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Ontology-Based Data Access

I Use ontologies as interface
...

I to access (here: query)
I data stored in some format

...
I using mappings

ABox%

mappings%

TBox%

Ontology%

Query%

I Description logics as ontology representation language
I Semantics
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OBDA in the Classical Sense

I Keep the data where they are because of large volume
I Abox not loaded into main memory, kept virtual
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Rewriting



OBDA in the Classical Sense

I Query answering not with deduction but rewriting and
unfolding

I Challenge: Complete and correct rewriting and unfolding
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Definition

I LTBox = tbox language

I LoQ = ontology query language

I LtQ = target query language

Answering LTBox queries is LtQ -rewritable iff for every tbox T over
LTBox and query Q in LoQ there is a query Qrew in LtQ such that for all
aboxes A:

cert(Q, T ∪ A) = ans(Qrew ,DB(A))

Definition (Minimal Herband Model DB(A))
DB(A) = (∆, ·I) for an abox A with

I ∆ = set of constants occurring in A
I cI = c for all constants;

I AI = {c | A(c) ∈ A};
I rI = {(c , d) | r(c , d) ∈ A}
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Rewriting for Different Languages

I Possibility of rewriting depends on expressivity balance
between LTBox , LoQ , LtQ .

I One aims at computably feasible LtQ queries

I In classical OBDA
I LTBox : Language of the DL-Lite family
I LoQ : Unions of conjunctive queries
I LtQ : (Safe) FOL/SQL (in AC 0)
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DL-Lite



DL-Lite

I Family of DLs underlying the OWL 2 QL profile
I Tailored towards the classical OBDA scenario

I Captures (a large fragment of) UML
I FOL-rewritability for ontology satisfiability checking and query

answerings for UCQs
I Used in many implementations of OBDA (QuOnto, Presto,

Rapid, Nyaya, ontop etc.)

I We give a rough overview. For details consult, e.g.,
Lit: Calvanese et al. Ontologies and databases: The DL-Lite approach. In

Tessaris/Franconi, editors, Semantic Technologies for Informations Systems. 5th

Int. Reasoning Web Summer School (RW 2009), pages 255–356. Springer,

2009.

Lit: A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The

DL-Lite family and relations. J. Artif. Intell. Res. (JAIR), 36:1–69, 2009.
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DL-LiteF
I Simple member of the family allowing functional constraints

I Syntax
I Basic role Q ::= P | P− for P ∈ NR

I Roles: R ::= Q | ¬Q
I Basic concepts B ::= A | ∃Q for A ∈ NC ,Q ∈ NR

I Concepts C ::= B | ¬B | ∃R.C

I Tbox: B v C , (func Q) (“Q is functional”)
(where (func Q) is allowed in the tbox only if Q does not
appear as ∃Q.C on a rhs in the tbox)

I Abox: A(a),P(a, b)

I Semantics as usual
(∃Q shorthand for ∃Q.>)

I Note
I No qualified existential on lhs
I Restriction on use of functional role
I Both due to rewritability
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Properties

I DL-LiteF enables basic UML conceptual modeling
I ISA between classes (Professor v Person)
I Disjointness (Professor v ¬Student)
I Domain and range of roles: (Professor v ∃teachesTo,
∃hasTutor− v Professor)

I ...

I DL-LiteF does not have finite model property

Example

I Nat v ∃hasSucc , ∃hasSucc− v Nat, (funct hasSucc−),
I Zero v Nat, Zero v ¬∃hasSucc−, Zero(0)
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DL-LiteR
I Another simple member of the family
I Allows role hierarchies

I Syntax
I Basic role Q ::= P | P− for P ∈ NR

I Roles R ::= Q | ¬Q.
I Basic concepts B ::= A | ∃Q for A ∈ NC ,Q ∈ NR

I Concepts C ::= B | ¬B | ∃R.C

I Tbox: B v C , R1 v R2
I Abox: A(a),P(a, b)

I Semantics as usual

I Note
I Again no qualified existential on lhs
I DL-LiteR has finite model property
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Qualified Existentials

I Qualified existentials on rhs not necessary (if role inclusions
and inverse allowed)

I Can be eliminated preserving satisfiably equivalence

Example (Eliminating Qualified Existentials on Rhs)

I Input: Student v ∃hasTutor .Professor
I Output

I hasProfTutor v hasTutor
I Student v ∃hasProfTutor
I ∃hasProfTutor− v Prof

I In the following: We assume w.l.o.g. that only non-qualified
existentials are used
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DL-LiteA

I DL-LiteA extends DL-LiteF and DL-LiteR by allowing for
I attribute expressions

(binary relation between objects and values)
I identification assertions

(corresponds to primary key constraints in DB)

I Restrictions for tbox: Roles (and attributes) appearing in
functionality declarations or identification assertions must not
appear on the rhs of role inclusions
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Example (Football league example in DL-LiteA)

I League v ∃of (“Every league is the league .. .
I ∃of − v Nation .. of some nation”)

I League v δ(hasYear) (“Every league has a year”)
(Here: δ(hasYear) = domain of attribute hasYear)

I ρ(hasYear) v xsd :positiveInteger
(“Range of hasYear are RDF literals of type positive integer”)

I (funct hasYear)

I (id League of , hasYear)
(“Leagues are uniquely determined by the nation and the year”)
General Form: (id basicConcept path1, . . . , pathn))
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Identity assertions
I Path: π −→ S |D?|π ◦ π

I S = basic role, atomic attribute (or inverse of atomic attribute)
I ◦ = composition of paths
I D = basic concept or value domain
I ?D = testing relation = identity on instances of D

I fillersπ(i) = objects reachable from i via π

Example

hasChild ◦Woman? = path connecting objects i with his/her
daughters (its fillers)

I Identity assertions: (id B π1, . . . , πn))
Semantics: Different instances i 6= i ′ of B are distinguished by
at least one of their fillers: There is πj such that

fillersπj (i) 6= fillersπj (i ′)
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Rewritability of Query Answering
I UCQ over DL-LiteA can be rewritten into FOL queries

Theorem
UCQs over DL-LiteA are FOL-rewritable.

I We consider first the case where the ontology is satisfiable
I In this case rewriting is possible even into UCQs

I And in this case only positive inclusions (PIs) and not negative
inclusions (NIs) are relevant for rewriting

Definition
A positive inclusion (PI) has of the following forms:

A1 v A2,∃Q v A2,A1 v ∃Q2,∃Q1 v ∃Q2,Q1 v Q2

A negative inclusion (NI) has of the following forms:

A1 v ¬A2, ∃Q1 v ¬A2,A1 v ¬∃Q2,∃Q1 v ¬∃Q2,Q1 v ¬Q2
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Example (Query answering by rewriting)

I AssistantProf v Prof

I ∃teaches− v Course

I Prof v ∃teaches

I Prof (schroedinger)

I teaches(schroedinger , csCats)

I Course(csCats)

I Prof (einstein)

Q(x) = ∃y .teaches(x , y) ∧ Course(y)

I Qrew (x)← teaches(x , y),Course(y)

I Qrew (x)← teaches(x , y), teaches(_, y)
I Qrew (x)← teaches(x , y) (after unification/reduction)
I Qrew (x)← teaches(x ,_) (after anonymization)
I Qrew (x)← Prof (x)

I Qrew (x)← AssistantProf (x)

I Resulting query Qrew is a UCQ and is called the perfect rewriting of Q
I ans(Qrew ,DB(A)) = {schroedinger , einstein} = cert(Q, (T ,A))
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Perfect Rewriting Algorithm PerfectRew(Q, TP)

Input : Q = UCQ (in set notation), TP = DL-LiteA PIs
Output: union of conjunctive queries PR
PR := Q;
repeat

PR′ := PR;
forall q ∈ PR′ do

forall g ∈ q do
forall PI I ∈ TP do

if I is applicable to g then
PR := PR ∪ {ApplyPI (q, g , I )}

end
end

end
forall g1, g2 in q do

if g1 and g2 unify then
PR := PR ∪ {anon(reduce(q, g1, g2))};

end
end

end
until PR′ = PR;
return PR;
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Procedure ApplyPI (q, g , I )
I Applicability condition

I A PI I is applicable to atom A(x) if I has A in rhs.
I A PI I is applicable to atom P(x1, x2) if one of the following conditions

holds:
1. x2 = _ and rhs of I is ∃P or
2. x1 = _ and the rhs of I is ∃P−; or
3. I is a role inclusion assertion and rhs is either P or P−

I Outcome of application

Atom g PI I gr(g , I )
A(x) A1 v A A1(x)
A(x) ∃P v A P(x ,_)
A(x) ∃P− v A P(_, x)
P(x ,_) A v ∃P A(x)
P(x ,_) ∃P1 v ∃P P1(x ,_)
P(x ,_) ∃P1− v ∃P P1(_, x)
P(_, x) A v ∃P− A(x)
P(_, x) ∃P1 v ∃P− P1(x ,_)
P(_, x) ∃P1− v ∃P− P1(_, x)
P(x1, x2) ∃P1 v P or ∃P1− v P− P1(x1, x2)
P(x1, x2) ∃P1 v P− or ∃P1− v P P1(x2, x1)

I ApplyPI (q, g , I ) = q[g/gr(g , I )]
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P(x ,_) ∃P1 v ∃P P1(x ,_)
P(x ,_) ∃P1− v ∃P P1(_, x)
P(_, x) A v ∃P− A(x)
P(_, x) ∃P1 v ∃P− P1(x ,_)
P(_, x) ∃P1− v ∃P− P1(_, x)
P(x1, x2) ∃P1 v P or ∃P1− v P− P1(x1, x2)
P(x1, x2) ∃P1 v P− or ∃P1− v P P1(x2, x1)

I ApplyPI (q, g , I ) = q[g/gr(g , I )]
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Anonymization and Reduction

I Reduction reduce(q, g1, g2)
I Input: g1, g2 atoms in body of CQ q
I Output: Returns a CQ q′ obtained by applying to q the most

general unifier between g1 and g2
I Required for generating possibly unbound variables

I Anonymization
I Substitute variables that are not bound with _.
I Variable is bound iff it is a distinguished variable (=answer

variable) or occurs at least twice in the body of a CQ
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Properties of PerfectRew

I Termination
I There are only finitely many different rewritings

I Correctness
I Only certain answers are produced by the rewriting
I Formally: ans(Qrew ,A) ⊆ cert(Q, (T ,A)))
I Clear, as PI applied correctly

I Completeness
I All certain answers are produced by the rewriting
I ans(Qrew ,A) ⊇ cert(Q, (T ,A)))
I How to prove this?

=⇒ Our old friend, the chase, helps again
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Chase Construction for DL
I The PIs of the tbox are read as (TGD) rules in the natural

direction from left to right

I Resulting structure, the chase, also called canonical model
here, is universal

I Reminder: A universal model can be mapped homomorphically
into any other model.

Theorem
Every satisfiable DL-Lite ontology has a canonical model

I Different from the approach in Date Exchange, one does not
aim for finite chases (cannot be guaranteed see example
before)

I Chase used here as tool for proving completeness
I Answering Qrew on the minimal Herbrand model of the abox is

the same as answering Q on the chase.
I Shown by induction on chase depth

24 / 46



Chase Construction for DL
I The PIs of the tbox are read as (TGD) rules in the natural

direction from left to right

I Resulting structure, the chase, also called canonical model
here, is universal

I Reminder: A universal model can be mapped homomorphically
into any other model.

Theorem
Every satisfiable DL-Lite ontology has a canonical model

I Different from the approach in Date Exchange, one does not
aim for finite chases (cannot be guaranteed see example
before)

I Chase used here as tool for proving completeness
I Answering Qrew on the minimal Herbrand model of the abox is

the same as answering Q on the chase.
I Shown by induction on chase depth 24 / 46



Satisfiability Check for Ontologies

I In case an ontology is unsatisfiable, answer set becomes trivial:
An unsatisfiable ontology entails all assertions
=⇒ To determine correct answers need satisfiability check

Theorem
Checking (un-)satisfiability of DL-Lite ontologies is FOL rewritable.

That means: For any tbox there is a Boolean query Q such that for
all aboxes A: (T ,A) is satisfiable iff Q is false.

I Unsatisfiability may be caused by an NI (negative inclusion) or
by a functional declaration

I So the rewritten query asks for an object in the abox violating
an NI or a functional declaration
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FOL Rewritability of Satisfiability
Example

TBox ABox
Prof v ¬Student Student(alice)
∃mentors v Prof mentors(alice, bob)
(funct mentors−) mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the abox:

I alice (via NI)

Q1()← ∃x(Prof (x)∧Student(x))∨∃x , y(mentors(x , y)∧Student(x))

I bob for the functional axiom

Q2()← ∃x , y , z(mentors−(x , y) ∧mentors−(x , z) ∧ y 6= z)

I Unsatisfiability tester query: Q1 ∨ Q2
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Checking Inconsistency for NIs

I Every NI is separately transformed to a CQ asking for a
counterexample object, e.g.,

A v ¬B becomes Q()← ∃x .A ∧ B
∃P v ¬B becomes Q()← ∃y , x .P(x , y) ∧ B(x)

I Resulting CQs are rewritten separately with PerfectRew w.r.t.
PIs in the tbox

I Intuition closure: A v B and B v ¬C entails A v ¬C
I Intuition separability: No two NIs can interact.

I QN := union of these CQs

I For functionalities, it is enough to consider these alone
(funct P) becomes Q()← ∃x , y , z .P(x , y) ∧ P(x , z) ∧ y 6= z
I QF := union of these CQs

I Intuition: No interaction of PI or NI with functionalities
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Rewritability

Theorem
Let O = (T ,A) be a DL-LiteA ontology. Then:

O is satisfiable iff QN ∨ QF is false.

I Note: QN ∨ QF is a UCQ 6= and hence an FOL query
I The separability has consequences for identifying culprits of

inconsistency
I At most two abox axioms may be responsible for an

inconsistency
I This is relevant for ontology repair, version, change etc. (see

next lectures)
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Constructs Leading to Non-rewritability in DL-Lite

I DL-LiteA is a maximal DL w.r.t. the allowed logical
constructors under the FOL constraints

I Useful constructions such as qualified existentials, disjunction,
non-restricted use of functional roles lead to loss of
FOL-rewritability

I This can be proved using complexity theory and FOL
(un-)definability arguments
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Why Disallowing Qualified Existentials on Lhs
I Reachability in directed graphs is NLOGSPACE-complete
I X is FOL expressible iff X ∈ AC 0

(and we know: AC 0 ( NLOGSPACE )
I Reachability reducible to QA with DL-lite and qualified

existentials in lhs

Reduction

Given: G, start s, end t

AG,t = {edge(v1, v2) | (v1, v2)} ∪ {PathToTarget(t)}
T = {∃edge.PathToTarget v PathToTarget}

CQ = q()← PathToTarget(s)

I Fact: T ∪ AG,t |= q iff there is a path from s to t in G
I Fact: T , q do not depend on G, t
I AG,t constructible in LOGSPACE from G, s, t.
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Limits of DL-Lite

I DL-LiteA is not the maximal fragment of FOL allowing for
rewritability

I Datalog± = Datalog with existentials in head = set of tuple
generating (TGDs) rules (and EGDs)

I Datalog±0 = “Linear fragment” of Datalog± containing rules
whose body consists of one atom

I Fact: Datalog±0 is strictly more expressive than DL-Lite.

Example
The rule

∀x .manager(x)→ manages(x , x)

is in Datalog±0 but in no member of the DL-Lite family.

I Recent research on DLs: Re-introduce n-ary relations for n > 2
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Connecting to the Real World: Mappings and Unfolding

ABox%
virtual%

%

mappings%

TBox%

Ontology%

Rewri8ng%

Qrew%

Unfolding%

Qunf%

Answers% Q%
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Reminder: Mappings
I Mappings have an important role for OBDA

Schema of MappingsM
m1: ontology template1 ←− data source template1
m2: ontology template2 ←− data source template2

. . .

I Lift data to the ontology level
I Data level: (nearly) closed world
I Ontology level: open world

I Mappings, described as rules, provide declarative means of
implementing the lifting

I User friendliness: users may built mappings on their own
I Neat semantics: the semantics can be clearly specified and is

not hidden in algorithms (as in direct mappings)
I Modularity: mappings can be easly extended, combined etc.
I Reuse of tools: Can be managed by (adapted) rule engines
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The Burden of Mappings
I The data-to-ontology lift faces impedance mismatch

I data values in the data vs.
I abstract objects in the ontology world
I Solved by Skolem terms ~f (~x) below

Schema of Mappings

m : ψ(~f (~x))←− Q(~x , ~y)

I ψ(~f (~x)): Query for generating abox axioms
I Q(~x , ~y) : Query over the backend sources
I Function ~f translates backend instantiations of ~x to constants

I Mappings M over backend sources generates abox A(M,DB).
I Use of mappings

I as ETL (extract, transform, load) means: materialize abox
I as logical view means: abox kept virtual (classical OBDA)
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Example Scenario: Measurements

I Example schema for measurement and event data in DB
SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(catID, catName)

I For mapping
m: Sens(f (SID)) ∧ name(f (SID), y)←−

SELECT SID, Sname as y FROM SENSOR

I the row data in SENSOR table
SENSOR
(123, comp45, TempSens, TC255, ‘A temperature sensor’)

I generates facts
Sens(f (123)), name(f (123),TempSens) ∈ A(m,DB)
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R2RML

I Very expressive mapping language couched in the RDF
terminology

I W3C standard (since 2012), http://www.w3.org/TR/r2rml/

I Read only (not allowed to write the RDFs view generated by
the mappings)

I Defined for logical tables (= SQL table or SQL view or
R2RML view)
=⇒ they can be composed to chains of mappings

I Has means to model foreign keys (referencing object map)
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Example (R2RML for Sensor Scenario)

@prefix rdf : <http ://www.w3.org/1999/02/22?rdf?syntax?ns#> .
@prefix rr : <http ://www.w3. org/ns/r2rml#> .
@prefix ex : <http ://www. example . org/> .

ex : SensorMap
a rr:TriplesMap ;
rr: logicalTable [ rr : tableName “Senso” ] ;
rr : subjectMap [

rr:template “http://www.sensorworld.org/SID” ;
rr:class ex:Sensor

];
rr: predicateObjectMap [

rr:predicate ex:hasName;
rr:objectMap [column “name”]

] .
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OBDA Semantics with Mappings

I Semantics canonically specified by using the generated abox
A(DB,M)

I Ontology Based Data Access System (OBDAS)

OS = ( T︸︷︷︸
TBox

,

mappings︷︸︸︷
M , DB︸︷︷︸

relational data base

)

Definition
An interpretation I satisfies an OBDAS OS = (T ,M,DB), for
short: I |= OS, iff I |= (T ,A(DB,M))

An OBDAS is satisfiable iff it has a satisfying interpretation.
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Unfolding
I Unfolding is the second but not to be underestimated step in

classical OBDA QA
I Applies mappings in the inverse direction to produce query

Qunf over data sources

Unfolding steps

1. Split mappings
atom1 ∧ · · · ∧ atomn ←− Q becomes
atom1 ←− Q, . . . , atomn ←− Q

2. Introduce auxiliary predicates (views for SQL) for rhs queries
3. In Qrew unfold the atoms (with unification) into a UCQ Qaux

using purely auxiliary predicates
4. Translate Qaux into SQL

I logical conjunction of atoms realized by a join
I disjunction of queries realized by SQL UNION
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Example (Unfolding for Measurement Scenario)

I DB with schema
SENSOR(SID, CID, Sname, TID, description)
MEASUREMENT1(MID, MtimeStamp, SID, Mval)
MEASUREMENT2(MID, MtimeStamp, SID, Mval) ...

I Mappings
m1: Sens(f (SID)) ∧ name(f (SID), y)←−

SELECT SID, Sname as y FROM SENSOR
m2: hasVal(f (SID),Mval)←−

SELECT SID, Mval FROM Measurement1
m3: hasVal(f (SID),Mval)←−

SELECT SID, Mval FROM Measurement2
m4: criticalValue(Mval)←−

SELECT Mval FROM MEASUREMENT1
WHERE Mval > 300

I Query
Q(x)←− Sens(x) ∧ hasVal(x , y) ∧ Critical(y)
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Example

Unfolding for Measurement Scenario
I Split mappings

m1.1: Sens(f (SID))←−
SELECT SID FROM SENSOR

m1.2: name(f (SID), y)←−
SELECT SID, Sname as y FROM SENSOR

m2: hasVal(f (SID),Mval)←−
SELECT SID, Mval FROM Measurement1

m3: hasVal(f (SID),Mval)←−
SELECT SID, Mval FROM Measurement2

m4: criticalValue(Mval)←−
SELECT Mval FROM MEASUREMENT1
WHERE Mval > 300

I Query

Q(x) ←− Sens(x) ∧ hasVal(x , y) ∧ Critical(y)
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Example

Unfolding for Measurement Scenario
I Split mappings

m1.1: Sens(f (SID))←−
SELECT SID FROM SENSOR =:Aux1(SID)

m1.2: name(f (SID), y)←−
SELECT SID, Sname as y FROM SENSOR =:Aux2(SID,y)

m2: hasVal(f (SID),Mval)←−
SELECT SID, Mval FROM Measurement1 =:Aux3(SID,Mval)

m3: hasVal(f (SID),Mval)←−
SELECT SID, Mval FROM Measurement2 =:Aux4(SID,Mval)

m4: criticalValue(Mval)←−
SELECT Mval FROM MEASUREMENT1
WHERE Mval > 300 =:Aux5(Mval)

I Query

Q(x) ←− Sens(x) ∧ hasVal(x , y) ∧ Critical(y)
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Example (Unfolding for Measurement Scenario)

I Split mappings
m1.1: Sens(f (SID))←−

SELECT SID FROM SENSOR :=Aux(SID)
m1.2: name(f (SID), y)←−

SELECT SID, Sname as y FROM SENSOR =:Aux2(SID,y)
m2: hasVal(f (SID),Mval)←−

SELECT SID, Mval FROM Measurement1 =:Aux3(SID,Mval)
m3: hasVal(f (SID),Mval)←−

SELECT SID, Mval FROM Measurement2 =:Aux4(SID,Mval)
m4: criticalValue(Mval)←−

SELECT Mval FROM MEASUREMENT1
WHERE Mval > 300 =:Aux5(Mval)

I Query

Q(x) ←− Sens(x) ∧ hasVal(x , y) ∧ Critical(y)

I Query QAux with Aux-views

QAux (SID) ←− Aux1(SID),Aux3(SID,Mval),Aux5(Mval)
QAux (SID) ←− Aux1(SID),Aux4(SID,Mval),Aux5(Mval)
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Example
Unfolding for Measurement Scenario

SELECT ’Qunfold’ || aux_1.SID || ’)’ FROM
(SELECT SID FROM SENSOR) as aux_1,
( SELECT SID, Mval FROM Measurement1) as aux_3,
(SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300) as aux_5
WHERE aux_1.SID = aux_3.SID AND aux_3.Mval = aux_5.Mval

UNION
SELECT ’Qunfold’ || aux_1.SID || ’)’ FROM

(SELECT SID FROM SENSOR) as aux_1,
( SELECT SID, Mval FROM Measurement2) as aux_4,
(SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300) as aux_5
WHERE aux_1.SID = aux_4.SID AND aux_4.Mval = aux_5.Mval

I There are different forms of unfolding
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Research on OBDA Mappings

I Recent research on classical OBDA reflects the insight of
mappings’ importance

I Adequateness conditions for mappings
I consistency/coherency
I redundancy

I Management of mappings
I Repairing mappings (based on consistency notion)
I Approximating ontologies and mappings

Lit: D. Lembo et al. Mapping analysis in ontology-based data access: Algorithms and

complexity. In: ISWC 2015, volume 9366 of LNCS, pages 217–234, 2015.
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Need for Opimizations

I UCQ-rewritings may be exponentially larger than the original
query

I Have to deal with this problem in practical systems
I One approach Use different rewriting to ensure conciseness
I Use additional knowledge on the data: integrity constraints,

(H)-completeness
I Have a look at OBDA framework ontop

(https://github.com/ontop/ontop)
I Open source
I available as Protege plugin
I implementing many optimizations
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