

## Özgür L. Özçep

## Ontology Change I

Lecture 10: AGM Belief Revision 18 June, 2020

> Informationssysteme CS4130 (Summer 2020)

#### References

► Eduardo Ferme: Belief Revision from 1985 to 2013 Slides of IJCAI 2013-Tutorial

http://www.ijcai13.org/files/tutorial\_slides/ta4.pdf

- Lit: P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. The MIT Press, Bradford Books, Cambridge, MA, 1988.
- Lit: S. O. Hansson. A Textbook of Belief Dynamics. Kluwer Academic Publishers, 1999.
- ► New book (available as PDF in our library)

  Lit: E. Ferme, S. O. Hansson: Belief Change: Introduction and Overview,

  SpringerBriefs in Intelligent Systems

# Motivation

## Ontology-Level Integration

- ► So far: Two (different) types of integration
  - Data exchange: directed schema-level integration over finite DBs
  - ▶ OBDA: directed schema-level-to-ontology integration
- We consider now: ontology-level integration
- Required in different ontology change scenarios where multiple ontologies exist, such as ontology . . .
  - ▶ import
  - merge
  - versioning
  - development
  - alignment etc.

**Lit:** G. Flouris et al. Ontology change: classification and survey. The Knowledge Engineering Review, 23(2):117–152, 2008.

Main problem: Ensuring coherence/consistency along change

### Example (Incompatible ontologies)

```
\mathcal{O}_{A} \mathcal{O}_{B}

A1 Article \equiv \exists publ. Journal

A2 Journal \sqsubseteq \neg Proceedings

A3 (func publ)

B1 Article \equiv \exists publ. Journal
\sqcup Proceedings

B2 publish(ab, procXY)

B3 Proceedings(procXY)
```

- $\triangleright$   $\mathcal{O}_A \cup \mathcal{O}_B$  is inconsistent
- How to repair this?
  - Find all sets of culprits (Here one set:  $\mathcal{O}_A \cup \mathcal{O}_B$ )
  - ► If a culprit set has more than one sentence, then problem to decide which to eliminate? (Here: Eliminate A1 or ... or B3?)
- ⇒ Research field Ontology Change (OC)
  - ► This lecture: Research field Belief Revision (BR)
  - Next lecture: Extensions of BR w.r.t. OC and OC in detail

## Belief Revision (BR)

- About 35 years aged interdisciplinary research field in philosophy, cognitive science, CS
- Landmark paper by AGM (Alchourrón, Gärdenfors, Makinson) Lit: C.E. Alchourrón, P. Gärdenfors, and D. On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510–530, 1985.
- BR deals with operators for revising theories under possible inconsistencies
  - ► Investigates concrete revision operators
  - Principles that these must fulfill
  - Representation theorems
- Recent research how to adapt these for non-classical logics/ontologies, mappings, programs.

## Terminology

- Unfortunately the field of Belief Revision is called after the particular class of revision operators
- ▶ But it handles other types of changing beliefs/theories: expansion, update, and contraction
- We stick to this folklore use and hide the name of the field behind the acronym BR

# AGM Postulates

#### Consequence Operator

 AGM framework based on general notion of logic in polish tradition

Lit: R. Wójcicki. Theory of Logical Calculi. Kluwer Academic Publishers, Dordrecht, 1988.

#### Definition (Logic in Polish Tradition)

A logic is a pair  $(\mathcal{L}, Cn)$  where

- ▶ £: Set of well-formed sentences
- ▶ Cn: Consequence operator  $Pow(\mathcal{L}) \longrightarrow Pow(\mathcal{L})$

Note: No distinction between syntax and semantics

## AGM Consequence Operator

### Definition (Tarskian consequence operator)

For all  $X, X_1, X_2 \subseteq \mathcal{L}$ :

1. 
$$X \subseteq Cn(X)$$
 (Inclusion)

2. If 
$$X_1 \subseteq X_2$$
, then  $Cn(X_1) \subseteq Cn(X_2)$ . (Monotonicity)

3. 
$$Cn(X) = Cn(Cn(X))$$
 (Idempotence)

- ► AGM additionally has further requirements on *Cn*
- ► These lead to their well-known representation results

### AGM-Requirements for Consequence Operators

- ► Language expressivity: Language £ should contain all propositional connectors
- ▶ Supra-classicality: If  $\alpha$  can be derived from X by propositional logic then  $\alpha \in Cn(X)$
- ▶ Compactness: If  $\alpha \in Cn(X)$  then  $\alpha \in Cn(X')$  for some finite  $X' \subseteq X$ .
- ▶ Deduction:  $\beta \in Cn(X \cup \{\alpha\})$  iff  $(\alpha \to \beta) \in Cn(X)$
- ▶ Disjunction in premisses: If  $\gamma \in Cn(X \cup \{\alpha\}) \cap Cn(X \cup \{\beta\})$ , then  $\gamma \in Cn(X \cup \{\alpha \lor \beta\})$ .

### Definition (Belief Set)

- ▶ Belief set (BS) for  $(\mathcal{L}, Cn)$  is a set of the form Cn(X) for some  $X \subseteq \mathcal{L}$ .
- ▶  $\mathcal{BS}_{\mathcal{L}}$  = Set of all belief sets for  $(\mathcal{L}, Cn)$
- Idealization of the beliefs of a rational agent
- For post-AGM work on more realistic agents see, e.g.,

Lit: R. Wasserman. Resource bounded Belief Revision. PhD thesis, Institute for Logic Language and Information, Amsterdam, 1999.

#### Elements of AGM Belief Revision

- ▶ AGM consider (inter-related) operators for changing BSs into new BSs under a single trigger sentence  $\in \mathcal{L}$
- ▶ Types of AGM change operators  $\mathcal{BS}_{\mathcal{L}} \times \mathcal{L} \longrightarrow \mathcal{BS}_{\mathcal{L}}$ 
  - Expansion: add trigger and close up w.r.t. Cn
  - ► Contraction: delete trigger from BS
  - Revision: add trigger and eliminate inconsistencies

#### AGM Postulates for Expansion

(E1) 
$$K + \alpha \in \mathcal{BS}_{\mathcal{L}}$$
 (Closure)

(E2) 
$$\alpha \in K + \alpha$$
 (Success)

(E3) 
$$K \subseteq K + \alpha$$
 (Inclusion)

(E4) If 
$$\alpha \in K$$
, then  $K = K + \alpha$ . (Vacuity)

(E5) If 
$$K \subseteq X$$
, then  $K + \alpha \subseteq X + \alpha$ . (monotonicity)

(E6)  $K + \alpha$  is the smallest belief set fulfilling (E1)–(E5).

#### Note:

- Postulates defined for fixed belief set K.
- ▶ Postulates specify properties of intended change operator
- ► In general, many structurally different operators may fulfil the postulates, but . . .

#### AGM Postulates for Expansion

(E1)  $K + \alpha \in \mathcal{BS}_{\mathcal{L}}$ 

(E2) 
$$\alpha \in K + \alpha$$
 (Success)

(E3) 
$$K \subseteq K + \alpha$$
 (Expansion 1)

(E4) If 
$$\alpha \in K$$
, then  $K = K + \alpha$ . (Expansion 2)

(E5) If 
$$K \subseteq X$$
, then  $K + \alpha \subseteq X + \alpha$ . (Monotonicity)

(E6) 
$$K + \alpha$$
 is the smallest belief set fulfilling (E1)–(E5).

► ... (E1)–(E6) are such specific that they uniquely identify +

#### Proposition

An operator + fulfils (E1)–(E6) iff for all  $\alpha$ :  $K + \alpha = Cn(K \cup \{\alpha\})$ 

► This is a representation result

(Closure)

#### AGM Postulates for Contraction

(C1) 
$$K \div \alpha \in \mathcal{BS}_{\mathcal{L}}$$

(C3) If 
$$\alpha \notin K$$
, then  $K = K \div \alpha$ 

(C2)  $K \div \alpha \subseteq K$ 

(C4) If 
$$\alpha \notin Cn(\emptyset)$$
, then  $\alpha \notin K \div \alpha$ .

(C5) If 
$$\alpha \in K$$
, then  $K \subseteq (K \div \alpha) + \alpha$ .

(C6) If 
$$\alpha \leftrightarrow \beta \in Cn(\emptyset)$$
, then  $K \div \alpha = K \div \beta$ .

$$(C7) \quad K \div \alpha \cap K \div \beta \subseteq K \div (\alpha \wedge \beta)$$

(C8) If 
$$\alpha \notin K \div (\alpha \wedge \beta)$$
, then  $K \div (\alpha \wedge \beta) \subseteq K \div \alpha$ .

) If  $\alpha \notin K \div (\alpha \land \beta)$ , then  $K \div (\alpha \land \beta) \subseteq K \div \alpha$ . (Conjunction 2)

(Closure)

(Vacuity)

(Success)

(Recovery)

((Right) Extensionality)

(Conjunction 1)

## AGM Postulates for Revision

(R1)  $K * \alpha \in \mathcal{BS}_{\mathcal{L}}$ 

(R2) 
$$\alpha \in K * \alpha$$
 (Success)

$$(N2) \alpha \in \mathcal{N} * \alpha$$
 (Success)

(R3) 
$$K * \alpha \subseteq K + \alpha$$
 (Expansion 1/Inclusion)

(R4) If 
$$\neg \alpha \notin K$$
, then  $K + \alpha \subseteq K * \alpha$ . (Expansion 2/Vacuity)

(R5) If 
$$\mathcal{L} = \mathit{Cn}(K * \alpha)$$
, then  $\neg \alpha \in \mathit{Cn}(\emptyset)$ . (Consistency)

(R6) If 
$$\alpha \leftrightarrow \beta \in Cn(\emptyset)$$
, then  $K * \alpha = K * \beta$ . ((Right) Extensionality)

(R7) 
$$K * (\alpha \wedge \beta) \subseteq (K * \alpha) + \beta$$
 (Conjunction 1)

(R8) If 
$$\neg \beta \notin K * \alpha$$
, then  $(K * \alpha) + \beta \subseteq K * (\alpha \wedge \beta)$ .

(Conjunction 2)

(Closure)

### Levi-Identity

Revision is definable by contraction.

#### **Definition**

Given a (contraction) operator  $\div$ , the (revision) operator \* defined by the Levi Identity is:

$$K * \alpha = (K \div \neg \alpha) + \alpha$$

#### $\mathsf{Theorem}$

The operator defined by the Levi Identity fulfils (R1)–(R8) if  $\div$  fulfils (C1)–(C8).

### Harper Identity

#### Contraction is definable by revision

#### Definition

Given a (revision) operator the (contraction) operator defined by the Harper Identity is

$$K \div \alpha = K \cap (K * \neg \alpha)$$

#### $\mathsf{Theorem}$

The contraction operator defined by the Harper Identity fulfils (C1)–(C8) if \* fulfils (R1)–(R8).

AGM Operators

#### Operators for Revision and Contraction Postulates

- We still did not see concrete revision and contraction operators
- ▶ We seek for models of Postulates (R1)–(R8) and (C1)–(C8).
- ▶ In contrast to +, the postulates do not fix a single operator but a whole class
- But: Postulates are so specific that the classes can be characterised by construction principles.
- There are various construction principles leading to different classes
  - Partial meet
  - ► Safe/kernel
  - ► Epistemic entrenchment
  - ► Possible worlds
  - ► Sphere-based
  - ▶ . . .

#### Remainder Set

- ► Main construct underlying partial meet operators
- ► Describe maximal possible scenarios that are compatible with the negation of the trigger

#### Definition (Remainder Set Informally)

The remainder set  $X \perp \alpha$  of X by  $\alpha$  consists of all maximal subsets of X not entailing  $\alpha$ .

The sets in  $X \perp \alpha$  are called remainders.

#### Remainder Set

#### Definition (Remainder Set formally)

The remainder set  $X \perp \alpha$  of X by  $\alpha$  consists of all sets X' s.t.:

- 1.  $X' \subseteq X$ ;
- 2.  $\alpha \notin Cn(X')$ ;
- 3. There is no X", such that  $X' \subsetneq X'' \subseteq X$  and  $\alpha \notin Cn(X'')$ .

#### Example (Hansson Dynamics of Belief, Exercise 26a,f)

- $\{p,q\} \perp (p \wedge q) = \{\{p\},\{q\}\}\$
- $\begin{array}{l} \blacktriangleright \; \{p \lor r, p \lor \neg r, q \land s, q \land \neg s\} \perp (p \land q) = \\ \; \{\; \{p \lor r, p \lor \neg r\}, \{p \lor r, q \land s\}, \{p \lor r, q \land \neg s\}, \\ \; \{p \lor \neg r, q \land s\}, \{p \lor \neg r, q \land \neg s\}\; \} \end{array}$

#### Selection Function

- ► Handle multiplicity of scenarios (remainder sets) with fairness condition
  - → Apply selection function

#### Definition (Selection Function)

An AGM-selection function  $\gamma: Pow(\mathcal{BS}_{\mathcal{L}}) \longrightarrow Pow(\mathcal{BS}_{\mathcal{L}})$  for K fulfills for all  $\alpha$ :

- 1. If  $K \perp \alpha \neq \emptyset$ , then  $\emptyset \neq \gamma(K \perp \alpha) \subseteq K \perp \alpha$ ;
- 2.  $\gamma(\emptyset) = \{K\}.$
- ▶ Note:  $\gamma$  is defined for a given K

#### Partial Meet

#### Definition

For a selection function  $\gamma$  defined on K let:

 $\blacktriangleright K \div_{\gamma} \alpha = \bigcap \gamma (K \perp \alpha)$ 

(Partial meet contraction)

(Partial meet revision)

- ▶ Maxi-Choice = partial meet with  $|\gamma(X)| = 1$ .
- ▶ Full meet = partial meet change with  $\gamma(X) = X$  (for  $X \neq \emptyset$ ).
- Maxi-choice and full-meet are two extremes of partial meet change

## Properties Maxi-Choice and Full-Meet

 Maxi-choice revision is all-too deterministic: It decides the status of any sentence

#### **Theorem**

Let  $*_{\gamma}$  be a maxi-choice revision operator. Then, for any (!)  $\beta \in \mathcal{L}$  either  $\beta \in K *_{\gamma} \alpha$  or  $\neg \beta \in K *_{\gamma} \alpha$ 

► Full-meet revision is too skeptical.

#### Theorem

Let  $*_{\gamma}$  be a full-meet revision operator. Then for all  $\alpha$  with  $\neg \alpha \in K \colon K *_{\gamma} \alpha = Cn(\alpha)$ .

#### Representation Theorem

► The basic axioms for AGM revision and contraction characterise the class of partial meet revision and partial meet contraction operators

#### Theorem

An operator  $\div$  on belief set K fulfils (C1)–(C6) iff there is a selection function  $\gamma$  such that for all  $\alpha$ :

$$K \div \alpha = K \div_{\gamma} \alpha$$

An operator \* on belief set K fulfils (R1)–(R6) iff there is a selection function  $\gamma$  such that for all  $\alpha$ :

$$K * \alpha = K *_{\gamma} \alpha$$

- ▶ Partial-meet operators do not necessarily fulfil the additional postulates (R7,8), (C7,8), resp.
- $\triangleright$  For this one considers  $\gamma$  with additional properties

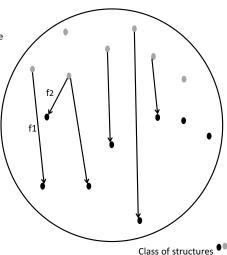
#### Representation Theorems

- Representation theorem in a general sense
  - Given a class A of structures satisfying a set of axioms
  - Output: A class of structures B (adhering to some simple construction) such that any A-structure is structure-equivalent to some B-structure
  - Different notions of structure equivalence
  - Example: Stone's result that every boolean algebra is isomorphic to an algebra of sets
- Representation theorems in BR are special cases
  - Domains of operators are fixed
  - Equality instead of isomorphism

## Representation (General)

Class of representing structures
 With simple construction principle

- fi Structure preserving representation mappings fi
- Class of represented (Non-protypical) structures
- Class of all structures



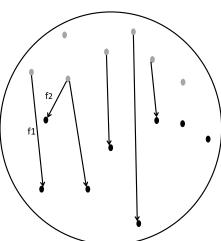
## Representation (Non-Mathematical Example)

 Class of representing structures with simple construction principle (VW beetle)

fi Structure preserving mappings (VW beetle blueprint-> Porsche blueprint)

 Class of represented (non-typical) structures (Non-VW-beetle)

Class of all structures (VW cars)



## Representation (The Classical Mathematical Example)

Class of representing structures with simple construction principle (set algebras) Structure preserving mappings (isomorphisms set-algebra to Boolean algebra) Class of represented (non-typical) structures (Non-set-algebra Boolean-algebras) Class of all structures

(Boolean algebras)

### Other Constructions for Concrete Operators

- ► Other equally powerful constructions exist that lead to representation theorems for AGM postulates
- ► Kernel revision
  - ► Consider duals to remainder set: kernels
  - Kernel = Minimal set responsible for inconsistency (culprit set)
  - Revision: Revise by eliminating from every kernel at least one element
- Rank based revision (such as epistemic entrenchment)
  - ▶ Idea: Specify (partial) order on sentences w.r.t. a belief set
  - Revision: Eliminate the least epistemically entrenched ones
- Possible Worlds (see following slides)

AGM: criticism, extensions and more

#### AGM: the Core of BR Research

- ► AGM change operators have been criticised on different grounds—again and again
- ► This shows importance of AGM rather than weakness
- We discuss criticisms of AGM, extensions, and alternative operators ...
- ... mainly with respect to use of BR for CS and ontology change

## General Criticism: Recovery

Remember: If  $\alpha \in K$ , then  $K \subseteq (K \div \alpha) + \alpha$ . (Recovery)

#### Example

- ▶ Belief set *K* contains
  - Cleopatra had a son.  $(\gamma)$
  - Cleopatra had a daughter  $(\beta)$
  - Cleopatra had a child.  $(\gamma \lor \beta)$
- ► Contract with  $\gamma \lor \beta$  (The  $\alpha$  in recovery postulate)
- ▶ Then add  $\gamma \lor \beta$ .
- ▶ Why should one still believe in facts  $\gamma$  and  $\beta$ ?
- Recovery somehow wrongly implements minimality

## General Criticisms: No Minimality

#### Example

AGM postulates allow amnestic revision of form

$$K * \alpha = Cn(\alpha)$$

- ► This is not minimal in a genuine sense
- Lead to invention of relevance postulates

#### Definition (Relevance Postulate Template)

Allow the elimination only of those sentences of a knowledge base that are relevant for the trigger.

## Formalizing Relevance according to (Parikh 99)

#### Definition (Finest splitting of a knowledge base KB)

Finest partition  $(V_i)_{i \in I}$  of the vocabulary V(KB) of KB such that there are knowledge bases  $KB_i$  over  $V_i$  with  $KB \equiv \bigcup_{i \in I} KB_i$ .

**Lit:** R. Parikh. Beliefs, belief revision, and splitting languages. In Logic, Language and Computation, vol. 2, pages 266–278,1999.

## Formalizing Relevance according to (Parikh 99)

#### Definition (Finest splitting of a knowledge base KB)

Finest partition  $(V_i)_{i \in I}$  of the vocabulary V(KB) of KB such that there are knowledge bases  $KB_i$  over  $V_i$  with  $KB \equiv \bigcup_{i \in I} KB_i$ .

#### Example

- 1.  $KB = \{p \rightarrow \neg q, \neg q \rightarrow r, p \lor s, \neg s, (r \rightarrow t) \lor (t \rightarrow r)\}$ 
  - ►  $V = V(KB) = \{p, q, r, s, t\}$
  - ▶ Coarsest partition: V taking  $I = \{1\}$ ,  $KB_1 = KB$ .
  - ► Finer partition:  $V_1 = \{p, q\}, V_2 = \{r, s, t\}$  and  $KB_1 = \{p, \neg q\}, KB_2 = \{r, \neg s\}$
  - ► Finest splitting:  $\{\{p\}, \{q\}, \{r\}, \{s\}, \{t\}\}\}$  with  $KB_1 = \{p\}$ ,  $KB_2 = \{\neg q\}$ ,  $KB_3 = \{r\}$ ,  $KB_4 = \{\neg s\}$ ,  $KB_5 = \{\}$ .
- 2.  $KB = \{(p \rightarrow \neg q) \land (r \rightarrow s)\}$ 
  - ▶ Finest splitting:  $\{\{p,q\},\{r,s\}\}$  and  $KB_1 = \{p \rightarrow q\}$ ,  $KB_2 = \{r \rightarrow s\}$

## Formalizing Relevance (Parikh)

#### Theorem (Parikh 1999)

Every (finite) KB has a unique finest splitting

#### Definition (Cell-relevance)

 $\alpha$  is cell-relevant for  $\beta$  modulo KB iff there is a  $V_i$  in the finest splitting of KB such that  $\alpha^*$  and  $\beta^*$  share a symbol with  $V_i$  (not necessarily the same).

( $\alpha^*$  = formula equivalent to  $\alpha$  in least-letter set for  $\alpha$ . Eg:  $(\neg p \land (\neg p \lor q))^* = \neg p$ )

#### Definition (Relevance postulate instance)

If  $\beta \in KB$  but  $KB * \alpha \not\models \beta$  then  $\alpha$  is cell-relevant for  $\beta$  modulo KB

#### Relevance

- Parikh's approach generalized to infinite bases and for FOL: Lit: D. Makinson and G. Kourousias. Parallel interpolation, splitting, and relevance in belief change. Journal of Symbolic Logic, 72:994?1002, September 2007.
- ► For a consideration of different aspects of relevance see

  Lit: D. Makinson. Propositional relevance through letter-sharing: review and contribution. In: Formal Models of Belief Change in Rational Agents, volume 07351 of Dagstuhl Seminar Proceedings, 2007.
- But there are also considerations why "dogma of minimality" is not satisfiable

**Lit:** H. Rott. Two dogmas of belief revision. The Journal of Philosophy, 97(9):503–522, 2000.

## General Criticism: Success postulate

#### Example

- ► Child: "There was a dinosaur in our flat who broke the vase"
- ► One wants to trust only some parts of information (a glass was broken) but not other parts (it was a dinosaur)
- Lead to non-prioritized belief revision: no priority for trigger
- Types
  - 1. Revise only with credible triggers
  - 2. Delete elements from belief base or the trigger
  - 3. Delete elements from belief base or from closure of trigger
  - 4. Extend with trigger and then delete inconsistencies
  - 5. Decide which part  $f(\alpha)$  to delete from trigger

**Lit:** S. O. Hansson. A survey of non-prioritized belief revision. Erkenntnis, 50(2-3):413–427, 1999.

## Requirement of Finite Belief Sets

- CS cannot handle infinite belief sets
- ► Objects (data base, knowledge base, ontology etc.) are finite or finitely representable
- ► Three possible approaches
  - 1. Change operators for finitely generated belief sets Cn(X) with X finite (see textbook of Hansson)
  - 2. Change operators for finite belief bases Belief base = not necessarily closed subset of  $\mathcal{L}$
  - 3. Change operators for models of finite belief bases

## Syntax-sensitive Belief Base Revision

 Hansson's approach: use syntax sensitivity in order to represent additional justification information

#### Example

- ▶  $B_1 = \{p, q\}$ Belief in p and q with independent justifications for p and q
- ▶  $B_2 = \{p \land q\}$ Belief in p and q but with common justification for p and q
- $ightharpoonup B_1 \equiv B_2$
- ▶  $B_1 \div p$  may reasonably contain q
- ▶  $B_2 \div p$  leads to  $\emptyset$

#### Syntax-sensitive Belief Base Revision

- Similar constructions and postulates as in AGM
- ▶ Main difference: expansion now reads as  $B + \alpha = B \cup \{\alpha\}$
- Additional phenomena and revision operators due to handling of inconsistency
  - ► First prevent inconsistency then add trigger  $B*_{internal}\alpha = (B \div \neg \alpha) + \alpha$  (as in AGM)
  - First add trigger then handle inconsistency  $B*_{external}\alpha=(B+\alpha)\div\bot$  (New)
- ▶ In-depth treatment in textbook (Hansson 99).

Lit: S.O. Hansson. A Textbook of Belief Dynamics. Kluwer Academic Publishers, 1999.

## Summary and Outlook

- Considered classical AGM theory of belief revision for handling inconsistencies
- Started discussing extensions based on criticisms of AGM in particular for use in CS applications
- ► Next week: continue consideration of extensions with in particular for use in ontology integration