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Recap of Lecture 9

I Considered postulates and concrete operators for change
operators on belief-sets

I Belief-Sets = logically closed sets over given language
I change operators: expansion (just adding and closing),

contraction (eliminating), revision (adding and consistency)
I Different ways to construct operators: we considered

partial-meet based operators

I Criticisms: discussed recovery, minimality, success

I Need for extensions and adaptations from ontology change
perspective

I Finiteness: (Finite) Belief bases instead of belief sets
I Syntax sensitive revision
I Continue today with semantic belief revision for belief bases

End of Recap
2 / 40



Semantical Belief-Base Revision

I Semantical belief-revision demands syntax insensitivity in both
arguments: trigger and also the belief base

I In this scenario: belief bases = knowledge bases

Schema for semantical belief revision

B ∗ α = FinRep(Mod(B) ∗sem Mod(α))

I Mod(X ) = Models of X
I ∗sem a semantical revision operator operating on pairs of sets

of models
I FinRep(M) = Formula or finite set of formulae that hold in all

models in M
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Approach 1 to Semantical Revision: Generalization

I Generalize (weaken) your belief base B ′ minimally s.t. enlarged
set of models Gi intersects with Models of trigger

I Dalal’s approach
I Defined for propositional

logic models
I Gi = models with

Hamming distance ≤ i to
models in Mod(B)

Mod(B)

G1G2G3

Mod(α)

Lit: M. Dalal. Investigations into a theory of knowledge base revision: preliminary

report. In AAAI-88, pages 475–479, 1988.
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Approach 1 to Semantical Revision: Generalization
I Generalize (weaken) your belief base B ′ minimally s.t. enlarged

set of models Gi intersects with Models of trigger

I Groves’s approach: spheres
I Defined on possible

worlds
I Possible world =

maximally consistent set
w.r.t. logic (L,Cn)

I Gi = sphere = set of
possible worlds

Mod(B)

G1G2G3

Mod(α)

I Note: Maximal consistent sets correspond to models
I “Semantics” also possible in logics defined by (L,Cn)

Lit: A. Grove. Two modellings for theory change. Journal of Philosophical Logic,

17:157–170, 1988.
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Approach 2 to Semantical Revision: Minimal distance
I Dual but more general approach to generalization: minimality
I Find trigger models with “minimal distance” to Mod(B)

B ∗ α = FinRep
(
Min≤Mod(B)

(Mod(α))
)

I Various ways to specify
minimal distance

I incorporating order,
cardinality, etc.

Mod(B) Mod(α)

Lit: K. Satoh. Nonmonotonic reasoning by minimal belief revision. In FGCS-88,

455–462, 1988.

Lit: A. Borgida. Language features for flexible handling of exceptions in information

systems. ACM Trans. Database Syst., 10(4):565–603, 1985.

Lit: A. Weber. Updating propositional formulas. In Expert Database Conf., pp.

487–500, 1986.

Lit: M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

Lit: K. D. Forbus. Introducing actions into qualitative simulation. In IJCAI-89,

1273–1278, 1988. 6 / 40



Complexity of Revision
I A main requirement in implementing BR operators: Feasibility

of testing: B ∗ α |= β.
I Even for finite proposition B not really feasible
I Reason: Consistency testing is hard and you have potentially

all subsets as culprit candidates
I Roughly the complexities are between NP and the second level

of the polynomial hierarchy (so in PSPACE )
Lit: T. Eiter and G. Gottlob. On the complexity of propositional knowledge base

revision, updates, and counterfactuals. Artif. Intell., 57:227–270, October 1992.

I How to react to this?
I Restrict logic to be used
I Restrict the set of culprits: E.g., allow only culprits in ABox
I Restrict other relevant parameters: treewidth, common

variables
Lit: A. Pfandler et al. On the parameterized complexity of belief revision.
In IJCAI-15, pages 3149–3155, 2015.
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Further Requirements

I Trigger is by itself a belief base: Multiple Belief Revision

I There is not a single trigger, but a whole sequence: Iterated
revision

I Learning ontologies: need non-amnestic (dynamic) iterated
belief revision (connections to inductive learning)

I Need different logics (not fulfilling, e.g., Deduction property):
Revision for ontologies in DLs

I Need to revise other structures such as mappings
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Ontology Change



Classification of Ontology Change
I Group 1 (“Overcome Heterogeneity” )

I Approaches where the main purpose is to resolve heterogeneity
of ontologies by bridging between them

I Ontologies are not changed (directly)
I But mappings may change
I Examples: ontology mapping, o. alignment, o. morphisms etc.

I Group 2 (“Combine ontologies”)
I Build new ontology based on input ontologies
I Examples: ontology merge (input ontologies have same

domain), ontology integration (input ontologies have similar
domains)

I Group 3 (“Modify ontologies”)
I Change ontologies (not necessarily caused by other ontologies)
I Examples: ontology debugging, ontology repair, ontology

evolution

Lit: G. Flouris et al. Ontology change: classification and survey. The Knowledge

Engineering Review, 23(2):117–152, 2008.
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Requirements due to Ontology Merge (and others)
Ontology Merge (Flouris et al. 08)

Purpose: Fuse knowledge from ontologies over same domain
Input: Two ontologies (from identical domains)

Output: An ontology
Properties: Fuse knowledge to describe domain more accurately

Requirements for OC operators
I Trigger by itself is a belief base: multiple revision

I Belief base formulated in non-FOL (such as DLs)
I Notion of AGM compliant contraction/revision

Lit: G. Flouris, D. Plexousakis, and G. Antoniou. Generalizing the AGM
postulates: preliminary results and applications. NMR-04, pp. 171–179,
2004.

I Different postulates (to capture e.g. minimality):
Lit: M. M. Ribeiro and R. Wassermann. Minimal change in AGM revision
for non-classical logics. In KR-14, 2014.
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AGM-Compliance

I Remember the additional properties on Cn required by AGM
I Language expressivity: Language L should contain all propositional connectors
I Supra-classicality: If α can be derived from X by propositional logic, then α ∈ Cn(X )
I Compactness: If α ∈ Cn(X ), then α ∈ Cn(X ′) for some finite X ′ ⊆ X .
I Deduction: β ∈ Cn(X ∪ {α}) iff (α→ β) ∈ Cn(X )
I Disjunction in premisses: If γ ∈ Cn(X ∪ {α})∩ Cn(X ∪ {β}), then γ ∈ Cn(X ∪ {α∨ β}).

I Are these really necessary in order to define a contraction
operator fulfilling all six basic postulates?
(C1) K ÷ α ∈ BSL (Closure)
(C2) K ÷ α ⊆ K (Inclusion)
(C3) If α /∈ K , then K = K ÷ α (Vacuity)
(C4) If α /∈ Cn(∅), then α /∈ K ÷ α. (Success)
(C5) If α ∈ K , then K ⊆ (K ÷ α) + α. (Recovery)
(C6) If α↔ β ∈ Cn(∅), then K ÷ α = K ÷ β. ((Right) Extensionality)

I AGM Compliance
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AGM compliance and Main Theorem

Definition
(L,Cn) is called AGM-compliant iff there is a contraction operator
÷ fulfilling all six basic AGM contraction postulates (C1)–(C6).

Definition
Let X ,K be sets of formulae s.t.

I K = Cn(K ) and
I Cn(∅) ( Cn(X ) ( K

Define

K−(X ) = {K ′ | Cn(K ′) ( Cn(K ) and Cn(K ′ ∪ X ) = Cn(K )}

(L,Cn) is called decomposable iff for any X ,K the set K−(X ) is
not empty.
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Theorem (Flouris et al. 16)

A logic is AGM compliant iff it is decomposable

I So we have a simple criterion (not many such as deduction,
supraclassicality etc.) to test for AGM-compliance.

I Observation: Most DLs are not AGM compliant
I Hence: Cannot transfer AGM results directly to DLs
I This is hot research topic.

I Contraction/revision for expressive DLs:
Lit: M. M. Ribeiro and R. Wassermann. Base revision for ontology
debugging. Journal of Logic and Computation. Advanced Access,
published September 5, 2008, 2008.

I Contraction/revision for lightweight DLs
Lit: Z. Zhuang, Z. Wang, K. Wang, and G. Qi. Dl-lite contraction and
revision. J. Artif. Intell. Res., 56:329–378, 2016.
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Requirements due to Ontology Merge (and others)

Ontology Merge (Flouris et al. 08)

Purpose: Fuse knowledge from ontologies over same domain
Input: Two ontologies (from identical domains)

Output: An ontology
Properties: Fuse knowledge to describe domain more accurately

Requirements for OC operators
I Belief base formulated in non-FOL (such as DLs)

I Need to consider generalizations of consistency such as
coherence or even arbitrary integrity constraints
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Requirements due to Ontology Mapping

Ontology Mapping (Flouris et al. 08)

Purpose: Heterogeneity resolution, interoperability of ontologies
Input: Two (heterogeneous) ontologies

Output: A mapping between the ontologies’ vocabularies
Properties: The output identifies related vocabulary entities

Requirements for OC operators
I Mappings should not lead to inconsistencies
I Change of mappings in design time or due to change in

ontologies
I Lit: C. Meilicke and H. Stuckenschmidt. Reasoning support for mapping

revision. Journal of Logic and Computation, 2009.

I Lit: G. Qi, Q. Ji, and P. Haase. A conflict-based operator for mapping revision.

In DL-09, volume 477 of CEUR Workshop Proceedings, 2009.
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Mappings for Ontologies

I Data exchange provided mappings between schemata
I Here: Mappings between mappable “elements” of an ontology
I No unique representation format for ontology mappings

Definition (Mappings according to (Meilicke et al. 09))

(e1 , e2 , c , deg)

I e1 ∈ mappable elements of first ontology O1
(e.g. concept symbols of O1)

I e2 ∈ mappable elements of second ontology O2
I c : type of mapping

(e.g. c is equivalence or subsumption if ei concepts)
I deg : degree of trust in the mapping

17 / 40



Example (Incompatible ontologies)
OA

A1 ArticleA ≡ ∃publA.JournalA
A2 JournalA v ¬ProceedingsA
A3 (func publA)

OB

B1 ArticleB ≡ ∃publB .JournalB
tProceedingsB

B2 publishB(ab, procXY )

B3 ProceedingsB(procXY )

I Following set of mappingsM1 is not consistent with OA ∪OB

I (ArticleA,ArticleB ,≡, 1)
I (JournalA, JournalB ,≡, 1)
I (ProceedingsA,ProceedingsB ,≡, 1)
I (publA, publB ,≡, 1)

=⇒ Can use revision on mappings to get fromM1 toM2.

18 / 40



Example (Incompatible ontologies)
OA

A1 ArticleA ≡ ∃publA.JournalA
A2 JournalA v ¬ProceedingsA
A3 (func publA)

OB

B1 ArticleB ≡ ∃publB .JournalB
tProceedingsB

B2 publishB(ab, procXY )

B3 ProceedingsB(procXY )

I Following set of mappingsM2 is consistent with OA ∪ OB

I (ArticleA,ArticleB ,⊆, 1)
I (JournalA, JournalB ,≡, 1)
I (ProceedingsA,ProceedingsB ,≡, 1)
I (publA, publB ,≡, 1)

=⇒ Can use revision on mappings to get fromM1 toM2.

18 / 40



Example (Incompatible ontologies)
OA

A1 ArticleA ≡ ∃publA.JournalA
A2 JournalA v ¬ProceedingsA
A3 (func publA)

OB

B1 ArticleB ≡ ∃publB .JournalB
tProceedingsB

B2 publishB(ab, procXY )

B3 ProceedingsB(procXY )

I Following set of mappingsM2 is consistent with OA ∪ OB

I (ArticleA,ArticleB ,⊆, 1)
I (JournalA, JournalB ,≡, 1)
I (ProceedingsA,ProceedingsB ,≡, 1)
I (publA, publB ,≡, 1)

=⇒ Can use revision on mappings to get fromM1 toM2.

18 / 40



Requirements due to Ontology Evolution

Ontology Evolution (Flouris et al. 08)

Purpose: Respond to a change in the domain or its
conceptualization

Input: An ontology and a (set of) change operation(s)
Output: An ontology

Properties: Implements a (set of) change(s) to the source
ontology

Requirements for OC operators
I Change in domain due to change in environment:

update vs. revision
I Evolution calls for iterative revision

19 / 40



Requirements due to Ontology Learning
Ontology Learning (my addition)

Purpose: Respond to new bits of information from sender
Input: A start ontology and a potentially infinite sequence of

information
Output: An ontology (sequence)

Properties: Learns an ontology from a sequence

I Related to evolution: but emphasis on change of informedness
and potential infinity

I Requirements for OC operators
I Informed iterated revision on potentially infinite sequences
I Notion of learning success (e.g. stabilization, reliability)

Lit: D. Zhang and N. Y. Foo. Convergency of learning process. In AI-02,
vol 2667 of LNCS, pp. 547?556, 2002.
Lit: K. T. Kelly. Iterated belief revision, reliability, and inductive amnesia.
Erkenntnis, 50:11–58, 1998.
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Update vs. Revision

I Early CS work related to BR in Database Theory
Lit: A. M. Keller and M. Winslett. On the use of an extended relational model

to handle changing incomplete information. IEEE Transactions on Software

Engineering, 11(7):620–633, 1985.

I Problem: Preserve integrity constraints when DB is updated
I Two main differences to BR

I In DB: Not a theory to update but a structure
I Update operators � fulfill different postulates

I Reason is: different conflict diagnostics
I Revision: Conflict caused by false information
I Update: Conflict caused by outdated information
I In ontology change even a third diagnostics is possible:

different terminology

Lit: H. Katsuno and A. Mendelzon. On the difference between updating a knowledge

base and revising it. In KR-91, pages 387–394,1991.
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Example (Winslett 1988)

I Input belief set: There is either a book on the table or a
magazine

Cn(α↔ ¬β)

I Trigger information: A book is put on the table α

I Apply revision operator fulfilling Postulates (R3) and (R4)
(R3): K ∗ α ⊆ K + α

(R4): If ¬α /∈ K , then K + α ⊆ K ∗ α. (Vacuity)

I Output belief set: There is a book on the table and no
magazine.

Cn({α↔ ¬β} ∪ {α}) = Cn(α ∧ ¬β)

I Alternative postulate instead of vacuity
If α ∈ K , then K � α = K

Lit: M. Winslett. Reasoning about action using a possible models approach. In Proc.

of the 7th National Conference on Artificial Intelligence (AAAI-88), pp. 89–93, 1988.
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Iterated Belief Revision



Iterating

I Aim: Apply change operators on sequence of triggers
α1, α2, . . .

I Static approach: same operator in every step on revision result

(. . . ((B ∗ α1) ∗ α2) ∗ . . . , ) ∗ αn)

I Dynamic Approach
I operator my change depending on history

(. . . ((B ∗1 α1) ∗2 α2) ∗3 . . . , ) ∗n αn)

I Belief base may encode history

24 / 40



Iterated AGM Revision

I AGM BR not tailored towards iteration:
Considers only postulates for arbitrary but fixed belief set

I Only one interesting result for iterated AGM revision:

Proposition

If ∗ fulfills all AGM revision postulates (R1)–(R8), then it fulfills

If ¬β /∈ K ∗ α, then (K ∗ α) ∗ β = K ∗ (α ∧ β)

I In words: If second trigger compatible with revision result with
first trigger, then revising with both triggers is the same as
revising with conjunction
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Need for Iteration Postulates

I Systematic study of iterated revision started in 1994
Lit: A. Darwiche and J. Pearl. On the logic of iterated belief revision. In

TARK-94, 5–23, 1994.

Example (Darwiche, Pearl 94)

I Agent hears an animal X barking like a dog
I So he thinks X is not a bird and cannot fly.

K ≡ ¬Bird ∧ ¬Flies

I But if he were told that X is a bird, he would assume that it flies.

K ∗ Bird ≡ Bird ∧ Flies

I If agent were to come to know that X can fly, then he should still believe: If X
were a bird, then X would fly. Formally: (K ∗ Flies) ∗ Bird |= Bird ∧ Flies.

I But one can construct AGM-conform revision ∗ (say amnesic revision) s.t.:

(K ∗ Flies) ∗ Bird ≡ Bird
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Iteration Postulates (First Try)
DP1 If α ∈ Cn(β), then (K ∗ α) ∗ β = K ∗ β.

“If second trigger stronger than first, then second trigger
overrides effects of first”.

DP2 If ¬α ∈ Cn(β), then (K ∗ α) ∗ β = K ∗ β.
“For incompatible triggers the second one overrides the first
one’s effects”

DP3 If α ∈ K ∗ β, then α ∈ (K ∗ α) ∗ β.
“If revision only by second trigger entails first trigger, then the
sequential revision with both triggers does too.”

DP4 If ¬α /∈ K ∗ β, then ¬α /∈ (K ∗ α) ∗ β.
“If revision only by second trigger is compatible with first
trigger, then sequential revision with both triggers is too.”
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Wake-Up-Question

Which one of the DP Postulates rules out the bird example?
DP1 If α ∈ Cn(β), then (K ∗ α) ∗ β = K ∗ β.
DP2 If ¬α ∈ Cn(β), then (K ∗ α) ∗ β = K ∗ β.
DP3 If α ∈ K ∗ β, then α ∈ (K ∗ α) ∗ β.
DP4 If ¬α /∈ K ∗ β, then ¬α /∈ (K ∗ α) ∗ β.

Example (Darwiche, Pearl 94)

I K ≡ ¬Bird ∧ ¬Flies
I K ∗ Bird ≡ Bird ∧ Flies

I (K ∗ Flies) ∗ Bird ≡ Bird

∧Flies
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Need More Information
I (DP2) cannot be fulfilled by any AGM revision operator for

belief sets [Freund/Lehmann, 02]
I Reason is mainly: AGM allows for inconsistent belief sets

I Reaction by [Darwiche/Pearl 97]: consider postulates with
epistemic states Ψ instead of belief sets

I Allows dynamic (state-based) iteration: history encoded in
state Ψ and not captured by logic

I Every state Ψ induces belief set BS(Ψ)
I But revision depends on state Ψ not induced belief set BS(Ψ)
I In particular: Ψ1 ∗ α 6= Ψ2 ∗ α possible even if

BS(Ψ1) = BS(Ψ2).

Lit: M. Freund and D. J. Lehmann. Belief revision and rational inference. Computing

Research Repository (CoRR), cs.AI/0204032, 2002.

Lit: A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial

intelligence, 89:1–29, 1997.
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Epistemic States

I Epistemic states are described in the postulates as abstract
entities

I Situation is the same as, say, in modal (temporal) logic or
finite automata etc.

I But in order to construct concrete operators one has to
construct epistemic states.

I There is a very popular approach based on ranking functions
developed by W. Spohn in a series of papers and in a book.

I Ranking function κ: Assigns ordinal numbers to possible worlds
(e.g., truth assignments in propositional logic)

I Does not give ranking only but also specifies plausibility
distances.

Lit: W. Spohn. The Laws of Belief: Ranking Theory and Its Philosophical

Applications. Oxford University Press, 2012.
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Dynamic Operators

I Other approaches stick to belief sets (or belief bases) but allow
dynamic revision operators.

I Lit: D. J. Lehmann. Belief revision, revised. In IJCAI-95, 1534–1540, 1995.

I Lit: A. C. Nayak, M. Pagnucco, and A. Sattar. Changing conditional beliefs

unconditionally. In TARK-96, 119–135, 1996.
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Infinite Iteration



Formal Learning Theory for Infinite Revision

I Iterable revision operators applied to potentially infinite
sequence of triggers

I Define principles (postulates) that describe adequate behaviour

I Minimality ideas and other principles of BR are not sufficient
I Hence, instead: Let you guide by principles of inductive

learning and formal learning theory
I Compare PAC (Probably Approximately Correct) framework
I Compare FOIL (First-Order Inductive Learning) framework
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The Scientist-Nature-Scenario

I Class of possible worlds (one of them the real world = nature)

I Scientist has to answer queries regarding the real world

I He gets stream of data compatible with the real world

I Conjectures according to some strategy at every new arrival of
trigger a hypothesis on the correct answer

I Success: Sequence of answers stabilizes to a correct
hypothesis.

I Various stabilization criteria

Lit: E. Martin and D. Osherson: Elements of Scientific Inquiry. The MIT Press, 1998

Lit: K. T. Kelly. The Logic of Reliable Inquiry. Oxford University Press, 1995.
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Example: The Scientist-Nature-Scenario for Orders
I Class of possible worlds

I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures—according to some strategy—at every new arrival

of trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Components of Order Example)
Strict(N) = Strict total orders < of N

I 0,1,2,3, . . . (isomorphic to ω = {0, 1, 2, 3, . . . } with
natural ordering)

I 1,0,2,3, . . . (isomorphic to ω)
I . . . 3,2,1,0 (isomorphic to ω∗ = {. . . 3, 2, 1, 0}

with inverse natural ordering )
I 0,2,4,6, . . . , 1,3,5,7, . . . (isomorphic to ωω )
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I Class of possible worlds
I Scientist answers query regarding the real world (problem)

I He gets stream of data compatible with the real world

I Conjectures—according to some strategy—at every new arrival
of trigger a hypothesis on the correct answer

I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Components of Order Example)
Stream of data made up by facts (called environments e)

I R(2,3), R(1,2), R(0,2), R(1,4) . . .
(for world: 0,1,2,3, . . . )

I R(4,3), R(5,2), . . .
(for world: . . . 3,2,1,0)
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Example: The Scientist-Nature-Scenario for Orders

I Class of possible worlds

I Scientist answers query regarding the real world (problem)

I He gets stream of data compatible with the real world
I Conjectures—according to some strategy—at every new arrival

of trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Components of Order Example)
Problem set: orders that are isomorphic (∼) to ω or to ω∗

I 0,1,2,3, . . . is isomorphic to ω
I . . . 3,2,1,0 is isomorphic to ω∗.
I Problem query: Has order a least element

(i.e., is it isomorphic to ω)?
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Example: The Scientist-Nature-Scenario for Orders

I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures—according to some strategy—at every new arrival

of trigger a hypothesis on the correct answer

I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Components of Order Example)
Scientist solves problem P iff for every order <∈ P and
every environment e:

I If < has least element, then cofinitely often scientist
says yes on e(n) (= n-prefix of environment e)

I If < has no least element, then for cofinitely many n
scientist says no on e(n)
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Example: The Scientist-Nature-Scenario for Orders

I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world

I Conjectures—according to some strategy—at every new arrival
of trigger a hypothesis on the correct answer

I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Components of Order Example)
P = {<∈ Strict(N) |< is isomorphic to ω or to ω∗} solvable

I L-score: For any finite prefix of any environment
smallest number not occurring in right argument of R

I G-score: smallest number not occurring in left argument
of R

I Scientist: If L-score lower than G-score on given prefix,
say yes, otherwise no.
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Example (Proof of solvability)

I L-score: smallest number not occurring in right argument of R
I G-score: smallest number not occurring in left argument of R
I Scientist: If L-score lower than G-score on given prefix, say yes,

otherwise no.

I Proof of solvability:
I Intuitively: The L-score (G-score) is the best candidate for the

least (greatest) element of < (if there is one)
I Suppose <∼ ω. Then least element of < appears somewhere

as left but never as right element. Hence: L-scores of e[n] is
bounded. Every number appears as first argument. Hence: The
G-scores of e[n] are unbounded.

I Suppose <∼ ω∗. Situation reversed.
I Moreover: scores are monotonic w.r.t. increasing prefix.
I Hence: If <∼ ω, then coinfinitely often L-score is smaller than

G score
I If <∼ ω∗, then coinfinitely often G-score is smaller than
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Learning Aims of Scientist-Nature-Scenario

I Above scenario generalized to arbitrary FOL structures in
(Martin/Osherson 1998)

I Also (Martin/Osherson 1998) consider revision operators for
guessing the true world (see next slides)

I Similar principles as in PAC learning from machine learning
I But two main differences

I Approach of (Martin/Osherson 1998) has not a pre-determined
finite set of data items (as is the case for most scientific
inquiry situations)

I Exact prediction of the real world (not approximate prediction
within some tolerance interval as in PAC)

Lit: E. Martin and D. Osherson: Elements of Scientific Inquiry. 1998, The MIT Press
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Choosing Revision as Strategy

I Kelly investigates learning based on various revision operators
defined for epistemic states

I Hypotheses = sentences in the belief sets
I Main (negative) result in (Kelly 98)

Theorem
Revision operators implementing a minimal (one-step) revision
suffer from inductive amnesia: If and only if some of the past is
forgotten, stabilization is guaranteed.

Lit: K. T. Kelly. Iterated belief revision, reliability, and inductive amnesia. Erkenntnis,

50:11–58, 1998.
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Choosing Revision as Strategy

I Martin/Osherson investigate learning based revision operators
defined for finite sequences

I So their revision operators have always the whole history of
triggers (they do not have to store the history)

I This leads to positive results

Theorem
Revision operators provide ideal learning strategies: There is a
revision operator a scientist can use to solve every (solvable)
problem.

Lit: E. Martin and D. Osherson. Scientific discovery based on belief revision. Journal

of Symbolic Logic, 62(4):1352–1370, 1997.
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Stabilization for Ontology Learning
Example (Book Shopping Agent)

Orec |= cheap ≡ costs < 5$, ¬costs < 5$(‘Faust ′)
Osend |= cheap ≡ costs < 6$, costs < 6$(‘Faust ′)

I Receiver: “List all cheap books by Goethe”
I Sender stream: α1 = cheap(‘Faust ′)E, α2, α3, . . .
I Integrating stream elements by revision operator ◦ gives

Output stream (O i
rec)i∈N:

(Orec , Orec ◦ α1, (Orec ◦ α1) ◦ α2, . . . )

I For which operators stabilization?

Lit: Eschenbach and Ö. Ontology revision based on reinterpretation. Logic Journal of

the IGPL, 18(4):579–616, 2010.
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