
Özgür L. Özçep

Stream Processing

Lecture 13: Time, Stream Basics, CQL
9 July 2020

Informationssysteme
CS4130 (Summer 20)



This Lecture

I Infinite sequences from stream processing perspective
I Additional aspects: temporality of data, recency,

data-driveness, velocity

I Resume OBDA and consider how to lift them to temporal
OBDA and streaming OBDA

I Temporal OBDA: Add time aspect (somewhere)
I Stream OBDA: Higher-level stream w.r.t. ontology (and

mappings)

2 / 43



Stream Basics



Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It’s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

4 / 43



Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It’s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

4 / 43



Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It’s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

4 / 43



Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It’s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

4 / 43



Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I a little bit in this lectus

I Foundational aspects
I stringology, stream automata, infinite words, circuit complexity
I this lecture

5 / 43



Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I a little bit in this lectus

I Foundational aspects
I stringology, stream automata, infinite words, circuit complexity
I this lecture

5 / 43



Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I a little bit in this lectus

I Foundational aspects
I stringology, stream automata, infinite words, circuit complexity
I this lecture

5 / 43



Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I a little bit in this lectus

I Foundational aspects
I stringology, stream automata, infinite words, circuit complexity
I this lecture

5 / 43



Local vs. Global Stream Processing

I Global aim: Learn about the whole by looking at the parts
I Examples: inductive learning, ontology change, iterated belief

revision (see slides before), robotics oriented stream processing
with plan generation

I May produce also an output stream
I But in the end the whole stream counts

I Local aim: Monitor window contents with time-local
I Examples: Real-time monitoring, simulation for reactive

diagnostics

I Categories not exclusive
I In learning one applies operation on (NOW)-window to learn

about stream
I In predictive analytics one monitors with window in order to

predict upcoming events

6 / 43



Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

7 / 43



Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D1 = a set of typed relational tuples adhering to a relational
schema

I Streams at the backend sources
I Srel = {(s1, 90◦)〈1s〉, (s2, 92◦)〈2s〉, (s1, 94◦)〈3s〉, . . . }
I Schema: hasSensorRelation(Sensor:string, temperature:integer)

7 / 43



Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D2 = set of untyped tuples (of the same arity)
I Stream of tuples resulting as bindings for subqueries

7 / 43



Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D3 = set of assertions (RDF tuples).
I Srdf = { val(s0, 90◦)〈1s〉, val(s2, 92◦)〈2s〉, val(s1, 94◦)〈3s〉, . . . }

7 / 43



Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D4 = set of RDF graphs

7 / 43



Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

8 / 43



Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

I Stream query continuous,
not one-shot activity

I Window content
continuously updated

8 / 43



Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Sin

Sout

I Here a time-based window of width 3 seconds
I and slide 1 second is applied

8 / 43



Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping

9 / 43



Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping

9 / 43



Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping

9 / 43



Streams in Stringology



Why is the Window Concept so Important?
I We give an answer using the word perspective/stringology on

stream processing according to (Gurevich et al. 07)
I Streams = finite or infinite words over an alphabet (domain) D

I D∗ = finite words over D
I Dω = infinite (ω-) words over D
I D∞ = finite and infinite words over D
I ◦ = word concatenation (usually not mentioned)

I Stream operators Q are functions/queries of the form

Q : D∞1 −→ D∞2

I Assume w.l.o.g that D1 = D2 = D.

Lit: Y. Gurevich, D. Leinders, and J. Van Den Bussche. A theory of stream queries. In

Proceedings of the 11th International Conference on Database Programming

Languages, DBPL’07, pages 153–168, 2007.
11 / 43



Genuine Streams are Finite Prefix Determined

I Open ball around u:
B(u) := uD∞ = {s ∈ D∞ | There is s ′ ∈ D∞ s.t. s = u ◦ s ′}

Definition (Axiom of finite prefix determinedness (FP))

For all s ∈ D∞ and all u ∈ D∗:
If Q(s) ∈ uD∞, there is w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1(uD∞)

I (FP) expresses a continuity condition w.r.t. a topology

12 / 43



Genuine Streams are Finite Prefix Determined

I Open ball around u:
B(u) := uD∞ = {s ∈ D∞ | There is s ′ ∈ D∞ s.t. s = u ◦ s ′}

Definition (Axiom of finite prefix determinedness (FP))

For all s ∈ D∞ and all u ∈ D∗:
If Q(s) ∈ uD∞, there is w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1(uD∞)

I (FP) expresses a continuity condition w.r.t. a topology
I Reminder: A topology is a structure (X ,O) where

I O ⊆ Pow(X )
I ∅,X ∈ O
I O closed under finite intersections
I O closed under arbitrary unions

I A basis for O is a set B ⊆ Pow(X ) s.t.: Every S ∈ O is a
union of elements of B.

12 / 43



Genuine Streams are Finite Prefix Determined

I Open ball around u:
B(u) := uD∞ = {s ∈ D∞ | There is s ′ ∈ D∞ s.t. s = u ◦ s ′}

Definition (Axiom of finite prefix determinedness (FP))

For all s ∈ D∞ and all u ∈ D∗:
If Q(s) ∈ uD∞, there is w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1(uD∞)

I (FP) expresses a continuity condition w.r.t. a topology
I Gurevich topology
TG = (D∞, {AD∞ | A ⊆ D∗})

I Set of all B(u) for u ∈ D∗ constitute basis for TG .
I A function Q : D∞ −→ D∞ is continuous iff for every open

ball B : Q−1(B) is open.
i.e., iff Q fulfils (FP)

12 / 43



Abstract Computability

I For K : D∗ −→ D∗ (window function)

I Repeated application of K

Repeat(K ) : D∞ −→ D∞

s 7→ ©length(s)
i=0 K (s≤i )

Definition (Gurevich et al. 2007)

K is a kernel for Q iff Q = Repeat(K ).

Q is abstract computable (AC) iff it has a kernel.

13 / 43



Abstract Computability

I For K : D∗ −→ D∗ (window function)
I Repeated application of K

Repeat(K ) : D∞ −→ D∞

s 7→ ©length(s)
i=0 K (s≤i )

Definition (Gurevich et al. 2007)

K is a kernel for Q iff Q = Repeat(K ).

Q is abstract computable (AC) iff it has a kernel.

13 / 43



Abstract Computability

I For K : D∗ −→ D∗ (window function)
I Repeated application of K

Repeat(K ) : D∞ −→ D∞

s 7→ ©length(s)
i=0 K (s≤i )

Definition (Gurevich et al. 2007)

K is a kernel for Q iff Q = Repeat(K ).

Q is abstract computable (AC) iff it has a kernel.

13 / 43



A Representation Theorem

Theorem
The set of AC functions are exactly those stream functions fulfilling
FP (i.e. that are continuous) and mapping finite streams to finite
streams

I Further interesting representation results by considering
restrictions on window

I Gurevich et al. also describe computation model (abstract
state machines)

14 / 43



A Representation Theorem

Theorem
The set of AC functions are exactly those stream functions fulfilling
FP (i.e. that are continuous) and mapping finite streams to finite
streams

I Further interesting representation results by considering
restrictions on window

I Gurevich et al. also describe computation model (abstract
state machines)

14 / 43



Example for non-continuous stream functions

Example

Query CHECK

I a, b ∈ D

I CHECK (s) = (a) if b does not occur in s

I Otherwise CHECK (s) = () = empty stream

I CHECK is not continuous (and hence not an AC function):
I Consider open ball B(a).
I () ∈ CHECK−1(B(a))
I But the only open ball containing () is B(()) = D∞

I But B(()) 6⊆ CHECK−1(B(a)) because
I CHECK (b) = () /∈ B(a)

15 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B A A B B B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A A B B B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A

AA

A B B B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A

AA

A

AA

B B B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A

AA

A

AA

B

AA

B B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A

AA

A

AA

B

AA

B

A

B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A

AA

A

AA

B

AA

B

A

B A

16 / 43



Simple Case: Constant-Width Kernels

n-width kernel K = n-window
= K determined by n-suffix

Example (K = output As in last 3 units)

Time

Input

Output

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

A

B

A

A

AA

A

AA

B

AA

B

A

B A

A

16 / 43



Example (Parity)

I Stream query

PARITY = Repeat(Kpar ) : {0, 1}∞ −→ {0, 1}∞

I Based on kernel Kpar : {0, 1}∗ −→ {0, 1}

Kpar (s) =

{
1 if the number of 1s in s is odd
0 else

I Not representable with constant-width window
I But uses bounded memory in an intuitive sense
I Formalization:

bounded-memory stream abstract machine (sASM)

17 / 43



Example (Parity)

I Stream query

PARITY = Repeat(Kpar ) : {0, 1}∞ −→ {0, 1}∞

I Based on kernel Kpar : {0, 1}∗ −→ {0, 1}

Kpar (s) =

{
1 if the number of 1s in s is odd
0 else

I Not representable with constant-width window
I But uses bounded memory in an intuitive sense

I Formalization:
bounded-memory stream abstract machine (sASM)

17 / 43



Example (Parity)

I Stream query

PARITY = Repeat(Kpar ) : {0, 1}∞ −→ {0, 1}∞

I Based on kernel Kpar : {0, 1}∗ −→ {0, 1}

Kpar (s) =

{
1 if the number of 1s in s is odd
0 else

I Not representable with constant-width window
I But uses bounded memory in an intuitive sense
I Formalization:

bounded-memory stream abstract machine (sASM)
17 / 43



Bounded-Memory sASM

b b a a a a . . .

Input tape

q0q1

q2

q3 . . .

qn

Transition
system

⊥ In

⊥ ⊥ ⊥ Out

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .

Output tape

qi = FOL structures
I Same domain D

I Common static signature
I Dynamic constants ci

(registers)
I in register
I out registers outi
I user defined registers

Program = sequence of rules
I c0 := c1
I outi := t

(term t without outjs)
I If φ then ri else rj

(φ quantifier-free FOL)
I Par r1, . . . rn end

18 / 43



Bounded-Memory sASM

b b a a a a . . .

Input tape

q0q1

q2

q3 . . .

qn

Transition
system

b In

⊥ ⊥ ⊥ Out

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .

Output tape

qi = FOL structures
I Same domain D

I Common static signature
I Dynamic constants ci

(registers)
I in register
I out registers outi
I user defined registers

Program = sequence of rules
I c0 := c1
I outi := t

(term t without outjs)
I If φ then ri else rj

(φ quantifier-free FOL)
I Par r1, . . . rn end

18 / 43



Bounded-Memory sASM

b b a a a a . . .

Input tape

q0q1

q2

q3 . . .

qn

Transition
system

b In

a a b Out

a a b ⊥ ⊥ ⊥ ⊥ . . .

Output tape

qi = FOL structures
I Same domain D

I Common static signature
I Dynamic constants ci

(registers)
I in register
I out registers outi
I user defined registers

Program = sequence of rules
I c0 := c1
I outi := t

(term t without outjs)
I If φ then ri else rj

(φ quantifier-free FOL)
I Par r1, . . . rn end

18 / 43



Bounded-Memory sASM

b b a a a a . . .

Input tape

q0q1

q2

q3 . . .

qn

Transition
system

b In

a a b Out

a a b ⊥ ⊥ ⊥ ⊥ . . .

Output tape

qi = FOL structures
I Same domain D

I Common static signature
I Dynamic constants ci

(registers)
I in register
I out registers outi
I user defined registers

Program = sequence of rules
I c0 := c1
I outi := t

(term t without outjs)
I If φ then ri else rj

(φ quantifier-free FOL)
I Par r1, . . . rn end

18 / 43



Bounded-Memory sASM

b b a a a a . . .

Input tape

q0q1

q2

q3 . . .

qn

Transition
system

b In

a a b Out

a a b ⊥ ⊥ ⊥ ⊥ . . .

Output tape

qi = FOL structures
I Same domain D

I Common static signature
I Dynamic constants ci

(registers)
I in register
I out registers outi
I user defined registers

Program = sequence of rules
I c0 := c1
I outi := t

(term t without outjs)
I If φ then ri else rj

(φ quantifier-free FOL)
I Par r1, . . . rn end

18 / 43



Bounded-Memory sASM

b b a a a a . . .

Input tape

q0q1

q2

q3 . . .

qn

Transition
system

b In

a a b Out

a a b ⊥ ⊥ ⊥ ⊥ . . .

Output tape

qi = FOL structures
I Same domain D

I Common static signature
I Dynamic constants ci

(registers)
I in register
I out registers outi
I user defined registers

Program = sequence of rules
I c0 := c1
I outi := t

(term t without outjs)
I If φ then ri else rj

(φ quantifier-free FOL)
I Par r1, . . . rn end

18 / 43



Stringology

I There’s lot more to say . . .

I but not today (and not in this course)

I Have a look at the vast literature in theoretical computer
sciences (also under the term infinite words)

I Some interesting books on the topic
I Lit: J.-P. Allouche and M. M. France. Automata and automatic sequences,

pages 293?367. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.
I Lit: D. Perrin and J. Pin. Infinite Words: Automata, Semigroups, Logic

and Games. Pure and Applied Mathematics. Elsevier Science, 2004.

19 / 43



Stringology

I There’s lot more to say . . .
I but not today (and not in this course)

I Have a look at the vast literature in theoretical computer
sciences (also under the term infinite words)

I Some interesting books on the topic
I Lit: J.-P. Allouche and M. M. France. Automata and automatic sequences,

pages 293?367. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.
I Lit: D. Perrin and J. Pin. Infinite Words: Automata, Semigroups, Logic

and Games. Pure and Applied Mathematics. Elsevier Science, 2004.

19 / 43



Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d〈t〉 over some domain D and flow of time
(T ,≤T ).

What is a flow of time?

20 / 43



Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d〈t〉 over some domain D and flow of time
(T ,≤T ).

What is a flow of time?

20 / 43



Flow of Time

I Flow of time (T ,≤T ) is a structure with a time domain T and
a binary relation ≤T over it.

I Flow metaphor hints on directionality and dynamic aspect of
time

I But still different forms of flow are possible

I One can consider concrete structures of flow of (time), as
done here

I Or investigate them additionally axiomatically
I An early model-theoretic and axiomatic treatise:

Lit: J. van Benthem. The Logic of Time: A Model-Theoretic Investigation into

the Varieties of Temporal Ontology and Temporal Discourse. Reidel, 2. edition,

1991.

21 / 43



The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

22 / 43



The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

22 / 43



The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element

I discreteness (Example: T = N); also used for modeling state
sequences;

I density (Example: T = Q);
I continuity (Example: T = R)

22 / 43



The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

22 / 43



Sequence Determines Arrival Ordering

I Sequence fixed by arrival ordering fixed <ar

I <ar is a strict total ordering on the elements of S

I Synchronuous streams: ≤T compatible with <ar

I Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.

I Asynchronous streams: ≤T not necessarily compatible with
<ar

23 / 43



Sequence Determines Arrival Ordering

I Sequence fixed by arrival ordering fixed <ar

I <ar is a strict total ordering on the elements of S
I Synchronuous streams: ≤T compatible with <ar

I Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.

I Asynchronous streams: ≤T not necessarily compatible with
<ar

23 / 43



High-Level Declarative stream processing: CQL



High-Level Declarative Stream Processing



Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

I Need to apply calculation/reasoning CRloc locally, e.g.
I arithmetics, timeseries analysis operations
I SELECT querying, CONSTRUCT querying, abduction,

revision, planning

26 / 43



High-Level and Declarative

I Declarative:
Stream elements have “assertional status” and allow for
symbolic processing

Example (Relational data streams)

Stream element (sensor , val)〈3sec〉 “asserts” that sensor shows
some value at second 3

I High-Level:
Streams are processed with respect to some background
knowledge base such as a set of rules or an ontology.

Example (Streams of time-tagged ABox assertions)

Streams elements of form val(sensor , val)〈3sec〉 evaluated w.r.t. to
an ontology containing, e.g., axiom tempVal v val

27 / 43



High-Level and Declarative

I Declarative:
Stream elements have “assertional status” and allow for
symbolic processing

Example (Relational data streams)

Stream element (sensor , val)〈3sec〉 “asserts” that sensor shows
some value at second 3

I High-Level:
Streams are processed with respect to some background
knowledge base such as a set of rules or an ontology.

Example (Streams of time-tagged ABox assertions)

Streams elements of form val(sensor , val)〈3sec〉 evaluated w.r.t. to
an ontology containing, e.g., axiom tempVal v val

27 / 43



Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

KB

I Need to apply calculation/reasoning CRloc locally, e.g.
I arithmetics, timeseries analysis operations
I SELECT querying, CONSTRUCT querying, abduction,

revision, planning (=⇒ high-level & declarative)

28 / 43



Declarativ Stream Processing in DSMS
I Different groups working on DSMS around 2004

I Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

I Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

I Though well investigated and many similarities there is no
streaming SQL standard

I First try for standardization:
Lit: N. Jain et al. Towards a streaming sql standard. Proc. VLDB Endow.,

1(2):1379–1390, Aug. 2008.

I But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...

I UPDATE January 2020): There seems to be an ISO-standard
in the making: ISO/IEC NP TR 29075-1

29 / 43



Declarativ Stream Processing in DSMS
I Different groups working on DSMS around 2004

I Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

I Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

I Though well investigated and many similarities there is no
streaming SQL standard

I First try for standardization:
Lit: N. Jain et al. Towards a streaming sql standard. Proc. VLDB Endow.,

1(2):1379–1390, Aug. 2008.

I But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...

I UPDATE January 2020): There seems to be an ISO-standard
in the making: ISO/IEC NP TR 29075-1

29 / 43



Declarativ Stream Processing in DSMS
I Different groups working on DSMS around 2004

I Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

I Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

I Though well investigated and many similarities there is no
streaming SQL standard

I First try for standardization:
Lit: N. Jain et al. Towards a streaming sql standard. Proc. VLDB Endow.,

1(2):1379–1390, Aug. 2008.

I But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...

I UPDATE January 2020): There seems to be an ISO-standard
in the making: ISO/IEC NP TR 29075-1

29 / 43



CQL (Continuous Query Language)
I Early relational stream query language extending SQL
I Developed in Stanford as part of a DSMS called STREAM

I Semantics theoretically specified by denotational semantics

I Development of CQL was accompanied by the development
the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/~linearroad/)

I Had immense impact also on development of early RDF
streaming engines in RSP community
https://www.w3.org/community/rsp/)

Lit: A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:

semantic foundations and query execution. The VLDB Journal, 15:121–142, 2006.

Lit: A. Arasu et al. Linear road: A stream data management benchmark. In VLDB,

pages 480–491, 2004.
30 / 43

(http://www.cs.brandeis.edu/~linearroad/)
https://www.w3.org/community/rsp/


CQL (Continuous Query Language)
I Early relational stream query language extending SQL
I Developed in Stanford as part of a DSMS called STREAM

I Semantics theoretically specified by denotational semantics

I Development of CQL was accompanied by the development
the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/~linearroad/)

I Had immense impact also on development of early RDF
streaming engines in RSP community
https://www.w3.org/community/rsp/)

Lit: A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:

semantic foundations and query execution. The VLDB Journal, 15:121–142, 2006.

Lit: A. Arasu et al. Linear road: A stream data management benchmark. In VLDB,

pages 480–491, 2004.
30 / 43

(http://www.cs.brandeis.edu/~linearroad/)
https://www.w3.org/community/rsp/


CQL (Continuous Query Language)
I Early relational stream query language extending SQL
I Developed in Stanford as part of a DSMS called STREAM

I Semantics theoretically specified by denotational semantics

I Development of CQL was accompanied by the development
the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/~linearroad/)

I Had immense impact also on development of early RDF
streaming engines in RSP community
https://www.w3.org/community/rsp/)

Lit: A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:

semantic foundations and query execution. The VLDB Journal, 15:121–142, 2006.

Lit: A. Arasu et al. Linear road: A stream data management benchmark. In VLDB,

pages 480–491, 2004.
30 / 43

(http://www.cs.brandeis.edu/~linearroad/)
https://www.w3.org/community/rsp/


CQL (Continuous Query Language)
I Early relational stream query language extending SQL
I Developed in Stanford as part of a DSMS called STREAM

I Semantics theoretically specified by denotational semantics

I Development of CQL was accompanied by the development
the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/~linearroad/)

I Had immense impact also on development of early RDF
streaming engines in RSP community
https://www.w3.org/community/rsp/)

Lit: A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:

semantic foundations and query execution. The VLDB Journal, 15:121–142, 2006.

Lit: A. Arasu et al. Linear road: A stream data management benchmark. In VLDB,

pages 480–491, 2004.
30 / 43

(http://www.cs.brandeis.edu/~linearroad/)
https://www.w3.org/community/rsp/


CQL Details

see lecture Non-standard databases

31 / 43



Streamified OBDA

I Nearly ontology layer stream processing
I CEP (Complex event processing)
I EP-SPARQL/ETALIS, T-REX/ TESLA, Commonsens/ESPER

I RDF-ontology layer stream processing
I C-SPARQL (della Valle et al. 09), CQELS, . . . , RSP (most

recent suggestion unifying the RDF stream approaches
I Classical OBDA stream processing

I SPARQLStream (Calbimonte et al. 12) and MorphStream

I All approaches rely on CQL window semantics
I extend SPARQL or use some derivative of it
I Treat timestamped RDF triples but use reification

32 / 43



Example of Reified Handling

Example

SELECT ?windspeed ?tidespeed
FROM NAMED STREAM <http://swiss-experiment.ch/

data#WannengratSensors.srdf>
[NOW-10 MINUTES TO NOW-0 MINUTES]
WHERE

?WaveObs a ssn:Observation;
ssn:observationResult ?windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.

?TideObs a ssn:Observation;
ssn:observationResult ?tidespeed;
ssn:observedProperty sweetSpeed:TideSpeed.

FILTER (?tidespeed<?windspeed)

33 / 43



SRBench (Zhang et al. 2012)
I Benchmark for RDF/SPARQL Stream Engines
I Contains data from LinkedSensorData, GeoNames, DBPedia
I Mainly queries for functionality tests, with eye on SPARQL

1.1. functionalities

Example (Example Query (to test basic pattern matching))

Q1. Get the rainfall observed once in an hour.

I Tested on CQELS, SPARQLStream and C-SPARQL

I Test results (for engine versions as of 2012)
I Basic SPARQL features supported
I SPARQL 1.1 features (property paths) rather not supported
I Only C-SPARQL supports reasoning (on RDFS level)

(tested subsumption and sameAs)
I Combined treatment of static data plus streaming data only

for CQELS and C-SPARQL

34 / 43



Language Comparison of SOTA Stream Engines

I Update in 2016
I We also mention Lübecks contribution STARQL

Name Data Model Union, Join, Optional, Filter IF Expression Aggregate Property Paths Time Windows Triple Windows
Streaming SPARQL RDF streams Yes No No No Yes Yes
C-SPARQL RDF streams Yes Yes Yes Yes Yes Yes
CQELS RDF streams Yes No Yes No Yes No
SPARQLStream (virtual) RDF streams Yes Yes Yes Yes Yes No
EP-SPARQL RDF streams Yes No Yes No No No
TEF-SPARQL RDF streams Yes No Yes No Yes Yes
RSP-QL RDF streams Yes Yes Yes Yes(*) Yes No (*)
STARQL (virtual) RDF streams Yes Yes Yes No Yes No

Name W-to-S Operator Named Streams Intra window time Sequencing Pulse
Streaming SPARQL RStream No No No No
C-SPARQL RStream Yes Yes No Yes
CQELS IStream No No No No
SPARQLStream RStream, IStream, DStream No Yes No No
EP-SPARQL RStream Yes Yes Yes No
TEF-SPARQL RStream No No Yes No
RSP-QL RStream, IStream, DStream Yes Yes No No(*)
STARQL RStream Yes Yes Yes Yes

35 / 43



Architecture Comparison of SOTA Stream Engines

Used Language Input Execution Query Optimization Stored Data Reasoning
Streaming RDF streams physical stream algebra Static plan optimization Yes No
SPARQL
C-SPARQL RDF streams DSMS based evaluation Static plan optimization Internal triple store RDF entailment

with triple store
CQELS RDF streams RDF stream processor Adaptive query Stored linked data No

processing operators
SPARQLStream Relational streams external query processing Static algebra optimizations Data source dependent No

host evaluator specific
EP-SPARQL RDF streams logic programming No No RDFS, Prolog equivalent

backward chaining rules
TEF-SPARQL RDF streams Yes No Yes Yes
STARQL Relational streams external query processing Static algebra optimizations Datasource dependent Yes (DL-LiteA)

36 / 43



Links SOTA Stream Engines
Lit: A. Bolles, M. Grawunder, and J. Jacobi. Streaming sparql - extending sparql to process data

streams. In S. Bechhofer et al., editors, The Semantic Web: Research and Applications, vol. 5021 of

LNCS, p. 448–462, 2008.

Lit: D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. C-sparql: a continuous query

language for rdf data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

Lit: D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive approach for

unified processing of linked streams and linked data. In L. Aroyo et al., editors, The Semantic Web -

ISWC 2011, vol. 7031 LNCS, p. 370–388, 2011.

Lit: J.-P. Calbimonte, H. Jeung, O. Corcho, and K. Aberer. Enabling query technologies for the semantic

sensor web. Int. J. Semant. Web Inf. Syst., 8(1):43–63, Jan. 2012.

Lit: D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and complex event processing

in Etalis. Semantic Web, 3(4):397–407, 2012.

Lit: J.-U. Kietz, T. Scharrenbach, L. Fischer, M. K. Nguyen, and A. Bernstein. Tef-sparql: The ddis

query- language for time annotated event and fact triple-streams. Technical Report IFI-2013.07, 2013.

Lit: D. Dell’Aglio, E. Della Valle, J. Calbimonte, and O. Corcho. Rsp-ql semantics: A unifying query

model to explain heterogeneity of rdf stream processing systems. International Journal on Semantic Web

and Information Systems (IJSWIS), 10(4), 2015.

Lit: Ö. Özçep, R. Möller, and C. Neuenstadt. A stream-temporal query language for ontology based data

access. In KI 2014, vol. 8736 of LNCS, p. 183–194, 2014.

37 / 43



A stream reasoning community is forming

Everyone is interested in (high-level) stream processing now

I Various new stream reasoners (based on Datalog extensions)
I Stream reasoning + Machine Learning
I Stream reasoning + Verification
I Further benchmark ambitions and testing frameworks
I For recent progress see, e.g., 4th stream reasoning workshop

https://sr2019.on.liu.se/

I And for sure to come: Stream processing + Online Learning

38 / 43

https://sr2019.on.liu.se/


Temporalized OBDA



Adding a Temporal Dimension to OBDA

I Most conservative strategy: handle time as “ordinary” attribute
time meas(x) ∧

val(x , y) ∧
time(x , z)

 ←− SELECT f(MID) AS m, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT

I Classical Mapping
I Pro: Minimal (no) adaptation
I Contra:

I No control on “logic of time”
I Need reification

I sometimes necessary (because DLs provided only predicates up
to arity 2)

I but not that “natural”

40 / 43



Temporalized OBDA: General Approach
I Semantics rests on family of interpretations (It)t∈T
I Temporal ABox Ã: Finite set of T -tagged ABox axioms

Example

val(s0, 90◦)〈3s〉 holds in (It)t∈T iff I3s |= val(s0, 90◦)
“sensor s0 has value 90◦ at time point 3s”

I Alternative sequence representation of temporal ABox Ã
I (At)t∈T ′ (where T ′ are set of timestamps in T)
I At = {ax | ax〈t〉 ∈ Ã}

Definition (Adapted notion of OBDA rewriting)

cert(Q, (Sig , T , (At)t∈T ′) = ans(Qrew , (DB(At))t∈T ′)

41 / 43



Temporalized OBDA:TCQs
I Different approaches based on modal (temporal) operators
I LTL operators only in QL (Borgwardt et al. 13)

Example

Critical(x) = ∃y .Turbine(x) ∧ showsMessage(x , y) ∧
FailureMessage(y)

Q(x) = ©−1©−1©−1(3(Critical(x) ∧©3Critical(x)))

“turbine has been at least two times in a critical
situation in the last three time units”

I CQ embedded into LTL template
I Special operators taking care of endpoints of state sequencing
I Not well-suited for OBDA as non-safe
I Rewriting simple due to atemporal TBox

Lit: S. Borgwardt, M. Lippmann, and V. Thost. Temporal query answering in the

description logic dl-lite. In FroCs, volume 8152 of LNCS, pages 165–180, 2013. 42 / 43



Temporalized OBDA: TQL

I LTL operators in TBox and T argument in QL

Example

TBox axiom : showsAnomaly v 3UnplanedShutDown

“if turbine shows anomaly (now)
then sometime in the future it will shut down”

Query : ∃t.3s ≤ t ≤ 6s ∧ showsAnomaly(x , t)

I Can formulate rigidity assumptions
I Rewriting not trivial

Lit: A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Temporal description

logic for ontology- based data access. In IJCAI’13, pages 711–717. AAAI Press, 2013.

43 / 43


	Stream Basics
	Streams in Stringology
	High-Level Declarative stream processing: CQL
	High-Level Declarative Stream Processing
	Temporalized OBDA

