττ'}) is NP.
- One can find M^{*}_{στ} and M^{*}_{στ'} represented by st-tgds for which COMPOSITION(M^{*}_{στ}, M^{*}_{ττ'}) is NP-complete.

Proof by reducing from NP-hard problem of 3-colorability

Non-closure of FOL

Corollary

For the mappings $\mathcal{M}_{\sigma\tau}^*$ and $\mathcal{M}_{\tau\tau'}^*$ specified by st-tgds there is no finite set of FOL formulae representing their composition.

Proof sketch

- ► Assume for contradiction there is set *X* of FOL formulae for the composition.
- ► Then the NP-hard COMPOSITION(M^{*}_{στ}, M^{*}_{ττ'}) reduces to checking (S, I') ⊨ X
- which is in AC⁰
- But $AC^0 \subsetneq NP$, \checkmark .

Definition (SO tgds)

Given disjoint schemata σ, τ , a second-order tuple-generating dependency from σ to τ is a formula of the form

 $\exists f_1 \ldots \exists f_m (\forall \vec{x}_1(\phi_1 \to \psi_1) \land \cdots \land \forall \vec{x}_n(\phi_n \to \psi_n))$

where

- each f_i is a function symbol
- ▶ each ϕ_i is conjunction of relational formulae $R(y_1, \ldots, y_k)$ or identities t = t' with y_j from \vec{x} and t, t' are terms built from $\{\vec{x}_i, f_1, \ldots, f_m\}$
- ▶ ψ_i is conjunction of form $R(t_1, \ldots, t_l)$ and t_j built from $\{\vec{x}_i, f_1, \ldots, f_m\}$
- each variable in $\vec{x_i}$ appears in some relational atom of ϕ_i

 f_1, \ldots, f_m are called Skolem functions

Semantics of SO tgds

As in second order logic but requiring that (k-ary) fs are interpreted by k-ary functions of form

 $f: (CONST \cup VAR)^k \longrightarrow CONST \cup VAR$

SO tgds do the job

Theorem

- For mappings M_{στ} and M_{ττ'} specified by SO tgds Σ_{στ}, Σ_{ττ'}, resp., there is a set of SO tgds representing [[M_{στ}]] ∘ [[M_{ττ'}]].
- Moreover there is an exponential-time algorithm computing the composition.
- This theorem applicable to mappings described by FOL st-tgds: Transform st-tgds into SO tgds using skolemization

Composing relational schema mappings

Require: on the source side reuse of variables only in equalities

Notation used in algorithm

- $||\phi|| =$ number of atoms in ϕ
- $\blacktriangleright\,$ use π for conjunctions of relational atoms and α for equality atoms
- So each SO tgd can be written as $\pi \wedge \alpha \rightarrow \pi'$

Inverting Mappings

First Definition of Inverse

- Harder than composition.
- Intuition: $\mathcal{M} \circ \mathcal{M}^{-1} =$ "identity mapping" *ID*
- But even semantics not clear: what should ID be?
- Let us start with

Definition (Inverse)

The mapping $\mathcal{M}_{\tau\sigma}^{-1}$ is an inverse of mapping $\mathcal{M}_{\sigma\tau}$ iff

 $\mathcal{M}_{\sigma\tau} \circ \mathcal{M}_{\tau\sigma}^{-1} = \{ (\mathfrak{S}, \mathfrak{S}') \mid \mathfrak{S}, \mathfrak{S}' \text{ are } \sigma \text{-instances with } \mathfrak{S} \subseteq \mathfrak{S}' \}$

Example

- Inverses may not be unique
 - $\mathcal{M}_{\sigma\tau}: S(x) \to T(x), S(x) \to T'(x)$
 - First inverse $\mathcal{M}_{\tau\sigma}^{-1}: T(x) \to S(x)$.
 - Another inverse: $\mathcal{M}_{\tau\sigma}^{-1}: T'(x) \to S(x)$.
- Inverse of union requires disjunction
 - $\mathcal{M}_{\sigma\tau}: S(x) \to T(x), S'(x) \to T(x)$
 - $\mathcal{M}_{\tau\sigma}^{-1}: T(x) \to S(x) \lor S'(x)$
 - So inverse (in some mapping language such as st-tgd) may not exist

 \implies Criteria for existence of inverse mappings

Subset property

Definition (Subset property)

Mapping $\mathcal{M}_{\sigma\tau}$ satisfies the subset property iff for all pairs $(\mathfrak{S}, \mathfrak{S}')$:

If $Sol_{\mathcal{M}_{\sigma\tau}}(\mathfrak{S}) \subseteq Sol_{\mathcal{M}_{\sigma\tau}}(\mathfrak{S}')$ then $\mathfrak{S}' \subseteq \mathfrak{S}$

Theorem

Let $\mathcal{M}_{\sigma\tau}$ be specified by a set of st-tgds. Then it is invertible iff it fulfils the subset property.

Complexity of Checking Invertibility

Theorem

Let $\mathcal{M}_{\sigma\tau}$ be specified by a set of st-tgds. Checking invertibility is coNP-complete.

Surprisingly the seemingly simpler problem is not decidable:

Theorem

Let $\mathcal{M}_{\sigma\tau}$ and $\mathcal{M}'_{\tau\sigma}$ be specified by finite sets of st-tgds. It is undecidable whether $\mathcal{M}'_{\tau\sigma}$ is an inverse of $\mathcal{M}_{\sigma\tau}$

Relaxed Notions of Invertibility

Quasi-inverse

- Not considered here, because
- even for this relaxed notion existence of st-tgd mappings not guaranteed
- ► We consider notion of (maximum) recover
 - Recover sound information w.r.t. mappings
 - Existence of covers guaranteed

Definition (Recovery)

A mapping $\mathcal{M}' = \mathcal{M}'_{ au\sigma}$ is a

- ▶ recovery of mapping $\mathcal{M} = \mathcal{M}_{\sigma\tau}$ iff for every σ instance \mathfrak{S} on which \mathcal{M} is defined (for short: $\mathfrak{S} \in Dom(\mathcal{M})$) it holds that $(\mathfrak{S}, \mathfrak{S}) \in \mathcal{M} \circ \mathcal{M}'$.
- maximum recovery of mapping M_{στ} iff it is a recovery and is maximal: for every recovery M" of M it holds that M ∘ M' ⊆ M ∘ M"
- ► The smaller the space of possible solutions by inverse M' the more informative is M'

- σ : {E(x, y)}
- τ : {F(x, y), G(x)}
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

 $\Sigma = \{E(x,z) \land E(z,y) \to F(x,y) \land G(z)\}$

• $\mathcal{M}_1 = (\tau, \sigma, \Sigma_1)$ with

 $\Sigma_1 = \{F(x,y) \to \exists z (E(x,z) \land E(z,y))\}$

• \mathcal{M}_1 is a recovery of \mathcal{M}

- ▶ For any instance S let ℑ be universal canonical solution for *M*.
- ▶ Then $(\mathfrak{T}, \mathfrak{S}) \in \mathcal{M}_1$ (so $(\mathfrak{S}, \mathfrak{S}) \in \mathcal{M} \circ \mathcal{M}_1$)

- σ : {E(x, y)}
- τ : {F(x, y), G(x)}
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

$$\Sigma = \{E(x,z) \land E(z,y) \to F(x,y) \land G(z)\}$$

•
$$\mathcal{M}_2 = (\tau, \sigma, \Sigma_2)$$
 with

$$\Sigma_2 = \{G(z) \to \exists x, y(E(x,z) \land E(z,y))\}$$

•
$$\mathcal{M}_2$$
 is a recovery of \mathcal{M}

- σ: {E(x, y)}
 τ: {F(x, y), G(x)}
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

$$\Sigma = \{ E(x,z) \land E(z,y) \to F(x,y) \land G(z) \}$$

• $\mathcal{M}_3 = (\tau, \sigma, \Sigma_3)$ with $\Sigma_3 = \{F(x, y) \land G(z) \to E(x, z) \land E(z, y)\}$

• \mathcal{M}_3 is not a recovery of \mathcal{M}

See exercise

- σ : {E(x, y)}
- τ : {F(x, y), G(x)}
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

$$\Sigma = \{E(x,z) \land E(z,y) \to F(x,y) \land G(z)\}$$

•
$$\mathcal{M}_4 = (\tau, \sigma, \Sigma_4)$$
 with

$$\Sigma_4=\Sigma_1\cup\Sigma_2$$

• \mathcal{M}_4 is a maximum recovery of \mathcal{M}

• can be shown by the following criteria (exercise).

Closure of st-tgds for Maximum Recovery

Proposition

Let $\mathcal{M}'_{\tau\sigma}$ be a recovery of $\mathcal{M}_{\sigma\tau}$. Then $\mathcal{M}'_{\tau\sigma}$ is a maximal recovery iff

- 1. For every $(\mathfrak{S},\mathfrak{S}')\in\mathcal{M}\circ\mathcal{M}'\colon\mathfrak{S}'\in\textit{Dom}(\mathcal{M})$ and
- 2. $\mathcal{M} = \mathcal{M} \circ \mathcal{M}' \circ \mathcal{M}.$

Using this one can show

Theorem

Every mapping specified by a finite set of st-tgds admits a maximum recovery.

Computing Inverses

Remember algorithms for view rewriting

Proposition

Let $\mathcal{M} = (\sigma, \tau, \Sigma)$ with st-tgds Σ and Q be a CQ over τ .

- ► There exists an algorithm QueryRewriting that computes UCQ with equalities Q_{rew} that is a rewriting of Q over the source (i.e. cert_M(Q, S) = Q_{rew}(S) for all source DBs S).
- The algorithm runs in exponential time and its output is of exponential size in the size of Σ, Q.
- Based on QueryRewriting can define algorithm MaximumRecovery

Theorem

Algorithm MaximumRecovery produces a maximum recovery in exponential time.

Algorithm MaximumRecovery

Input : $\mathcal{M}_{\sigma\tau} = (\sigma, \tau, \Sigma)$ with Σ finite set of st-tgds Output: A maximum recovery $\mathcal{M}_{\tau\sigma} = (\tau, \sigma, \Gamma)$ $\Gamma := \emptyset$; forall $\underline{\phi}(\vec{x}) \rightarrow \exists \vec{y} \psi(\vec{x}, \vec{y}) \in \Sigma$ do $\begin{vmatrix} Q(\vec{x}) := \exists \vec{y} \psi(\vec{x}, \vec{y}), \\ \alpha(\vec{x}) := Query Rewriting(\mathcal{M}_{\sigma\tau}, Q); \\ \Gamma = \Gamma \cup \{\psi(\vec{x}, \vec{y}) \land C(\vec{x}) \rightarrow \alpha(\vec{x})\}; // C \text{ is predicate testing for constant}$ end return $\mathcal{M}_{\tau\sigma} = (\tau, \sigma, \Gamma);$