Özgür L. Özçep

Logic, Logic, and Logic

Lecture 2: FOL
15 April 2021
Informationssysteme CS4130
(Summer 2021)

Recap: Role of Logic in CS

Literature Hint: Introductions to Logic

- Logic for CS

Lit: M. Huth and M. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2000.
Lit: M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2. edition, 2001.

Lit: U. Schöning. Logik für Informatiker. Spektrum Akademischer Verlag, 5. edition, 2000.

Lit: M. Fitting. First-Order Logic and Automated Theorem Proving. Graduate texts in computer science. Springer, 1996.

- Mathematical Logic

Lit: H.Ebbinghaus, J.Flum, and W.Thomas. Einführung in die mathematische Logik. Hochschul-Taschenbuch. Spektrum Akademischer Verlag, 2007.
Lit: D. J. Monk. Mathematical Logic. Springer, 1976.
Lit: R. Cori and D. Lascar. Mathematical Logic: Propositional calculus, Boolean algebras, predicate calculus. Mathematical Logic: A Course with Exercises.
Oxford University Press, 2000.

Recap: First-Order Logic

FOL Structures and Interpretations

- Structures: $\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots R_{n}^{\mathfrak{A}}, f_{1}^{\mathfrak{A}}, \ldots, f_{m}^{\mathfrak{A}}, c_{1}^{\mathfrak{A}}, \ldots, c_{1}^{\mathfrak{A}}\right)$
- Usually: Universe A assumed to be non-empty

Example: Graphs $\mathfrak{G}=\left(V, E^{\mathfrak{G}}\right)$

- Interpretations $\mathcal{I}=(\mathfrak{A}, \nu)$

Adds assignments ν for free variables.

- Syntax
- Terms (Example: c, $f(c, x)$)
- Atomic formulae (Example: $c=d, E(a, d)$)
- Formulae: (Example: $\exists y \exists z E(x, y) \wedge E(x, z) \wedge E(y, z))$

FOL Semantics

- Semantics (Satisfaction/truth/modeling \models)
- $\mathcal{I} \vDash \exists x \phi$ iff: There is $d \in A$ s.t. $\mathcal{I}_{[x / d]} \models \phi$

Example

$(\mathfrak{G}, x \mapsto a) \models \exists y \exists z E(x, y) \wedge E(x, z) \wedge E(y, z)$

Alternative notation:
$\mathfrak{G} \models(\exists y \exists z E(x, y) \wedge E(x, z) \wedge E(y, z))(x / a)$

Definition (Derived Semantic Notions)

- Entailment: $\Phi \models \psi$ (" Φ entails ψ ") iff for all interpretations \mathcal{I} : if $\mathcal{I} \models \Phi$, then $\mathcal{I} \models \psi$
- ψ is satisfiable iff there is an interpretation \mathcal{I} s.t. $\mathcal{I} \models \psi$
- Φ is satisfiable iff there is an interpretation \mathcal{I} s.t. for all $\psi \in \Phi: \mathcal{I} \vDash \psi$
- $\operatorname{Mod}(\Phi)=\{\mathcal{I} \mid \mathcal{I}$ satisfies all $\psi \in \Phi\}$
- ψ is valid iff for all interpretations $\mathcal{I}: \mathcal{I} \models \psi$.
- ψ is contradictory (unsatisfiable) iff for all interpretations \mathcal{I} : $\operatorname{Not} \mathcal{I} \models \psi$

FOL: Calculi and Algorithmic Problems

Plan for Today

- We investigate corresponding algorithmic problems for FOL
- Because, e.g., the definition of entailment does not say anything on how to compute that ψ is entailed by Φ
- Moreover, it does not say how much resources (place, time) are needed
- Example algorithmic problems
- Given a structure \mathfrak{A} and formula ϕ : Decide whether $\mathfrak{A} \models \phi$
- Given a formula decide whether ϕ is satisfiable (valid, contradictory, resp.)
- Given Φ, ψ decide whether $\Phi \vDash \psi$.
- Problems are related by reduction (at least for FOL)

Wake-Up Exercise

Show: $\Phi \vDash \psi$ iff $\Phi \cup\{\neg \psi\}$ is unsatisfiable
Remember:

- Entailment: $\Phi \vDash \psi$ (" Φ entails ψ ") iff for all interpretations \mathcal{I} : if $\mathcal{I} \models \Phi$, then $\mathcal{I} \models \psi$
- ψ is unsatisfiable (or contradictory) iff for all interpretations \mathcal{I} : $\operatorname{Not} \mathcal{I} \models \psi$

Challenges of FOL Algorithmic Problems

- First challenge: Domain of structure may be infinite
- But this is not the main problem (as we will see in lecture on finite model theory)
- Second challenge: Number of possible structures is infinite
- We want to tame the infinite by "syntactifying" the problem

A First Step Towards Algorithmization: Proof Calculi

- How to approach entailment problem $\Phi \vDash \psi$?
- Idea: Break down entailment into smaller entailment steps
- "Smaller" entailment steps (which are "obvious")
- Realized by applying finite number of rules \mathcal{R}
- Apply rules to Φ and intermediate results to yield ψ

General derivation procedure

- Input: Φ, ψ
- Output: $\Phi \stackrel{?}{\vDash} \psi$
- $D S_{0}=$ Encode (Φ, ψ)
- Find derivation $D S_{0}, \ldots, D S_{n}$ where $D S_{i}$ results from applying a rule from \mathcal{R} to finite set of $D S_{j}$ with $j<i$.
- Decode $\left(D S_{n}\right)$ into answer to $\Phi \models \psi$
- Differences among calculi regarding: types of rules in \mathcal{R}; used data structures $D S$; proof methodology

Well Known Calculi

Calculus	Rule types	Data structures	Methodology
Hilbert	axioms 2 rules	formulae	direct (premises to conclusion)
Natural deduction	I(ntroduction) and E (limination) rules per constructor	formulae	direct
Gentzen style	axioms + I and E rules per constructor	Entailments	direct
Tableaux	"and", "or" rules	formula in a tree	refutation proofs based on DNF
Resolution	resolution rule	quantifier free formula in CNF in a tree	refutation proofs based on CNF

Resolution

Resolution

- Refutation calculus, i.e., calculus for showing unsatisfiability of a formula
- Steps
- Data structures: formulas in clausal-normal form (Corresponds to CNF (conjunctive normal form) in propositional logic)
- One rule: use satisfiability-preserving resolution rule to reduce formulae
- Iteratively apply until empty clause (means: contradiction) is derived
- There are mature and efficient resolution provers (with many ingenious optimizations)
- Efficient (but nonetheless complete) resolution procedure SLD part of Prolog

Prenex Normal Form

- Idea of normalization
- Transform formulas into a (syntactically) simpler form
- preserving as much of the semantics as possible

Definition

A formula of the form $Q_{1} x_{1}, \ldots, Q_{n} x_{n} \psi$, where $Q_{i} \in\{\forall, \exists\}$ and

- ψ, the so-called the matrix, does not contain quantifiers
- no variable occurs free and bounded
- every quantifier bounds a different variable is said to be in prenex normal form (PNF)
- Here: Simplicity ensured by un-nesting quantifiers (the main reason for un-feasibility)
- Here "preserve semantic" means: Ensure equivalence \equiv

$$
\phi \equiv \psi \text { iff } \phi \models \psi \text { and } \psi \models \phi
$$

Existence of Prenex Normal Form

Theorem

Every FOL formula has an equivalent formula in PNF

Propositional Equivalences

- $\neg \neg \phi \equiv \phi$
- $\neg(\phi \vee \psi) \equiv \neg \phi \wedge \neg \psi$
- $\phi \rightarrow \psi \equiv \neg \phi \vee \psi$
- $\phi \leftrightarrow \psi \equiv(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)$
- $\phi \wedge(\psi \vee \chi) \equiv(\phi \wedge \psi) \vee(\phi \wedge \chi)$

Equivalence under bounded substitutions

- $\exists x \phi \equiv \exists y(\phi[x / y])$
- where $\phi[x / y]$ is result of substituting every free x with y in ϕ

Quantifier-specific equivalences

- $\forall x \phi \equiv \neg \exists x \neg \phi$
- $\phi \equiv \exists x \phi \quad$ (where x not free in ϕ)
- $(\exists x \phi \wedge \psi) \equiv \exists x(\phi \wedge \psi)$
(where x not free in ψ)
- $(\exists x \phi \vee \psi) \equiv \exists x(\phi \vee \psi)$
(x not free in ψ)
- $\exists x \phi \vee \exists x \psi \equiv \exists x(\phi \vee \psi)$
- $\exists x \exists y \phi \equiv \exists y \exists x \phi$
- $\phi \equiv \forall x \phi \quad$ (where \times not free in ϕ)
- $(\forall x \phi \wedge \psi) \equiv \forall x(\phi \wedge \psi)$
(where x not free in ψ)
- $(\forall x \phi \vee \psi) \equiv \forall x(\phi \vee \psi)$
(x not free in ψ)
- $\forall x \phi \wedge \forall x \psi \equiv \forall x(\phi \wedge \psi)$
- $\forall x \forall y \phi \equiv \forall y \forall x \phi$

Substituting with Equivalent Formula

Theorem

Assume $\phi \equiv \psi$ and χ contains ϕ as subformula. If χ^{\prime} results from substituting ϕ with ψ, then $\chi \equiv \chi^{\prime}$.
Proof: By structural induction.

Satisfiably Equivalent

- Formulae in PNF are going to be transformed to formula in clausal normal form
- Resulting formula are \square

$$
\phi \equiv \text { sat } \psi \text { iff: } \operatorname{Mod}(\phi) \neq \emptyset \text { iff } \operatorname{Mod}(\psi) \neq \emptyset
$$

- One cannot guarantee equivalence

Elimination of Exists Quantifiers: Skolemization

- Input a PNF formula $\phi: \forall_{1} x_{1}, \ldots \forall_{n} x_{n} \exists y \psi$
- Output $\phi^{\prime}: \forall_{1} x_{1}, \ldots \forall_{n} x_{n} \psi\left[y / f\left(x_{1}, \ldots, x_{n}\right)\right]$ where f a fresh n-ary function symbol
ϕ^{\prime} results from skolemization out of ϕ, f called Skolem
function (or Skolem constant if $n=0$)
- Can be iteratively applied (starting with left-most \exists) until all \exists are eliminated. Result is said to be in Skolem form and to be the skolemization of the original formula

Theorem

A formula and its skolemization are satisfiably equivalent.

Example (Skolem Form)

Given formula

$$
\phi=\forall x \forall y(P(x, y) \rightarrow Q(x)) \rightarrow \exists x(\forall y \neg Q(y) \rightarrow \exists y \neg P(y, x))
$$

transform it to Skolem form

$$
\begin{array}{ll}
& \forall x \forall y(P(x, y) \rightarrow Q(x)) \rightarrow \exists x(\forall y \neg Q(y) \rightarrow \exists y \neg P(y, x)) \\
\equiv & \forall x \forall y(\neg P(x, y) \vee Q(x)) \rightarrow \exists x(\neg \forall y \neg Q(y) \vee \exists y \neg P(y, x)) \\
\equiv & \neg \forall x \forall y(\neg P(x, y) \vee Q(x)) \vee \exists x(\neg \forall y \neg Q(y) \vee \exists y \neg P(y, x)) \\
\equiv & \exists x \exists y \neg(\neg P(x, y) \vee Q(x)) \vee \exists x(\exists y \neg \neg Q(y) \vee \exists y \neg P(y, x)) \\
\equiv & \exists x \exists y(\neg \neg P(x, y) \wedge \neg Q(x)) \vee \exists x(\exists y \neg \neg Q(y) \vee \exists y \neg P(y, x)) \\
\equiv & \exists x \exists y(P(x, y) \wedge \neg Q(x)) \vee \exists x(\exists y Q(y) \vee \exists y \neg P(y, x)) \\
\equiv & \exists x_{1} \exists y_{1}\left(P\left(x_{1}, y_{1}\right) \wedge \neg Q\left(x_{1}\right)\right) \vee \exists x_{2}\left(\exists y_{2} Q\left(y_{2}\right) \vee \exists y_{3} \neg P\left(y_{3}, x_{2}\right)\right) \\
\equiv & \exists x_{1} \exists y_{1}\left(P\left(x_{1}, y_{1}\right) \wedge \neg Q\left(x_{1}\right)\right) \vee \exists x_{2} \exists y_{2}\left(Q\left(y_{2}\right) \vee \exists y_{3} \neg P\left(y_{3}, x_{2}\right)\right) \\
\equiv & \exists x_{1} \exists y_{1}\left(P\left(x_{1}, y_{1}\right) \wedge \neg Q\left(x_{1}\right)\right) \vee \exists x_{2} \exists y_{2} \exists y_{3}\left(Q\left(y_{2}\right) \vee \neg P\left(y_{3}, x_{2}\right)\right) \\
\equiv \equiv & \exists x_{2} \exists y_{2} \exists y_{3}\left(\exists x_{1} \exists y_{1}\left(P\left(x_{1}, y_{1}\right) \wedge \neg Q\left(x_{1}\right)\right) \vee\left(Q\left(y_{2}\right) \vee \neg P\left(y_{3}, x_{2}\right)\right)\right) \\
\equiv & \exists x_{2} \exists y_{2} \exists y_{3} \exists x_{1} \exists y_{1}\left(\left(P\left(x_{1}, y_{1}\right) \wedge \neg Q\left(x_{1}\right)\right) \vee\left(Q\left(y_{2}\right) \vee \neg P\left(y_{3}, x_{2}\right)\right)\right) \\
\equiv \text { sat } & ((P(d, e) \wedge \neg Q(d)) \vee(Q(b) \vee \neg P(c, a)))
\end{array}
$$

Clausal Normal Form

Definition

ψ is in clausal normal form (CLNF) iff it is in Skolem form, contains no free variables, and its matrix is in CNF

Definition

A quantifier-free formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses

- Clause: Disjunction of literals
- Literal: atomic FOL formula or negated atomic FOL formula

Theorem

For every ψ there exists a satisfiably equivalent ψ^{\prime} in CLNF

Resolution Idea

- Observation used for resolution:

$$
(\alpha \vee \phi) \wedge(\neg \alpha \vee \psi) \wedge \chi \equiv_{\text {sat }}(\phi \vee \psi) \wedge \chi
$$

where

- $\{\alpha, \neg \alpha\}$ is a pair of complementary literals
- ϕ, ψ, χ arbitrary formulae
- Apply this equivalence iteratively on the matrix of formula in CLNF until empty clause (i.e. contradiction) is derived
- More convenient set notation for clauses
- Clause $L_{1} \vee \cdots \vee L_{n}$ written as set $\left\{L_{1}, \ldots, L_{n}\right\}$
- \bar{L}_{i} is complement of L_{i}
E.g.: $\overline{R(a)}=\neg R(a), \overline{\neg R(a)}=R(a)$

Lazy Proof Strategy by Unification

- Want to identify literals as complementary using unification
- Substitution σ : function from variables to terms
- σ unifies literals L_{1}, L_{2} iff $L_{1} \sigma=L_{2} \sigma$
- Example
- $L_{1}=P(x, y), L_{2}=P(g(z), a)$
- $\sigma_{1}=[x / g(z), y / a]$
- Laziness: Find a most general unifier (mgu)
- σ_{1} more general than $\sigma_{2}=[x / g(a), y / a, z / a]$.
- σ is an mgu iff for all unifiers σ^{\prime} there is substitution $\sigma^{\prime \prime}$ such that $\sigma^{\prime}=\sigma \circ \sigma^{\prime \prime}$.

Theorem (Robinson)

Every unifyable finite set of literals has a mgu.

Resolution Step

Definition

Given clauses $\mathrm{Cl}_{1}, \mathrm{Cl}_{2}$, the clause RCl is a resolvent of $\mathrm{Cl}_{1}, \mathrm{Cl}_{2}$ iff 1. There are variable renamings σ_{1}, σ_{2} s.t. $C l_{1} \sigma_{1}$ and $C l_{2} \sigma_{2}$ contain different variables.
2. There is a literal $L_{1} \in C l_{1} \sigma_{1}$ and $L_{1}^{\prime} \in C l_{2} \sigma_{2}$ s.t. $\left\{L_{1}, \overline{L^{\prime}}{ }_{1}\right\}$ unifiable with mgu σ
3. $R C I=\left(C L_{1} \sigma_{1} \backslash\left\{L_{1}\right\} \cup C L_{2} \sigma_{2} \backslash\left\{L_{1}^{\prime}\right\}\right) \sigma$

A convenient graphical notation

Example (Resolution)

Correctness and Completeness

Definition

A calculus C is

- correct w.r.t. entailment iff: Whenever $\Phi \vdash^{C} \psi$, then $\Phi \vDash \psi$
- complete w.r.t. entailment iff: Whenever $\Phi \vDash \psi$, then $\Phi \vdash^{c} \psi$
- Correctness means: you can prove entailments only that really hold
- Completeness means: Whenever an entailment holds then there is also a proof for it. (Proved by ingenious Gödel)

Theorem

All aforementioned calculi are correct and complete

Resolution Theorem

- Let ψ be a clause set
- $\operatorname{Res}(\psi)=\psi \cup\{R C l \mid R C l$ is a resolvent of clauses in $\psi\}$
- $R^{i+1}(\psi)=\operatorname{Res}\left(\operatorname{Res}^{i}(\psi)\right)$
- $\operatorname{Res}^{*}(\psi)=\bigcup \operatorname{Res}^{i}(\psi)$

Theorem

Every ϕ in CLNF with matrix ψ is unsatisfiable iff $\square \in \operatorname{Res} *(\psi)$ (or equivalently: if there is a derivation graph ending in \square. .)

- This shows correctness and completeness w.r.t. unsatisfiability testing
- But entailment can be reduced to it (remember wake-up question).
- Possible proof based on Herbrand models

Optional Slide: Completeness and Correctness for Resolution

- Herbrand structures blur syntax-semantic distinctions.
- Given ψ in Skolem form.
- Herbrand terms HT (ψ) : all possible closed terms from function symbols (and constants) in ψ
- Herbrand structure HS (ψ)
- Domain: HT (ψ)
- Interpretation of function symbols:

$$
f^{H S(\psi)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)
$$

- Relation symbols arbitrarily

Theorem

A formula is satisfiable iff it (its CLNF) has a Herbrand model

- Construction of Herband model: Interpret relation symbols R as $R^{H S}(\psi)\left(t_{1}, \ldots, t_{n}\right)$ if $\mathcal{I}\left(t_{1}\right), \ldots, \mathcal{I}\left(t_{n}\right) \in R^{\mathcal{I}}$ for satisfying \mathcal{I}.

Optional Slide: Herbrand Expansion

- Given ψ in Skolem form $\forall x_{1}, \ldots, \forall x_{n} \phi$
- HE (ψ) : All "groundings" of the matrix with Herbrand terms

$$
\left\{\psi\left[x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right] \mid t_{i} \in H S(\psi)\right\}
$$

Theorem (Herbrand)

Skolem formula ψ is satisfiable iff a finite subset of $\operatorname{HE}(\psi)$ is satisfiable

Proof idea

- Show that ψ is satisfiable iff it has a Herbrand model
- Show that ψ has a Herbrand model iff $\operatorname{HE}(\psi)$ is satisfiable
- Use compactness of propositional logic (discussed later)

But wait....

- We have shown completeness of calculi
- Doesn't this mean that we have a decision procedure for entailment (unsatisfiability)?
- NO!

Theorem

Deciding validity (unsatisfiability, entailment) is un-decidable

- But semi-decidability holds: if formula is valid you will eventually find a derivation; if formula not valid you won't know

Turing Machines

- One of the first precise computation models are Turing machines (TMs)
- Specifies precisely what it means to solve a problem algorithmically
- Starting from a finite input (encoding)
- give after a (finite number) of discrete steps
- an encoding of the desired output
- Other alternative computation models: recursive functions, lambda calculus, register machines
- These computation models have been shown to be equivalent

Church Turing Thesis

What is intuitively computable is computable by a Turing machine

> VIDEO: A Lego ${ }^{\text {TM }}$ Turing machine
> https://www.youtube.com/watch?v=FTSAiF9AHN4

Semi-decidability

Theorem

FOL entailment is semi-decidable, i.e., there is a TM s.t.

- If Φ and ψ are inputs with $\Phi \vDash \psi$, then TM stops with yes
- otherwise it stops with no or it does not stop.

Proof sketch:

- Given a calculus C with derivation relation \vdash_{c} complete and correct for entailment
- The possible inferences starting from Φ make up a tree (with finite set of children for every node)
- The root (level 0) is Encode (Φ, ψ)
- The finitely many children at level $n+1$ are those D_{i} that are generated from children at level up to n
- Do a breadth first search until Encode $(\Phi \vDash \psi)$ appears

Why is FOL so Important?

Why is FOL so Successful (w.r.t.) CS

- Theoretical Answer: FOL is most expressive logic w.r.t. relevant properties (Lindström Theorems)
\Longrightarrow today
- Practical Answer: Has proven useful for query answering on SQL DBs and much more
\Longrightarrow next lectures

Compactness in Topology

"Ah, Kompaktheit, eine wundervolle Eigenschaft" (Jaenich 2008, S.24)

- Compactness notion stems from mathematical field topology
- Topologies $\mathfrak{T}=(X, \mathcal{O})$
- Domain X and open sets $\mathcal{O} \subseteq \operatorname{Pot}(X)$ with
- Every union of open sets is open
- Every finite intersection is open
- X and \emptyset are open
- Open covering of X

Family of open sets $\left\{U_{i}\right\}_{i \in I}$ with $U_{i} \in \mathcal{O}$ and $\bigcup_{i \in I} U_{i}=X$
Lit: K. Jänich. Topologie. Springer, 8th edition, 2008.

Compactness in Topology

Definition

(X, \mathcal{O}) is compact iff every open covering of X has a finite sub-covering.

- How compactness is used to infer global properties from local properties
- Let P be a property such that if open U, V have it, then also $U \cup V$ has it.
- Then: If for every point $a \in X$ there is an open U_{a} having P, then X has P.

Wake-Up Exercise

Prove the correctness of this type of reasoning from local to global within compact spaces!

Proof

- Assume that if open U, V have P, then also $U \cup V$ has it. (*)
- Assume further that for all a there is U_{a} having P.
- $\left\{U_{a}\right\}_{a \in X}$ is a covering of X.
- Because of compactness there is a finite covering $U_{a_{1}} \cup \cdots \cup U_{a_{n}}=X$.
- Because of $\left({ }^{*}\right)$ it follows that $U_{a_{1}}, \ldots, U_{a_{n}}$ has P, i.e., X has P.

Definition ((Logical) Compactness)

A logic \mathcal{L} has the compactness property if the following holds: For all sets Φ of formulae in \mathcal{L} : If every finite subset of Φ has a model, then Φ has a model.

- Equivalent definition:

If $\Phi \vDash \psi$, then already $\Phi_{0} \vDash \psi$ for a finite Φ_{0}

- Intuitively: Infiniteness adds not additional expressive power for FOL

Theorem

FOL has the compactness property.

- Logical compactness derived from topological notion
- FOL compactness is a corollary of Tychonoff's Theorem ("Any product of compact topological spaces is compact")

Application: Reachability is not FOL Expressible

Query $Q_{\text {reach: List all cities reachable from Hamburg! }}$

```
\(Q_{\text {reach }}(x)=\) Flight \((\) Hamburg,\(x) \vee\)
    \(\exists x_{1} F \operatorname{light}\left(\right.\) Hamburg, \(\left.x_{1}\right) \wedge \operatorname{Flight}\left(x_{1}, x\right) \vee\)
    \(\exists x_{1}, x_{2} F \operatorname{light}\left(\right.\) Hamburg,\(\left.x_{2}\right) \wedge \operatorname{Flight}\left(x_{2}, x_{1}\right) \wedge \operatorname{Flight}\left(x_{1}, x\right) \vee \ldots\)
```


Theorem

Reachability is not expressible in FOL.

Proof

- For contradiction assume there is FOL $\phi_{\text {reach }}(x, y)$ expressing reachability over edges E
- Consider FOL formulae ϕ_{n} : "There is an n-path from c to $c^{\prime \prime}$
- Let $\Psi=\left\{\neg \phi_{i} \mid i \in \mathbb{N}\right\} \cup\left\{\phi_{\text {reach }}\left(c, c^{\prime}\right)\right\}$
- Ψ is unsatisfiable, but every finite subset is satisfiable $\{$

Application: Infinitesimal Probabilities

- Over continuous domains "low-dimensional" events have probability 0
- Conditional probability $P(B \mid A)$ undefined for $P(A)=0$
- But P (point on east hemisphere | point on equator) should be $1 / 2$ (and not undefined)
\Longrightarrow Need infinitesimal positive probability weights
- Consider $T=\operatorname{Th}(\mathbb{R}) \cup\{a<\Omega \mid a$ is name of a real number $\}$
- Every finite subset of T satisfiable; with compactness T is satisfiable
- $1 / \Omega$ infinitesimal element

Lit: J. Weisberg. Varieties of bayesianism. In D. M. Gabbay, S. Hartmann, and J. Woods, editors, Inductive Logic, volume 10 of Handbook of the History of Logic, pages 477-551. North-Holland, 2011.
Lit: A. Robinson. Non-standard Analysis. Princeton Landmarks in Mathematics. Princeton University Press, 1996.

FOL has the Löwenheim-Skolem-Property

Theorem (Downward Löwenheim-Skolem-Property)

Every satisfiable, countable set of FOL sentences (theory) has a countable model.

- Intuitively: If you can talk with countably many sentences about structures, then there is a countable model verifying this fact.
- Can be shown by Herbrand expansions
- Leads to Skolem's paradox
- You can formalize mathematics within countable FOL theory, namely, Zermelo-Fränkel Set Theory (ZFC)
- ZFC \vDash "there are uncountable sets".

Why FOL is so Important: Lindström Theorems

Theorem (First Lindström Theorem)

There is no (regular) logic that is more expressive than FOL and fulfills compactness and Löwenheim-Skolem Property

- Meta theorem
- Intuitively: FOL is the most expressive (regular) logic fulfilling compactness and the Löwenheim-Skolem Property
- Regularity of logic
- Contains boolean operators
- Allows relativizing formula to domains
- Allows substituting constants and function symbols by relation symbols

Limits of FOL

- Positive: FOL can be used for effective query answering on one model (in data complexity)!
- Negative
- Entailment problem, satisfiability etc. not decidable \Longrightarrow Calls for restriction to feasible fragments
- Expressivity not sufficient (no recursion)
\Longrightarrow Calls for extensions (and restrictions)

