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Motivation



Ontology-Level Integration
I So far: Two (different) types of integration

I Data exchange: directed schema-level integration over finite
DBs

I OBDA: directed schema-level-to-ontology integration

I We consider now: ontology-level integration
I Required in different ontology change scenarios where multiple

ontologies exist, such as ontology . . .
I import
I merge
I versioning
I development
I alignment etc.

Lit: G. Flouris et al. Ontology change: classification and survey. The Knowledge

Engineering Review, 23(2):117–152, 2008.

I Main problem: Ensuring coherence/consistency along change
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Example (Incompatible ontologies)

OA

A1 Article ≡ ∃publ .Journal

A2 Journal v ¬Proceedings

A3 (func publ)

OB

B1 Article ≡ ∃publ .Journal
tProceedings

B2 publish(ab, procXY )

B3 Proceedings(procXY )

I OA ∪ OB is inconsistent

I How to repair this?
I Find all sets of culprits (Here one set: OA ∪ OB)
I If a culprit set has more than one sentence, then problem to

decide which to eliminate? (Here: Eliminate A1 or ... or B3?)

=⇒ Research field Ontology Change (OC)
I This lecture: Research field Belief Revision (BR)
I Next lecture: Extensions of BR w.r.t. OC and OC in detail
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Belief Revision (BR)
I About 35 years aged interdisciplinary research field in

philosophy, cognitive science, CS

I Landmark paper by AGM (Alchourrón, Gärdenfors, Makinson)
Lit: C.E. Alchourrón, P. Gärdenfors, and D. On the logic of theory change:

partial meet contraction and revision functions. Journal of Symbolic Logic,

50:510–530, 1985.

I BR deals with operators for revising theories under possible
inconsistencies

I Investigates concrete revision operators
I Principles that these must fulfill
I Representation theorems

I Recent research how to adapt these for non-classical
logics/ontologies, mappings, programs.
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Terminology

I Unfortunately the field of Belief Revision is called after the
particular class of revision operators

I But it handles other types of changing beliefs/theories:
expansion, update, and contraction

I We stick to this folklore use and hide the name of the field
behind the acronym BR
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AGM Postulates



Consequence Operator

I AGM framework based on general notion of logic in polish
tradition
Lit: R. Wójcicki. Theory of Logical Calculi. Kluwer Academic Publishers,

Dordrecht, 1988.

Definition (Logic in Polish Tradition)

A logic is a pair (L,Cn) where
I L: Set of well-formed sentences
I Cn: Consequence operator Pow(L) −→ Pow(L)

Note: No distinction between syntax and semantics
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AGM Consequence Operator

Definition (Tarskian consequence operator)

For all X ,X1,X2 ⊆ L:
1. X ⊆ Cn(X ) (Inclusion)
2. If X1 ⊆ X2, then Cn(X1) ⊆ Cn(X2). (Monotonicity)
3. Cn(X ) = Cn(Cn(X )) (Idempotence)

I AGM additionally has further requirements on Cn

I These lead to their well-known representation results
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AGM-Requirements for Consequence Operators

I Language expressivity: Language L should contain all
propositional connectors

I Supra-classicality: If α can be derived from X by propositional
logic then α ∈ Cn(X )

I Compactness: If α ∈ Cn(X ) then α ∈ Cn(X ′) for some finite
X ′ ⊆ X .

I Deduction: β ∈ Cn(X ∪ {α}) iff (α→ β) ∈ Cn(X )

I Disjunction in premisses: If γ ∈ Cn(X ∪ {α}) ∩ Cn(X ∪ {β}),
then γ ∈ Cn(X ∪ {α ∨ β}).
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Definition (Belief Set)

I Belief set (BS) for (L,Cn) is a set of the form Cn(X ) for some
X ⊆ L.

I BSL = Set of all belief sets for (L,Cn)

I Idealization of the beliefs of a rational agent

I For post-AGM work on more realistic agents see, e.g.,

Lit: R. Wasserman. Resource bounded Belief Revision. PhD thesis, Institute for

Logic Language and Information, Amsterdam, 1999.
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Elements of AGM Belief Revision

I AGM consider (inter-related) operators for changing BSs into
new BSs under a single trigger sentence ∈ L

I Types of AGM change operators BSL × L −→ BSL
I Expansion: add trigger and close up w.r.t. Cn
I Contraction: delete trigger from BS
I Revision: add trigger and eliminate inconsistencies
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AGM Postulates for Expansion
(E1) K + α ∈ BSL (Closure)

(E2) α ∈ K + α (Success)

(E3) K ⊆ K + α (Inclusion)

(E4) If α ∈ K , then K = K + α. (Vacuity)

(E5) If K ⊆ X , then K + α ⊆ X + α. (monotonicity)

(E6) K + α is the smallest belief set fulfilling (E1)–(E5).

Note:

I Postulates defined for fixed belief set K .
I Postulates specify properties of intended change operator
I In general, many structurally different operators may fulfil the

postulates, but . . .
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AGM Postulates for Expansion
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AGM Postulates for Contraction
(C1) K ÷ α ∈ BSL (Closure)

(C2) K ÷ α ⊆ K (Inclusion)

(C3) If α /∈ K , then K = K ÷ α (Vacuity)

(C4) If α /∈ Cn(∅), then α /∈ K ÷ α. (Success)

(C5) If α ∈ K , then K ⊆ (K ÷ α) + α. (Recovery)

(C6) If α↔ β ∈ Cn(∅), then K ÷ α = K ÷ β.
((Right) Extensionality)

(C7) K ÷ α ∩ K ÷ β ⊆ K ÷ (α ∧ β) (Conjunction 1)

(C8) If α /∈ K ÷ (α ∧ β), then K ÷ (α ∧ β) ⊆ K ÷ α.
(Conjunction 2)
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AGM Postulates for Revision
(R1) K ∗ α ∈ BSL (Closure)

(R2) α ∈ K ∗ α (Success)

(R3) K ∗ α ⊆ K + α (Expansion 1/Inclusion)

(R4) If ¬α /∈ K , then K + α ⊆ K ∗ α. (Expansion 2/Vacuity)

(R5) If L = Cn(K ∗ α), then ¬α ∈ Cn(∅). (Consistency)

(R6) If α↔ β ∈ Cn(∅), then K ∗ α = K ∗ β.
((Right) Extensionality)

(R7) K ∗ (α ∧ β) ⊆ (K ∗ α) + β (Conjunction 1)

(R8) If ¬β /∈ K ∗ α, then (K ∗ α) + β ⊆ K ∗ (α ∧ β).
(Conjunction 2)
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Levi-Identity

Revision is definable by contraction.

Definition
Given a (contraction) operator ÷, the (revision) operator ∗ defined
by the Levi Identity is:

K ∗ α = (K ÷ ¬α) + α

Theorem
The operator defined by the Levi Identity fulfils (R1)–(R8) if ÷
fulfils (C1)–(C8).
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Harper Identity

Contraction is definable by revision

Definition
Given a (revision) operator the (contraction) operator defined by
the Harper Identity is

K ÷ α = K ∩ (K ∗ ¬α)

Theorem
The contraction operator defined by the Harper Identity fulfils
(C1)–(C8) if ∗ fulfils (R1)–(R8).
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AGM Operators



Operators for Revision and Contraction Postulates
I We still did not see concrete revision and contraction operators
I We seek for models of Postulates (R1)–(R8) and (C1)–(C8).

I In contrast to +, the postulates do not fix a single operator
but a whole class

I But: Postulates are so specific that the classes can be
characterised by construction principles.

I There are various construction principles leading to different
classes

I Partial meet
I Safe/kernel
I Epistemic entrenchment
I Possible worlds
I Sphere-based
I . . .
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Remainder Set

I Main construct underlying partial meet operators
I Describe maximal possible scenarios that are compatible with

the negation of the trigger

Definition (Remainder Set Informally)

The remainder set X ⊥ α of X by α consists of all maximal subsets
of X not entailing α.

The sets in X ⊥ α are called remainders.
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Remainder Set

Definition (Remainder Set formally)

The remainder set X ⊥ α of X by α consists of all sets X ′ s.t.:
1. X ′ ⊆ X ;
2. α /∈ Cn(X ′);
3. There is no X ′′, such that X ′ ( X ′′ ⊆ X and α /∈ Cn(X ′′).

Example (Hansson Dynamics of Belief, Exercise 26a,f)

I {p, q} ⊥ (p ∧ q) = {{p}, {q}}

I {p ∨ r , p ∨ ¬r , q ∧ s, q ∧ ¬s} ⊥ (p ∧ q) =
{ {p ∨ r , p ∨ ¬r}, {p ∨ r , q ∧ s}, {p ∨ r , q ∧ ¬s},
{p ∨ ¬r , q ∧ s}, {p ∨ ¬r , q ∧ ¬s} }
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Selection Function

I Handle multiplicity of scenarios (remainder sets) with fairness
condition
=⇒ Apply selection function

Definition (Selection Function)

An AGM-selection function γ : Pow(BSL) −→ Pow(BSL) for K
fulfills for all α:
1. If K ⊥ α 6= ∅, then ∅ 6= γ(K ⊥ α) ⊆ K ⊥ α;
2. γ(∅) = {K}.

I Note: γ is defined for a given K
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Partial Meet

Definition
For a selection function γ defined on K let:

I K ÷γ α =
⋂
γ(K ⊥ α) (Partial meet contraction)

I K ∗γ α = (K ÷γ ¬α) + α (Partial meet revision)

I Maxi-Choice = partial meet with |γ(X )| = 1.

I Full meet = partial meet change with γ(X ) = X (for X 6= ∅).

I Maxi-choice and full-meet are two extremes of partial meet
change
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Properties Maxi-Choice and Full-Meet

I Maxi-choice revision is all-too deterministic: It decides the
status of any sentence

Theorem
Let ∗γ be a maxi-choice revision operator. Then, for any (!) β ∈ L
either β ∈ K ∗γ α or ¬β ∈ K ∗γ α

I Full-meet revision is too skeptical.

Theorem
Let ∗γ be a full-meet revision operator. Then for all α with
¬α ∈ K : K ∗γ α = Cn(α).
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Representation Theorem
I The basic axioms for AGM revision and contraction

characterise the class of partial meet revision and partial meet
contraction operators

Theorem
An operator ÷ on belief set K fulfils (C1)–(C6) iff there is a
selection function γ such that for all α:

K ÷ α = K ÷γ α

An operator ∗ on belief set K fulfils (R1)–(R6) iff there is a
selection function γ such that for all α:

K ∗ α = K ∗γ α

I Partial-meet operators do not necessarily fulfil the additional
postulates (R7,8), (C7,8), resp.

I For this one considers γ with additional properties
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An operator ∗ on belief set K fulfils (R1)–(R6) iff there is a
selection function γ such that for all α:

K ∗ α = K ∗γ α

I Partial-meet operators do not necessarily fulfil the additional
postulates (R7,8), (C7,8), resp.
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Representation Theorems

I Representation theorem in a general sense
I Given a class A of structures satisfying a set of axioms
I Output: A class of structures B (adhering to some simple

construction) such that any A-structure is structure-equivalent
to some B-structure

I Different notions of structure equivalence
I Example: Stone’s result that every boolean algebra is

isomorphic to an algebra of sets

I Representation theorems in BR are special cases
I Domains of operators are fixed
I Equality instead of isomorphism
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Representation (General)

Class	of representing structures
With simple	construction principle

Structure preserving
representation mappings fi

Class	of represented
(Non-protypical)	structures

Class	of structures

f1

f2

Class	of all	structures

fi
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Representation (Non-Mathematical Example)

Class	of representing structures
with simple	construction principle
(VW	beetle)

Structure preserving mappings
(VW	beetle blueprint->

Porsche	blueprint)

Class	of represented (non-typical)
structures
(Non-VW-beetle)

Class	of all	structures
(VW	cars)

f1

f2
fi
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Representation (The Classical Mathematical Example)

Class	of representing structures
with simple	construction principle
(set algebras)

Structure preserving mappings
(isomorphisms
set-algebra	to Boolean	algebra)

Class	of represented (non-typical)
structures
(Non-set-algebra	Boolean-algebras)

Class	of all	structures
(Boolean	algebras)

f1

f2
fi
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Other Constructions for Concrete Operators

I Other equally powerful constructions exist that lead to
representation theorems for AGM postulates

I Kernel revision
I Consider duals to remainder set: kernels
I Kernel = Minimal set responsible for inconsistency (culprit set)
I Revision: Revise by eliminating from every kernel at least one

element

I Rank based revision (such as epistemic entrenchment)
I Idea: Specify (partial) order on sentences w.r.t. a belief set
I Revision: Eliminate the least epistemically entrenched ones

I Possible Worlds (see following slides)

32 / 45



Other Constructions for Concrete Operators

I Other equally powerful constructions exist that lead to
representation theorems for AGM postulates

I Kernel revision
I Consider duals to remainder set: kernels
I Kernel = Minimal set responsible for inconsistency (culprit set)
I Revision: Revise by eliminating from every kernel at least one

element

I Rank based revision (such as epistemic entrenchment)
I Idea: Specify (partial) order on sentences w.r.t. a belief set
I Revision: Eliminate the least epistemically entrenched ones

I Possible Worlds (see following slides)

32 / 45



Other Constructions for Concrete Operators

I Other equally powerful constructions exist that lead to
representation theorems for AGM postulates

I Kernel revision
I Consider duals to remainder set: kernels
I Kernel = Minimal set responsible for inconsistency (culprit set)
I Revision: Revise by eliminating from every kernel at least one

element

I Rank based revision (such as epistemic entrenchment)
I Idea: Specify (partial) order on sentences w.r.t. a belief set
I Revision: Eliminate the least epistemically entrenched ones

I Possible Worlds (see following slides)

32 / 45



Other Constructions for Concrete Operators

I Other equally powerful constructions exist that lead to
representation theorems for AGM postulates

I Kernel revision
I Consider duals to remainder set: kernels
I Kernel = Minimal set responsible for inconsistency (culprit set)
I Revision: Revise by eliminating from every kernel at least one

element

I Rank based revision (such as epistemic entrenchment)
I Idea: Specify (partial) order on sentences w.r.t. a belief set
I Revision: Eliminate the least epistemically entrenched ones

I Possible Worlds (see following slides)

32 / 45



AGM: criticism, extensions and more



AGM: the Core of BR Research

I AGM change operators have been criticised on different
grounds—again and again

I This shows importance of AGM rather than weakness

I We discuss criticisms of AGM, extensions, and alternative
operators ...

I ... mainly with respect to use of BR for CS and ontology
change
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General Criticism: Recovery

Remember: If α ∈ K , then K ⊆ (K ÷ α) + α. (Recovery)

Example

I Belief set K contains
I Cleopatra had a son. (γ)
I Cleopatra had a daughter (β)
I Cleopatra had a child. (γ ∨ β)

I Contract with γ ∨ β (The α in recovery postulate)
I Then add γ ∨ β.
I Why should one still believe in facts γ and β?

I Recovery somehow wrongly implements minimality
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General Criticisms: No Minimality

Example

I AGM postulates allow amnestic revision of form

K ∗ α = Cn(α)

I This is not minimal in a genuine sense

I Lead to invention of relevance postulates

Definition (Relevance Postulate Template)

Allow the elimination only of those sentences of a knowledge base
that are relevant for the trigger.
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Formalizing Relevance according to (Parikh 99)

Definition (Finest splitting of a knowledge base KB)

Finest partition (Vi )i∈I of the vocabulary V (KB) of KB such that
there are knowledge bases KBi over Vi with KB ≡

⋃
i∈I KBi .

Lit: R. Parikh. Beliefs, belief revision, and splitting languages. In Logic, Language and

Computation, vol. 2, pages 266–278,1999.
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Formalizing Relevance according to (Parikh 99)
Definition (Finest splitting of a knowledge base KB)

Finest partition (Vi )i∈I of the vocabulary V (KB) of KB such that
there are knowledge bases KBi over Vi with KB ≡

⋃
i∈I KBi .

Example

1. KB = {p → ¬q,¬q → r , p ∨ s,¬s, (r → t) ∨ (t → r)}
I V = V (KB) = {p, q, r , s, t}
I Coarsest partition: V taking I = {1}, KB1 = KB.
I Finer partition: V1 = {p, q}, V2 = {r , s, t} and

KB1 = {p,¬q},KB2 = {r ,¬s}
I Finest splitting: {{p}, {q}, {r}, {s}, {t}} with KB1 = {p},

KB2 = {¬q}, KB3 = {r}, KB4 = {¬s}, KB5 = {}.

2. KB = {(p → ¬q) ∧ (r → s)}
I Finest splitting: {{p, q}, {r , s}} and KB1 = {p → q},

KB2 = {r → s}
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Formalizing Relevance (Parikh)

Theorem (Parikh 1999)

Every (finite) KB has a unique finest splitting

Definition (Cell-relevance)

α is cell-relevant for β modulo KB iff there is a Vi in the finest
splitting of KB such that α∗ and β∗ share a symbol with Vi (not
necessarily the same).

(α∗ = formula equivalent to α in least-letter set for α. Eg:
(¬p ∧ (¬p ∨ q))∗ = ¬p )

Definition (Relevance postulate instance)

If β ∈ KB but KB ∗ α 6|= β then α is cell-relevant for β modulo KB
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Relevance

I Parikh’s approach generalized to infinite bases and for FOL:
Lit: D. Makinson and G. Kourousias. Parallel interpolation, splitting, and

relevance in belief change. Journal of Symbolic Logic, 72:994?1002, September

2007.

I For a consideration of different aspects of relevance see
Lit: D. Makinson. Propositional relevance through letter-sharing: review and

contribution. In: Formal Models of Belief Change in Rational Agents, volume

07351 of Dagstuhl Seminar Proceedings, 2007.

I But there are also considerations why “dogma of minimality” is
not satisfiable
Lit: H. Rott. Two dogmas of belief revision. The Journal of Philosophy,

97(9):503–522, 2000.
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General Criticism: Success postulate

Example

I Child: “There was a dinosaur in our flat who broke the vase”
I One wants to trust only some parts of information (a glass was

broken) but not other parts (it was a dinosaur)

I Lead to non-prioritized belief revision: no priority for trigger
I Types

1. Revise only with credible triggers
2. Delete elements from belief base or the trigger
3. Delete elements from belief base or from closure of trigger
4. Extend with trigger and then delete inconsistencies
5. Decide which part f (α) to delete from trigger

Lit: S. O. Hansson. A survey of non-prioritized belief revision. Erkenntnis,

50(2-3):413–427, 1999.
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Requirement of Finite Belief Sets

I CS cannot handle infinite belief sets
I Objects (data base, knowledge base, ontology etc.) are finite

or finitely representable

I Three possible approaches
1. Change operators for finitely generated belief sets Cn(X ) with

X finite (see textbook of Hansson)
2. Change operators for finite belief bases

Belief base = not necessarily closed subset of L
3. Change operators for models of finite belief bases
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Syntax-sensitive Belief Base Revision

I Hansson’s approach: use syntax sensitivity in order to represent
additional justification information

Example

I B1 = {p, q}
Belief in p and q with independent justifications for p and q

I B2 = {p ∧ q}
Belief in p and q but with common justification for p and q

I B1 ≡ B2

I B1 ÷ p may reasonably contain q
I B2 ÷ p leads to ∅
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Syntax-sensitive Belief Base Revision

I Similar constructions and postulates as in AGM
I Main difference: expansion now reads as B + α = B ∪ {α}

I Additional phenomena and revision operators due to handling
of inconsistency

I First prevent inconsistency then add trigger
B ∗internal α = (B ÷ ¬α) + α (as in AGM)

I First add trigger then handle inconsistency
B ∗external α = (B + α)÷⊥ (New)

I In-depth treatment in textbook (Hansson 99).

Lit: S.O. Hansson. A Textbook of Belief Dynamics. Kluwer Academic Publishers,

1999.
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Summary and Outlook

I Considered classical AGM theory of belief revision for handling
inconsistencies

I Started discussing extensions based on criticisms of AGM in
particular for use in CS applications

I Next week: continue consideration of extensions with in
particular for use in ontology integration
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