Lecture 7: Query Answering by Rewriting, Mapping Management
28 May 2020

Informationssysteme CS4130
(Summer 2020)
Query Answering
Remember: Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_\tau)$

- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathcal{G} is defined as

$$\text{cert}_\mathcal{M}(Q, \mathcal{G}) = \bigcap \{ \text{cert}(Q, \mathcal{I}) \mid \mathcal{I} \in \text{SOL}_\mathcal{M}(\mathcal{G}) \}$$
Remember: Certain Answers

- Given mapping \(\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_\tau) \)

- Semantics of query answering specified as certain answer semantics

Definition

The *certain answers* of query \(Q \) over \(\tau \) for given instance \(\mathcal{G} \) is defined as

\[
\text{cert}_\mathcal{M}(Q, \mathcal{G}) = \bigcap \{ \text{cert}(Q, \Xi) \mid \Xi \in \text{SOL}_\mathcal{M}(\mathcal{G}) \}
\]

- We saw: In many cases it is not necessary to compute all solutions to get certain answers \(\implies \) universal solutions
Remember: Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$

- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathcal{G} is defined as

$$cert_{\mathcal{M}}(Q, \mathcal{G}) = \bigcap \{ cert(Q, \mathcal{T}) \mid \mathcal{T} \in SOL_{\mathcal{M}}(\mathcal{G}) \}$$

- We saw: In many cases it is not necessary to compute all solutions to get certain answers \implies universal solutions
- But as universal solution \mathcal{T} (usually) is an incomplete DB, we would have to consider all completions (requires: $cert(Q, \mathcal{T})$)
Remember: Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$

- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathcal{G} is defined as

$$\text{cert}_\mathcal{M}(Q, \mathcal{G}) = \bigcap\{ \text{cert}(Q, \mathcal{T}) \mid \mathcal{T} \in \text{SOL}\mathcal{M}(\mathcal{G}) \}$$

- We saw: In many cases it is not necessary to compute all solutions to get certain answers \implies universal solutions
- But as universal solution \mathcal{T} (usually) is an incomplete DB, we would have to consider all completions (requires: $\text{cert}(Q, \mathcal{T})$)
- Sometimes this is not required \implies Query rewriting
Definition (Naive evaluation strategy for general DBs)

For an arbitrary general DB \mathcal{G} the set of answers following a naive evaluation strategy, for short $Q_{\text{naive}}(\mathcal{G})$, is calculated as follows:

- Treat marked NULLS in \mathcal{G} as constants (i.e. $\bot = \bot$ is true but not $\bot = c$ and not $\bot = \bot'$)
- Calculate $Q(\mathcal{G})$ under this perspective (treating \mathcal{G} as ordinary complete DB)
- and then eliminate all tuples from $Q(\mathcal{G})$ containing a NULL
Certain Answers Naively

Theorem

For UCQs Q:

$$\text{cert}(\mathcal{G}, Q) = Q_{\text{naive}}(\mathcal{G})$$

Proof sketch:

- For every $\mathcal{G}' \in \text{Rep}(\mathcal{G})$ there is $\mathcal{G} \xrightarrow{\text{hom}} \mathcal{G}'$
- As homomorphisms preserve answers of CQs:
 $$Q_{\text{naive}}(\mathcal{G}) = \text{NULL-free tuples in } Q(\mathcal{G}) \subseteq \bigcap_{\mathcal{G}' \in \text{Rep}(\mathcal{G})} Q(\mathcal{G}')$$
- $$Q_{\text{naive}}(\mathcal{G}) \supseteq \bigcap_{\mathcal{G}' \in \text{Rep}(\mathcal{G})} Q(\mathcal{G}')$$
 because \mathcal{G} can be considered as its own completion (when treating NULLs consistently as constants).

Definition (Naive Evaluation Strategy for DEs)

\[\text{cert}_M(\mathcal{G}, Q) = Q_{naive}(\mathcal{I}) \]

where \(\mathcal{I} \) is a universal solution for \(M \) and \(\mathcal{G} \).
Use of naive strategy for DE

Definition (Naive Evaluation Strategy for DEs)

\[cert_M (\mathcal{G}, Q) = Q_{naive}(\mathcal{I}) \]

where \(\mathcal{I} \) is a universal solution for \(M \) and \(\mathcal{G} \).

- This strategy works also for Datalog programs as constraints for the target schema \(\tau \)
 - Reason: Datalog programs are preserved under homomorphisms
 - Even if one adds inequalities, naive evaluation works
 - Hence certain answering is here in PTime
Rewritability

- Naive evaluation is a form of rewriting
- Again: Fundamental method that re-appears in different areas of CS
- Rewrite a query w.r.t. a given KB into a new query that “contains” the knowledge of KB

- Challenges
 - Preserve the semantics in the rewriting process: ensure correctness (easy) and completeness (difficult)
 - The language of the output query is constraint to a “simple language” (so rewritability not always guaranteed)
Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ.

Then Q is said to be FOL-rewritable over canonical universal solutions (\mathcal{S}) under \mathcal{M} iff there is a FOL query Q_{rew} over τ^C s.t.

$$\text{cert}_{\mathcal{M}}(Q, \mathcal{S}) = Q_{rew}(\mathcal{S})$$

- Here $\tau^C = \tau \cup \{C\}$ where unary predicate C depicts all constants (not NULLs) in targets
- C works like a type predicate
Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ.

Then Q is said to be FOL-rewritable over canonical universal solutions (\mathcal{T}) under \mathcal{M} iff there is a FOL query Q_{rew} over τ^C s.t.

$$\text{cert}_\mathcal{M}(Q, \mathcal{S}) = Q_{rew}(\mathcal{T})$$

Note: One must find one rewriting for any given pair of source \mathcal{S} and universal solution \mathcal{T}

- The known component is the mapping \mathcal{M}
- The unknown components are all pairs (\mathcal{S}, \mathcal{T})
Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ.

Then Q is said to be **FOL-rewritable over canonical universal solutions under \mathcal{M}** iff there is a FOL query Q_{rew} over τ^C such that

$$\text{cert}_\mathcal{M}(Q, \mathcal{S}) = Q_{\text{rew}}(\mathcal{I})$$

If, in the definition, one talks about cores \mathcal{I} instead of universal solutions then Q is said to be **FOL-rewritable over cores**

Theorem

For mappings without target dependencies:

FOL-rewrit. over core \implies **FOL-rewrit. over universal solution, but not vice versa.**
Rewritability for DE

Definition (FOL-Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ. Then Q is said to be FOL-rewritable over canonical universal solutions under \mathcal{M} iff there is a FOL query Q_{rew} over τ^C such that

$$\text{cert}_{\mathcal{M}}(Q, \mathcal{S}) = Q_{\text{rew}}(\mathcal{I})$$

Example

- $Q(\overline{x})$: a conjunctive query
- $Q_{\text{rew}}: Q(\overline{x}) \land C(x_1) \land \cdots \land C(x_n)$
 This is actually the syntactic form of Q_{naive}
- The rewriting is even independent of \mathcal{M}
- So: (U)CQs are rewritable for any mapping
Adding Negations to Query Language

- Negations in query languages lead to loss of naive rewriting technique
- Even if one allows negation only within inequalities

Definition (Conjunctive Queries with inequalities \(CQ\neq \))

A conjunctive query with inequalities is a query of the form

\[
Q(\vec{x}) = \exists \vec{y} \left(\alpha_1(\vec{x}_1, \vec{y}_1) \land \cdots \land \alpha_n(\vec{x}_n, \vec{y}_n) \right)
\]

where \(\alpha_i \) is either an atomic relational formula or an inequality \(z_i \neq z_j \).
Example (No Naive Evaluation Possible)

<table>
<thead>
<tr>
<th>Source DB</th>
<th>Target DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight (src, dest, airl, dep)</td>
<td>Routes(fno, src, dest)</td>
</tr>
<tr>
<td>paris</td>
<td>airFr</td>
</tr>
<tr>
<td>sant.</td>
<td>lan</td>
</tr>
</tbody>
</table>

▶ Dependencies M_{σ_T}

$$\text{Flight}(src, dest, airl, dep) \rightarrow \exists fno \exists arr(\text{Routes}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))$$
Example (No Naive Evaluation Possible)

Source DB
Flight (src, dest, airl, dep)
 paris sant. airFr 2320
 paris sant. lan 2200

Target DB
Routes(fno, src, dest)
Info(fno, dep, arr, airl)

 Dependencies \(\mathcal{M}_{\sigma \tau} \)

\[
\begin{align*}
\text{Flight}(src, dest, airl, dep) \rightarrow \\
\exists \ fno \ \exists \ arr(\text{Routes}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))
\end{align*}
\]

Any universal solution \(\mathcal{Z}' \) contains as sub-instance universal \(\tau\)-solution

\[
\mathcal{Z} = \{ \text{Routes}(\bot_1, \text{paris}, \text{sant}), \text{Info}(\bot_1, 2320, \bot_2, \text{airFr}), \\
\quad \text{Routes}(\bot_3, \text{paris}, \text{sant}), \text{Info}(\bot_3, 2320, \bot_4, \text{lan}) \}
\]
Example (No Naive Evaluation Possible)

<table>
<thead>
<tr>
<th>Source DB</th>
<th>Target DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight (</td>
<td></td>
</tr>
<tr>
<td>src, dest, airl, dep)</td>
<td></td>
</tr>
<tr>
<td>Paris sant. airFr 2320</td>
<td></td>
</tr>
<tr>
<td>Paris sant. lan 2200</td>
<td></td>
</tr>
<tr>
<td>Routes(fno, src, dest)</td>
<td></td>
</tr>
<tr>
<td>Info(fno, dep, arr, airl)</td>
<td></td>
</tr>
</tbody>
</table>

▶ Dependencies M_{σ_T}

$$
\text{Flight}(src, \text{dest}, airl, \text{dep}) \rightarrow \\
\exists fno \exists arr (\text{Routes}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))
$$

▶ Any universal solution $\mathcal{\exists'}$ contains as sub-instance universal τ-solution

$$
\mathcal{\exists} = \{ \text{Routes}(\perp_1, \text{paris, sant}), \ \text{Info}(\perp_1, 2320, \perp_2, \text{airFr}), \\
\text{Routes}(\perp_3, \text{paris, sant}), \ \text{Info}(\perp_3, 2320, \perp_4, \text{lan}) \}
$$

▶ Query $Q(x, z) = \exists y \exists y' (\text{Routes}(y, x, z) \land \text{Routes}(y', x, z) \land y \neq y')$
Example (No Naive Evaluation Possible)

<table>
<thead>
<tr>
<th>Source DB</th>
<th>Target DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight (src, dest, airl, dep)</td>
<td>Routes(fno, src, dest)</td>
</tr>
<tr>
<td>paris sant. airFr 2320</td>
<td>Info(fno, dep, arr, airl)</td>
</tr>
<tr>
<td>paris sant. lan 2200</td>
<td></td>
</tr>
</tbody>
</table>

** Dependencies \(M_{\sigma\tau} \)**

\[
\text{Flight}(src, dest, airl, dep) \longrightarrow \\
\exists fno \exists arr(\text{Routes}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))
\]

** Any universal solution \(\mathcal{U}' \) contains as sub-instance universal \(\tau\text{-solution} \)**

\[
\mathcal{U} = \{ \text{Routes}(\bot_1, \text{paris}, \text{sant}), \text{Info}(\bot_1, 2320, \bot_2, \text{airFr}), \text{Routes}(\bot_3, \text{paris}, \text{sant}), \text{Info}(\bot_3, 2320, \bot_4, \text{lan}) \}
\]

** Query \(Q(x, z) = \exists y \exists y' (\text{Routes}(y, x, z) \land \text{Routes}(y', x, z) \land y \neq y') \)**

** \(Q_{\text{naive}}(\mathcal{U}') = \{(\text{paris, sant})\} \) (for any universal solution \(\mathcal{U}' \))**
Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep)

paris sant. airFr 2320
paris sant. lan 2200

Target DB

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

▶ Dependencies $M_{\sigma\tau}$

$\text{Flight}(src, dest, airl, dep) \rightarrow \exists fno \exists arr(\text{Routes}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))$

▶ Any universal solution \mathcal{T}' contains as sub-instance universal τ-solution

$\mathcal{T} = \{ \text{Routes}(\bot_1, paris, sant), \text{Info}(\bot_1, 2320, \bot_2, airFr), \text{Routes}(\bot_3, paris, sant), \text{Info}(\bot_3, 2320, \bot_4, lan) \}$

▶ Query $Q(x, z) = \exists y \exists y'(\text{Routes}(y, x, z) \land \text{Routes}(y', x, z) \land y \neq y')$

$Q_{\text{naive}}(\mathcal{T}') = \{(paris, sant)\}$ (for any universal solution \mathcal{T}')

▶ But: $\text{cert}_M(Q(x, z), \mathcal{G}) = \emptyset$ because there is a solution

$\mathcal{T}'' = \{ \text{Routes}(\bot_1, paris, sant), \text{Info}(\bot_1, 2320, \bot_2, airFr), \text{Info}(\bot_1, 2320, \bot_2, lan) \}$
$CQ \neq$ is in coNP

- In case of $CQ \neq$ one cannot even find a tractable means to answer them w.r.t. certain answer semantics

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds, and let Q be a $\text{UCQ} \neq$ query. Then:

$\text{CERTAIN}_\mathcal{M}(Q)$ is in coNP
Non-rewritability

- Generally it is not possible to decide whether rewritability holds

Theorem

For mappings without target constraints one can not decide whether a given FOL query is rewritable over the canonical solutions (over the core).

- Showing Non-FOL-rewritability can be done with locality tools
- Actually: One uses (adapted) Hanf-locality
Not Covered in our DE Lectures

- Different semantics for query answering
 - Combinations of open-world (certain answers) and closed-word semantics

- DE for non-relational DBs
 - e.g., DE for semi-structured data (XML)
 - requires techniques other than that for relational DE
Not Covered in our DE Lectures

- Different semantics for query answering
 - Combinations of open-world (certain answers) and closed-word semantics

- DE for non-relational DBs
 - e.g., DE for semi-structured data (XML)
 - requires techniques other than that for relational DE

- Rest of this lecture: mapping management
 - How to maintain mappings w.r.t. consistency (only a few remarks today)
 - How to compose mappings
 - How to invert mappings: Get back source DB from target DB
Motivation Mapping Management
Consistency of Mappings

- So far: Considered existence of τ-solutions given σ-instance in mapping M
- Now: Given only M
 - consistency/local consistency of M: Is there a σ-instance s.t. there is a τ-solution
 - Absolute consistency/Global consistency: Is there for each σ-instance a τ-solution?
Mapping Evolution

- Mappings may change due to schema evolution
 - Target schema changes: need **composition of mappings**
 - Source schema changes: need **inverse of mappings**
Mapping Evolution

- Mappings may change due to schema evolution
 - Target schema changes: need composition of mappings
 - Source schema changes: need inverse of mappings
 - Can think of other operations (merge of mappings ...)
Composition for Target Schema Change

source schema σ $\xrightarrow{M_{\sigma\tau}}$ target schema τ

σ DB $\xrightarrow{\text{Exchange}}$ τ DB

τ query

materialized
Composition for Target Schema Change

source schema σ \rightarrow mapping rules $M_{\sigma\tau}$ \rightarrow target schema τ \rightarrow mapping rules $M_{\tau\tau'}$ \rightarrow target schema τ'

σ DB \rightarrow Exchange \rightarrow τ DB

materialized
Composition for Target Schema Change

source schema σ

mapping rules $M_{\sigma\tau}$

target schema τ

mapping rules $M_{\tau\tau'}$

query

τ'

exchange

σ DB

materialized

τ DB

materialized

τ' DB
Composition for Target Schema Change

Composed mapping $M_{\sigma \tau} \circ M_{\tau \tau'}$

- Source schema σ
- Target schema τ
- Target schema τ'

- Mapping rules $M_{\sigma \tau}$
- Mapping rules $M_{\tau \tau'}$

- Query τ'

- Database σ DB
- Database τ' DB

Exchange

Materialized
Example (DE in Flight Domain)

<table>
<thead>
<tr>
<th>Source schema σ</th>
<th>Target schema τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geo(city, coun, pop)</td>
<td>Route(fno, src, dest)</td>
</tr>
<tr>
<td>Flight(src, dest, airl, dep)</td>
<td>Info(fno, dep, arr, airl)</td>
</tr>
<tr>
<td></td>
<td>Serves(airl, city, coun, phone)</td>
</tr>
</tbody>
</table>

Mapping rules M

1. $\sigma(\text{Flight}(\text{src}, \text{dest}, \text{airl}, \text{dep})) \rightarrow \exists \text{fno} \exists \text{arr} (\tau(\text{Route}(\text{fno}, \text{src}, \text{dest})) \land \tau(\text{Info}(\text{fno}, \text{dep}, \text{arr}, \text{airl})))$

2. $\sigma(\text{Flight}(\text{city}, \text{dest}, \text{airl}, \text{dep}) \land \tau(\text{Geo}(\text{city}, \text{coun}, \text{pop}))) \rightarrow \exists \text{phone} (\tau(\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone})))$

3. $\sigma(\text{Flight}(\text{src}, \text{city}, \text{airl}, \text{dep}) \land \tau(\text{Geo}(\text{city}, \text{coun}, \text{pop}))) \rightarrow \exists \text{phone} (\tau(\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone})))$

New target schema τ'

<table>
<thead>
<tr>
<th>τ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfoAirline(airline, city, coun, phone, year)</td>
</tr>
<tr>
<td>InfoJourney(fno, source, dep, dest, arr, airl)</td>
</tr>
</tbody>
</table>

Mapping rules $M'_{\tau\tau'}$

1. $\tau(\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone})) \rightarrow \exists \text{year} \tau'(\text{InfoAirline}(\text{airl}, \text{city}, \text{coun}, \text{phone}, \text{year}))$

2. $\tau(\text{Route}(\text{fno}, \text{src}, \text{dest})) \land \tau(\text{Info}(\text{fno}, \text{dep}, \text{arr}, \text{airl})) \rightarrow \tau'(\text{InfoJourney}(\text{fno}, \text{dep}, \text{dest}, \text{arr}, \text{airl}))$
Example (DE in Flight Domain)

Source schema σ

- Geo(city, coun, pop)
- Flight(src, dest, airl, dep)

Target schema τ

- Route(fno, src, dest)
- Info(fno, dep, arr, airl)
- Serves(airl, city, coun, phone)

Mapping rules $M_{\sigma\tau}$

1. $\text{Flight}(\text{src}, \text{dest}, \text{airl}, \text{dep}) \rightarrow \exists \text{fno} \exists \text{arr} (\text{Route}(\text{fno}, \text{src}, \text{dest}) \land \text{Info}(\text{fno}, \text{dep}, \text{arr}, \text{airl}))$
2. $\text{Flight}(\text{city}, \text{dest}, \text{airl}, \text{dep}) \land \text{Geo}(\text{city}, \text{coun}, \text{pop}) \rightarrow \exists \text{phone} (\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone}))$
3. $\text{Flight}(\text{src}, \text{city}, \text{airl}, \text{dep}) \land \text{Geo}(\text{city}, \text{coun}, \text{pop}) \rightarrow \exists \text{phone} (\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone}))$
Example (DE in Flight Domain)

Source schema σ

- $\text{Geo}(\text{city}, \text{coun}, \text{pop})$
- $\text{Flight}(\text{src}, \text{dest}, \text{airl}, \text{dep})$

Target schema τ

- $\text{Route}(\text{fno}, \text{src}, \text{dest})$
- $\text{Info}(\text{fno}, \text{dep}, \text{arr}, \text{airl})$
- $\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone})$

Mapping rules $M_{\sigma \tau}$

1. $\text{Flight}(\text{src}, \text{dest}, \text{airl}, \text{dep}) \rightarrow \exists \text{fno} \exists \text{arr} (\text{Route}(\text{fno}, \text{src}, \text{dest}) \land \text{Info}(\text{fno}, \text{dep}, \text{arr}, \text{airl}))$
2. $\text{Flight}(\text{city}, \text{dest}, \text{airl}, \text{dep}) \land \text{Geo}(\text{city}, \text{coun}, \text{pop}) \rightarrow \exists \text{phone} (\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone}))$
3. $\text{Flight}(\text{src}, \text{city}, \text{airl}, \text{dep}) \land \text{Geo}(\text{city}, \text{coun}, \text{pop}) \rightarrow \exists \text{phone} (\text{Serves}(\text{airl}, \text{city}, \text{coun}, \text{phone}))$

New target schema τ'

- $\text{InfoAirline}(\text{airline}, \text{city}, \text{coun}, \text{phone}, \text{year})$
- $\text{InfoJourney}(\text{fno}, \text{source}, \text{dep}, \text{dest}, \text{arr}, \text{airl})$
Example (DE in Flight Domain)

Source schema σ

- Geo(city, coun, pop)
- Flight(src, dest, airl, dep)

Target schema τ

- Route(fno, src, dest)
- Info(fno, dep, arr, airl)
- Serves(airl, city, coun, phone)

Mapping rules $M_{\sigma \tau}$

1. $\text{Flight}(src, dest, airl, dep) \rightarrow \exists fno \exists arr (\text{Route}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))$
2. $\text{Flight}(city, dest, airl, dep) \land \text{Geo}(city, coun, pop) \rightarrow \exists phone (\text{Serves}(airl, city, coun, phone))$
3. $\text{Flight}(src, city, airl, dep) \land \text{Geo}(city, coun, pop) \rightarrow \exists phone (\text{Serves}(airl, city, coun, phone))$

New target schema τ'

- InfoAirline(airline, city, coun, phone, year)
- InfoJourney(fno, source, dep, dest, arr, airl)

Mapping rules $M_{\tau \tau'}$

1. $\text{Serves}(airl, city, coun, phone) \rightarrow \exists year \text{InfoAirline}(airl, city, coun, phone, year)$
2. $\text{Route}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl) \rightarrow \text{InfoJourney}(fno, dep, dest, arr, airl)$
Example (DE in Flight Domain)

Source schema σ

- Geo(city, coun, pop)
- Flight(src, dest, airl, dep)

Target schema τ

- Route(fno, src, dest)
- Info(fno, dep, arr, airl)
- Serves(airl, city, coun, phone)

Mapping rules $M_{\sigma\tau}$

1. $\text{Flight}(src, dest, airl, dep) \rightarrow \exists fno \exists arr (\text{Route}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl))$
2. $\text{Flight}(\text{city}, dest, airl, dep) \land \text{Geo}(\text{city}, coun, pop) \rightarrow \exists \text{phone} (\text{Serves}(airl, city, coun, phone))$
3. $\text{Flight}(src, \text{city}, airl, dep) \land \text{Geo}(\text{city}, coun, pop) \rightarrow \exists \text{phone} (\text{Serves}(airl, city, coun, phone))$

New target schema τ'

- InfoAirline(airline, city, coun, phone, year)
- InfoJourney(fno, source, dep, dest, arr, airl)

Mapping rules $M_{\tau\tau'}$

1. $\text{Serves}(airl, city, coun, phone) \rightarrow \exists \text{year} \text{InfoAirline}(airl, city, coun, phone, year)$
2. $\text{Route}(fno, src, dest) \land \text{Info}(fno, dep, arr, airl) \rightarrow \text{InfoJourney}(fno, dep, dest, arr, airl)$

Composed rules $M_{\sigma\tau} \circ M_{\tau\tau'}$

1. $\text{Flight}(src, dest, airl, dep) \rightarrow \exists fno \exists arr (\text{InfoJourney}(fno, src, dep, dest, arr, airl))$
2. $\text{Flight}(\text{city}, dest, airl, dep) \land \text{Geo}(\text{city}, coun, pop) \rightarrow \exists \text{phone} \exists \text{year} \text{InfoAirline}(airl, city, coun, phone, year)$
3. $\text{Flight}(src, \text{city}, airl, dep) \land \text{Geo}(\text{city}, coun, pop) \rightarrow \exists \text{phone} \exists \text{year} \text{InfoAirline}(airl, city, coun, phone, year)$
Inverse for Source Schema Change

\[\sigma \text{DB} \rightarrow \text{Exchange} \rightarrow \tau \text{DB} \]

\[M_{\sigma \tau} \]

\[\tau \text{query} \]

\[\text{target schema } \tau \]

\[\text{source schema } \sigma \]

\[\text{materialized} \]
Inverse for Source Schema Change

source schema σ'

$M_{\sigma\sigma'}$

mapping rules

source schema σ

$M_{\sigma\tau}$

mapping rules

target schema τ

τ query

σ' DB

σ DB

Exchange

materialized

τ DB
Inverse for Source Schema Change

source schema σ'

mapping rules $M_{\sigma\sigma'}$

σ' DB

exchange

target schema τ

mapping rules $M_{\sigma\tau}$

τ DB

materialized

τ query
Inverse for Source Schema Change

Composed mapping \((M_{\sigma\sigma'})^{-1} \circ M_{\tau\tau'}\)

source schema \(\sigma'\)

mapping rules \(M_{\sigma\sigma'}\)

\(\sigma'\) DB

mapping rules \(M_{\sigma\tau}\)

target schema \(\tau\)

\(\tau\) query

Exchange

\(\tau\) DB

materialized
Main question: Closure

- Are mappings closed under
 - composition?
 - inverse?
- In general they are not
- Solution: Use second order logic with Skolem functions
Mapping Composition
- Treat mappings as binary relations

\[[M_{\tau_1 \tau_2}] = \text{set of pairs (source } \tau_1\text{-instance, } \tau_2\text{-solution)} \]
Definition (Mapping composition)

Given schemata σ, τ, τ' and mappings $M_{\sigma\tau}, M_{\tau\tau'}$. The composition of $M_{\sigma\tau}, M_{\tau\tau'}$ is defined by

$$[M_{\sigma\tau}] \circ [M_{\tau\tau'}] = \{(\mathcal{S}, \mathcal{I}') \mid \text{there is } \tau\text{-instance } \mathcal{I} \text{ s.t.}$$

$$(\mathcal{S}, \mathcal{I}) \in [M_{\sigma\tau}] \text{ and } (\mathcal{I}, \mathcal{I}') \in [M_{\tau\tau'}]\}$$
Treat mappings as binary relations
\[[\mathcal{M}_{\tau_1\tau_2}] = \text{set of pairs (source } \tau_1\text{-instance, } \tau_2\text{-solution)}\]

Definition (Mapping composition)

Given schemata \(\sigma, \tau, \tau'\) and mappings \(\mathcal{M}_{\sigma\tau}, \mathcal{M}_{\tau\tau'}\). The composition of \(\mathcal{M}_{\sigma\tau}, \mathcal{M}_{\tau\tau'}\) is defined by

\[[\mathcal{M}_{\sigma\tau}] \circ [\mathcal{M}_{\tau\tau'}] = \{(\mathcal{G}, \mathcal{I}') \mid \text{there is } \tau\text{-instance } \mathcal{I} \text{ s.t. }\
\quad (\mathcal{G}, \mathcal{I}) \in [\mathcal{M}_{\sigma\tau}] \text{ and } (\mathcal{I}, \mathcal{I}') \in [\mathcal{M}_{\tau\tau'}]\}\]

- Note: Semantics of composition does not say whether there exist rule set \(\mathcal{M}\) representing \([\mathcal{M}_{\sigma\tau}] \circ [\mathcal{M}_{\tau\tau'}]\).
 (That is the whole point of the closure problem)
Example

- \(\sigma : \{ \text{Takes}(\text{name}, \text{course}) \} \)
- \(\tau : \{ \text{Takes1}(\text{name}, \text{course}), \text{Student}(\text{name}, \text{sid}) \} \)
- \(\tau' : \{ \text{Enrolled}(\text{sid}, \text{course}) \} \)
- \(\mathcal{M}_{\sigma \tau} : \{ \text{Takes}(\text{n}, \text{c}) \rightarrow \text{Takes1}(\text{n}, \text{c}), \text{Takes}(\text{n}, \text{c}) \rightarrow \exists \text{s}\text{Student}(\text{n}, \text{s}) \} \)
- \(\mathcal{M}_{\tau \tau'} : \{ \text{Student}(\text{n}, \text{s}) \land \text{Takes1}(\text{n}, \text{c}) \rightarrow \text{Enrolled}(\text{s}, \text{c}) \} \)
Example

- $\sigma: \{\text{Takes(name, course)}\}$
- $\tau: \{\text{Takes1(name, course), Student(name, sid)}\}$
- $\tau': \{\text{Enrolled(sid, course)}\}$
- $M_{\sigma\tau}: \{\text{Takes(n, c) }\rightarrow\text{Takes1(n, c), Takes(n, c) }\rightarrow\exists s \text{Student}(n, s)\}$
- $M_{\tau\tau'}: \{\text{Student(n, s) }\land\text{Takes1(n, c) }\rightarrow\text{Enrolled}(s, c)\}$

- No st-tgd represents $M_{\sigma\tau} \circ M_{\tau\tau'}$, in particular not st-tgd:

 $$\text{Takes}(n, c) \rightarrow \exists y \text{Enrolled}(y, c)$$
Example

- \(\sigma : \{ \text{Takes}(\text{name}, \text{course}) \} \)
- \(\tau : \{ \text{Takes1}(\text{name}, \text{course}), \text{Student}(\text{name}, \text{sid}) \} \)
- \(\tau' : \{ \text{Enrolled}(\text{sid}, \text{course}) \} \)
- \(M_{\sigma \tau} : \{ \text{Takes}(n, c) \rightarrow \text{Takes1}(n, c), \text{Takes}(n, c) \rightarrow \exists s \text{Student}(n, s) \} \)
- \(M_{\tau \tau'} : \{ \text{Student}(n, s) \land \text{Takes1}(n, c) \rightarrow \text{Enrolled}(s, c) \} \)

No st-tgd represents \(M_{\sigma \tau} \circ M_{\tau \tau'} \), in particular not st-tgd:

\[
\text{Takes}(n, c) \rightarrow \exists y \text{Enrolled}(y, c)
\]

Intuitively need to express dependency \(f : n \rightarrow \text{sid} \)

\[
\text{Takes}(n, c) \rightarrow \text{Enrolled}(f(n), c)
\]
Example

- $\sigma : \{\text{Takes}(\text{name}, \text{course})\}$
- $\tau : \{\text{Takes1}(\text{name}, \text{course}), \text{Student}(\text{name}, \text{sid})\}$
- $\tau' : \{\text{Enrolled}(\text{sid}, \text{course})\}$
- $M_{\sigma \tau} :$
 \{\text{Takes}(n, c) \rightarrow \text{Takes1}(n, c), \text{Takes}(n, c) \rightarrow \exists s \text{Student}(n, s)\}$
- $M_{\tau \tau'} : \{\text{Student}(n, s) \land \text{Takes1}(n, c) \rightarrow \text{Enrolled}(s, c)\}$

- No st-tgd represents $M_{\sigma \tau} \circ M_{\tau \tau'}$, in particular not st-tgd:
 \[\text{Takes}(n, c) \rightarrow \exists y \text{Enrolled}(y, c)\]

- Intuitively need to express dependency $f : n \rightarrow \text{sid}$
 \[\text{Takes}(n, c) \rightarrow \text{Enrolled}(f(n), c)\]

- f called Skolem function
Complexity of Relational Composition

Problem \textit{COMPOSITION}(M_{\sigma \tau}, M_{\tau \tau'})

- INPUT: Instance \mathcal{G} of σ and instance \mathcal{F}' of τ'
- Output: Is $(\mathcal{G}, \mathcal{F}') \in [M_{\sigma \tau}] \circ [M_{\tau \tau'}]$?
Complexity of Relational Composition

Problem \textsc{Composition}(M_{\sigma \tau}, M_{\tau \tau'})

- INPUT: Instance \(\mathcal{G} \) of \(\sigma \) and instance \(\mathcal{F}' \) of \(\tau' \)
- Output: Is \((\mathcal{G}, \mathcal{F}') \in [M_{\sigma \tau}] \circ [M_{\tau \tau'}]?)

Theorem

- For mappings \(M_{\sigma \tau} \) and \(M_{\tau \tau'} \) specified by st-tgds, \(\textsc{Composition}(M_{\sigma \tau}, M_{\tau \tau'}) \) is NP.
- One can find \(M_{\sigma \tau}^* \) and \(M_{\tau \tau'}^* \), represented by st-tgds for which \(\textsc{Composition}(M_{\sigma \tau}^*, M_{\tau \tau'}^*) \) is NP-complete.

Proof by reducing from NP-hard problem of 3-colorability
Corollary

For the mappings $M^{*}_{\sigma \tau}$ and $M^{*}_{\tau \tau'}$ specified by st-tgds there is no finite set of FOL formulae representing their composition.

Proof sketch

- Assume for contradiction there is set X of FOL formulae for the composition.
- Then the NP-hard $COMPOSITION(M^{*}_{\sigma \tau}, M^{*}_{\tau \tau'})$ reduces to checking $(\mathcal{G}, \mathcal{G}') \models X$
- which is in AC^0
- But $AC^0 \subsetneq NP$, \$.
Definition (SO tgds)

Given disjoint schemata σ, τ, a second-order tuple-generating dependency from σ to τ is a formula of the form

$$\exists f_1 \ldots \exists f_m (\forall \vec{x}_1 (\phi_1 \rightarrow \psi_1) \land \cdots \land \forall \vec{x}_n (\phi_n \rightarrow \psi_n))$$

where

- each f_i is a function symbol
- each ϕ_i is conjunction of relational formulae $R(y_1, \ldots, y_k)$ or identities $t = t'$ with y_j from \vec{x} and t, t' are terms built from $\{\vec{x}_i, f_1, \ldots, f_m\}$
- ψ_i is conjunction of form $R(t_1, \ldots, t_l)$ and t_j built from $\{\vec{x}_i, f_1, \ldots, f_m\}$
- each variable in \vec{x}_i appears in some relational atom of ϕ_i

f_1, \ldots, f_m are called Skolem functions.
Semantics of SO tgd

- As in second order logic but requiring that \((k\text{-ary})\) \(f\) s are interpreted by \(k\text{-ary}\) functions of form

\[
f : (\text{CONST} \cup \text{VAR})^k \rightarrow \text{CONST} \cup \text{VAR}
\]
SO tgds do the job

Theorem

- For mappings $\mathcal{M}_{\sigma\tau}$ and $\mathcal{M}_{\tau\tau'}$ specified by SO tgds $\Sigma_{\sigma\tau}$, $\Sigma_{\tau\tau'}$, resp., there is a set of SO tgds representing $[\mathcal{M}_{\sigma\tau}] \circ [\mathcal{M}_{\tau\tau'}]$.
- Moreover there is an exponential-time algorithm computing the composition.
SO tgds do the job

Theorem

- For mappings $M_{\sigma\tau}$ and $M_{\tau\tau'}$ specified by SO tgds $\Sigma_{\sigma\tau}$, $\Sigma_{\tau\tau'}$, resp., there is a set of SO tgds representing $[M_{\sigma\tau}] \circ [M_{\tau\tau'}]$.

- Moreover there is an exponential-time algorithm computing the composition.

- This theorem applicable to mappings described by FOL st-tgds: Transform st-tgds into SO tgds using skolemization.
Composing relational schema mappings

Require: on the source side reuse of variables only in equalities

Input : \(\Sigma_{\sigma \tau}, \Sigma_{\tau \tau}' \)

Output : \(\Sigma_{\sigma \tau}' \)

\(\Sigma_{\sigma \tau}' := \emptyset; \)

\(m := \max_{\phi \rightarrow \psi \in \Sigma_{\tau \tau}'} ||\phi||; \)

forall \(\phi_1 \rightarrow \pi_1, \ldots, \phi_k \rightarrow \pi_k \in \Sigma_{\sigma \tau}, k \leq m \) do

in case of repetitions rename variables;

\(\rho := \pi_1 \land \cdots \land \pi_k; \)

forall \(\pi \land \alpha \rightarrow \pi' \in \Sigma_{\tau \tau}' \) and all homomorphisms \(h : \pi \rightarrow \rho \) do

\(\Sigma_{\sigma \tau}' = \Sigma_{\sigma \tau}' \cup \{ \phi_1 \land \cdots \land \phi_k \land h(\alpha) \rightarrow h(\pi') \} \)

end

end

return \(\Sigma_{\sigma \tau}'; \)

Notation used in algorithm

▷ \(||\phi|| = \) number of atoms in \(\phi \)

▷ use \(\pi \) for conjunctions of relational atoms and \(\alpha \) for equality atoms

▷ So each SO tgd can be written as \(\pi \land \alpha \rightarrow \pi' \)
Inverting Mappings
First Definition of Inverse

- Harder than composition.
- Intuition: $\mathcal{M} \circ \mathcal{M}^{-1} = \text{“identity mapping” } ID$
- But even semantics not clear: what should ID be?
- Let us start with

Definition (Inverse)

The mapping $\mathcal{M}_{\tau\sigma}^{-1}$ is an inverse of mapping $\mathcal{M}_{\sigma\tau}$ iff

$$\mathcal{M}_{\sigma\tau} \circ \mathcal{M}_{\tau\sigma}^{-1} = \{(\mathcal{G}, \mathcal{G}') \mid \mathcal{G}, \mathcal{G}' \text{ are } \sigma\text{-instances with } \mathcal{G} \subseteq \mathcal{G}'\}$$
Example

- Inverses may not be unique
 - $\mathcal{M}_{\sigma \tau} : S(x) \rightarrow T(x), S(x) \rightarrow T'(x)$
 - First inverse $\mathcal{M}_{\tau \sigma}^{-1} : T(x) \rightarrow S(x)$.
 - Another inverse: $\mathcal{M}_{\tau \sigma}^{-1} : T'(x) \rightarrow S(x)$.

- Inverse of union requires disjunction
 - $\mathcal{M}_{\sigma \tau} : S(x) \rightarrow T(x), S'(x) \rightarrow T(x)$
 - $\mathcal{M}_{\tau \sigma}^{-1} : T(x) \rightarrow S(x) \lor S'(x)$
 - So inverse (in some mapping language such as st-tgd) may not exist
 \implies Criteria for existence of inverse mappings
Subset property

Definition (Subset property)

Mapping $M_{\sigma\tau}$ satisfies the subset property iff for all pairs $(\mathcal{S}, \mathcal{S}')$:

If $\text{Sol}_{M_{\sigma\tau}}(\mathcal{S}) \subseteq \text{Sol}_{M_{\sigma\tau}}(\mathcal{S}')$ then $\mathcal{S}' \subseteq \mathcal{S}$

Theorem

Let $M_{\sigma\tau}$ be specified by a set of st-tgds. Then it is invertible iff it fulfils the subset property.
Complexity of Checking Invertibility

Theorem

Let $\mathcal{M}_{\sigma\tau}$ be specified by a set of st-tgds. Checking invertibility is coNP-complete.

Surprisingly the seemingly simpler problem is not decidable:

Theorem

Let $\mathcal{M}_{\sigma\tau}$ and $\mathcal{M}'_{\tau\sigma}$ be specified by finite sets of st-tgds. It is undecidable whether $\mathcal{M}'_{\tau\sigma}$ is an inverse of $\mathcal{M}_{\sigma\tau}$
Relaxed Notions of Invertibility

- **Quasi-inverse**
 - Not considered here, because
 - even for this relaxed notion existence of st-tgd mappings not guaranteed

- **We consider notion of (maximum) recover**
 - Recover sound information w.r.t. mappings
 - Existence of covers guaranteed
Definition (Recovery)

A mapping $\mathcal{M}' = \mathcal{M}'_{\tau\sigma}$ is a

- **recovery of mapping** $\mathcal{M} = \mathcal{M}_{\sigma\tau}$ iff for every σ instance \mathcal{S} on which \mathcal{M} is defined (for short: $\mathcal{S} \in \text{Dom}(\mathcal{M})$) it holds that $(\mathcal{S}, \mathcal{S}) \in \mathcal{M} \circ \mathcal{M}'$.

- **maximum recovery of mapping** $\mathcal{M}_{\sigma\tau}$ iff it is a recovery and is maximal: for every recovery \mathcal{M}'' of \mathcal{M} it holds that $\mathcal{M} \circ \mathcal{M}' \subseteq \mathcal{M} \circ \mathcal{M}''$.

Definition (Recovery)

A mapping $\mathcal{M}' = \mathcal{M}'_{\tau\sigma}$ is a

- recovery of mapping $\mathcal{M} = \mathcal{M}_{\sigma\tau}$ iff for every σ instance S on which \mathcal{M} is defined (for short: $S \in \text{Dom}(\mathcal{M})$) it holds that $(S, S) \in \mathcal{M} \circ \mathcal{M}'$.

- maximum recovery of mapping $\mathcal{M}_{\sigma\tau}$ iff it is a recovery and is maximal: for every recovery \mathcal{M}'' of \mathcal{M} it holds that $\mathcal{M} \circ \mathcal{M}' \subseteq \mathcal{M} \circ \mathcal{M}''$

- The smaller the space of possible solutions by inverse \mathcal{M}' the more informative is \mathcal{M}'
Example (Recoveries)

- σ: $\{E(x, y)\}$
- τ: $\{F(x, y), G(x)\}$
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

\[
\Sigma = \{E(x, z) \land E(z, y) \rightarrow F(x, y) \land G(z)\}
\]

- $\mathcal{M}_1 = (\tau, \sigma, \Sigma_1)$ with

\[
\Sigma_1 = \{F(x, y) \rightarrow \exists z (E(x, z) \land E(z, y))\}
\]
Example (Recoveries)

- σ: \{ $E(x, y)$ \}
- τ: \{ $F(x, y), G(x)$ \}
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

 \[\Sigma = \{ E(x, z) \land E(z, y) \rightarrow F(x, y) \land G(z) \} \]

- $\mathcal{M}_1 = (\tau, \sigma, \Sigma_1)$ with

 \[\Sigma_1 = \{ F(x, y) \rightarrow \exists z(E(x, z) \land E(z, y)) \} \]

- \mathcal{M}_1 is a recovery of \mathcal{M}
 - For any instance \mathcal{S} let \mathcal{U} be universal canonical solution for \mathcal{M}.
 - Then $(\mathcal{U}, \mathcal{S}) \in \mathcal{M}_1$ (so $(\mathcal{S}, \mathcal{S}) \in \mathcal{M} \circ \mathcal{M}_1$)
Example (Recoveries)

- \(\sigma : \{ E(x, y) \} \)
- \(\tau : \{ F(x, y), G(x) \} \)
- \(\mathcal{M} = (\sigma, \tau, \Sigma) \) with

\[
\Sigma = \{ E(x, z) \land E(z, y) \rightarrow F(x, y) \land G(z) \}
\]

- \(\mathcal{M}_2 = (\tau, \sigma, \Sigma_2) \) with

\[
\Sigma_2 = \{ G(z) \rightarrow \exists x, y(E(x, z) \land E(z, y)) \} \]
Example (Recoveries)

- \(\sigma: \{ E(x, y) \} \)
- \(\tau: \{ F(x, y), G(x) \} \)
- \(\mathcal{M} = (\sigma, \tau, \Sigma) \text{ with } \)
 \[
 \Sigma = \{ E(x, z) \land E(z, y) \to F(x, y) \land G(z) \}
 \]

- \(\mathcal{M}_2 = (\tau, \sigma, \Sigma_2) \text{ with } \)
 \[
 \Sigma_2 = \{ G(z) \to \exists x, y(E(x, z) \land E(z, y)) \}
 \]

- \(\mathcal{M}_2 \) is a recovery of \(\mathcal{M} \)
Example (Recoveries)

- σ: $\{E(x, y)\}$
- τ: $\{F(x, y), G(x)\}$
- $M = (\sigma, \tau, \Sigma)$ with
 \[\Sigma = \{E(x, z) \land E(z, y) \to F(x, y) \land G(z)\}\]

- $M_3 = (\tau, \sigma, \Sigma_3)$ with
 \[\Sigma_3 = \{F(x, y) \land G(z) \to E(x, z) \land E(z, y)\}\]
Example (Recoveries)

- σ: $\{E(x, y)\}$
- τ: $\{F(x, y), G(x)\}$
- $M = (\sigma, \tau, \Sigma)$ with

\[
\Sigma = \{E(x, z) \land E(z, y) \rightarrow F(x, y) \land G(z)\}
\]

- $M_3 = (\tau, \sigma, \Sigma_3)$ with

\[
\Sigma_3 = \{F(x, y) \land G(z) \rightarrow E(x, z) \land E(z, y)\}
\]

- M_3 is not a recovery of M
 - See exercise
Example (Recoveries)

- σ: $\{E(x, y)\}$
- τ: $\{F(x, y), G(x)\}$
- $\mathcal{M} = (\sigma, \tau, \Sigma)$ with

$$\Sigma = \{E(x, z) \land E(z, y) \rightarrow F(x, y) \land G(z)\}$$

- $\mathcal{M}_4 = (\tau, \sigma, \Sigma_4)$ with

$$\Sigma_4 = \Sigma_1 \cup \Sigma_2$$
Example (Recoveries)

- \(\sigma: \{E(x, y)\} \)
- \(\tau: \{F(x, y), G(x)\} \)
- \(\mathcal{M} = (\sigma, \tau, \Sigma) \) with

\[
\Sigma = \{E(x, z) \land E(z, y) \rightarrow F(x, y) \land G(z)\}
\]

- \(\mathcal{M}_4 = (\tau, \sigma, \Sigma_4) \) with

\[
\Sigma_4 = \Sigma_1 \cup \Sigma_2
\]

- \(\mathcal{M}_4 \) is a maximum recovery of \(\mathcal{M} \)
 - can be shown by the following criteria (exercise).
Closure of st-tgds for Maximum Recovery

Proposition

Let $M'_{\tau\sigma}$ be a recovery of $M_{\sigma\tau}$. Then $M'_{\tau\sigma}$ is a maximal recovery iff

1. For every $(S, S') \in M \circ M'$: $S' \in \text{Dom}(M)$ and
2. $M = M \circ M' \circ M$.

Using this one can show

Theorem

Every mapping specified by a finite set of st-tgds admits a maximum recovery.
Computing Inverses

- Remember algorithms for view rewriting

Proposition

Let $\mathcal{M} = (\sigma, \tau, \Sigma)$ with st-tgds Σ and Q be a CQ over τ.

- There exists an algorithm QueryRewriting that computes UCQ with equalities Q_{rew} that is a rewriting of Q over the source (i.e. $\text{cert}_{\mathcal{M}}(Q, \mathcal{S}) = Q_{\text{rew}}(\mathcal{S})$ for all source DBs \mathcal{S}).
- The algorithm runs in exponential time and its output is of exponential size in the size of Σ, Q.

- Based on QueryRewriting can define algorithm MaximumRecovery

Theorem

Algorithm MaximumRecovery produces a maximum recovery in exponential time.
Algorithm MaximumRecovery

Input : $M_{\sigma\tau} = (\sigma, \tau, \Sigma)$ with Σ finite set of st-tgds
Output: A maximum recovery $M_{\tau\sigma} = (\tau, \sigma, \Gamma)$
$\Gamma := \emptyset$;
forall $\phi(\vec{x}) \rightarrow \exists \vec{y} \psi(\vec{x}, \vec{y}) \in \Sigma$ do
 $Q(\vec{x}) := \exists \vec{y} \psi(\vec{x}, \vec{y})$;
 $\alpha(\vec{x}) := \text{QueryRewriting}(M_{\sigma\tau}, Q)$;
 $\Gamma = \Gamma \cup \{ \psi(\vec{x}, \vec{y}) \land C(\vec{x}) \rightarrow \alpha(\vec{x}) \}$; // C is predicate testing for constant
end
return $M_{\tau\sigma} = (\tau, \sigma, \Gamma)$;