

Özgür L. Özçep

Ontology-Based Data Access II

Lecture 9: DL-Lite, Rewriting, Unfolding 11 June 2020

> Informationssysteme CS4130 (Summer 2020)

Ontology-Based Data Access

- Use ontologies as interface
- to access (here: query)
- data stored in some format ...
- using mappings

Description logics as ontology representation language

Semantics

References

 Reasoning Web Summer School 2014 course by Kontchakov on Description Logics

http:

//rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf

 Lecture notes by Calvanese in 2013/2014 course on Ontology and Database Systems

https://www.inf.unibz.it/~calvanese/teaching/14-15-odbs/lecture-notes/

 Parts of Reasoning Web Summer School 2014 course by Ö. on Ontology-Based Data Access on Temporal and Streaming Data

http://rw2014.di.uoa.gr/sites/default/files/slides/Ontology_Based_Data_Access_on_

Temporal_and_Streaming_Data.pdf

OBDA in the Classical Sense

- ► Keep the data where they are because of large volume
- Abox not loaded into main memory, kept virtual

Rewriting

OBDA in the Classical Sense

- Query answering not with deduction but rewriting and unfolding
- ► Challenge: Complete and correct rewriting and unfolding

Definition

- $\mathcal{L}_{TBox} = \text{tbox}$ language
- \mathcal{L}_{oQ} = ontology query language
- \mathcal{L}_{tQ} = target query language

Answering \mathcal{L}_{TBox} queries is \mathcal{L}_{tQ} -rewritable iff for every tbox \mathcal{T} over \mathcal{L}_{TBox} and query Q in \mathcal{L}_{oQ} there is a query Q_{rew} in \mathcal{L}_{tQ} such that for all aboxes \mathcal{A} :

 $cert(Q, T \cup A) = ans(Q_{rew}, DB(A))$

Definition

- $\mathcal{L}_{TBox} = \text{tbox}$ language
- \mathcal{L}_{oQ} = ontology query language
- \mathcal{L}_{tQ} = target query language

Answering \mathcal{L}_{TBox} queries is \mathcal{L}_{tQ} -rewritable iff for every tbox \mathcal{T} over \mathcal{L}_{TBox} and query Q in \mathcal{L}_{oQ} there is a query Q_{rew} in \mathcal{L}_{tQ} such that for all aboxes \mathcal{A} :

 $cert(Q, T \cup A) = ans(Q_{rew}, DB(A))$

Definition (Minimal Herband Model DB(A))

 $DB(\mathcal{A}) = (\Delta, \cdot^{\mathcal{I}})$ for an abox \mathcal{A} with

- $\Delta = \text{set of constants occurring in } A$
- $c^{\mathcal{I}} = c$ for all constants;
- $\blacktriangleright A^{\mathcal{I}} = \{ c \mid A(c) \in \mathcal{A} \};$
- ► $r^{\mathcal{I}} = \{(c, d) \mid r(c, d) \in \mathcal{A}\}$

Rewriting for Different Languages

 Possibility of rewriting depends on expressivity balance between L_{TBox}, L_{oQ}, L_{tQ}.

• One aims at computably feasible \mathcal{L}_{tQ} queries

- In classical OBDA
 - \mathcal{L}_{TBox} : Language of the DL-Lite family
 - \mathcal{L}_{oQ} : Unions of conjunctive queries
 - \mathcal{L}_{tQ} : (Safe) FOL/SQL (in AC^0)

DL-Lite

DL-Lite

- ► Family of DLs underlying the OWL 2 QL profile
- Tailored towards the classical OBDA scenario
 - Captures (a large fragment of) UML
 - FOL-rewritability for ontology satisfiability checking and query answerings for UCQs
 - Used in many implementations of OBDA (QuOnto, Presto, Rapid, Nyaya, ontop etc.)
- We give a rough overview. For details consult, e.g.,
 Lit: Calvanese et al. Ontologies and databases: The DL-Lite approach. In Tessaris/Franconi, editors, Semantic Technologies for Informations Systems. 5th Int. Reasoning Web Summer School (RW 2009), pages 255–356. Springer, 2009.

Lit: A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR), 36:1–69, 2009.

$\mathsf{DL}\text{-}\mathsf{Lite}_\mathcal{F}$

- Simple member of the family allowing functional constraints
- Syntax
 - Basic role $Q ::= P \mid P^-$ for $P \in N_R$
 - Roles: $R ::= Q | \neg Q$
 - ▶ Basic concepts $B ::= A \mid \exists Q$ for $A \in N_C, Q \in N_R$
 - Concepts $C ::= B | \neg B | \exists R.C$
 - ► Tbox: B ⊆ C, (func Q) ("Q is functional") (where (func Q) is allowed in the tbox only if Q does not appear as ∃Q.C on a rhs in the tbox)
 - Abox: A(a), P(a, b)

$\mathsf{DL}\text{-}\mathsf{Lite}_\mathcal{F}$

- Simple member of the family allowing functional constraints
- Syntax
 - Basic role $Q ::= P \mid P^-$ for $P \in N_R$
 - Roles: $R ::= Q | \neg Q$
 - ▶ Basic concepts $B ::= A \mid \exists Q$ for $A \in N_C, Q \in N_R$
 - Concepts $C ::= B | \neg B | \exists R.C$
 - ► Tbox: B ⊆ C, (func Q) ("Q is functional") (where (func Q) is allowed in the tbox only if Q does not appear as ∃Q.C on a rhs in the tbox)
 - ► Abox: A(a), P(a, b)
- Semantics as usual

 $(\exists Q \text{ shorthand for } \exists Q.\top)$

$\mathsf{DL}\text{-}\mathsf{Lite}_\mathcal{F}$

- Simple member of the family allowing functional constraints
- Syntax
 - Basic role $Q ::= P \mid P^-$ for $P \in N_R$
 - Roles: $R ::= Q | \neg Q$
 - ▶ Basic concepts $B ::= A \mid \exists Q$ for $A \in N_C, Q \in N_R$
 - Concepts $C ::= B | \neg B | \exists R.C$
 - ► Tbox: B ⊆ C, (func Q) ("Q is functional") (where (func Q) is allowed in the tbox only if Q does not appear as ∃Q.C on a rhs in the tbox)
 - ► Abox: *A*(*a*), *P*(*a*, *b*)
- Semantics as usual (=0 shorthand for =

 $(\exists Q \text{ shorthand for } \exists Q.\top)$

Note

- No qualified existential on lhs
- Restriction on use of functional role
- Both due to rewritability

Properties

► DL-Lite_F enables basic UML conceptual modeling

- ► ISA between classes (*Professor* \sqsubseteq *Person*)
- Disjointness (*Professor* $\sqsubseteq \neg Student$)
- ▶ Domain and range of roles: (Professor ⊑ ∃teachesTo, ∃hasTutor⁻ ⊑ Professor)

► ...

► DL-Lite_F does not have finite model property

Example

- ▶ Nat $\sqsubseteq \exists hasSucc, \exists hasSucc^- \sqsubseteq Nat, (funct hasSucc^-),$
- ▶ Zero \sqsubseteq Nat, Zero $\sqsubseteq \neg \exists hasSucc^-$, Zero(0)

$\mathsf{DL}\text{-}\mathsf{Lite}_\mathcal{R}$

- Another simple member of the family
- Allows role hierarchies
- Syntax
 - Basic role $Q ::= P \mid P^-$ for $P \in N_R$
 - Roles $R ::= Q | \neg Q$.
 - ▶ Basic concepts $B ::= A \mid \exists Q$ for $A \in N_C, Q \in N_R$
 - Concepts $C ::= B | \neg B | \exists R.C$
 - Tbox: $B \sqsubseteq C$, $R_1 \sqsubseteq R_2$
 - Abox: A(a), P(a, b)
- Semantics as usual
- Note
 - Again no qualified existential on lhs
 - \blacktriangleright DL-Lite_{\mathcal{R}} has finite model property

Qualified Existentials

- Qualified existentials on rhs not necessary (if role inclusions and inverse allowed)
- ► Can be eliminated preserving satisfiably equivalence

Example (Eliminating Qualified Existentials on Rhs)

- Input: Student $\sqsubseteq \exists hasTutor.Professor$
- Output
 - ▶ hasProfTutor ⊑ hasTutor
 - ► Student ⊑ ∃hasProfTutor
 - $\exists hasProfTutor^{-} \sqsubseteq Prof$
- In the following: We assume w.l.o.g. that only non-qualified existentials are used

$\mathsf{DL}\text{-}\mathsf{Lite}_\mathcal{A}$

- ▶ DL-Lite_A extends DL-Lite_F and DL-Lite_R by allowing for
 - attribute expressions (binary relation between objects and values)
 - identification assertions (corresponds to primary key constraints in DB)
- Restrictions for tbox: Roles (and attributes) appearing in functionality declarations or identification assertions must not appear on the rhs of role inclusions

- League $\sqsubseteq \exists of$
- ▶ $\exists of^- \sqsubseteq Nation$

("Every league is the league of some nation")

- ► League $\sqsubseteq \exists of$ ("Every league is the league ...
- ▶ $\exists of^- \sqsubseteq Nation$

ery league is the league of some nation'')

- League ⊑ δ(hasYear) ("Every league has a year") (Here: δ(hasYear) = domain of attribute hasYear)
- ρ(hasYear) ⊑ xsd:positiveInteger
 ("Range of hasYear are RDF literals of type positive integer")

- ► League $\sqsubseteq \exists of$ ("Every league is the league ...
- ▶ $\exists of^- \sqsubseteq Nation$

.. of some nation")

- League ⊑ δ(hasYear) ("Every league has a year") (Here: δ(hasYear) = domain of attribute hasYear)
- ▶ ρ(hasYear) ⊆ xsd:positiveInteger ("Range of hasYear are RDF literals of type positive integer")
- ► (funct hasYear)

- ► League $\sqsubseteq \exists of$ ("Every league is the league ...
- ▶ $\exists of^- \sqsubseteq Nation$

.. of some nation")

- League ⊑ δ(hasYear) ("Every league has a year") (Here: δ(hasYear) = domain of attribute hasYear)
- ρ(hasYear) ⊑ xsd:positiveInteger
 ("Range of hasYear are RDF literals of type positive integer")
- ▶ (funct hasYear)
- ► (id League of, hasYear)

("Leagues are uniquely determined by the nation and the year") General Form: (*id basicConcept path*₁,..., *path*_n))

Identity assertions

- Path: $\pi \longrightarrow S|D?|\pi \circ \pi$
 - S = basic role, atomic attribute (or inverse of atomic attribute)
 - • = composition of paths
 - D = basic concept or value domain
 - ?D = testing relation = identity on instances of D
- $fillers_{\pi}(i) = objects reachable from i via \pi$

Example

hasChild • *Woman*? = path connecting objects *i* with his/her daughters (its fillers)

Identity assertions

- Path: $\pi \longrightarrow S|D?|\pi \circ \pi$
 - S = basic role, atomic attribute (or inverse of atomic attribute)
 - • = composition of paths
 - D = basic concept or value domain
 - ?D = testing relation = identity on instances of D
- $fillers_{\pi}(i) = objects reachable from i via \pi$

Example

hasChild • *Woman*? = path connecting objects *i* with his/her daughters (its fillers)

• Identity assertions: (id $B \pi_1, \ldots, \pi_n$))

Semantics: Different instances $i \neq i'$ of *B* are distinguished by at least one of their fillers: There is π_i such that

 $\mathit{fillers}_{\pi_j}(i) \neq \mathit{fillers}_{\pi_j}(i')$

Rewritability of Query Answering

► UCQ over DL-Lite_A can be rewritten into FOL queries

Theorem

UCQs over DL-Lite_A are FOL-rewritable.

- ► We consider first the case where the ontology is satisfiable
- In this case rewriting is possible even into UCQs

Rewritability of Query Answering

► UCQ over DL-Lite_A can be rewritten into FOL queries

Theorem

UCQs over DL-Lite_A are FOL-rewritable.

- ► We consider first the case where the ontology is satisfiable
- In this case rewriting is possible even into UCQs
- And in this case only positive inclusions (PIs) and not negative inclusions (NIs) are relevant for rewriting

Definition

A positive inclusion (PI) has of the following forms:

 $A_1 \sqsubseteq A_2, \exists Q \sqsubseteq A_2, A_1 \sqsubseteq \exists Q_2, \exists Q_1 \sqsubseteq \exists Q_2, Q_1 \sqsubseteq Q_2$

A negative inclusion (NI) has of the following forms:

 $A_1 \sqsubseteq \neg A_2, \exists Q_1 \sqsubseteq \neg A_2, A_1 \sqsubseteq \neg \exists Q_2, \exists Q_1 \sqsubseteq \neg \exists Q_2, Q_1 \sqsubseteq \neg Q_2$

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches⁻ \sqsubseteq Course
- ▶ Prof ⊑ ∃teaches
- $Q(x) = \exists y.teaches(x, y) \land Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- ► ∃teaches⁻ ⊆ Course
- $\blacktriangleright Prof \sqsubseteq \exists teaches$
- $Q(x) = \exists y.teaches(x, y) \land Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches $\neg \sqsubseteq$ Course
- ▶ Prof ⊑ ∃teaches
- $Q(x) = \exists y.teaches(x, y) \land Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), teaches(, y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches⁻ \sqsubseteq Course
- ▶ Prof ⊑ ∃teaches
- $Q(x) = \exists y.teaches(x, y) \land Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches⁻ \sqsubseteq Course
- ▶ Prof ⊑ ∃teaches

 $Q(x) = \exists y.teaches(x, y) \land Course(y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)
- $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
- $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$

(after unification/reduction)

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches $\neg \sqsubseteq$ Course
- ▶ Prof ⊑ ∃teaches

 $Q(x) = \exists y.teaches(x, y) \land Course(y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)
- $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
- $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$
- $Q_{rew}(x) \leftarrow teaches(x, _)$

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches⁻ \sqsubseteq Course
- Prof
 ∃teaches

 $Q(x) = \exists y.teaches(x, y) \land Course(y)$

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)
- $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
- $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$
- $Q_{rew}(x) \leftarrow teaches(x, _)$
- $Q_{rew}(x) \leftarrow Prof(x)$

- AssistantProf _ Prof
- \blacktriangleright \exists teaches $\neg \sqsubseteq$ Course
- ▶ Prof ⊑ ∃teaches

Prof (schroedinger)
 teaches(schroedinger, csCats)

- Course(csCats)
- Prof (einstein)

 $Q(x) = \exists y.teaches(x, y) \land Course(y)$

- $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
- $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$
- $Q_{rew}(x) \leftarrow teaches(x, _)$
- $Q_{rew}(x) \leftarrow Prof(x)$

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches⁻ \sqsubseteq Course
- ▶ Prof ⊑ ∃teaches

Prof(schroedinger)

- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)
- $Q(x) = \exists y.teaches(x, y) \land Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$
 - $Q_{rew}(x) \leftarrow teaches(x, y)$
 - $Q_{rew}(x) \leftarrow teaches(x, _)$
 - $Q_{rew}(x) \leftarrow Prof(x)$
 - $Q_{rew}(x) \leftarrow AssistantProf(x)$

- $\blacktriangleright AssistantProf \sqsubseteq Prof$
- \blacktriangleright \exists teaches⁻ \sqsubseteq Course
- Prof
 ∃teaches

Prof(schroedinger)

- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

 $Q(x) = \exists y.teaches(x, y) \land Course(y)$

- $Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
- $Q_{rew}(x) \leftarrow teaches(x, y), teaches(_, y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$
- $Q_{rew}(x) \leftarrow teaches(x, _)$
- $Q_{rew}(x) \leftarrow Prof(x)$
- $Q_{rew}(x) \leftarrow AssistantProf(x)$
- Resulting query Q_{rew} is a UCQ and is called the perfect rewriting of Q
- $ans(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$
Perfect Rewriting Algorithm PerfectRew(Q, TP)

```
Input : Q = UCQ (in set notation), TP = DL-Lite_A Pls
Output: union of conjunctive gueries PR
PR := Q:
repeat
     PR' := PR:
    forall q \in PR' do
         forall g \in q do
              forall PI I \in TP do
                   if I is applicable to g then
                        PR := PR \cup \{\overline{ApplyPI}(q, g, I)\}
                   end
              end
         end
          forall g1, g2 in q do
              if g1 and g2 unify then
                    \overline{PR} := PR \cup \{anon(reduce(q, g1, g2))\};
              end
         end
    end
until PR' = PR;
return PR;
```

Procedure ApplyPl(q, g, I)

- Applicability condition
 - A PI I is applicable to atom A(x) if I has A in rhs.
 - ► A PI *I* is applicable to atom P(x₁, x₂) if one of the following conditions holds:
 - 1. $x_2 =$ and rhs of *I* is $\exists P$ or
 - 2. $x_1 =$ and the rhs of *I* is $\exists P^-$; or
 - 3. I is a role inclusion assertion and rhs is either P or P^-

Procedure ApplyPl(q, g, I)

- Applicability condition
 - A PI I is applicable to atom A(x) if I has A in rhs.
 - ► A PI *I* is applicable to atom P(x₁, x₂) if one of the following conditions holds:
 - 1. $x_2 =$ and rhs of *I* is $\exists P$ or
 - 2. $x_1 =$ and the rhs of I is $\exists P^-$; or
 - 3. I is a role inclusion assertion and rhs is either P or P^-

Outcome of application

Atom g	PI /	gr(g, I)
A(x)	$A1 \sqsubseteq A$	A1(x)
A(x)	$\exists P \sqsubseteq A$	<i>P</i> (<i>x</i> , _)
A(x)	$\exists P^- \sqsubseteq A$	P(, x)
P(x,)	$A \sqsubseteq \exists P$	$A(\overline{x})$
P(x,)	$\exists P1 \sqsubseteq \exists P$	P1(x,)
P(x,)	$\exists P1^- \sqsubseteq \exists P$	$P1(, \overline{x})$
$P(, \overline{x})$	$A \sqsubseteq \exists P^-$	A(x)
P(, x)	$\exists P1 \sqsubseteq \exists P^-$	P1(x,)
P(-,x)	$\exists P1^- \sqsubseteq \exists P^-$	$P1(, \overline{x})$
$P(\overline{x_1}, x_2)$	$\exists P1 \sqsubseteq P \text{ or } \exists P1^- \sqsubseteq P^-$	$P1(x_1, x_2)$
$P(x_1, x_2)$	$\exists P1 \sqsubseteq P^- \text{ or } \exists P1^- \sqsubseteq P$	$P1(x_2, x_1)$

Procedure ApplyPl(q, g, I)

- Applicability condition
 - A PI I is applicable to atom A(x) if I has A in rhs.
 - ► A PI *I* is applicable to atom P(x₁, x₂) if one of the following conditions holds:
 - 1. $x_2 = _$ and rhs of *I* is $\exists P$ or
 - 2. $x_1 =$ and the rhs of I is $\exists P^-$; or
 - 3. I is a role inclusion assertion and rhs is either P or P^-

Outcome of application

Atom g	PI /	gr(g, I)
A(x)	$A1 \sqsubseteq A$	A1(x)
A(x)	$\exists P \sqsubseteq A$	P(x, _)
A(x)	$\exists P^- \sqsubseteq A$	P(, x)
P(x,)	$A \sqsubseteq \exists P$	$A(\overline{x})$
P(x,)	$\exists P1 \sqsubseteq \exists P$	P1(x,)
P(x,)	$\exists P1^- \sqsubseteq \exists P$	$P1(, \overline{x})$
$P(, \overline{x})$	$A \sqsubseteq \exists P^-$	A(x)
P(-,x)	$\exists P1 \sqsubseteq \exists P^-$	P1(x,)
P(-,x)	$\exists P1^- \sqsubseteq \exists P^-$	$P1(, \overline{x})$
$P(\overline{x_1}, x_2)$	$\exists P1 \sqsubseteq P \text{ or } \exists P1^- \sqsubseteq P^-$	$P1(\overline{x_1}, x_2)$
$P(x_1, x_2)$	$\exists P1 \sqsubseteq P^- \text{ or } \exists P1^- \sqsubseteq P$	$P1(x_2, x_1)$

• ApplyPI(q, g, I) = q[g/gr(g, I)]

Anonymization and Reduction

- ▶ Reduction *reduce*(*q*, *g*1, *g*2)
 - Input: g_1, g_2 atoms in body of CQ q
 - Output: Returns a CQ q' obtained by applying to q the most general unifier between g₁ and g₂
 - Required for generating possibly unbound variables
- Anonymization
 - Substitute variables that are not bound with _.
 - Variable is bound iff it is a distinguished variable (=answer variable) or occurs at least twice in the body of a CQ

Properties of PerfectRew

Termination

There are only finitely many different rewritings

Properties of PerfectRew

Termination

There are only finitely many different rewritings

Correctness

- Only certain answers are produced by the rewriting
- Formally: $ans(Q_{rew}, A) \subseteq cert(Q, (T, A)))$
- Clear, as PI applied correctly

Properties of PerfectRew

Termination

There are only finitely many different rewritings

Correctness

- Only certain answers are produced by the rewriting
- Formally: $ans(Q_{rew}, A) \subseteq cert(Q, (T, A)))$
- Clear, as PI applied correctly

Completeness

- All certain answers are produced by the rewriting
- $ans(Q_{rew}, A) \supseteq cert(Q, (T, A)))$
- How to prove this?

 \implies Our old friend, the chase, helps again

Chase Construction for DL

- The PIs of the tbox are read as (TGD) rules in the natural direction from left to right
- Resulting structure, the chase, also called canonical model here, is universal
- Reminder: A universal model can be mapped homomorphically into any other model.

Theorem

Every satisfiable DL-Lite ontology has a canonical model

 Different from the approach in Date Exchange, one does not aim for finite chases (cannot be guaranteed see example before)

Chase Construction for DL

- The PIs of the tbox are read as (TGD) rules in the natural direction from left to right
- Resulting structure, the chase, also called canonical model here, is universal
- Reminder: A universal model can be mapped homomorphically into any other model.

Theorem

Every satisfiable DL-Lite ontology has a canonical model

- Different from the approach in Date Exchange, one does not aim for finite chases (cannot be guaranteed see example before)
- Chase used here as tool for proving completeness
 - ► Answering Q_{rew} on the minimal Herbrand model of the abox is the same as answering Q on the chase.
 - Shown by induction on chase depth

Satisfiability Check for Ontologies

 In case an ontology is unsatisfiable, answer set becomes trivial: An unsatisfiable ontology entails all assertions

 \implies To determine correct answers need satisfiability check

Theorem

Checking (un-)satisfiability of DL-Lite ontologies is FOL rewritable.

That means: For any tbox there is a Boolean query Q such that for all aboxes \mathcal{A} : $(\mathcal{T}, \mathcal{A})$ is satisfiable iff Q is false.

 Unsatisfiability may be caused by an NI (negative inclusion) or by a functional declaration

Satisfiability Check for Ontologies

 In case an ontology is unsatisfiable, answer set becomes trivial: An unsatisfiable ontology entails all assertions

 \implies To determine correct answers need satisfiability check

Theorem

Checking (un-)satisfiability of DL-Lite ontologies is FOL rewritable.

That means: For any tbox there is a Boolean query Q such that for all aboxes \mathcal{A} : $(\mathcal{T}, \mathcal{A})$ is satisfiable iff Q is false.

- Unsatisfiability may be caused by an NI (negative inclusion) or by a functional declaration
- So the rewritten query asks for an object in the abox violating an NI or a functional declaration

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
(funct mentors ⁻)	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the abox:

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
(funct mentors ⁻)	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the abox:

► *alice* (via NI)

 $Q_1() \leftarrow \exists x (Prof(x) \land Student(x)) \lor \exists x, y (mentors(x, y) \land Student(x))$

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
(funct mentors ⁻)	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the abox:

► *alice* (via NI)

 $Q_1() \leftarrow \exists x (Prof(x) \land Student(x)) \lor \exists x, y (mentors(x, y) \land Student(x))$

bob for the functional axiom

 $Q_2() \leftarrow \exists x, y, z(mentors^-(x, y) \land mentors^-(x, z) \land y \neq z)$

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
(funct mentors ⁻)	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the abox:

► *alice* (via NI)

 $Q_1() \leftarrow \exists x (Prof(x) \land Student(x)) \lor \exists x, y (mentors(x, y) \land Student(x))$

bob for the functional axiom

 $Q_2() \leftarrow \exists x, y, z(mentors^-(x, y) \land mentors^-(x, z) \land y \neq z)$

- Every NI is separately transformed to a CQ asking for a counterexample object, e.g.,
 - $\begin{array}{ll} A \sqsubseteq \neg B & \text{becomes} & Q() \leftarrow \exists x.A \land B \\ \exists P \sqsubseteq \neg B & \text{becomes} & Q() \leftarrow \exists y, x.P(x,y) \land B(x) \end{array}$

 Every NI is separately transformed to a CQ asking for a counterexample object, e.g.,

 $A \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists x.A \land B$

- $\exists P \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists y, x. P(x, y) \land B(x)$
- Resulting CQs are rewritten separately with PerfectRew w.r.t. Pls in the tbox
 - Intuition closure: $A \sqsubseteq B$ and $B \sqsubseteq \neg C$ entails $A \sqsubseteq \neg C$
 - Intuition separability: No two NIs can interact.

 Every NI is separately transformed to a CQ asking for a counterexample object, e.g.,

 $A \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists x.A \land B$

- $\exists P \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists y, x. P(x, y) \land B(x)$
- Resulting CQs are rewritten separately with PerfectRew w.r.t. Pls in the tbox
 - Intuition closure: $A \sqsubseteq B$ and $B \sqsubseteq \neg C$ entails $A \sqsubseteq \neg C$
 - Intuition separability: No two NIs can interact.
- $Q_N :=$ union of these CQs

 Every NI is separately transformed to a CQ asking for a counterexample object, e.g.,

 $A \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists x.A \land B$

- $\exists P \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists y, x. P(x, y) \land B(x)$
- Resulting CQs are rewritten separately with PerfectRew w.r.t. Pls in the tbox
 - Intuition closure: $A \sqsubseteq B$ and $B \sqsubseteq \neg C$ entails $A \sqsubseteq \neg C$
 - Intuition separability: No two NIs can interact.
- $Q_N :=$ union of these CQs

► For functionalities, it is enough to consider these alone (funct P) becomes $Q() \leftarrow \exists x, y, z.P(x, y) \land P(x, z) \land y \neq z$

 Every NI is separately transformed to a CQ asking for a counterexample object, e.g.,

 $A \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists x.A \land B$

- $\exists P \sqsubseteq \neg B$ becomes $Q() \leftarrow \exists y, x. P(x, y) \land B(x)$
- Resulting CQs are rewritten separately with PerfectRew w.r.t. Pls in the tbox
 - Intuition closure: $A \sqsubseteq B$ and $B \sqsubseteq \neg C$ entails $A \sqsubseteq \neg C$
 - Intuition separability: No two NIs can interact.
- $Q_N :=$ union of these CQs

For functionalities, it is enough to consider these alone
 (*funct P*) becomes Q() ← ∃x, y, z.P(x, y) ∧ P(x, z) ∧ y ≠ z
 Q_F := union of these CQs

Intuition: No interaction of PI or NI with functionalities

Rewritability

Theorem

Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be a DL-Lite_{\mathcal{A}} ontology. Then:

 \mathcal{O} is satisfiable iff $Q_N \vee Q_F$ is false.

- ▶ Note: $Q_N \lor Q_F$ is a UCQ[≠] and hence an FOL query
- The separability has consequences for identifying culprits of inconsistency
 - At most two abox axioms may be responsible for an inconsistency
 - This is relevant for ontology repair, version, change etc. (see next lectures)

Constructs Leading to Non-rewritability in DL-Lite

- ► DL-Lite_A is a maximal DL w.r.t. the allowed logical constructors under the FOL constraints
- Useful constructions such as qualified existentials, disjunction, non-restricted use of functional roles lead to loss of FOL-rewritability
- This can be proved using complexity theory and FOL (un-)definability arguments

Why Disallowing Qualified Existentials on Lhs

- Reachability in directed graphs is NLOGSPACE-complete
- X is FOL expressible iff X ∈ AC⁰ (and we know: AC⁰ ⊊ NLOGSPACE)
- Reachability reducible to QA with DL-lite and qualified existentials in lhs

Reduction

- Given: \mathfrak{G} , start s, end t
 - $\mathcal{A}_{\mathfrak{G},t} = \{ edge(v_1, v_2) \mid (v_1, v_2) \} \cup \{ PathToTarget(t) \}$
 - $\mathcal{T} = \{ \exists edge.PathToTarget \sqsubseteq PathToTarget \}$
 - $CQ = q() \leftarrow PathToTarget(s)$
- ▶ Fact: $\mathcal{T} \cup \mathcal{A}_{\mathfrak{G},t} \models q$ iff there is a path from *s* to *t* in \mathfrak{G}
- Fact: \mathcal{T}, q do not depend on \mathfrak{G}, t
- $\mathcal{A}_{\mathfrak{G},t}$ constructible in LOGSPACE from \mathfrak{G}, s, t .

Limits of DL-Lite

- DL-Lite_A is not the maximal fragment of FOL allowing for rewritability
- Datalog[±] = Datalog with existentials in head = set of tuple generating (TGDs) rules (and EGDs)
 - Datalog[±] = "Linear fragment" of Datalog[±] containing rules whose body consists of one atom
 - Fact: $Datalog_0^{\pm}$ is strictly more expressive than DL-Lite.

Example

The rule

$\forall x.manager(x) \rightarrow manages(x,x)$

is in $Datalog_0^{\pm}$ but in no member of the DL-Lite family.

Limits of DL-Lite

- DL-Lite_A is not the maximal fragment of FOL allowing for rewritability
- Datalog[±] = Datalog with existentials in head = set of tuple generating (TGDs) rules (and EGDs)
 - Datalog[±]₀ = "Linear fragment" of Datalog[±] containing rules whose body consists of one atom
 - Fact: $Datalog_0^{\pm}$ is strictly more expressive than DL-Lite.

Example

The rule

$\forall x.manager(x) \rightarrow manages(x,x)$

is in $Datalog_0^{\pm}$ but in no member of the DL-Lite family.

▶ Recent research on DLs: Re-introduce *n*-ary relations for n > 2

Unfolding

Connecting to the Real World: Mappings and Unfolding

Reminder: Mappings

Mappings have an important role for OBDA

Schem	a of Mappings ${\cal M}$		
<i>m</i> 1:	ontology template $_1$	~ ~ · · · ·	data source template_1
<i>m</i> ₂ :	ontology template ₂	~~~	data source $template_2$

- Lift data to the ontology level
 - Data level: (nearly) closed world
 - Ontology level: open world
- Mappings, described as rules, provide declarative means of implementing the lifting
 - User friendliness: users may built mappings on their own
 - Neat semantics: the semantics can be clearly specified and is not hidden in algorithms (as in direct mappings)
 - Modularity: mappings can be easly extended, combined etc.
 - ▶ Reuse of tools: Can be managed by (adapted) rule engines

The Burden of Mappings

- The data-to-ontology lift faces impedance mismatch
 - data values in the data vs.
 - abstract objects in the ontology world
 - Solved by Skolem terms $\vec{f}(\vec{x})$ below

Schema of Mappings

$$m:\psi(\vec{f}(\vec{x})) \longleftarrow Q(\vec{x},\vec{y})$$

- $\psi(\vec{f}(\vec{x}))$: Query for generating abox axioms
- $Q(\vec{x}, \vec{y})$: Query over the backend sources
- Function \vec{f} translates backend instantiations of \vec{x} to constants
- Mappings M over backend sources generates abox $\mathcal{A}(M, DB)$.
- Use of mappings
 - ▶ as ETL (extract, transform, load) means: materialize abox
 - as logical view means: abox kept virtual (classical OBDA)

Example Scenario: Measurements

Example schema for measurement and event data in DB

```
SENSOR(<u>SID</u>, CID, Sname, TID, description)
SENSORTYPE(<u>TID</u>, Tname)
COMPONENT(<u>CID</u>, superCID, AID, Cname)
ASSEMBLY(<u>AID</u>, AName, ALocation)
MEASUREMENT(<u>MID</u>, MtimeStamp, SID, Mval)
MESSAGE(<u>MesID</u>, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(<u>catID</u>, catName)
```

Example Scenario: Measurements

Example schema for measurement and event data in DB

```
SENSOR(<u>SID</u>, CID, Sname, TID, description)
SENSORTYPE(<u>TID</u>, Tname)
COMPONENT(<u>CID</u>, superCID, AID, Cname)
ASSEMBLY(<u>AID</u>, AName, ALocation)
MEASUREMENT(<u>MID</u>, MtimeStamp, SID, Mval)
MESSAGE(<u>MesID</u>, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(<u>catID</u>, catName)
```

- For mapping
 - m: $Sens(f(SID)) \land name(f(SID), y) \leftarrow$

SELECT SID, Sname as y FROM SENSOR

the row data in SENSOR table

```
SENSOR
```

(123, comp45, TempSens, TC255, 'A temperature sensor')

generates facts

 $Sens(f(123)), name(f(123), TempSens) \in \mathcal{A}(m, DB)$

R2RML

- Very expressive mapping language couched in the RDF terminology
- ▶ W3C standard (since 2012), http://www.w3.org/TR/r2rml/
- Read only (not allowed to write the RDFs view generated by the mappings)
- Defined for logical tables (= SQL table or SQL view or R2RML view)
 they can be composed to chains of mappings
- Has means to model foreign keys (referencing object map)

Example (R2RML for Sensor Scenario)

```
@prefix rdf : <http ://www.w3.org/1999/02/22?rdf?syntax?ns#> .
@prefix rr : <http ://www.w3. org/ns/r2rml#> .
@prefix ex : <http ://www. example . org/> .
```

```
ex : SensorMap
a rr:TriplesMap ;
rr: logicalTable [ rr : tableName "Senso" ] ;
rr : subjectMap [
            rr:template "http://www.sensorworld.org/SID" ;
            rr:class ex:Sensor
];
rr: predicateObjectMap [
            rr:predicate ex:hasName;
            rr:objectMap [column "name"]
] .
```

OBDA Semantics with Mappings

- Semantics canonically specified by using the generated abox *A*(*DB*, *M*)
- Ontology Based Data Access System (OBDAS)

Definition

An interpretation \mathcal{I} satisfies an OBDAS $\mathcal{OS} = (\mathcal{T}, \mathcal{M}, DB)$, for short: $\mathcal{I} \models \mathcal{OS}$, iff $\mathcal{I} \models (\mathcal{T}, \mathcal{A}(DB, \mathcal{M}))$

An OBDAS is satisfiable iff it has a satisfying interpretation.

Unfolding

- Unfolding is the second but not to be underestimated step in classical OBDA QA
- Applies mappings in the inverse direction to produce query *Q*_{unf} over data sources

Unfolding steps

- 1. Split mappings $atom_1 \land \dots \land atom_n \longleftarrow Q$ becomes $atom_1 \longleftarrow Q, \dots, atom_n \longleftarrow Q$
- 2. Introduce auxiliary predicates (views for SQL) for rhs queries
- 3. In Q_{rew} unfold the atoms (with unification) into a UCQ Q_{aux} using purely auxiliary predicates
- 4. Translate Q_{aux} into SQL
 - logical conjunction of atoms realized by a join
 - disjunction of queries realized by SQL UNION
Example (Unfolding for Measurement Scenario)

DB with schema

SENSOR(<u>SID</u>, CID, Sname, TID, description) MEASUREMENT1(<u>MID</u>, MtimeStamp, SID, Mval) MEASUREMENT2(<u>MID</u>, MtimeStamp, SID, Mval) ...

Mappings

- m1: $Sens(f(SID)) \land name(f(SID), y) \leftarrow$ SELECT SID, Sname as y FROM SENSOR
- m2: hasVal(f(SID), Mval) ← SELECT SID, Mval FROM Measurement1
- m3: $hasVal(f(SID), Mval) \leftarrow$

SELECT SID, Mval FROM Measurement2

m4: $criticalValue(Mval) \leftarrow$

SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300

Query

 $Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$

Example

Unfolding for Measurement Scenario

Split m	appings
m1.1:	$Sens(f(SID)) \leftarrow$
	SELECT SID FROM SENSOR
m1.2:	$name(f(SID), y) \longleftarrow$
	SELECT SID, Sname as y FROM SENSOR
m2:	$hasVal(f(SID), Mval) \longleftarrow$
	SELECT SID, Mval FROM Measurement1
m3:	$hasVal(f(SID), Mval) \leftarrow$
	SELECT SID, Mval FROM Measurement2
m4:	$criticalValue(Mval) \leftarrow$
	SELECT Mval FROM MEASUREMENT1
	WHERE Mval > 300

Query

 $Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$

Example

Unfolding for Measurement Scenario

Split ma	appings
m1.1:	$Sens(f(SID)) \leftarrow$
	SELECT SID FROM SENSOR =: Aux1(SID)
m1.2:	$name(f(SID), y) \longleftarrow$
	SELECT SID, Sname as y FROM SENSOR =: Aux2(SID,y)
m2: /	$hasVal(f(SID), Mval) \leftarrow$
	SELECT SID, Mval FROM Measurement1 =: Aux3(SID, Mval)
m3:	$hasVal(f(SID), Mval) \leftarrow$
	SELECT SID, Mval FROM Measurement2 =: Aux4(SID, Mval)
m4:	criticalValue(Mval) ←
	SELECT Mval FROM MEASUREMENT1
	WHERE Mval > 300 =: Aux5(Mval)

Query

 $Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$

Example (Unfolding for Measurement Scenario)

Split mappings		
$Sens(f(SID)) \leftarrow$		
SELECT SID FROM SENSOR :=Aux(SID)		
$name(f(SID), y) \longleftarrow$		
SELECT SID, Sname as y FROM SENSOR =: Aux2(SID,y)		
$hasVal(f(SID), Mval) \leftarrow$		
SELECT SID, Mval FROM Measurement1 =: Aux3(SID, Mval)		
$hasVal(f(SID), Mval) \leftarrow$		
SELECT SID, Mval FROM Measurement2 =: Aux4(SID, Mval)		
$criticalValue(Mval) \leftarrow$		
SELECT Mval FROM MEASUREMENT1 =:Aux5(Mval)		

Query

$$Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$$

Query Q_{Aux} with Aux-views

Example

Unfolding for Measurement Scenario

```
SELECT 'Qunfold' || aux_1.SID || ')' FROM
(SELECT SID FROM SENSOR) as aux_1,
( SELECT SID, Mval FROM Measurement1) as aux_3,
(SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300) as aux_5
WHERE aux_1.SID = aux_3.SID AND aux_3.Mval = aux_5.Mval
UNION
SELECT 'Qunfold' || aux_1.SID || ')' FROM
(SELECT SID FROM SENSOR) as aux_1,
( SELECT SID, Mval FROM Measurement2) as aux_4,
(SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300) as aux_5
WHERE aux_1.SID = aux_4.SID AND aux_4.Mval = aux_5.Mval
```

There are different forms of unfolding

Research on OBDA Mappings

- Recent research on classical OBDA reflects the insight of mappings' importance
- Adequateness conditions for mappings
 - consistency/coherency
 - redundancy
- Management of mappings
 - Repairing mappings (based on consistency notion)
 - Approximating ontologies and mappings

Lit: D. Lembo et al. Mapping analysis in ontology-based data access: Algorithms and complexity. In: ISWC 2015, volume 9366 of LNCS, pages 217–234, 2015.

Need for Opimizations

- UCQ-rewritings may be exponentially larger than the original query
- Have to deal with this problem in practical systems
 - One approach Use different rewriting to ensure conciseness
 - Use additional knowledge on the data: integrity constraints, (H)-completeness
- Have a look at OBDA framework ontop (https://github.com/ontop/ontop)
 - Open source
 - available as Protege plugin
 - implementing many optimizations